statistics3 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.document +5 -0
- data/.rspec +2 -0
- data/.ruby-version +1 -0
- data/.semver +5 -0
- data/.travis.yml +9 -0
- data/Gemfile +22 -0
- data/Gemfile.lock +127 -0
- data/History.rdoc +12 -0
- data/LICENSE.txt +20 -0
- data/README.org +38 -0
- data/Rakefile +73 -0
- data/examples/mklist.rb +18 -0
- data/examples/show.rb +12 -0
- data/ext/Makefile +260 -0
- data/ext/_statistics3.c +824 -0
- data/ext/_statistics3.o +0 -0
- data/ext/_statistics3.so +0 -0
- data/ext/extconf.rb +2 -0
- data/lib/statistics3/base.rb +525 -0
- data/lib/statistics3/no_ext.rb +6 -0
- data/lib/statistics3.rb +13 -0
- data/spec/spec_helper.rb +103 -0
- data/statistics3.gemspec +117 -0
- data/test/sample_tbl.rb +129 -0
- data/test/test_ext.rb +46 -0
- data/test/test_inv.rb +53 -0
- metadata +313 -0
data/ext/_statistics3.o
ADDED
Binary file
|
data/ext/_statistics3.so
ADDED
Binary file
|
data/ext/extconf.rb
ADDED
@@ -0,0 +1,525 @@
|
|
1
|
+
module Statistics3
|
2
|
+
module Base
|
3
|
+
SQ2PI = Math.sqrt(2 * Math::PI)
|
4
|
+
|
5
|
+
LOG_2PI = Math.log(2 * Math::PI) # log(2PI)
|
6
|
+
N = 8
|
7
|
+
B0 = 1.0
|
8
|
+
B1 = -1.0 / 2.0
|
9
|
+
B2 = 1.0 / 6.0
|
10
|
+
B4 = -1.0 / 30.0
|
11
|
+
B6 = 1.0 / 42.0
|
12
|
+
B8 = -1.0 / 30.0
|
13
|
+
B10 = 5.0 / 66.0
|
14
|
+
B12 = -691.0 / 2730.0
|
15
|
+
B14 = 7.0 / 6.0
|
16
|
+
B16 = -3617.0 / 510.0
|
17
|
+
|
18
|
+
# Newton approximation
|
19
|
+
def newton_a(y, ini, epsilon = 1.0e-6, limit = 30)
|
20
|
+
x = ini
|
21
|
+
limit.times do |i|
|
22
|
+
prev = x
|
23
|
+
f, df = yield(prev)
|
24
|
+
x = (y - f)/df + prev
|
25
|
+
if (x - prev).abs < epsilon
|
26
|
+
return x
|
27
|
+
end
|
28
|
+
end
|
29
|
+
$stderr.puts("Warning(newton approximation): over limit")
|
30
|
+
x
|
31
|
+
end
|
32
|
+
|
33
|
+
# Gamma function
|
34
|
+
def loggamma(x)
|
35
|
+
v = 1.0
|
36
|
+
while (x < N)
|
37
|
+
v *= x
|
38
|
+
x += 1.0
|
39
|
+
end
|
40
|
+
w = 1.0 / (x * x)
|
41
|
+
ret = B16 / (16 * 15)
|
42
|
+
ret = ret * w + B14 / (14 * 13)
|
43
|
+
ret = ret * w + B12 / (12 * 11)
|
44
|
+
ret = ret * w + B10 / (10 * 9)
|
45
|
+
ret = ret * w + B8 / ( 8 * 7)
|
46
|
+
ret = ret * w + B6 / ( 6 * 5)
|
47
|
+
ret = ret * w + B4 / ( 4 * 3)
|
48
|
+
ret = ret * w + B2 / ( 2 * 1)
|
49
|
+
ret = ret / x + 0.5 * LOG_2PI - Math.log(v) - x + (x - 0.5) * Math.log(x)
|
50
|
+
ret
|
51
|
+
end
|
52
|
+
|
53
|
+
def gamma(x)
|
54
|
+
if (x < 0.0)
|
55
|
+
return Math::PI / (Math.sin(Math.PI * x) * Math.exp(loggamma(1 - x))) #/
|
56
|
+
end
|
57
|
+
Math.exp(loggamma(x))
|
58
|
+
end
|
59
|
+
|
60
|
+
#normal-distribution
|
61
|
+
# (-\infty, z]
|
62
|
+
def p_nor(z)
|
63
|
+
if z < -12 then return 0.0 end
|
64
|
+
if z > 12 then return 1.0 end
|
65
|
+
if z == 0.0 then return 0.5 end
|
66
|
+
|
67
|
+
if z > 0.0
|
68
|
+
e = true
|
69
|
+
else
|
70
|
+
e = false
|
71
|
+
z = -z
|
72
|
+
end
|
73
|
+
z = z.to_f
|
74
|
+
z2 = z * z
|
75
|
+
t = q = z * Math.exp(-0.5 * z2) / SQ2PI
|
76
|
+
|
77
|
+
3.step(199, 2) do |i|
|
78
|
+
prev = q
|
79
|
+
t *= z2 / i
|
80
|
+
q += t
|
81
|
+
if q <= prev
|
82
|
+
return(e ? 0.5 + q : 0.5 - q)
|
83
|
+
end
|
84
|
+
end
|
85
|
+
e ? 1.0 : 0.0
|
86
|
+
end
|
87
|
+
|
88
|
+
# inverse of normal distribution ([2])
|
89
|
+
# Pr( (-\infty, x] ) = qn -> x
|
90
|
+
def pnorm(qn)
|
91
|
+
b = [1.570796288, 0.03706987906, -0.8364353589e-3,
|
92
|
+
-0.2250947176e-3, 0.6841218299e-5, 0.5824238515e-5,
|
93
|
+
-0.104527497e-5, 0.8360937017e-7, -0.3231081277e-8,
|
94
|
+
0.3657763036e-10, 0.6936233982e-12]
|
95
|
+
|
96
|
+
if(qn < 0.0 || 1.0 < qn)
|
97
|
+
$stderr.printf("Error : qn <= 0 or qn >= 1 in pnorm()!\n")
|
98
|
+
return 0.0;
|
99
|
+
end
|
100
|
+
qn == 0.5 and return 0.0
|
101
|
+
|
102
|
+
w1 = qn
|
103
|
+
qn > 0.5 and w1 = 1.0 - w1
|
104
|
+
w3 = -Math.log(4.0 * w1 * (1.0 - w1))
|
105
|
+
w1 = b[0]
|
106
|
+
1.upto 10 do |i|
|
107
|
+
w1 += b[i] * w3**i;
|
108
|
+
end
|
109
|
+
qn > 0.5 and return Math.sqrt(w1 * w3)
|
110
|
+
-Math.sqrt(w1 * w3)
|
111
|
+
end
|
112
|
+
|
113
|
+
# Returns the integral of normal distribution over (-Infty, x].
|
114
|
+
def normaldist(z)
|
115
|
+
p_nor(z)
|
116
|
+
end
|
117
|
+
|
118
|
+
# Returns the P-value of normaldist(x).
|
119
|
+
def pnormaldist(y)
|
120
|
+
pnorm(y)
|
121
|
+
end
|
122
|
+
|
123
|
+
#chi-square distribution ([1])
|
124
|
+
#[x, \infty)
|
125
|
+
def q_chi2(df, chi2)
|
126
|
+
chi2 = chi2.to_f
|
127
|
+
if (df & 1) != 0
|
128
|
+
chi = Math.sqrt(chi2)
|
129
|
+
if (df == 1) then return 2 * normal___x(chi); end
|
130
|
+
s = t = chi * Math.exp(-0.5 * chi2) / SQ2PI
|
131
|
+
k = 3
|
132
|
+
while k < df
|
133
|
+
t *= chi2 / k; s += t;
|
134
|
+
k += 2
|
135
|
+
end
|
136
|
+
2 * (normal___x(chi) + s)
|
137
|
+
else
|
138
|
+
s = t = Math.exp(-0.5 * chi2)
|
139
|
+
k = 2
|
140
|
+
while k < df
|
141
|
+
t *= chi2 / k; s += t;
|
142
|
+
k += 2
|
143
|
+
end
|
144
|
+
s
|
145
|
+
end
|
146
|
+
end
|
147
|
+
|
148
|
+
def chi2dens(n, x)
|
149
|
+
if n == 1
|
150
|
+
1.0/Math.sqrt(2 * Math::PI * x) * Math::E**(-x/2.0)
|
151
|
+
elsif n == 2
|
152
|
+
0.5 * Math::E**(-x/2.0)
|
153
|
+
else
|
154
|
+
n = n.to_f
|
155
|
+
n2 = n/2
|
156
|
+
x = x.to_f
|
157
|
+
1.0 / 2**n2 / gamma(n2) * x**(n2 - 1.0) * Math.exp(-x/2.0)
|
158
|
+
end
|
159
|
+
end
|
160
|
+
|
161
|
+
# [x, \infty)
|
162
|
+
# Pr([x, \infty)) = y -> x
|
163
|
+
def pchi2(n, y)
|
164
|
+
if n == 1
|
165
|
+
w = pnorm(1 - y/2) # = pnormal___x(y/2)
|
166
|
+
w * w
|
167
|
+
elsif n == 2
|
168
|
+
# v = (1.0 / y - 1.0) / 33.0
|
169
|
+
# newton_a(y, v) {|x| [q_chi2(n, x), -chi2dens(n, x)] }
|
170
|
+
-2.0 * Math.log(y)
|
171
|
+
else
|
172
|
+
eps = 1.0e-5
|
173
|
+
v = 0.0
|
174
|
+
s = 10.0
|
175
|
+
loop do
|
176
|
+
v += s
|
177
|
+
if s <= eps then break end
|
178
|
+
if (qe = q_chi2(n, v) - y) == 0.0 then break end
|
179
|
+
if qe < 0.0
|
180
|
+
v -= s
|
181
|
+
s /= 10.0 #/
|
182
|
+
end
|
183
|
+
end
|
184
|
+
v
|
185
|
+
end
|
186
|
+
end
|
187
|
+
|
188
|
+
# Returns the integral of Chi-squared distribution with n degrees of freedom over [0, x].
|
189
|
+
def chi2dist(n, x); 1.0 - q_chi2(n, x); end
|
190
|
+
|
191
|
+
# Returns the P-value of chi2dist().
|
192
|
+
def pchi2dist(n, y); pchi2(n, 1.0 - y); end
|
193
|
+
|
194
|
+
# t-distribution ([1])
|
195
|
+
# (-\infty, x]
|
196
|
+
def p_t(df, t)
|
197
|
+
c2 = df.to_f / (df + t * t);
|
198
|
+
s = Math.sqrt(1.0 - c2)
|
199
|
+
s = -s if t < 0.0
|
200
|
+
p = 0.0;
|
201
|
+
i = df % 2 + 2
|
202
|
+
while i <= df
|
203
|
+
p += s
|
204
|
+
s *= (i - 1) * c2 / i
|
205
|
+
i += 2
|
206
|
+
end
|
207
|
+
if df & 1 != 0
|
208
|
+
0.5+(p*Math.sqrt(c2)+Math.atan(t/Math.sqrt(df)))/Math::PI
|
209
|
+
else
|
210
|
+
(1.0 + p) / 2.0
|
211
|
+
end
|
212
|
+
end
|
213
|
+
|
214
|
+
# inverse of t-distribution ([2])
|
215
|
+
# (-\infty, -q/2] + [q/2, \infty)
|
216
|
+
def ptsub(q, n)
|
217
|
+
q = q.to_f
|
218
|
+
if(n == 1 && 0.001 < q && q < 0.01)
|
219
|
+
eps = 1.0e-4
|
220
|
+
elsif (n == 2 && q < 0.0001)
|
221
|
+
eps = 1.0e-4
|
222
|
+
elsif (n == 1 && q < 0.001)
|
223
|
+
eps = 1.0e-2
|
224
|
+
else
|
225
|
+
eps = 1.0e-5
|
226
|
+
end
|
227
|
+
s = 10000.0
|
228
|
+
w = 0.0
|
229
|
+
loop do
|
230
|
+
w += s
|
231
|
+
if(s <= eps) then return w end
|
232
|
+
if((qe = 2.0 - p_t(n, w)*2.0 - q) == 0.0) then return w end
|
233
|
+
if(qe < 0.0)
|
234
|
+
w -= s
|
235
|
+
s /= 10.0 #/
|
236
|
+
end
|
237
|
+
end
|
238
|
+
end
|
239
|
+
|
240
|
+
def pt(q, n)
|
241
|
+
q = q.to_f
|
242
|
+
if(q < 1.0e-5 || q > 1.0 || n < 1)
|
243
|
+
$stderr.printf("Error : Illigal parameter in pt()!\n")
|
244
|
+
return 0.0
|
245
|
+
end
|
246
|
+
|
247
|
+
if(n <= 5) then return ptsub(q, n) end
|
248
|
+
if(q <= 5.0e-3 && n <= 13) then return ptsub(q, n) end
|
249
|
+
|
250
|
+
f1 = 4.0 * (f = n.to_f)
|
251
|
+
f5 = (f4 = (f3 = (f2 = f * f) * f) * f) * f
|
252
|
+
f2 *= 96.0
|
253
|
+
f3 *= 384.0
|
254
|
+
f4 *= 92160.0
|
255
|
+
f5 *= 368640.0
|
256
|
+
u = pnormaldist(1.0 - q / 2.0)
|
257
|
+
|
258
|
+
w0 = (u2 = u * u) * u
|
259
|
+
w1 = w0 * u2
|
260
|
+
w2 = w1 * u2
|
261
|
+
w3 = w2 * u2
|
262
|
+
w4 = w3 * u2
|
263
|
+
w = (w0 + u) / f1
|
264
|
+
w += (5.0 * w1 + 16.0 * w0 + 3.0 * u) / f2
|
265
|
+
w += (3.0 * w2 + 19.0 * w1 + 17.0 * w0 - 15.0 * u) / f3
|
266
|
+
w += (79.0 * w3 + 776.0 * w2 + 1482.0 * w1 - 1920.0 * w0 - 9450.0 * u) / f4
|
267
|
+
w += (27.0 * w4 + 339.0 * w3 + 930.0 * w2 - 1782.0 * w1 - 765.0 * w0 + 17955.0 * u) / f5
|
268
|
+
u + w
|
269
|
+
end
|
270
|
+
|
271
|
+
# Returns the integral of t-distribution with n degrees of freedom over (-Infty, x].
|
272
|
+
def tdist(n, t); p_t(n, t); end
|
273
|
+
|
274
|
+
# Returns the P-value of tdist().
|
275
|
+
def ptdist(n, y)
|
276
|
+
if y > 0.5
|
277
|
+
pt(2.0 - y*2.0, n)
|
278
|
+
else
|
279
|
+
- pt(y*2.0, n)
|
280
|
+
end
|
281
|
+
end
|
282
|
+
|
283
|
+
# F-distribution ([1])
|
284
|
+
# [x, \infty)
|
285
|
+
def q_f(df1, df2, f)
|
286
|
+
if (f <= 0.0) then return 1.0; end
|
287
|
+
if (df1 % 2 != 0 && df2 % 2 == 0)
|
288
|
+
return 1.0 - q_f(df2, df1, 1.0 / f)
|
289
|
+
end
|
290
|
+
cos2 = 1.0 / (1.0 + df1.to_f * f / df2.to_f)
|
291
|
+
sin2 = 1.0 - cos2
|
292
|
+
|
293
|
+
if (df1 % 2 == 0)
|
294
|
+
prob = cos2 ** (df2.to_f / 2.0)
|
295
|
+
temp = prob
|
296
|
+
i = 2
|
297
|
+
while i < df1
|
298
|
+
temp *= (df2.to_f + i - 2) * sin2 / i
|
299
|
+
prob += temp
|
300
|
+
i += 2
|
301
|
+
end
|
302
|
+
return prob
|
303
|
+
end
|
304
|
+
prob = Math.atan(Math.sqrt(df2.to_f / (df1.to_f * f)))
|
305
|
+
temp = Math.sqrt(sin2 * cos2)
|
306
|
+
i = 3
|
307
|
+
while i <= df1
|
308
|
+
prob += temp
|
309
|
+
temp *= (i - 1).to_f * sin2 / i.to_f;
|
310
|
+
i += 2.0
|
311
|
+
end
|
312
|
+
temp *= df1.to_f
|
313
|
+
i = 3
|
314
|
+
while i <= df2
|
315
|
+
prob -= temp
|
316
|
+
temp *= (df1.to_f + i - 2) * cos2 / i.to_f
|
317
|
+
i += 2
|
318
|
+
end
|
319
|
+
prob * 2.0 / Math::PI
|
320
|
+
end
|
321
|
+
|
322
|
+
# inverse of F-distribution ([2])
|
323
|
+
def pfsub(x, y, z)
|
324
|
+
(Math.sqrt(z) - y) / x / 2.0
|
325
|
+
end
|
326
|
+
|
327
|
+
# [x, \infty)
|
328
|
+
def pf(q, n1, n2)
|
329
|
+
if(q < 0.0 || q > 1.0 || n1 < 1 || n2 < 1)
|
330
|
+
$stderr.printf("Error : Illegal parameter in pf()!\n")
|
331
|
+
return 0.0
|
332
|
+
end
|
333
|
+
|
334
|
+
if n1 <= 240 || n2 <= 240
|
335
|
+
eps = 1.0e-5
|
336
|
+
if(n2 == 1) then eps = 1.0e-4 end
|
337
|
+
fw = 0.0
|
338
|
+
s = 1000.0
|
339
|
+
loop do
|
340
|
+
fw += s
|
341
|
+
if s <= eps then return fw end
|
342
|
+
if (qe = q_f(n1, n2, fw) - q) == 0.0 then return fw end
|
343
|
+
if qe < 0.0
|
344
|
+
fw -= s
|
345
|
+
s /= 10.0 #/
|
346
|
+
end
|
347
|
+
end
|
348
|
+
end
|
349
|
+
|
350
|
+
eps = 1.0e-6
|
351
|
+
qn = q
|
352
|
+
if q < 0.5 then qn = 1.0 - q
|
353
|
+
u = pnorm(qn)
|
354
|
+
w1 = 2.0 / n1 / 9.0
|
355
|
+
w2 = 2.0 / n2 / 9.0
|
356
|
+
w3 = 1.0 - w1
|
357
|
+
w4 = 1.0 - w2
|
358
|
+
u2 = u * u
|
359
|
+
a = w4 * w4 - u2 * w2
|
360
|
+
b = -2. * w3 * w4
|
361
|
+
c = w3 * w3 - u2 * w1
|
362
|
+
d = b * b - 4 * a * c
|
363
|
+
if(d < 0.0)
|
364
|
+
fw = pfsub(a, b, 0.0)
|
365
|
+
else
|
366
|
+
if(a.abs > eps)
|
367
|
+
fw = pfsub(a, b, d)
|
368
|
+
else
|
369
|
+
if(b.abs > eps) then return -c / b end
|
370
|
+
fw = pfsub(a, b, 0.0)
|
371
|
+
end
|
372
|
+
end
|
373
|
+
fw * fw * fw
|
374
|
+
end
|
375
|
+
end
|
376
|
+
|
377
|
+
# Returns the integral of F-distribution with n1 and n2 degrees of freedom over [0, x].
|
378
|
+
def fdist(n1, n2, f); 1.0 - q_f(n1, n2, f); end
|
379
|
+
|
380
|
+
# Returns the P-value of fdist().
|
381
|
+
def pfdist(n1, n2, y); pf(1.0 - y, n1, n2); end
|
382
|
+
|
383
|
+
############################################################################
|
384
|
+
# discrete distributions
|
385
|
+
|
386
|
+
def perm(n, x = n)
|
387
|
+
raise RangeError if n < 0 || x < 0
|
388
|
+
r = 1
|
389
|
+
while x >= 1
|
390
|
+
r *= n
|
391
|
+
n -= 1
|
392
|
+
x -= 1
|
393
|
+
end
|
394
|
+
r
|
395
|
+
end
|
396
|
+
|
397
|
+
def combi(n, x)
|
398
|
+
raise RangeError if n < 0 || x < 0
|
399
|
+
x = n - x if x*2 > n
|
400
|
+
perm(n, x) / perm(x, x)
|
401
|
+
end
|
402
|
+
|
403
|
+
def bindens(n, p, x)
|
404
|
+
p = p.to_f
|
405
|
+
q = 1.0 - p
|
406
|
+
combi(n, x) * p**x * q**(n - x)
|
407
|
+
end
|
408
|
+
|
409
|
+
def bindist(n, p, x)
|
410
|
+
(0..x).inject(0.0) do |s, k|
|
411
|
+
s + bindens(n, p, k)
|
412
|
+
end
|
413
|
+
end
|
414
|
+
|
415
|
+
def poissondens(m, x)
|
416
|
+
return 0.0 if x < 0
|
417
|
+
m = m.to_f
|
418
|
+
m ** x * Math::E ** (-m) / perm(x)
|
419
|
+
end
|
420
|
+
|
421
|
+
def poissondist(m, x)
|
422
|
+
(0..x).inject(0.0) do |s, k|
|
423
|
+
s + poissondens(m, k)
|
424
|
+
end
|
425
|
+
end
|
426
|
+
|
427
|
+
############################################################################
|
428
|
+
# normal-distribution
|
429
|
+
|
430
|
+
# Returns the integral of normal distribution over (-Infty, x].
|
431
|
+
def normalxXX_(z); normaldist(z); end
|
432
|
+
|
433
|
+
# Returns the integral of normal distribution over [0, x].
|
434
|
+
def normal__X_(z); normaldist(z) - 0.5; end
|
435
|
+
|
436
|
+
# Returns the integral of normal distribution over [x, Infty).
|
437
|
+
def normal___x(z); 1.0 - normaldist(z); end
|
438
|
+
|
439
|
+
# Returns the integral of normal distribution over (-Infty, -x] + [x, Infty).
|
440
|
+
def normalx__x(z); 2.0 - normaldist(z) * 2.0; end
|
441
|
+
|
442
|
+
# inverse of normal-distribution
|
443
|
+
|
444
|
+
# Return the P-value of the corresponding integral.
|
445
|
+
def pnormalxXX_(z); pnormaldist(z); end
|
446
|
+
|
447
|
+
# Return the P-value of the corresponding integral.
|
448
|
+
def pnormal__X_(y); pnormalxXX_(y + 0.5); end
|
449
|
+
|
450
|
+
# Return the P-value of the corresponding integral.
|
451
|
+
def pnormal___x(y); pnormalxXX_(1.0 - y); end
|
452
|
+
|
453
|
+
# Return the P-value of the corresponding integral.
|
454
|
+
def pnormalx__x(y); pnormalxXX_(1.0 - y/2.0); end
|
455
|
+
|
456
|
+
# chi2-distribution
|
457
|
+
|
458
|
+
# Returns the integral of Chi-squared distribution with n degrees of freedom over [x, Infty).
|
459
|
+
def chi2_x(n, x); 1.0 - chi2dist(n, x); end
|
460
|
+
|
461
|
+
# Returns the integral of Chi-squared distribution with n degrees of freedom over [0, x].
|
462
|
+
def chi2X_(n, x); chi2dist(n, x); end
|
463
|
+
|
464
|
+
# inverse of chi2-distribution
|
465
|
+
|
466
|
+
# Return the P-value of the corresponding integral.
|
467
|
+
def pchi2_x(n, y); pchi2dist(n, 1.0 - y); end
|
468
|
+
|
469
|
+
# Return the P-value of the corresponding integral.
|
470
|
+
def pchi2X_(n, y); pchi2dist(n, y); end
|
471
|
+
|
472
|
+
# t-distribution
|
473
|
+
|
474
|
+
# Returns the integral of normal distribution with n degrees of freedom over (-Infty, -x] + [x, Infty).
|
475
|
+
def tx__x(n, x); 2.0 - tdist(n, x) * 2.0; end
|
476
|
+
|
477
|
+
# Returns the integral of t-distribution with n degrees of freedom over (-Infty, x].
|
478
|
+
def txXX_(n, x); tdist(n, x); end
|
479
|
+
|
480
|
+
# Returns the integral of t-distribution with n degrees of freedom over [0, x].
|
481
|
+
def t__X_(n, x); tdist(n, x) - 0.5; end
|
482
|
+
|
483
|
+
# Returns the integral of t-distribution with n degrees of freedom over [x, Infty).
|
484
|
+
def t___x(n, x); 1.0 - tdist(n, x); end
|
485
|
+
|
486
|
+
# inverse of t-distribution
|
487
|
+
|
488
|
+
# Return the P-value of the corresponding integral.
|
489
|
+
def ptx__x(n, y); ptdist(n, 1.0 - y / 2.0); end
|
490
|
+
|
491
|
+
# Return the P-value of the corresponding integral.
|
492
|
+
def ptxXX_(n, y); ptdist(n, y); end
|
493
|
+
|
494
|
+
# Return the P-value of the corresponding integral.
|
495
|
+
def pt__X_(n, y); ptdist(n, 0.5 + y); end
|
496
|
+
|
497
|
+
# Return the P-value of the corresponding integral.
|
498
|
+
def pt___x(n, y); ptdist(n, 1.0 - y); end
|
499
|
+
|
500
|
+
# F-distribution
|
501
|
+
|
502
|
+
# Returns the integral of F-distribution with n1 and n2 degrees of freedom over [x, Infty).
|
503
|
+
def f_x(n1, n2, x); 1.0 - fdist(n1, n2, x); end
|
504
|
+
|
505
|
+
# Returns the integral of F-distribution with n1 and n2 degrees of freedom over [0, x].
|
506
|
+
def fX_(n1, n2, x); fdist(n1, n2, x); end
|
507
|
+
|
508
|
+
|
509
|
+
# inverse of F-distribution
|
510
|
+
|
511
|
+
# Return the P-value of the corresponding integral.
|
512
|
+
def pf_x(n1, n2, x); pfdist(n1, n2, 1.0 - x); end
|
513
|
+
|
514
|
+
# Return the P-value of the corresponding integral.
|
515
|
+
def pfX_(n1, n2, x); pfdist(n1, n2, x); end
|
516
|
+
|
517
|
+
# discrete distributions
|
518
|
+
def binX_(n, p, x); bindist(n, p, x); end
|
519
|
+
def bin_x(n, p, x); bindist(n, 1.0 - p, n - x); end
|
520
|
+
|
521
|
+
def poissonX_(m, x); poissondist(m, x); end
|
522
|
+
def poisson_x(m, x); 1.0 - poissondist(m, x-1); end
|
523
|
+
end
|
524
|
+
end
|
525
|
+
|
data/lib/statistics3.rb
ADDED
data/spec/spec_helper.rb
ADDED
@@ -0,0 +1,103 @@
|
|
1
|
+
# This file was generated by the `rspec --init` command. Conventionally, all
|
2
|
+
# specs live under a `spec` directory, which RSpec adds to the `$LOAD_PATH`.
|
3
|
+
# The generated `.rspec` file contains `--require spec_helper` which will cause
|
4
|
+
# this file to always be loaded, without a need to explicitly require it in any
|
5
|
+
# files.
|
6
|
+
#
|
7
|
+
# Given that it is always loaded, you are encouraged to keep this file as
|
8
|
+
# light-weight as possible. Requiring heavyweight dependencies from this file
|
9
|
+
# will add to the boot time of your test suite on EVERY test run, even for an
|
10
|
+
# individual file that may not need all of that loaded. Instead, consider making
|
11
|
+
# a separate helper file that requires the additional dependencies and performs
|
12
|
+
# the additional setup, and require it from the spec files that actually need
|
13
|
+
# it.
|
14
|
+
#
|
15
|
+
# The `.rspec` file also contains a few flags that are not defaults but that
|
16
|
+
# users commonly want.
|
17
|
+
#
|
18
|
+
# See http://rubydoc.info/gems/rspec-core/RSpec/Core/Configuration
|
19
|
+
RSpec.configure do |config|
|
20
|
+
# rspec-expectations config goes here. You can use an alternate
|
21
|
+
# assertion/expectation library such as wrong or the stdlib/minitest
|
22
|
+
# assertions if you prefer.
|
23
|
+
config.expect_with :rspec do |expectations|
|
24
|
+
# This option will default to `true` in RSpec 4. It makes the `description`
|
25
|
+
# and `failure_message` of custom matchers include text for helper methods
|
26
|
+
# defined using `chain`, e.g.:
|
27
|
+
# be_bigger_than(2).and_smaller_than(4).description
|
28
|
+
# # => "be bigger than 2 and smaller than 4"
|
29
|
+
# ...rather than:
|
30
|
+
# # => "be bigger than 2"
|
31
|
+
expectations.include_chain_clauses_in_custom_matcher_descriptions = true
|
32
|
+
end
|
33
|
+
|
34
|
+
# rspec-mocks config goes here. You can use an alternate test double
|
35
|
+
# library (such as bogus or mocha) by changing the `mock_with` option here.
|
36
|
+
config.mock_with :rspec do |mocks|
|
37
|
+
# Prevents you from mocking or stubbing a method that does not exist on
|
38
|
+
# a real object. This is generally recommended, and will default to
|
39
|
+
# `true` in RSpec 4.
|
40
|
+
mocks.verify_partial_doubles = true
|
41
|
+
end
|
42
|
+
|
43
|
+
# This option will default to `:apply_to_host_groups` in RSpec 4 (and will
|
44
|
+
# have no way to turn it off -- the option exists only for backwards
|
45
|
+
# compatibility in RSpec 3). It causes shared context metadata to be
|
46
|
+
# inherited by the metadata hash of host groups and examples, rather than
|
47
|
+
# triggering implicit auto-inclusion in groups with matching metadata.
|
48
|
+
config.shared_context_metadata_behavior = :apply_to_host_groups
|
49
|
+
|
50
|
+
# The settings below are suggested to provide a good initial experience
|
51
|
+
# with RSpec, but feel free to customize to your heart's content.
|
52
|
+
=begin
|
53
|
+
# This allows you to limit a spec run to individual examples or groups
|
54
|
+
# you care about by tagging them with `:focus` metadata. When nothing
|
55
|
+
# is tagged with `:focus`, all examples get run. RSpec also provides
|
56
|
+
# aliases for `it`, `describe`, and `context` that include `:focus`
|
57
|
+
# metadata: `fit`, `fdescribe` and `fcontext`, respectively.
|
58
|
+
config.filter_run_when_matching :focus
|
59
|
+
|
60
|
+
# Allows RSpec to persist some state between runs in order to support
|
61
|
+
# the `--only-failures` and `--next-failure` CLI options. We recommend
|
62
|
+
# you configure your source control system to ignore this file.
|
63
|
+
config.example_status_persistence_file_path = "spec/examples.txt"
|
64
|
+
|
65
|
+
# Limits the available syntax to the non-monkey patched syntax that is
|
66
|
+
# recommended. For more details, see:
|
67
|
+
# - http://rspec.info/blog/2012/06/rspecs-new-expectation-syntax/
|
68
|
+
# - http://www.teaisaweso.me/blog/2013/05/27/rspecs-new-message-expectation-syntax/
|
69
|
+
# - http://rspec.info/blog/2014/05/notable-changes-in-rspec-3/#zero-monkey-patching-mode
|
70
|
+
config.disable_monkey_patching!
|
71
|
+
|
72
|
+
# This setting enables warnings. It's recommended, but in some cases may
|
73
|
+
# be too noisy due to issues in dependencies.
|
74
|
+
config.warnings = true
|
75
|
+
|
76
|
+
# Many RSpec users commonly either run the entire suite or an individual
|
77
|
+
# file, and it's useful to allow more verbose output when running an
|
78
|
+
# individual spec file.
|
79
|
+
if config.files_to_run.one?
|
80
|
+
# Use the documentation formatter for detailed output,
|
81
|
+
# unless a formatter has already been configured
|
82
|
+
# (e.g. via a command-line flag).
|
83
|
+
config.default_formatter = 'doc'
|
84
|
+
end
|
85
|
+
|
86
|
+
# Print the 10 slowest examples and example groups at the
|
87
|
+
# end of the spec run, to help surface which specs are running
|
88
|
+
# particularly slow.
|
89
|
+
config.profile_examples = 10
|
90
|
+
|
91
|
+
# Run specs in random order to surface order dependencies. If you find an
|
92
|
+
# order dependency and want to debug it, you can fix the order by providing
|
93
|
+
# the seed, which is printed after each run.
|
94
|
+
# --seed 1234
|
95
|
+
config.order = :random
|
96
|
+
|
97
|
+
# Seed global randomization in this process using the `--seed` CLI option.
|
98
|
+
# Setting this allows you to use `--seed` to deterministically reproduce
|
99
|
+
# test failures related to randomization by passing the same `--seed` value
|
100
|
+
# as the one that triggered the failure.
|
101
|
+
Kernel.srand config.seed
|
102
|
+
=end
|
103
|
+
end
|