statistics2 0.54
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.rdoc +12 -0
- data/Manifest.txt +15 -0
- data/README.rdoc +29 -0
- data/Rakefile +41 -0
- data/examples/mklist.rb +18 -0
- data/examples/show.rb +12 -0
- data/ext/extconf.rb +2 -0
- data/ext/statistics2.c +848 -0
- data/lib/statistics2.rb +617 -0
- data/lib/statistics2/no_ext.rb +8 -0
- data/lib/statistics2/version.rb +3 -0
- data/statistics2.gemspec +35 -0
- data/test/sample_tbl.rb +134 -0
- data/test/test_ext.rb +53 -0
- data/test/test_inv.rb +57 -0
- metadata +84 -0
data/lib/statistics2.rb
ADDED
@@ -0,0 +1,617 @@
|
|
1
|
+
$:.unshift File.dirname(__FILE__)
|
2
|
+
$:.unshift File.join(File.dirname(__FILE__), '..', 'ext')
|
3
|
+
|
4
|
+
require 'statistics2/version'
|
5
|
+
|
6
|
+
# distributions of statistics
|
7
|
+
# by Shin-ichiro HARA
|
8
|
+
#
|
9
|
+
# Ref:
|
10
|
+
# [1] http://www.matsusaka-u.ac.jp/~okumura/algo/
|
11
|
+
# [2] http://www5.airnet.ne.jp/tomy/cpro/sslib11.htm
|
12
|
+
|
13
|
+
module Statistics2
|
14
|
+
SQ2PI = Math.sqrt(2 * Math::PI)
|
15
|
+
|
16
|
+
# Easy access to our singleton
|
17
|
+
def self.metaclass; class << self; self; end; end
|
18
|
+
|
19
|
+
# Remove existing methods.
|
20
|
+
["normaldist", "normalxXX_", "normal__X_", "normal___x", "normalx__x",
|
21
|
+
"pnormaldist", "pnormalxXX_", "pnormal__X_", "pnormal___x", "pnormalx__x",
|
22
|
+
"chi2dist", "chi2X_", "chi2_x", "pchi2dist", "pchi2X_", "pchi2_x",
|
23
|
+
"tdist", "txXX_", "t__X_", "t___x", "tx__x", "ptdist", "ptxXX_", "pt__X_", "pt___x", "ptx__x",
|
24
|
+
"fdist", "fX_", "f_x", "pfdist", "pfX_", "pf_x",
|
25
|
+
"bindens", "bindist", "binX_", "bin_x",
|
26
|
+
"poissondens", "poissondist", "poissonX_", "poisson_x"].each do |m|
|
27
|
+
undef_method(m) if self.private_method_defined?(m)
|
28
|
+
self.metaclass.instance_eval do
|
29
|
+
undef_method(m) if self.method_defined?(m)
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
# Newton approximation
|
34
|
+
def newton_a(y, ini, epsilon = 1.0e-6, limit = 30)
|
35
|
+
x = ini
|
36
|
+
limit.times do |i|
|
37
|
+
prev = x
|
38
|
+
f, df = yield(prev)
|
39
|
+
x = (y - f)/df + prev
|
40
|
+
if (x - prev).abs < epsilon
|
41
|
+
return x
|
42
|
+
end
|
43
|
+
end
|
44
|
+
$stderr.puts("Warning(newton approximation): over limit")
|
45
|
+
x
|
46
|
+
end
|
47
|
+
|
48
|
+
module_function :newton_a
|
49
|
+
private :newton_a
|
50
|
+
private_class_method :newton_a
|
51
|
+
|
52
|
+
# Gamma function
|
53
|
+
LOG_2PI = Math.log(2 * Math::PI)# log(2PI)
|
54
|
+
N = 8
|
55
|
+
B0 = 1.0
|
56
|
+
B1 = -1.0 / 2.0
|
57
|
+
B2 = 1.0 / 6.0
|
58
|
+
B4 = -1.0 / 30.0
|
59
|
+
B6 = 1.0 / 42.0
|
60
|
+
B8 = -1.0 / 30.0
|
61
|
+
B10 = 5.0 / 66.0
|
62
|
+
B12 = -691.0 / 2730.0
|
63
|
+
B14 = 7.0 / 6.0
|
64
|
+
B16 = -3617.0 / 510.0
|
65
|
+
|
66
|
+
def loggamma(x)
|
67
|
+
v = 1.0
|
68
|
+
while (x < N)
|
69
|
+
v *= x
|
70
|
+
x += 1.0
|
71
|
+
end
|
72
|
+
w = 1.0 / (x * x)
|
73
|
+
ret = B16 / (16 * 15)
|
74
|
+
ret = ret * w + B14 / (14 * 13)
|
75
|
+
ret = ret * w + B12 / (12 * 11)
|
76
|
+
ret = ret * w + B10 / (10 * 9)
|
77
|
+
ret = ret * w + B8 / ( 8 * 7)
|
78
|
+
ret = ret * w + B6 / ( 6 * 5)
|
79
|
+
ret = ret * w + B4 / ( 4 * 3)
|
80
|
+
ret = ret * w + B2 / ( 2 * 1)
|
81
|
+
ret = ret / x + 0.5 * LOG_2PI - Math.log(v) - x + (x - 0.5) * Math.log(x)
|
82
|
+
ret
|
83
|
+
end
|
84
|
+
|
85
|
+
def gamma(x)
|
86
|
+
if (x < 0.0)
|
87
|
+
return Math::PI / (Math.sin(Math.PI * x) * Math.exp(loggamma(1 - x))) #/
|
88
|
+
end
|
89
|
+
Math.exp(loggamma(x))
|
90
|
+
end
|
91
|
+
|
92
|
+
module_function :loggamma, :gamma
|
93
|
+
private :loggamma, :gamma
|
94
|
+
private_class_method :loggamma, :gamma
|
95
|
+
|
96
|
+
#normal-distribution
|
97
|
+
# (-\infty, z]
|
98
|
+
def p_nor(z)
|
99
|
+
if z < -12 then return 0.0 end
|
100
|
+
if z > 12 then return 1.0 end
|
101
|
+
if z == 0.0 then return 0.5 end
|
102
|
+
|
103
|
+
if z > 0.0
|
104
|
+
e = true
|
105
|
+
else
|
106
|
+
e = false
|
107
|
+
z = -z
|
108
|
+
end
|
109
|
+
z = z.to_f
|
110
|
+
z2 = z * z
|
111
|
+
t = q = z * Math.exp(-0.5 * z2) / SQ2PI
|
112
|
+
|
113
|
+
3.step(199, 2) do |i|
|
114
|
+
prev = q
|
115
|
+
t *= z2 / i
|
116
|
+
q += t
|
117
|
+
if q <= prev
|
118
|
+
return(e ? 0.5 + q : 0.5 - q)
|
119
|
+
end
|
120
|
+
end
|
121
|
+
e ? 1.0 : 0.0
|
122
|
+
end
|
123
|
+
|
124
|
+
# inverse of normal distribution ([2])
|
125
|
+
# Pr( (-\infty, x] ) = qn -> x
|
126
|
+
def pnorm(qn)
|
127
|
+
b = [1.570796288, 0.03706987906, -0.8364353589e-3,
|
128
|
+
-0.2250947176e-3, 0.6841218299e-5, 0.5824238515e-5,
|
129
|
+
-0.104527497e-5, 0.8360937017e-7, -0.3231081277e-8,
|
130
|
+
0.3657763036e-10, 0.6936233982e-12]
|
131
|
+
|
132
|
+
if(qn < 0.0 || 1.0 < qn)
|
133
|
+
$stderr.printf("Error : qn <= 0 or qn >= 1 in pnorm()!\n")
|
134
|
+
return 0.0;
|
135
|
+
end
|
136
|
+
qn == 0.5 and return 0.0
|
137
|
+
|
138
|
+
w1 = qn
|
139
|
+
qn > 0.5 and w1 = 1.0 - w1
|
140
|
+
w3 = -Math.log(4.0 * w1 * (1.0 - w1))
|
141
|
+
w1 = b[0]
|
142
|
+
1.upto 10 do |i|
|
143
|
+
w1 += b[i] * w3**i;
|
144
|
+
end
|
145
|
+
qn > 0.5 and return Math.sqrt(w1 * w3)
|
146
|
+
-Math.sqrt(w1 * w3)
|
147
|
+
end
|
148
|
+
|
149
|
+
private :p_nor, :pnorm
|
150
|
+
module_function :p_nor, :pnorm
|
151
|
+
private_class_method :p_nor, :pnorm
|
152
|
+
|
153
|
+
# Returns the integral of normal distribution over (-Infty, x].
|
154
|
+
def normaldist(z)
|
155
|
+
p_nor(z)
|
156
|
+
end
|
157
|
+
|
158
|
+
# Returns the P-value of normaldist(x).
|
159
|
+
def pnormaldist(y)
|
160
|
+
pnorm(y)
|
161
|
+
end
|
162
|
+
|
163
|
+
#chi-square distribution ([1])
|
164
|
+
#[x, \infty)
|
165
|
+
def q_chi2(df, chi2)
|
166
|
+
chi2 = chi2.to_f
|
167
|
+
if (df & 1) != 0
|
168
|
+
chi = Math.sqrt(chi2)
|
169
|
+
if (df == 1) then return 2 * normal___x(chi); end
|
170
|
+
s = t = chi * Math.exp(-0.5 * chi2) / SQ2PI
|
171
|
+
k = 3
|
172
|
+
while k < df
|
173
|
+
t *= chi2 / k; s += t;
|
174
|
+
k += 2
|
175
|
+
end
|
176
|
+
2 * (normal___x(chi) + s)
|
177
|
+
else
|
178
|
+
s = t = Math.exp(-0.5 * chi2)
|
179
|
+
k = 2
|
180
|
+
while k < df
|
181
|
+
t *= chi2 / k; s += t;
|
182
|
+
k += 2
|
183
|
+
end
|
184
|
+
s
|
185
|
+
end
|
186
|
+
end
|
187
|
+
|
188
|
+
def chi2dens(n, x)
|
189
|
+
if n == 1
|
190
|
+
1.0/Math.sqrt(2 * Math::PI * x) * Math::E**(-x/2.0)
|
191
|
+
elsif n == 2
|
192
|
+
0.5 * Math::E**(-x/2.0)
|
193
|
+
else
|
194
|
+
n = n.to_f
|
195
|
+
n2 = n/2
|
196
|
+
x = x.to_f
|
197
|
+
1.0 / 2**n2 / gamma(n2) * x**(n2 - 1.0) * Math.exp(-x/2.0)
|
198
|
+
end
|
199
|
+
end
|
200
|
+
|
201
|
+
# [x, \infty)
|
202
|
+
# Pr([x, \infty)) = y -> x
|
203
|
+
def pchi2(n, y)
|
204
|
+
if n == 1
|
205
|
+
w = pnorm(1 - y/2) # = pnormal___x(y/2)
|
206
|
+
w * w
|
207
|
+
elsif n == 2
|
208
|
+
# v = (1.0 / y - 1.0) / 33.0
|
209
|
+
# newton_a(y, v) {|x| [q_chi2(n, x), -chi2dens(n, x)] }
|
210
|
+
-2.0 * Math.log(y)
|
211
|
+
else
|
212
|
+
eps = 1.0e-5
|
213
|
+
v = 0.0
|
214
|
+
s = 10.0
|
215
|
+
loop do
|
216
|
+
v += s
|
217
|
+
if s <= eps then break end
|
218
|
+
if (qe = q_chi2(n, v) - y) == 0.0 then break end
|
219
|
+
if qe < 0.0
|
220
|
+
v -= s
|
221
|
+
s /= 10.0 #/
|
222
|
+
end
|
223
|
+
end
|
224
|
+
v
|
225
|
+
end
|
226
|
+
end
|
227
|
+
|
228
|
+
private :q_chi2, :pchi2, :chi2dens
|
229
|
+
module_function :q_chi2, :pchi2, :chi2dens
|
230
|
+
private_class_method :q_chi2, :pchi2, :chi2dens
|
231
|
+
|
232
|
+
# Returns the integral of Chi-squared distribution with n degrees of freedom over [0, x].
|
233
|
+
def chi2dist(n, x); 1.0 - q_chi2(n, x); end
|
234
|
+
|
235
|
+
# Returns the P-value of chi2dist().
|
236
|
+
def pchi2dist(n, y); pchi2(n, 1.0 - y); end
|
237
|
+
|
238
|
+
|
239
|
+
# t-distribution ([1])
|
240
|
+
# (-\infty, x]
|
241
|
+
def p_t(df, t)
|
242
|
+
c2 = df.to_f / (df + t * t);
|
243
|
+
s = Math.sqrt(1.0 - c2)
|
244
|
+
s = -s if t < 0.0
|
245
|
+
p = 0.0;
|
246
|
+
i = df % 2 + 2
|
247
|
+
while i <= df
|
248
|
+
p += s
|
249
|
+
s *= (i - 1) * c2 / i
|
250
|
+
i += 2
|
251
|
+
end
|
252
|
+
if df & 1 != 0
|
253
|
+
0.5+(p*Math.sqrt(c2)+Math.atan(t/Math.sqrt(df)))/Math::PI
|
254
|
+
else
|
255
|
+
(1.0 + p) / 2.0
|
256
|
+
end
|
257
|
+
end
|
258
|
+
|
259
|
+
# inverse of t-distribution ([2])
|
260
|
+
# (-\infty, -q/2] + [q/2, \infty)
|
261
|
+
def ptsub(q, n)
|
262
|
+
q = q.to_f
|
263
|
+
if(n == 1 && 0.001 < q && q < 0.01)
|
264
|
+
eps = 1.0e-4
|
265
|
+
elsif (n == 2 && q < 0.0001)
|
266
|
+
eps = 1.0e-4
|
267
|
+
elsif (n == 1 && q < 0.001)
|
268
|
+
eps = 1.0e-2
|
269
|
+
else
|
270
|
+
eps = 1.0e-5
|
271
|
+
end
|
272
|
+
s = 10000.0
|
273
|
+
w = 0.0
|
274
|
+
loop do
|
275
|
+
w += s
|
276
|
+
if(s <= eps) then return w end
|
277
|
+
if((qe = 2.0 - p_t(n, w)*2.0 - q) == 0.0) then return w end
|
278
|
+
if(qe < 0.0)
|
279
|
+
w -= s
|
280
|
+
s /= 10.0 #/
|
281
|
+
end
|
282
|
+
end
|
283
|
+
end
|
284
|
+
|
285
|
+
def pt(q, n)
|
286
|
+
q = q.to_f
|
287
|
+
if(q < 1.0e-5 || q > 1.0 || n < 1)
|
288
|
+
$stderr.printf("Error : Illigal parameter in pt()!\n")
|
289
|
+
return 0.0
|
290
|
+
end
|
291
|
+
|
292
|
+
if(n <= 5) then return ptsub(q, n) end
|
293
|
+
if(q <= 5.0e-3 && n <= 13) then return ptsub(q, n) end
|
294
|
+
|
295
|
+
f1 = 4.0 * (f = n.to_f)
|
296
|
+
f5 = (f4 = (f3 = (f2 = f * f) * f) * f) * f
|
297
|
+
f2 *= 96.0
|
298
|
+
f3 *= 384.0
|
299
|
+
f4 *= 92160.0
|
300
|
+
f5 *= 368640.0
|
301
|
+
u = pnormaldist(1.0 - q / 2.0)
|
302
|
+
|
303
|
+
w0 = (u2 = u * u) * u
|
304
|
+
w1 = w0 * u2
|
305
|
+
w2 = w1 * u2
|
306
|
+
w3 = w2 * u2
|
307
|
+
w4 = w3 * u2
|
308
|
+
w = (w0 + u) / f1
|
309
|
+
w += (5.0 * w1 + 16.0 * w0 + 3.0 * u) / f2
|
310
|
+
w += (3.0 * w2 + 19.0 * w1 + 17.0 * w0 - 15.0 * u) / f3
|
311
|
+
w += (79.0 * w3 + 776.0 * w2 + 1482.0 * w1 - 1920.0 * w0 - 9450.0 * u) / f4
|
312
|
+
w += (27.0 * w4 + 339.0 * w3 + 930.0 * w2 - 1782.0 * w1 - 765.0 * w0 + 17955.0 * u) / f5
|
313
|
+
u + w
|
314
|
+
end
|
315
|
+
|
316
|
+
private :p_t, :pt, :ptsub
|
317
|
+
module_function :p_t, :pt, :ptsub
|
318
|
+
private_class_method :p_t, :pt, :ptsub
|
319
|
+
|
320
|
+
# Returns the integral of t-distribution with n degrees of freedom over (-Infty, x].
|
321
|
+
def tdist(n, t); p_t(n, t); end
|
322
|
+
|
323
|
+
# Returns the P-value of tdist().
|
324
|
+
def ptdist(n, y)
|
325
|
+
if y > 0.5
|
326
|
+
pt(2.0 - y*2.0, n)
|
327
|
+
else
|
328
|
+
- pt(y*2.0, n)
|
329
|
+
end
|
330
|
+
end
|
331
|
+
|
332
|
+
# F-distribution ([1])
|
333
|
+
# [x, \infty)
|
334
|
+
def q_f(df1, df2, f)
|
335
|
+
if (f <= 0.0) then return 1.0; end
|
336
|
+
if (df1 % 2 != 0 && df2 % 2 == 0)
|
337
|
+
return 1.0 - q_f(df2, df1, 1.0 / f)
|
338
|
+
end
|
339
|
+
cos2 = 1.0 / (1.0 + df1.to_f * f / df2.to_f)
|
340
|
+
sin2 = 1.0 - cos2
|
341
|
+
|
342
|
+
if (df1 % 2 == 0)
|
343
|
+
prob = cos2 ** (df2.to_f / 2.0)
|
344
|
+
temp = prob
|
345
|
+
i = 2
|
346
|
+
while i < df1
|
347
|
+
temp *= (df2.to_f + i - 2) * sin2 / i
|
348
|
+
prob += temp
|
349
|
+
i += 2
|
350
|
+
end
|
351
|
+
return prob
|
352
|
+
end
|
353
|
+
prob = Math.atan(Math.sqrt(df2.to_f / (df1.to_f * f)))
|
354
|
+
temp = Math.sqrt(sin2 * cos2)
|
355
|
+
i = 3
|
356
|
+
while i <= df1
|
357
|
+
prob += temp
|
358
|
+
temp *= (i - 1).to_f * sin2 / i.to_f;
|
359
|
+
i += 2.0
|
360
|
+
end
|
361
|
+
temp *= df1.to_f
|
362
|
+
i = 3
|
363
|
+
while i <= df2
|
364
|
+
prob -= temp
|
365
|
+
temp *= (df1.to_f + i - 2) * cos2 / i.to_f
|
366
|
+
i += 2
|
367
|
+
end
|
368
|
+
prob * 2.0 / Math::PI
|
369
|
+
end
|
370
|
+
|
371
|
+
# inverse of F-distribution ([2])
|
372
|
+
def pfsub(x, y, z)
|
373
|
+
(Math.sqrt(z) - y) / x / 2.0
|
374
|
+
end
|
375
|
+
|
376
|
+
# [x, \infty)
|
377
|
+
def pf(q, n1, n2)
|
378
|
+
if(q < 0.0 || q > 1.0 || n1 < 1 || n2 < 1)
|
379
|
+
$stderr.printf("Error : Illegal parameter in pf()!\n")
|
380
|
+
return 0.0
|
381
|
+
end
|
382
|
+
|
383
|
+
if n1 <= 240 || n2 <= 240
|
384
|
+
eps = 1.0e-5
|
385
|
+
if(n2 == 1) then eps = 1.0e-4 end
|
386
|
+
fw = 0.0
|
387
|
+
s = 1000.0
|
388
|
+
loop do
|
389
|
+
fw += s
|
390
|
+
if s <= eps then return fw end
|
391
|
+
if (qe = q_f(n1, n2, fw) - q) == 0.0 then return fw end
|
392
|
+
if qe < 0.0
|
393
|
+
fw -= s
|
394
|
+
s /= 10.0 #/
|
395
|
+
end
|
396
|
+
end
|
397
|
+
end
|
398
|
+
|
399
|
+
eps = 1.0e-6
|
400
|
+
qn = q
|
401
|
+
if q < 0.5 then qn = 1.0 - q
|
402
|
+
u = pnorm(qn)
|
403
|
+
w1 = 2.0 / n1 / 9.0
|
404
|
+
w2 = 2.0 / n2 / 9.0
|
405
|
+
w3 = 1.0 - w1
|
406
|
+
w4 = 1.0 - w2
|
407
|
+
u2 = u * u
|
408
|
+
a = w4 * w4 - u2 * w2
|
409
|
+
b = -2. * w3 * w4
|
410
|
+
c = w3 * w3 - u2 * w1
|
411
|
+
d = b * b - 4 * a * c
|
412
|
+
if(d < 0.0)
|
413
|
+
fw = pfsub(a, b, 0.0)
|
414
|
+
else
|
415
|
+
if(a.abs > eps)
|
416
|
+
fw = pfsub(a, b, d)
|
417
|
+
else
|
418
|
+
if(b.abs > eps) then return -c / b end
|
419
|
+
fw = pfsub(a, b, 0.0)
|
420
|
+
end
|
421
|
+
end
|
422
|
+
fw * fw * fw
|
423
|
+
end
|
424
|
+
end
|
425
|
+
|
426
|
+
private :q_f, :pf, :pfsub
|
427
|
+
module_function :q_f, :pf, :pfsub
|
428
|
+
private_class_method :q_f, :pf, :pfsub
|
429
|
+
|
430
|
+
# Returns the integral of F-distribution with n1 and n2 degrees of freedom over [0, x].
|
431
|
+
def fdist(n1, n2, f); 1.0 - q_f(n1, n2, f); end
|
432
|
+
|
433
|
+
# Returns the P-value of fdist().
|
434
|
+
def pfdist(n1, n2, y); pf(1.0 - y, n1, n2); end
|
435
|
+
|
436
|
+
############################################################################
|
437
|
+
# discrete distributions
|
438
|
+
|
439
|
+
def perm(n, x = n)
|
440
|
+
raise RangeError if n < 0 || x < 0
|
441
|
+
r = 1
|
442
|
+
while x >= 1
|
443
|
+
r *= n
|
444
|
+
n -= 1
|
445
|
+
x -= 1
|
446
|
+
end
|
447
|
+
r
|
448
|
+
end
|
449
|
+
|
450
|
+
def combi(n, x)
|
451
|
+
raise RangeError if n < 0 || x < 0
|
452
|
+
x = n - x if x*2 > n
|
453
|
+
perm(n, x) / perm(x, x)
|
454
|
+
end
|
455
|
+
|
456
|
+
module_function :perm, :combi
|
457
|
+
private_class_method :perm, :combi
|
458
|
+
|
459
|
+
def bindens(n, p, x)
|
460
|
+
p = p.to_f
|
461
|
+
q = 1.0 - p
|
462
|
+
combi(n, x) * p**x * q**(n - x)
|
463
|
+
end
|
464
|
+
|
465
|
+
def bindist(n, p, x)
|
466
|
+
(0..x).inject(0.0) do |s, k|
|
467
|
+
s + bindens(n, p, k)
|
468
|
+
end
|
469
|
+
end
|
470
|
+
|
471
|
+
def poissondens(m, x)
|
472
|
+
return 0.0 if x < 0
|
473
|
+
m = m.to_f
|
474
|
+
m ** x * Math::E ** (-m) / perm(x)
|
475
|
+
end
|
476
|
+
|
477
|
+
def poissondist(m, x)
|
478
|
+
(0..x).inject(0.0) do |s, k|
|
479
|
+
s + poissondens(m, k)
|
480
|
+
end
|
481
|
+
end
|
482
|
+
|
483
|
+
############################################################################
|
484
|
+
# normal-distribution
|
485
|
+
|
486
|
+
# Returns the integral of normal distribution over (-Infty, x].
|
487
|
+
def normalxXX_(z); normaldist(z); end
|
488
|
+
|
489
|
+
# Returns the integral of normal distribution over [0, x].
|
490
|
+
def normal__X_(z); normaldist(z) - 0.5; end
|
491
|
+
|
492
|
+
# Returns the integral of normal distribution over [x, Infty).
|
493
|
+
def normal___x(z); 1.0 - normaldist(z); end
|
494
|
+
|
495
|
+
# Returns the integral of normal distribution over (-Infty, -x] + [x, Infty).
|
496
|
+
def normalx__x(z); 2.0 - normaldist(z) * 2.0; end
|
497
|
+
|
498
|
+
module_function :normaldist, :normalxXX_, :normal__X_, :normal___x, :normalx__x
|
499
|
+
|
500
|
+
|
501
|
+
# inverse of normal-distribution
|
502
|
+
|
503
|
+
# Return the P-value of the corresponding integral.
|
504
|
+
def pnormalxXX_(z); pnormaldist(z); end
|
505
|
+
|
506
|
+
# Return the P-value of the corresponding integral.
|
507
|
+
def pnormal__X_(y); pnormalxXX_(y + 0.5); end
|
508
|
+
|
509
|
+
# Return the P-value of the corresponding integral.
|
510
|
+
def pnormal___x(y); pnormalxXX_(1.0 - y); end
|
511
|
+
|
512
|
+
# Return the P-value of the corresponding integral.
|
513
|
+
def pnormalx__x(y); pnormalxXX_(1.0 - y/2.0); end
|
514
|
+
|
515
|
+
module_function :pnormaldist, :pnormalxXX_, :pnormal__X_, :pnormal___x, :pnormalx__x
|
516
|
+
|
517
|
+
|
518
|
+
# chi2-distribution
|
519
|
+
|
520
|
+
# Returns the integral of Chi-squared distribution with n degrees of freedom over [x, Infty).
|
521
|
+
def chi2_x(n, x); 1.0 - chi2dist(n, x); end
|
522
|
+
|
523
|
+
# Returns the integral of Chi-squared distribution with n degrees of freedom over [0, x].
|
524
|
+
def chi2X_(n, x); chi2dist(n, x); end
|
525
|
+
|
526
|
+
module_function :chi2dist, :chi2X_, :chi2_x
|
527
|
+
|
528
|
+
|
529
|
+
# inverse of chi2-distribution
|
530
|
+
|
531
|
+
# Return the P-value of the corresponding integral.
|
532
|
+
def pchi2_x(n, y); pchi2dist(n, 1.0 - y); end
|
533
|
+
|
534
|
+
# Return the P-value of the corresponding integral.
|
535
|
+
def pchi2X_(n, y); pchi2dist(n, y); end
|
536
|
+
|
537
|
+
module_function :pchi2dist, :pchi2X_, :pchi2_x
|
538
|
+
|
539
|
+
|
540
|
+
# t-distribution
|
541
|
+
|
542
|
+
# Returns the integral of normal distribution with n degrees of freedom over (-Infty, -x] + [x, Infty).
|
543
|
+
def tx__x(n, x); 2.0 - tdist(n, x) * 2.0; end
|
544
|
+
|
545
|
+
# Returns the integral of t-distribution with n degrees of freedom over (-Infty, x].
|
546
|
+
def txXX_(n, x); tdist(n, x); end
|
547
|
+
|
548
|
+
# Returns the integral of t-distribution with n degrees of freedom over [0, x].
|
549
|
+
def t__X_(n, x); tdist(n, x) - 0.5; end
|
550
|
+
|
551
|
+
# Returns the integral of t-distribution with n degrees of freedom over [x, Infty).
|
552
|
+
def t___x(n, x); 1.0 - tdist(n, x); end
|
553
|
+
|
554
|
+
module_function :tdist, :txXX_, :t__X_, :t___x, :tx__x
|
555
|
+
|
556
|
+
|
557
|
+
# inverse of t-distribution
|
558
|
+
|
559
|
+
# Return the P-value of the corresponding integral.
|
560
|
+
def ptx__x(n, y); ptdist(n, 1.0 - y / 2.0); end
|
561
|
+
|
562
|
+
# Return the P-value of the corresponding integral.
|
563
|
+
def ptxXX_(n, y); ptdist(n, y); end
|
564
|
+
|
565
|
+
# Return the P-value of the corresponding integral.
|
566
|
+
def pt__X_(n, y); ptdist(n, 0.5 + y); end
|
567
|
+
|
568
|
+
# Return the P-value of the corresponding integral.
|
569
|
+
def pt___x(n, y); ptdist(n, 1.0 - y); end
|
570
|
+
|
571
|
+
module_function :ptdist, :ptxXX_, :pt__X_, :pt___x, :ptx__x
|
572
|
+
|
573
|
+
|
574
|
+
# F-distribution
|
575
|
+
|
576
|
+
# Returns the integral of F-distribution with n1 and n2 degrees of freedom over [x, Infty).
|
577
|
+
def f_x(n1, n2, x); 1.0 - fdist(n1, n2, x); end
|
578
|
+
|
579
|
+
# Returns the integral of F-distribution with n1 and n2 degrees of freedom over [0, x].
|
580
|
+
def fX_(n1, n2, x); fdist(n1, n2, x); end
|
581
|
+
module_function :fdist, :fX_, :f_x
|
582
|
+
|
583
|
+
|
584
|
+
# inverse of F-distribution
|
585
|
+
|
586
|
+
# Return the P-value of the corresponding integral.
|
587
|
+
def pf_x(n1, n2, x); pfdist(n1, n2, 1.0 - x); end
|
588
|
+
|
589
|
+
# Return the P-value of the corresponding integral.
|
590
|
+
def pfX_(n1, n2, x); pfdist(n1, n2, x); end
|
591
|
+
|
592
|
+
module_function :pfdist, :pfX_, :pf_x
|
593
|
+
|
594
|
+
|
595
|
+
# discrete distributions
|
596
|
+
def binX_(n, p, x); bindist(n, p, x); end
|
597
|
+
def bin_x(n, p, x); bindist(n, 1.0 - p, n - x); end
|
598
|
+
module_function :bindens, :bindist, :binX_, :bin_x
|
599
|
+
|
600
|
+
def poissonX_(m, x); poissondist(m, x); end
|
601
|
+
def poisson_x(m, x); 1.0 - poissondist(m, x-1); end
|
602
|
+
module_function :poissondens, :poissondist, :poissonX_, :poisson_x
|
603
|
+
end
|
604
|
+
|
605
|
+
if !defined?(Statistics2::NO_EXT) || !Statistics2::NO_EXT
|
606
|
+
require 'statistics2.so'
|
607
|
+
end
|
608
|
+
|
609
|
+
if $0 == __FILE__
|
610
|
+
if ARGV.empty?
|
611
|
+
puts "Example:"
|
612
|
+
puts " #$0 normaldist 0.01"
|
613
|
+
puts " #$0 pf_x 2 3 0.01"
|
614
|
+
exit
|
615
|
+
end
|
616
|
+
p Statistics2.send(ARGV[0], *ARGV[1..-1].map{|x| eval(x)})
|
617
|
+
end
|