stamina-core 0.5.0
Sign up to get free protection for your applications and to get access to all the features.
- data/CHANGELOG.md +78 -0
- data/LICENCE.md +22 -0
- data/lib/stamina-core/stamina-core.rb +1 -0
- data/lib/stamina-core/stamina/adl.rb +298 -0
- data/lib/stamina-core/stamina/automaton.rb +1300 -0
- data/lib/stamina-core/stamina/automaton/complement.rb +26 -0
- data/lib/stamina-core/stamina/automaton/complete.rb +36 -0
- data/lib/stamina-core/stamina/automaton/compose.rb +111 -0
- data/lib/stamina-core/stamina/automaton/determinize.rb +104 -0
- data/lib/stamina-core/stamina/automaton/equivalence.rb +57 -0
- data/lib/stamina-core/stamina/automaton/hide.rb +41 -0
- data/lib/stamina-core/stamina/automaton/metrics.rb +77 -0
- data/lib/stamina-core/stamina/automaton/minimize.rb +23 -0
- data/lib/stamina-core/stamina/automaton/minimize/hopcroft.rb +118 -0
- data/lib/stamina-core/stamina/automaton/minimize/pitchies.rb +130 -0
- data/lib/stamina-core/stamina/automaton/strip.rb +16 -0
- data/lib/stamina-core/stamina/automaton/walking.rb +361 -0
- data/lib/stamina-core/stamina/command.rb +38 -0
- data/lib/stamina-core/stamina/command/adl2dot.rb +82 -0
- data/lib/stamina-core/stamina/command/help.rb +23 -0
- data/lib/stamina-core/stamina/command/robustness.rb +21 -0
- data/lib/stamina-core/stamina/command/run.rb +84 -0
- data/lib/stamina-core/stamina/core.rb +11 -0
- data/lib/stamina-core/stamina/dsl.rb +6 -0
- data/lib/stamina-core/stamina/dsl/automata.rb +23 -0
- data/lib/stamina-core/stamina/dsl/core.rb +14 -0
- data/lib/stamina-core/stamina/engine.rb +32 -0
- data/lib/stamina-core/stamina/engine/context.rb +35 -0
- data/lib/stamina-core/stamina/errors.rb +26 -0
- data/lib/stamina-core/stamina/ext/math.rb +19 -0
- data/lib/stamina-core/stamina/loader.rb +3 -0
- data/lib/stamina-core/stamina/markable.rb +42 -0
- data/lib/stamina-core/stamina/utils.rb +1 -0
- data/lib/stamina-core/stamina/utils/decorate.rb +81 -0
- data/lib/stamina-core/stamina/version.rb +14 -0
- metadata +93 -0
@@ -0,0 +1,23 @@
|
|
1
|
+
module Stamina
|
2
|
+
class Automaton
|
3
|
+
|
4
|
+
#
|
5
|
+
# Checks if this automaton is minimal.
|
6
|
+
#
|
7
|
+
def minimal?
|
8
|
+
self.minimize.state_count == self.state_count
|
9
|
+
end
|
10
|
+
|
11
|
+
#
|
12
|
+
# Returns a minimized version of this automaton.
|
13
|
+
#
|
14
|
+
# This method should only be called on deterministic automata.
|
15
|
+
#
|
16
|
+
def minimize(options = {})
|
17
|
+
Minimize::Hopcroft.execute(self, options)
|
18
|
+
end
|
19
|
+
|
20
|
+
end # class Automaton
|
21
|
+
end # module Stamina
|
22
|
+
require_relative 'minimize/hopcroft'
|
23
|
+
require_relative 'minimize/pitchies'
|
@@ -0,0 +1,118 @@
|
|
1
|
+
module Stamina
|
2
|
+
class Automaton
|
3
|
+
module Minimize
|
4
|
+
class Hopcroft
|
5
|
+
|
6
|
+
# Creates an algorithm instance
|
7
|
+
def initialize(automaton, options)
|
8
|
+
raise ArgumentError, "Deterministic automaton expected", caller unless automaton.deterministic?
|
9
|
+
@automaton = automaton
|
10
|
+
end
|
11
|
+
|
12
|
+
# Compute a Hash {symbol => state_group} from a group of states
|
13
|
+
def reverse_delta(group)
|
14
|
+
h = Hash.new{|h,k| h[k]=Set.new}
|
15
|
+
group.each do |state|
|
16
|
+
state.in_edges.each do |edge|
|
17
|
+
h[edge.symbol] << edge.source
|
18
|
+
end
|
19
|
+
end
|
20
|
+
h
|
21
|
+
end
|
22
|
+
|
23
|
+
# Computes a minimal dfa from the grouping information
|
24
|
+
def compute_minimal_dfa(groups)
|
25
|
+
indexes = []
|
26
|
+
fa = Automaton.new do |fa|
|
27
|
+
|
28
|
+
# create one state for each group
|
29
|
+
groups.each_with_index do |group,index|
|
30
|
+
group.each{|s| indexes[s.index] = index}
|
31
|
+
data = group.inject(nil) do |memo,s|
|
32
|
+
if memo.nil?
|
33
|
+
s.data
|
34
|
+
else
|
35
|
+
{:initial => memo[:initial] || s.initial?,
|
36
|
+
:accepting => memo[:accepting] || s.accepting?,
|
37
|
+
:error => memo[:error] || s.error?}
|
38
|
+
end
|
39
|
+
end
|
40
|
+
fa.add_state(data)
|
41
|
+
end
|
42
|
+
|
43
|
+
# connect transitions now
|
44
|
+
groups.each_with_index do |group,index|
|
45
|
+
group.each do |s|
|
46
|
+
s_index = indexes[s.index]
|
47
|
+
s.out_edges.each do |edge|
|
48
|
+
symbol, t_index = edge.symbol, indexes[edge.target.index]
|
49
|
+
unless fa.ith_state(s_index).dfa_step(symbol)
|
50
|
+
fa.connect(s_index, t_index, symbol)
|
51
|
+
end
|
52
|
+
end
|
53
|
+
end
|
54
|
+
end
|
55
|
+
|
56
|
+
end
|
57
|
+
fa.drop_states *fa.states.select{|s| s.sink?}
|
58
|
+
fa.state_count == 0 ? Automaton::DUM : fa
|
59
|
+
end
|
60
|
+
|
61
|
+
# Computes the initial partition
|
62
|
+
def initial_partition
|
63
|
+
p = [Set.new, Set.new]
|
64
|
+
@automaton.states.each do |s|
|
65
|
+
(s.accepting? ? p[0] : p[1]) << s
|
66
|
+
end
|
67
|
+
p.reject{|g| g.empty?}
|
68
|
+
end
|
69
|
+
|
70
|
+
# Main method of the algorithm
|
71
|
+
def main
|
72
|
+
# Partition states a first time according to accepting/non accepting
|
73
|
+
@partition = initial_partition # P in pseudo code
|
74
|
+
@worklist = @partition.dup # W in pseudo code
|
75
|
+
|
76
|
+
# Until a block needs to be refined
|
77
|
+
until @worklist.empty?
|
78
|
+
refined = @worklist.pop
|
79
|
+
|
80
|
+
# We compute the reverse delta on the group and look at the groups
|
81
|
+
rdelta = reverse_delta(refined)
|
82
|
+
rdelta.each_pair do |symbol, sources| # sources is la in pseudo code
|
83
|
+
|
84
|
+
# Find blocks to be refined
|
85
|
+
@partition.dup.each_with_index do |block, index| # block is R in pseudo code
|
86
|
+
next if block.subset?(sources)
|
87
|
+
intersection = block & sources # R1 in pseudo code
|
88
|
+
next if intersection.empty?
|
89
|
+
difference = block - intersection # R2 in pseudo code
|
90
|
+
|
91
|
+
# replace R in P with R1 and R2
|
92
|
+
@partition[index] = intersection
|
93
|
+
@partition << difference
|
94
|
+
|
95
|
+
# Adds the new blocks as to be refined
|
96
|
+
if @worklist.include?(block)
|
97
|
+
@worklist.delete(block)
|
98
|
+
@worklist << intersection << difference
|
99
|
+
else
|
100
|
+
@worklist << (intersection.size <= difference.size ? intersection : difference)
|
101
|
+
end
|
102
|
+
end # @partition.each
|
103
|
+
|
104
|
+
end # rdelta.each_pair
|
105
|
+
end # until @worklist.empty?
|
106
|
+
|
107
|
+
compute_minimal_dfa(@partition)
|
108
|
+
end # def main
|
109
|
+
|
110
|
+
# Execute the minimizer
|
111
|
+
def self.execute(automaton, options={})
|
112
|
+
Hopcroft.new(automaton.strip.complete!, options).main
|
113
|
+
end
|
114
|
+
|
115
|
+
end # class Hopcroft
|
116
|
+
end # module Minimize
|
117
|
+
end # class Automaton
|
118
|
+
end # module Stamina
|
@@ -0,0 +1,130 @@
|
|
1
|
+
module Stamina
|
2
|
+
class Automaton
|
3
|
+
module Minimize
|
4
|
+
#
|
5
|
+
# Straightforward and simple to understand minimization algorithm.
|
6
|
+
#
|
7
|
+
# The principle of the algorithm is to successively refine a partition of
|
8
|
+
# the DFA states. This partition is represented by an array of integers,
|
9
|
+
# one for each state, that uniquely identifies the partition block to which
|
10
|
+
# the state belongs. As usual, the initial partition separates accepting
|
11
|
+
# from non accepting states:
|
12
|
+
#
|
13
|
+
# P0 = [0, 1, 0, 0, ..., 1] # N integers, 1 (resp. 0) for accepting (resp
|
14
|
+
# # non accepting) states.
|
15
|
+
#
|
16
|
+
# A refinement step of the algorithm consists in refining this partition by
|
17
|
+
# looking forward in the DFA for each symbol in the alphabet. Consider a given
|
18
|
+
# symbol, say 'a', and the transition function given by a (complete) DFA. We
|
19
|
+
# can represent the restriction of this function over a given symbol, say 'a'
|
20
|
+
# by a simple array, containing the target state reached through 'a' for each
|
21
|
+
# state of the DFA:
|
22
|
+
#
|
23
|
+
# DELTA('a') = [5, 7, 1, ..., 0] # N integers, containing the unique identifier
|
24
|
+
# # of the target state reached through 'a' from
|
25
|
+
# # each state of the DFA, in order
|
26
|
+
#
|
27
|
+
# Now, given a partition of the DFA states Pi, one can simply look which block
|
28
|
+
# of the partition is reached through a given letter, say 'a' by combining it
|
29
|
+
# with DELTA('a')
|
30
|
+
#
|
31
|
+
# REACHED(Pi, 'a') = [ Pi[DELTA('a')[j]] | foreach 0 <= j < N-1 ]
|
32
|
+
#
|
33
|
+
# Given a partition Pi, if two states in the same block reach different blocks
|
34
|
+
# along the same symbol, they must be separated, by definition. Interrestingly,
|
35
|
+
# this information is contained in pairs of integers given by Pi and REACHED(Pi, 'a').
|
36
|
+
# In other words, consider the pairs
|
37
|
+
#
|
38
|
+
# PAIRS(Pi, 'a') = [ (Pi[j], REACHED(Pi, 'a')[j]) | foreach 0 <= j < N-1 ]
|
39
|
+
#
|
40
|
+
# Now, without loss of generality, one can simply give a unique number to each
|
41
|
+
# different pair in such an array of pairs (a naïve way of doing so is to define
|
42
|
+
# a total order relation over pairs, sorting them, and taking the smallest index
|
43
|
+
# of each pair in the sorted array). This leads to a partition refinement:
|
44
|
+
#
|
45
|
+
# REFINEMENT(Pi, 'a') = [ unique-number-of(PAIRS(Pi, 'a')[j]) | foreach 0 <= j < N-1 ]
|
46
|
+
#
|
47
|
+
# A step of the algorithm consists in applying such a refinement for each symbol in
|
48
|
+
# the alphabet:
|
49
|
+
#
|
50
|
+
# foreach symbol in Sigma
|
51
|
+
# Pi = REFINEMENT(Pi, symbol)
|
52
|
+
#
|
53
|
+
# The algorithm applies such refinements until a fix point is reached:
|
54
|
+
#
|
55
|
+
# # Trivial partition with all states in same block
|
56
|
+
# Pi = [ 0 | foreach 0 <= j < N-1 ]
|
57
|
+
#
|
58
|
+
# # initial non trivial partition separating accepting for non accepting
|
59
|
+
# # states
|
60
|
+
# Pj = [...]
|
61
|
+
#
|
62
|
+
# # fixpoint loop until Pi == Pj, i.e. no change has been made
|
63
|
+
# while Pj != Pi # warning here, we compare the real partitions...
|
64
|
+
# Pi = Pj
|
65
|
+
# foreach symbol in Sigma
|
66
|
+
# Pj = REFINEMENT(Pj, symbol)
|
67
|
+
# end
|
68
|
+
#
|
69
|
+
class Pitchies
|
70
|
+
|
71
|
+
# Creates an algorithm instance
|
72
|
+
def initialize(automaton, options)
|
73
|
+
raise ArgumentError, "Deterministic automaton expected", caller unless automaton.deterministic?
|
74
|
+
@automaton = automaton
|
75
|
+
end
|
76
|
+
|
77
|
+
def minimized_dfa(oldfa, nb_states, partition)
|
78
|
+
fa = Automaton.new(false) do |newfa|
|
79
|
+
# Add the number of states, with default marks
|
80
|
+
newfa.add_n_states(nb_states, {:initial => false, :accepting => false, :error => false})
|
81
|
+
|
82
|
+
# Refine the marks using the source dfa as reference
|
83
|
+
partition.each_with_index do |block, state_index|
|
84
|
+
source = oldfa.ith_state(state_index)
|
85
|
+
target = newfa.ith_state(block)
|
86
|
+
target.initial! if source.initial?
|
87
|
+
target.accepting! if source.accepting?
|
88
|
+
target.error! if source.error?
|
89
|
+
end
|
90
|
+
|
91
|
+
# Now, create the transitions
|
92
|
+
partition.each_with_index do |block, state_index|
|
93
|
+
source = oldfa.ith_state(state_index)
|
94
|
+
target = newfa.ith_state(block)
|
95
|
+
source.out_edges.each do |edge|
|
96
|
+
where = partition[edge.target.index]
|
97
|
+
if target.dfa_step(edge.symbol) == nil
|
98
|
+
newfa.connect(target, where, edge.symbol)
|
99
|
+
end
|
100
|
+
end
|
101
|
+
end
|
102
|
+
end
|
103
|
+
fa.drop_states *fa.states.select{|s| s.sink?}
|
104
|
+
fa.state_count == 0 ? Automaton::DUM : fa
|
105
|
+
end
|
106
|
+
|
107
|
+
def main
|
108
|
+
alph, states = @automaton.alphabet, @automaton.states
|
109
|
+
old_nb_states = -1
|
110
|
+
partition = states.collect{|s| s.accepting? ? 1 : 0}
|
111
|
+
until (nb_states = partition.uniq.size) == old_nb_states
|
112
|
+
old_nb_states = nb_states
|
113
|
+
alph.each do |symbol|
|
114
|
+
reached = states.collect{|s| partition[s.dfa_step(symbol).index]}
|
115
|
+
rehash = Hash.new{|h,k| h[k] = h.size}
|
116
|
+
partition = partition.zip(reached).collect{|pair| rehash[pair]}
|
117
|
+
end
|
118
|
+
end
|
119
|
+
minimized_dfa(@automaton, nb_states, partition)
|
120
|
+
end
|
121
|
+
|
122
|
+
# Execute the minimizer
|
123
|
+
def self.execute(automaton, options={})
|
124
|
+
Pitchies.new(automaton.strip.complete!, options).main
|
125
|
+
end
|
126
|
+
|
127
|
+
end # class Pitchies
|
128
|
+
end # module Minimize
|
129
|
+
end # class Automaton
|
130
|
+
end # module Stamina
|
@@ -0,0 +1,16 @@
|
|
1
|
+
module Stamina
|
2
|
+
class Automaton
|
3
|
+
|
4
|
+
# Removes unreachable states from the initial ones
|
5
|
+
def strip!
|
6
|
+
depth(:reachable)
|
7
|
+
drop_states(*states.select{|s| s[:reachable].nil?})
|
8
|
+
end
|
9
|
+
|
10
|
+
# Returns a copy of this automaton with unreachable states removed
|
11
|
+
def strip
|
12
|
+
dup.strip!
|
13
|
+
end
|
14
|
+
|
15
|
+
end # class Automaton
|
16
|
+
end # module Stamina
|
@@ -0,0 +1,361 @@
|
|
1
|
+
module Stamina
|
2
|
+
class Automaton
|
3
|
+
#
|
4
|
+
# Provides useful automaton walking methods. This module is automatically
|
5
|
+
# included in Automaton and is not intended to be used directly.
|
6
|
+
#
|
7
|
+
# == Examples
|
8
|
+
# # Building an automaton for the regular language a(ba)*
|
9
|
+
# s0, s1 = nil
|
10
|
+
# fa = Automaton.new do
|
11
|
+
# s0 = add_state(:initial => true)
|
12
|
+
# s1 = add_state(:accepting => true)
|
13
|
+
# connect(0,1,'a')
|
14
|
+
# connect(1,0,'b')
|
15
|
+
# end
|
16
|
+
#
|
17
|
+
# # some examples with reached
|
18
|
+
# fa.dfa_reached('? a b') # -> s0 dfa variant method
|
19
|
+
# fa.dfa_reached('? a a') # -> nil
|
20
|
+
# fa.dfa_reached('? b a', s1) # -> s1 from an explicit init state
|
21
|
+
#
|
22
|
+
# fa.reached('? a b') # -> [s0] generic method on automaton
|
23
|
+
# fa.reached('? a a') # -> []
|
24
|
+
# fa.reached('? b a', s1) # -> [s1]
|
25
|
+
#
|
26
|
+
# # some examples with split (the most powerful one!)
|
27
|
+
# fa.dfa_split('? a b a b') # [['a','b','a','b'], s0, []]
|
28
|
+
# fa.dfa_split('? a b b a') # [['a','b'], s0, ['b','a']]
|
29
|
+
#
|
30
|
+
# fa.split('? a b a b') # [['a','b','a','b'], [s0], []]
|
31
|
+
# fa.split('? a b b a') # [['a','b'], [s0], ['b','a']]
|
32
|
+
#
|
33
|
+
# # All of this works on non-deterministic automata as well (and epsilon
|
34
|
+
# # symbols are taken into account), but you'll probably need to read
|
35
|
+
# # the following section to master the power of this module in this case!
|
36
|
+
#
|
37
|
+
# == Using this module
|
38
|
+
# This section fully details the design choices that has been made for the
|
39
|
+
# implementation of the Walking module used by Stamina on Automaton. It is provided
|
40
|
+
# because Walking is one of the core classes of Stamina, that probably all
|
41
|
+
# users (and contributors) will use. Walking usage is really user-friendly,
|
42
|
+
# so <b>you are normally not required</b> to read this section in the first
|
43
|
+
# place ! Read it only if of interest for you, or if you experiment unexpected
|
44
|
+
# results.
|
45
|
+
#
|
46
|
+
# Methods defined by this module respect common conventions that you must be
|
47
|
+
# aware of:
|
48
|
+
#
|
49
|
+
# === Generic methods vs. dfa variants
|
50
|
+
# The convention is simple: methods whose name starts with 'dfa_' are expected
|
51
|
+
# to be used on deterministic automata only (that is, automata answering _true_
|
52
|
+
# to the deterministic? method invocation). We refer to those methods as
|
53
|
+
# 'dfa variants'. Strange results may occur if invoked on non-deterministic
|
54
|
+
# automata. Other methods are called 'generic methods' and can be used on any
|
55
|
+
# automaton. Generic methods and dfa variants sometimes use different conventions
|
56
|
+
# according to arguments and returned values, as explained below.
|
57
|
+
#
|
58
|
+
# === Argument conventions
|
59
|
+
# - all methods taking a _symbol_ argument expect it to be a valid instance of
|
60
|
+
# the class used for representing input symbols on edges of your automaton
|
61
|
+
# (that is, the mark you've installed under :symbol key on the edge, see
|
62
|
+
# Automaton documentation for details).
|
63
|
+
# - all methods taking an _input_ argument support the following objects for it:
|
64
|
+
# - InputString instance: an real input string typically coming from a Sample.
|
65
|
+
# - Array of symbols: where by symbol, we mean an input symbol as explained
|
66
|
+
# above (and not a Ruby Symbol instance). The array is never modified by the
|
67
|
+
# methods, so that you don't have to worry about where this array comes from.
|
68
|
+
# - String (a real Ruby one): in this case, the input is expected to be an ADL
|
69
|
+
# input string, which is parsed using ADL::parse_string. Note that 'a b a b'
|
70
|
+
# is NOT a valid ADL input string, so that you typically have to use the '?'
|
71
|
+
# sign to indicate that the tested string is basically unlabeled.
|
72
|
+
# - all methods taking a _from_ argument support the following objects for it:
|
73
|
+
# - ommited: _from_ is interpreted as the set of initial states by generic
|
74
|
+
# methods and the last rule applies. _from_ is interpreted as the unique initial
|
75
|
+
# state of the deterministic automaton by dfa method variants (<tt>dfa_xxx</tt>),
|
76
|
+
# and the third rule applies.
|
77
|
+
# - Integer: _from_ is interpreted as a state index, and the next rule applies
|
78
|
+
# on the index-th state of the automaton.
|
79
|
+
# - State: _from_ is interpreted by the generic methods as a singleton set
|
80
|
+
# containing the state and the last rule applies. Deterministic method
|
81
|
+
# variants interpret it as the start state from which the walk must start.
|
82
|
+
# In this case, they always return a State instance (or _nil_) instead of
|
83
|
+
# an array of states.
|
84
|
+
# - Array: _from_ is interpreted as a set of states (duplicates are supported
|
85
|
+
# so it's actually a bag) from which the walk must start. Indexes of states
|
86
|
+
# are also supported, see Automaton documentation about indexes.
|
87
|
+
#
|
88
|
+
# === Returned value conventions
|
89
|
+
# Moreover, (unless stated explicitely) all methods returning states as (part of)
|
90
|
+
# their returned value respect the following _return_ conventions (which somewhat
|
91
|
+
# summarizes the _from_ conventions above):
|
92
|
+
# - generic methods *always* return an array of states (without duplicates) which
|
93
|
+
# can be modified. This array is *never* sorted by state index. To insist:
|
94
|
+
# even when invoked on a deterministic automaton with a State argument as
|
95
|
+
# _from_, they will return an array of states as show by the code excerpt
|
96
|
+
# below. Lastly, the returned value is *never* _nil_, but an empty array may
|
97
|
+
# be returned when it makes sense (no reached states for example).
|
98
|
+
#
|
99
|
+
# fa = Automaton.new do ... end # build a(ba)* automaton
|
100
|
+
# s0 = fa.initial_state
|
101
|
+
# fa.reached('? a b a b', s0) # returns [s0], not s0 !
|
102
|
+
#
|
103
|
+
# - dfa variant methods respond to your query using the same language as you:
|
104
|
+
# if _from_ is ommitted, is a State or an Integer, the the result will be a
|
105
|
+
# single State instance, or _nil_ if it makes sense (no reached state for
|
106
|
+
# example). Otherwise, they behaves exactly as generic methods (*always* return
|
107
|
+
# an array of states, ...)
|
108
|
+
#
|
109
|
+
# === Epsilon symbol aware methods
|
110
|
+
# Stamina does not allow epsilon symbols on deterministic automata; thus, this
|
111
|
+
# subsection only applies to generic methods.
|
112
|
+
#
|
113
|
+
# Methods documented as 'epsilon aware' (almost all generic methods) *always*
|
114
|
+
# take epsilon symbols into account in their computations (Stamina uses _nil_ as
|
115
|
+
# epsilon symbol, by convention), in a natural way. For example:
|
116
|
+
#
|
117
|
+
# fa = Automaton.new do ... end # build a non-deterministic automaton
|
118
|
+
# # with epsilon symbols
|
119
|
+
#
|
120
|
+
# # the line below computes the set of reached states
|
121
|
+
# # (from the set of initial states) by walking the dfa
|
122
|
+
# # with a string.
|
123
|
+
# #
|
124
|
+
# # The actual computation is in fact the set of reached
|
125
|
+
# # states with the string (regex) 'eps* a eps* b eps*',
|
126
|
+
# # where eps is the epsilon symbol.
|
127
|
+
# reached = fa.reached('? a b')
|
128
|
+
#
|
129
|
+
# == Detailed API
|
130
|
+
module Walking
|
131
|
+
|
132
|
+
#
|
133
|
+
# Returns reachable states from _from_ states with an input _symbol_. This
|
134
|
+
# method is not epsilon symbol aware.
|
135
|
+
#
|
136
|
+
def step(from, symbol)
|
137
|
+
from = walking_to_from(from)
|
138
|
+
from.collect{|s| s.step(symbol)}.flatten.uniq
|
139
|
+
end
|
140
|
+
|
141
|
+
#
|
142
|
+
# Returns the state reached from _from_ states with an input _symbol_. Returns
|
143
|
+
# nil or the empty array (according to _from_ conventions) if no state can be
|
144
|
+
# reached with the given symbol.
|
145
|
+
#
|
146
|
+
def dfa_step(from, symbol)
|
147
|
+
step = walking_to_from(from).collect{|s| s.dfa_step(symbol)}.flatten.uniq
|
148
|
+
walking_to_dfa_result(step, from)
|
149
|
+
end
|
150
|
+
|
151
|
+
#
|
152
|
+
# Computes an array representing the set of states that can be reached from
|
153
|
+
# _from_ states with the given input _symbol_.
|
154
|
+
#
|
155
|
+
# This method is epsilon symbol aware (represented with nil) on non
|
156
|
+
# deterministic automata, meaning that it actually computes the set of
|
157
|
+
# reachable states through strings respecting the <tt>eps* symbol eps*</tt>
|
158
|
+
# regular expression, where eps is the epsilon symbol.
|
159
|
+
#
|
160
|
+
def delta(from, symbol)
|
161
|
+
walking_to_from(from).collect{|s| s.delta(symbol)}.flatten.uniq
|
162
|
+
end
|
163
|
+
|
164
|
+
#
|
165
|
+
# Returns the target state (or the target states, according to _from_
|
166
|
+
# conventions) that can be reached from _from_ states with a given input
|
167
|
+
# _symbol_. Returns nil (or an empty array, according to the same conventions)
|
168
|
+
# if no such state exists.
|
169
|
+
#
|
170
|
+
def dfa_delta(from, symbol)
|
171
|
+
if from.is_a?(Automaton::State)
|
172
|
+
from.dfa_delta(symbol)
|
173
|
+
else
|
174
|
+
delta = walking_to_from(from).collect{|s| s.dfa_delta(symbol)}.flatten.uniq
|
175
|
+
walking_to_dfa_result(delta, from)
|
176
|
+
end
|
177
|
+
end
|
178
|
+
|
179
|
+
#
|
180
|
+
# Splits a given input and returns a triplet <tt>[parsed,reached,remaining]</tt>
|
181
|
+
# where _parsed_ is an array of parsed symbols, _reached_ is the set of reached
|
182
|
+
# states with the _parsed_ input string and _remaining_ is an array of symbols
|
183
|
+
# with the unparsable part of the string. This method is epsilon symbol aware.
|
184
|
+
#
|
185
|
+
# By construction, the following properties are verified:
|
186
|
+
# - <tt>parsed + remaining == input</tt> (assuming input is an array of symbols),
|
187
|
+
# which means that atring concatenation of parsed and remaining symbols is
|
188
|
+
# is the input string.
|
189
|
+
# - <tt>reached.empty? == false</tt>, because at least initial states (or
|
190
|
+
# _from_ if provided) are reached.
|
191
|
+
# - <tt>remaining.empty? == parses?(input,from)</tt>, meaning that the automaton
|
192
|
+
# parses the whole input if there is no remaining symol.
|
193
|
+
# - <tt>delta(reached, remaining[0]).empty? unless remaining.empty?</tt>,
|
194
|
+
# which express the splitting stop condition: splitting continues while at
|
195
|
+
# least one state can be reached with the next symbol.
|
196
|
+
#
|
197
|
+
def split(input, from=nil, sort=false)
|
198
|
+
if deterministic?
|
199
|
+
parsed, reached, remaining = dfa_split(input, from)
|
200
|
+
[parsed, walking_from_dfa_to_nfa_result(reached), remaining]
|
201
|
+
else
|
202
|
+
# the three elements of the triplet
|
203
|
+
parsed = []
|
204
|
+
reached = walking_to_from(from)
|
205
|
+
remaining = walking_to_modifiable_symbols(input)
|
206
|
+
|
207
|
+
# walk now
|
208
|
+
until remaining.empty?
|
209
|
+
symb = remaining[0]
|
210
|
+
next_reached = delta(reached, symb)
|
211
|
+
|
212
|
+
# stop it if no reached state
|
213
|
+
break if next_reached.empty?
|
214
|
+
|
215
|
+
# otherwise, update triplet
|
216
|
+
parsed << remaining.shift
|
217
|
+
reached = next_reached
|
218
|
+
end
|
219
|
+
reached.sort! if sort
|
220
|
+
[parsed, reached, remaining]
|
221
|
+
end
|
222
|
+
end
|
223
|
+
|
224
|
+
# Same as split, respecting dfa conventions.
|
225
|
+
def dfa_split(input, from=nil)
|
226
|
+
from = initial_state if from.nil?
|
227
|
+
from = ith_state(from) if from.is_a?(Integer)
|
228
|
+
if from.is_a?(Automaton::State)
|
229
|
+
# the three elements of the triplet
|
230
|
+
parsed = []
|
231
|
+
reached = from
|
232
|
+
remaining = walking_to_modifiable_symbols(input)
|
233
|
+
|
234
|
+
# walk now
|
235
|
+
until remaining.empty?
|
236
|
+
symb = remaining[0]
|
237
|
+
next_reached = reached.dfa_delta(symb)
|
238
|
+
|
239
|
+
# stop it if no reached state
|
240
|
+
break if next_reached.nil?
|
241
|
+
|
242
|
+
# otherwise, update triplet
|
243
|
+
parsed << remaining.shift
|
244
|
+
reached = next_reached
|
245
|
+
end
|
246
|
+
[parsed, reached, remaining]
|
247
|
+
else
|
248
|
+
# the three elements of the triplet
|
249
|
+
parsed = []
|
250
|
+
reached = walking_to_from(from)
|
251
|
+
remaining = walking_to_modifiable_symbols(input)
|
252
|
+
|
253
|
+
# walk now
|
254
|
+
until remaining.empty?
|
255
|
+
symb = remaining[0]
|
256
|
+
next_reached = dfa_delta(reached, symb)
|
257
|
+
|
258
|
+
# stop it if no reached state
|
259
|
+
break if next_reached.nil? or next_reached.empty?
|
260
|
+
|
261
|
+
# otherwise, update triplet
|
262
|
+
parsed << remaining.shift
|
263
|
+
reached = next_reached
|
264
|
+
end
|
265
|
+
[parsed, walking_to_dfa_result(reached, from), remaining]
|
266
|
+
end
|
267
|
+
end
|
268
|
+
|
269
|
+
#
|
270
|
+
# Walks the automaton with an input string, starting at states _from_,
|
271
|
+
# collects the set of all reached states and returns it. Unlike split,
|
272
|
+
# <b>returned array is empty if the string is not parsable by the automaton</b>.
|
273
|
+
# This method is epsilon symbol aware.
|
274
|
+
#
|
275
|
+
def reached(input, from=nil)
|
276
|
+
parsed, reached, remaining = split(input, from)
|
277
|
+
remaining.empty? ? reached : []
|
278
|
+
end
|
279
|
+
|
280
|
+
# Same as reached, respecting dfa conventions.
|
281
|
+
def dfa_reached(input, from=nil)
|
282
|
+
walking_to_dfa_result(reached(input,from),from)
|
283
|
+
end
|
284
|
+
|
285
|
+
#
|
286
|
+
# Checks if the automaton is able to parse an input string. Returns true if
|
287
|
+
# at least one state can be reached, false otherwise. Unlike accepts?, the
|
288
|
+
# labeling of the reached state does not count.
|
289
|
+
#
|
290
|
+
def parses?(input, from=nil)
|
291
|
+
not(reached(input,from).empty?)
|
292
|
+
end
|
293
|
+
|
294
|
+
#
|
295
|
+
# Checks if the automaton accepts an input string. Returns true if at least
|
296
|
+
# one accepting state can be reached, false otherwise.
|
297
|
+
#
|
298
|
+
def accepts?(input, from=nil)
|
299
|
+
not reached(input,from).select{|s| s.accepting? and not s.error?}.empty?
|
300
|
+
end
|
301
|
+
|
302
|
+
#
|
303
|
+
# Checks if the automaton rejects an input string. Returns true if no
|
304
|
+
# accepting state can be reached, false otherwise.
|
305
|
+
#
|
306
|
+
def rejects?(input, from=nil)
|
307
|
+
not(accepts?(input, from))
|
308
|
+
end
|
309
|
+
|
310
|
+
# Returns '1' if the string is accepted by the automaton,
|
311
|
+
# '0' otherwise.
|
312
|
+
def label_of(str)
|
313
|
+
accepts?(str) ? '1' : '0'
|
314
|
+
end
|
315
|
+
|
316
|
+
### protected section ########################################################
|
317
|
+
protected
|
318
|
+
|
319
|
+
#
|
320
|
+
# Converts an input to a modifiable array of symbols.
|
321
|
+
#
|
322
|
+
# If _input_ is an array, it is simply duplicated. If an InputString,
|
323
|
+
# InputString#symbols is invoked and result is duplicated. If _input_ is a
|
324
|
+
# ruby String, it is split using <tt>input.split(' ')</tt>. Raises an
|
325
|
+
# ArgumentError otherwise.
|
326
|
+
#
|
327
|
+
def walking_to_modifiable_symbols(input)
|
328
|
+
case input
|
329
|
+
when Array
|
330
|
+
input.dup
|
331
|
+
when InputString
|
332
|
+
input.symbols.dup
|
333
|
+
when String
|
334
|
+
ADL::parse_string(input).symbols.dup
|
335
|
+
else
|
336
|
+
raise(ArgumentError,
|
337
|
+
"#{input} cannot be converted to a array of symbols", caller)
|
338
|
+
end
|
339
|
+
end
|
340
|
+
|
341
|
+
# Implements _from_ conventions.
|
342
|
+
def walking_to_from(from)
|
343
|
+
return initial_states if from.nil?
|
344
|
+
Array===from ? from.collect{|s| to_state(s)} : [to_state(from)]
|
345
|
+
end
|
346
|
+
|
347
|
+
# Implements _return_ conventions of dfa_xxx methods.
|
348
|
+
def walking_to_dfa_result(result, from)
|
349
|
+
result.compact! # methods are allowed to return [nil]
|
350
|
+
Array===from ? result : (result.empty? ? nil : result[0])
|
351
|
+
end
|
352
|
+
|
353
|
+
# Implements _return_ conventions of standard methods that uses dfa_xxx ones.
|
354
|
+
def walking_from_dfa_to_nfa_result(result)
|
355
|
+
Array===result ? result : (result.nil? ? [] : [result])
|
356
|
+
end
|
357
|
+
|
358
|
+
end # end Walking
|
359
|
+
include Stamina::Automaton::Walking
|
360
|
+
end # class Automaton
|
361
|
+
end # end Stamina
|