sqa 0.0.11 → 0.0.13

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: a524561e1371d56e98fb6f217ba88e377c142e06b93233eeae92cf9adeff3687
4
- data.tar.gz: ce938d1e68f85f66da30e22428c166f28c8ea13cd93c9d8a42255390f645c034
3
+ metadata.gz: 8dd371b757bcc5da8e913681a06666715cbe88ca11f582df64d68ef305391d28
4
+ data.tar.gz: 8b1851af5e7875266acbd3fb35a7ba108fdb267d7490eb19984819bba5f15538
5
5
  SHA512:
6
- metadata.gz: f88857d621fc46c3d5af5e0e3735304ee1f390cf5dd9ceceab25741eed080287ecdd6f46113e91ebed832baef9e78c99222cd84f6e4c2e666b0bb8a1fa82bb97
7
- data.tar.gz: b462fe96808649c282e4ff2eddde19b0dadb8ff22e598d6b64064262e47231504ae2bef27a21960a9660ce52dbd92e0691cc5f47eb0df857b50ff4f2d3779fc1
6
+ metadata.gz: ab803635e2f85e71bebacab6be10cc345f6050a890c730a658741d4a3ae4530490be33fc692a3ced0e843e473cc5613644dc5a0c0d0bfd3a43d5c0d2b4d41510
7
+ data.tar.gz: 7ee788d760d4020efb41baa3f5bc894cc4824d0308144b68f8c352bed03a01ce2049547bace95636264fab1c7b58ab12f97c99209433e2b32719db575017d25c
@@ -0,0 +1 @@
1
+ 2d4a5156118549d604963b8f4dd0b311459f5ad6a1747f2c4925d45f12fe94a863eb225d3c593f82face964773ccbf59478612a014ee9fc32814baf627f730c7
data/lib/sqa/cli.rb CHANGED
@@ -140,6 +140,7 @@ module SQA
140
140
 
141
141
  elsif params[:config_file]
142
142
  # Override the defaults <- envars <- config file content
143
+ params[:config_file] = SQA.homify params[:config_file]
143
144
  SQA.config.config_file = params[:config_file]
144
145
  SQA.config.from_file
145
146
  end
data/lib/sqa/config.rb CHANGED
@@ -86,17 +86,23 @@ module SQA
86
86
  # TODO: arrange order in mostly often used
87
87
 
88
88
  if ".json" == type
89
- form_json
89
+ incoming = form_json
90
90
 
91
91
  elsif %w[.yml .yaml].include?(type)
92
- from_yaml
92
+ incoming = from_yaml
93
93
 
94
94
  elsif ".toml" == type
95
- from_toml
95
+ incoming = from_toml
96
96
 
97
97
  else
98
98
  raise BadParameterError, "Invalid Config File: #{config_file}"
99
99
  end
100
+
101
+ if incoming.has_key? :data_dir
102
+ incoming[:data_dir] = incoming[:data_dir].gsub(/^~/, Nenv.home)
103
+ end
104
+
105
+ merge! incoming
100
106
  end
101
107
 
102
108
  def dump_file
@@ -142,19 +148,15 @@ module SQA
142
148
  ## override values from a config file
143
149
 
144
150
  def from_json
145
- incoming = ::JSON.load(File.open(config_file).read)
146
- debug_me{[ :incoming ]}
151
+ ::JSON.load(File.open(config_file).read).symbolize_keys
147
152
  end
148
153
 
149
154
  def from_toml
150
- incoming = TomlRB.load_file(config_file)
151
- debug_me{[ :incoming ]}
155
+ TomlRB.load_file(config_file).symbolize_keys
152
156
  end
153
157
 
154
158
  def from_yaml
155
- incoming = ::YAML.load_file(config_file)
156
- debug_me{[ :incoming ]}
157
- merge! incoming
159
+ ::YAML.load_file(config_file).symbolize_keys
158
160
  end
159
161
 
160
162
 
@@ -0,0 +1,155 @@
1
+ # lib/sqa/data_frame/alpha_vantage.rb
2
+ # frozen_string_literal: true
3
+ #
4
+ # Using the Alpha Vantage JSON interface
5
+ #
6
+
7
+ require 'faraday'
8
+ require 'json'
9
+
10
+ class SQA::DataFrame < Daru::DataFrame
11
+ class AlphaVantage
12
+ API_KEY = Nenv.av_api_key
13
+ CONNECTION = Faraday.new(url: 'https://www.alphavantage.co')
14
+ HEADERS = YahooFinance::HEADERS
15
+
16
+ # The Alpha Vantage headers are being remapped so that
17
+ # they match those of the Yahoo Finance CSV file.
18
+ #
19
+ HEADER_MAPPING = {
20
+ "date" => HEADERS[0],
21
+ "open" => HEADERS[1],
22
+ "high" => HEADERS[2],
23
+ "low" => HEADERS[3],
24
+ "close" => HEADERS[4],
25
+ "adjusted_close" => HEADERS[5],
26
+ "volume" => HEADERS[6]
27
+ }
28
+
29
+
30
+ ################################################################
31
+ # Load a Dataframe from a csv file
32
+ def self.load(ticker, type="csv")
33
+ filepath = SQA.data_dir + "#{ticker}.#{type}"
34
+
35
+ if filepath.exist?
36
+ df = normalize_vector_names SQA::DataFrame.load(ticker, type)
37
+ else
38
+ df = recent(ticker, full: true)
39
+ df.send("to_#{type}",filepath)
40
+ end
41
+
42
+ df
43
+ end
44
+
45
+
46
+ # Normalize the vector (aka column) names as
47
+ # symbols using the standard names set by
48
+ # Yahoo Finance ... since it was the first one
49
+ # not because its anything special.
50
+ #
51
+ def self.normalize_vector_names(df)
52
+ headers = df.vectors.to_a
53
+
54
+ # convert vector names to symbols
55
+ # when they are strings. They become stings
56
+ # when the data frame is saved to a CSV file
57
+ # and then loaded back in.
58
+
59
+ if headers.first == HEADERS.first.to_s
60
+ a_hash = {}
61
+ HEADERS.each {|k| a_hash[k.to_s] = k}
62
+ df.rename_vectors(a_hash) # renames from String to Symbol
63
+ else
64
+ df.rename_vectors(HEADER_MAPPING)
65
+ end
66
+
67
+ df
68
+ end
69
+
70
+
71
+ # Get recent data from JSON API
72
+ #
73
+ # ticker String the security to retrieve
74
+ # returns a DataFrame
75
+ #
76
+ # NOTE: The function=TIME_SERIES_DAILY_ADJUSTED
77
+ # is not a free API endpoint from Alpha Vantange.
78
+ # So we are just using the free API endpoint
79
+ # function=TIME_SERIES_DAILY
80
+ # This means that we are not getting the
81
+ # real adjusted closing price. To sync
82
+ # the columns with those from Yahoo Finance
83
+ # we are duplicating the unadjusted clossing price
84
+ # and adding that to the data frame as if it were
85
+ # adjusted.
86
+ #
87
+ def self.recent(ticker, full: false)
88
+ # NOTE: Using the CSV format because the JSON format has
89
+ # really silly key values. The column names for the
90
+ # CSV format are much better.
91
+ response = CONNECTION.get(
92
+ "/query?" +
93
+ "function=TIME_SERIES_DAILY&" +
94
+ "symbol=#{ticker.upcase}&" +
95
+ "apikey=#{API_KEY}&" +
96
+ "datatype=csv&" +
97
+ "outputsize=#{full ? 'full' : 'compact'}"
98
+ ).to_hash
99
+
100
+ unless 200 == response[:status]
101
+ raise "Bad Response: #{response[:status]}"
102
+ end
103
+
104
+ raw = response[:body].split
105
+
106
+ headers = raw.shift.split(',')
107
+ headers[0] = 'date' # website returns "timestamp" but that
108
+ # has an unintended side-effect when
109
+ # the names are normalized.
110
+
111
+ close_inx = headers.size - 2
112
+ adj_close_inx = close_inx + 1
113
+
114
+ headers.insert(adj_close_inx, 'adjusted_close')
115
+
116
+ data = raw.map do |e|
117
+ e2 = e.split(',')
118
+ e2[1..-2] = e2[1..-2].map(&:to_f) # converting open, high, low, close
119
+ e2[-1] = e2[-1].to_i # converting volumn
120
+ e2.insert(adj_close_inx, e2[close_inx]) # duplicate the close price as a fake adj close price
121
+ headers.zip(e2).to_h
122
+ end
123
+
124
+ # What oldest data first in the data frame
125
+ normalize_vector_names Daru::DataFrame.new(data.reverse)
126
+ end
127
+
128
+
129
+ # Append update_df rows to the base_df
130
+ #
131
+ # base_df is ascending on timestamp
132
+ # update_df is descending on timestamp
133
+ #
134
+ # base_df content came from CSV file downloaded
135
+ # from Yahoo Finance.
136
+ #
137
+ # update_df came from scraping the webpage
138
+ # at Yahoo Finance for the recent history.
139
+ #
140
+ # Returns a combined DataFrame.
141
+ #
142
+ def self.append(base_df, updates_df)
143
+ last_timestamp = Date.parse base_df.timestamp.last
144
+ filtered_df = updates_df.filter_rows { |row| Date.parse(row[:timestamp]) > last_timestamp }
145
+
146
+ last_inx = filtered_df.size - 1
147
+
148
+ (0..last_inx).each do |x|
149
+ base_df.add_row filtered_df.row[last_inx-x]
150
+ end
151
+
152
+ base_df
153
+ end
154
+ end
155
+ end
@@ -59,6 +59,9 @@ class SQA::DataFrame < Daru::DataFrame
59
59
  response = CONNECTION.get("/quote/#{ticker.upcase}/history")
60
60
  doc = Nokogiri::HTML(response.body)
61
61
  table = doc.css('table').first
62
+
63
+ raise "NoDataError" if table.nil?
64
+
62
65
  rows = table.css('tbody tr')
63
66
 
64
67
  data = []
@@ -2,17 +2,19 @@
2
2
  # frozen_string_literal: true
3
3
 
4
4
  require_relative 'data_frame/yahoo_finance'
5
+ require_relative 'data_frame/alpha_vantage'
5
6
 
6
7
  class Daru::DataFrame
7
8
 
8
9
  def to_csv(path_to_file, opts={})
9
10
  options = {
11
+ headers: true,
10
12
  converters: :numeric
11
13
  }.merge(opts)
12
14
 
13
15
  writer = ::CSV.open(path_to_file, 'wb')
14
16
 
15
- writer << vectors.to_a unless options[:headers] == false
17
+ writer << vectors.to_a if options[:headers]
16
18
 
17
19
  each_row do |row|
18
20
  writer << if options[:convert_comma]
@@ -31,27 +33,20 @@ end
31
33
 
32
34
  class SQA::DataFrame < Daru::DataFrame
33
35
 
34
-
35
36
  #################################################
37
+ def self.load(ticker, type="csv", options={}, &block)
38
+ source = SQA.data_dir + "#{ticker}.#{type}"
36
39
 
37
- def self.path(filename)
38
- Pathname.new SQA.config.data_dir + filename
39
- end
40
-
41
- def self.load(filename, options={}, &block)
42
- source = path(filename)
43
- type = source.extname.downcase
44
-
45
- if ".csv" == type
40
+ if :csv == type
46
41
  from_csv(source, options={}, &block)
47
- elsif ".json" == type
42
+ elsif :json == type
48
43
  from_json(source, options={}, &block)
49
- elsif %w[.txt .dat].include?(type)
44
+ elsif %i[txt dat].include?(type)
50
45
  from_plaintext(source, options={}, &block)
51
- elsif ".xls" == type
46
+ elsif :xls == type
52
47
  from_excel(source, options={}, &block)
53
48
  else
54
- raise SQA::BadParamenterError, "un-suppod file type: #{type}"
49
+ raise SQA::BadParameterError, "un-supported file type: #{type}"
55
50
  end
56
51
  end
57
52
  end
@@ -5,19 +5,91 @@ end
5
5
 
6
6
  class SQA::Indicator; class << self
7
7
 
8
- def predict_next_values(array, predictions)
9
- result = []
10
-
11
- array.each_cons(2) do |a, b|
12
- # TODO: take 3 at a time. compare 3rd
13
- # prediction. Generate an average delta
14
- # between predicted and actual. Return
15
- # the prediction as a range???
8
+ # Produce a Table show actual values and forecasted values
9
+ #
10
+ # actual .... Array of Float
11
+ # forecast .. Array of Float or Array of Array of Float
12
+ # entry is either a single value or
13
+ # an Array [high, guess, low]
14
+ #
15
+ def prediction_test(actual, forecast)
16
+
17
+ unless actual.size == forecast.size
18
+ debug_me("== ERROR =="){[
19
+ "actual.size",
20
+ "forecast.size"
21
+ ]}
22
+ end
23
+
24
+ # Method Under Test (MUT)
25
+ mut = caller[0][/`([^']*)'/, 1]
26
+ window = actual.size
27
+ hgl = forecast.first.is_a?(Array)
28
+
29
+ if hgl
30
+ headers = %w[ Actual Forecast Diff %off InRange? High Low ]
31
+ else
32
+ headers = %w[ Actual Forecast Diff %off ]
33
+ end
34
+
35
+ diff = []
36
+ percent = []
37
+ values = []
38
+
39
+ actual.map!{|v| v.round(3)}
40
+
41
+ if hgl
42
+ high = forecast.map{|v| v[0].round(3)}
43
+ guess = forecast.map{|v| v[1].round(3)}
44
+ low = forecast.map{|v| v[2].round(3)}
45
+ else
46
+ guess = forecast.map{|v| v.round(3)}
47
+ end
48
+
49
+ window.times do |x|
50
+ diff << (actual[x] - guess[x]).round(3)
51
+ percent << ((diff.last / guess[x])*100.0).round(3)
52
+
53
+ entry = [
54
+ actual[x], guess[x],
55
+ diff[x], percent[x],
56
+ ]
57
+
58
+ if hgl
59
+ entry << ( (high[x] >= actual[x] && actual[x] >= low[x]) ? "Yes" : "" )
60
+ entry << high[x]
61
+ entry << low[x]
62
+ end
63
+
64
+ values << entry
65
+ end
66
+
67
+ the_table = TTY::Table.new(headers, values)
68
+
69
+ puts "\n#{mut} Result Validation"
70
+
71
+ puts the_table.render(
72
+ :unicode,
73
+ {
74
+ padding: [0, 0, 0, 0],
75
+ alignments: [:right]*values.first.size,
76
+ }
77
+ )
78
+ puts
79
+ end
80
+
81
+
82
+ def predict_next_values(stock, window, testing=false)
83
+ prices = stock.df.adj_close_price.to_a
84
+ known = prices.pop(window) if testing
85
+ result = []
86
+
87
+ prices.each_cons(2) do |a, b|
16
88
  result << b + (b - a)
17
89
  end
18
90
 
19
- if predictions > 0
20
- (1..predictions).each do |_|
91
+ if window > 0
92
+ (1..window).each do |_|
21
93
  last_two_values = result.last(2)
22
94
  delta = last_two_values.last - last_two_values.first
23
95
  next_value = last_two_values.last + delta
@@ -25,64 +97,106 @@ class SQA::Indicator; class << self
25
97
  end
26
98
  end
27
99
 
28
- result.last(predictions)
100
+ prediction_test(known, result.last(window)) if testing
101
+
102
+ result.last(window)
29
103
  end
30
104
  alias_method :pnv, :predict_next_values
31
105
 
32
106
 
33
- # Returns a forecast for future values based on the near past
34
- #
35
- # When I wrote this I was thinking of hurricane forecasting and how
36
- # the cone of probability gets larger the further into the future
37
- # the forecast goes. This does not produce that kind of probability
38
- # cone; but, that was hwat I was thinking about
39
- #
40
- # array is an Array - for example historical price data
41
- # predictions is an Integer for how many predictions into the future
42
- #
43
- def pnv2(array, predictions)
107
+ def pnv2(stock, window, testing=false)
108
+ prices = stock.df.adj_close_price.to_a
109
+ known = prices.pop(window) if testing
110
+
44
111
  result = []
45
- last_inx = array.size - 1 # indexes are zero based
112
+ last_inx = prices.size - 1 # indexes are zero based
46
113
 
47
- predictions.times do |x|
114
+ window.times do |x|
48
115
  x += 1 # forecasting 1 day into the future needs 2 days of near past data
49
116
 
50
117
  # window is the near past values
51
- window = array[last_inx-x..]
118
+ window = prices[last_inx-x..]
52
119
 
53
120
  high = window.max
54
121
  low = window.min
55
122
  midpoint = (high + low) / 2.0
56
123
 
57
- result << [high, midpoint, low]
124
+ result << [high, midpoint, low]
125
+ end
126
+
127
+ prediction_test(known, result) if testing
128
+
129
+ result
130
+ end
131
+
132
+
133
+ def pnv3(stock, window, testing=false)
134
+ prices = stock.df.adj_close_price.to_a
135
+ known = prices.pop(window) if testing
136
+
137
+ result = []
138
+ known = prices.last(window)
139
+
140
+ last_inx = prices.size - 1
141
+
142
+ (0..window-1).to_a.reverse.each do |x|
143
+ curr_inx = last_inx - x
144
+ prev_inx = curr_inx - 1
145
+ current_price = prices[curr_inx]
146
+ percentage_change = (current_price - prices[prev_inx]) / prices[prev_inx]
147
+
148
+ result << current_price + (current_price * percentage_change)
58
149
  end
59
150
 
151
+ prediction_test(known, result) if testing
152
+
60
153
  result
61
154
  end
62
155
 
63
156
 
64
- def pnv3(prices, prediction_window)
65
- predicted_prices = []
66
- known = prices.last(prediction_window+2).dup
157
+ def pnv4(stock, window, testing=false)
158
+ prices = stock.df.adj_close_price.to_a
159
+ known = prices.pop(window) if testing
160
+
161
+ result = []
162
+ known = prices.last(window).dup
163
+ current_price = known.last
67
164
 
68
165
  # Loop through the prediction window size
69
- (1..prediction_window).each do |x|
70
- current_price = known.last
166
+ (1..window).each do |x|
71
167
 
72
168
  # Calculate the percentage change between the current price and its previous price
73
- percentage_change = (current_price - known[-1]) / known[-1] # .to_f
169
+ percentage_change = (current_price - prices[-x]) / prices[-x]
74
170
 
75
- # Calculate the predicted price based on the percentage change
76
- predicted_price = current_price + (current_price * percentage_change)
77
- predicted_prices.unshift(predicted_price)
78
-
79
- # Update the prices array for the next iteration
80
- known.pop
171
+ result << current_price + (current_price * percentage_change)
81
172
  end
82
173
 
83
- predicted_prices
174
+ prediction_test(known, result) if testing
175
+
176
+ result
84
177
  end
85
178
 
86
179
 
180
+ def pnv5(stock, window, testing=false)
181
+ prices = stock.df.adj_close_price.to_a
182
+ known = prices.pop(window) if testing
183
+
184
+ result = []
185
+ current_price = prices.last
186
+
187
+ rate = 0.9 # convert angle into percentage
188
+ sma_trend = stock.indicators.sma_trend
189
+ percentage_change = 1 + (sma_trend[:angle] / 100.0) * rate
190
+
191
+ # Assumes the SMA trend will continue
192
+ window.times do |_|
193
+ result << current_price * percentage_change
194
+ current_price = result.last
195
+ end
196
+
197
+ prediction_test(known, result) if testing
198
+
199
+ result
200
+ end
87
201
 
88
202
  end; end
data/lib/sqa/stock.rb CHANGED
@@ -4,29 +4,47 @@ class SQA::Stock
4
4
  attr_accessor :company_name
5
5
  attr_accessor :df # The DataFrane
6
6
  attr_accessor :ticker
7
+ attr_accessor :type # type of data store (default is CSV)
8
+ attr_accessor :indicators
9
+
10
+ def initialize(
11
+ ticker:,
12
+ source: :alpha_vantage,
13
+ type: :csv
14
+ )
15
+ raise "Invalid Ticker #{ticker}" unless SQA::Ticker.valid?(ticker)
16
+
17
+ # TODO: Change API on lookup to return array instead of hash
18
+ # Could this also incorporate the validation process to
19
+ # save an additiona hash lookup?
20
+
21
+ entry = SQA::Ticker.lookup(ticker)
7
22
 
8
- def initialize(ticker:, source: :yahoo_finance, type: :csv)
9
23
  @ticker = ticker.downcase
10
- @company_name = "Company Name"
24
+ @company_name = entry[:name]
25
+ @exchange = entry[:exchange]
11
26
  @klass = "SQA::DataFrame::#{source.to_s.camelize}".constantize
12
27
  @type = type
13
- @filename = "#{@ticker}.#{type}"
28
+ @indicators = OpenStruct.new
14
29
 
15
30
  update_the_dataframe
16
31
  end
17
32
 
18
33
 
19
34
  def update_the_dataframe
20
- df1 = @klass.load(@filename)
35
+ df1 = @klass.load(@ticker, type)
21
36
  df2 = @klass.recent(@ticker)
22
- @df = @klass.append(df1, df2)
23
37
 
24
- if @df.nrows > df1.nrows
25
- @df.send("to_#{@type}", SQA::DataFrame.path(@filename))
38
+ df1_nrows = df1.nrows
39
+ @df = @klass.append(df1, df2)
40
+
41
+ if @df.nrows > df1_nrows
42
+ @df.send("to_#{@type}", SQA.data_dir + "#{ticker}.csv")
26
43
  end
27
44
 
28
45
  # Adding a ticker vector in case I want to do
29
46
  # some multi-stock analysis in the same data frame.
47
+ # For example to see how one stock coorelates with another.
30
48
  @df[:ticker] = @ticker
31
49
  end
32
50
 
@@ -34,7 +52,3 @@ class SQA::Stock
34
52
  "#{ticker} with #{@df.size} data points from #{@df.timestamp.first} to #{@df.timestamp.last}"
35
53
  end
36
54
  end
37
-
38
- __END__
39
-
40
- aapl = Stock.new('aapl', SQA::Datastore::CSV)
data/lib/sqa/ticker.rb ADDED
@@ -0,0 +1,68 @@
1
+ # sqa/lib/sqa/ticker.rb
2
+ #
3
+ # Uses the https://dumbstockapi.com/ website to download a CSV file
4
+ #
5
+ # The CSV files have names like this:
6
+ # "dumbstockapi-2023-09-21T16 39 55.165Z.csv"
7
+ #
8
+ # which has this header:
9
+ # ticker,name,is_etf,exchange
10
+ #
11
+ # Not using the is_etf columns
12
+ #
13
+ class SQA::Ticker
14
+ FILENAME_PREFIX = "dumbstockapi"
15
+ CONNECTION = Faraday.new(url: "https://dumbstockapi.com")
16
+ @@data = {}
17
+
18
+
19
+ def self.download(country="US")
20
+ response = CONNECTION.get("/stock?format=csv&countries=#{country.upcase}").to_hash
21
+
22
+ if 200 == response[:status]
23
+ filename = response[:response_headers]["content-disposition"].split('=').last.gsub('"','')
24
+ out_path = Pathname.new(SQA.config.data_dir) + filename
25
+ out_path.write response[:body]
26
+ end
27
+
28
+ response[:status]
29
+ end
30
+
31
+
32
+ def self.load
33
+ tries = 0
34
+ found = false
35
+
36
+ until(found || tries >= 3) do
37
+ files = Pathname.new(SQA.config.data_dir).children.select{|c| c.basename.to_s.start_with?(FILENAME_PREFIX)}.sort
38
+ if files.empty?
39
+ download
40
+ tries += 1
41
+ else
42
+ found = true
43
+ end
44
+ end
45
+
46
+ raise "NoDataError" if files.empty?
47
+
48
+ load_from_csv files.last
49
+ end
50
+
51
+
52
+ def self.load_from_csv(csv_path)
53
+ CSV.foreach(csv_path, headers: true) do |row|
54
+ @@data[row["ticker"]] = {
55
+ name: row["name"],
56
+ exchange: row["exchange"]
57
+ }
58
+ end
59
+
60
+ @@data
61
+ end
62
+
63
+
64
+
65
+ def self.data = @@data.empty? ? load : @@data
66
+ def self.lookup(ticker) = data[ticker.upcase]
67
+ def self.valid?(ticker) = data.has_key?(ticker.upcase)
68
+ end
data/lib/sqa/version.rb CHANGED
@@ -4,7 +4,7 @@ require 'sem_version'
4
4
  require 'sem_version/core_ext'
5
5
 
6
6
  module SQA
7
- VERSION = "0.0.11"
7
+ VERSION = "0.0.13"
8
8
 
9
9
  class << self
10
10
  def version
data/lib/sqa.rb CHANGED
@@ -10,6 +10,7 @@ require 'nenv'
10
10
  require 'pathname'
11
11
 
12
12
  require_relative "sqa/version"
13
+ require_relative "sqa/errors"
13
14
 
14
15
 
15
16
  unless defined?(HOME)
@@ -34,10 +35,12 @@ module SQA
34
35
  CLI.run(argv)
35
36
  else
36
37
  # There are no real command line parameters
37
- # because the sqa gem is be required within
38
+ # because the sqa gem is being required within
38
39
  # the context of a larger program.
39
40
  end
40
41
 
42
+ config.data_dir = homify(config.data_dir)
43
+
41
44
  Daru.lazy_update = config.lazy_update
42
45
  Daru.plotting_library = config.plotting_library
43
46
 
@@ -50,25 +53,16 @@ module SQA
50
53
  nil
51
54
  end
52
55
 
53
- def homify(filepath)
54
- filepath.gsub(/^~/, Nenv.home)
55
- end
56
+ def debug?() = @@config.debug?
57
+ def verbose?() = @@config.verbose?
56
58
 
57
- def config
58
- @@config
59
- end
59
+ def homify(filepath) = filepath.gsub(/^~/, Nenv.home)
60
+ def data_dir() = Pathname.new(config.data_dir)
61
+ def config() = @@config
60
62
 
61
63
  def config=(an_object)
62
64
  @@config = an_object
63
65
  end
64
-
65
- def debug?
66
- @@config.debug?
67
- end
68
-
69
- def verbose?
70
- @@config.verbose?
71
- end
72
66
  end
73
67
  end
74
68
 
@@ -77,9 +71,9 @@ end
77
71
  require_relative "sqa/config"
78
72
  require_relative "sqa/constants"
79
73
  require_relative "sqa/data_frame"
80
- require_relative "sqa/errors"
81
74
  require_relative "sqa/indicator"
82
75
  require_relative "sqa/portfolio"
83
76
  require_relative "sqa/strategy"
84
77
  require_relative "sqa/stock"
78
+ require_relative "sqa/ticker"
85
79
  require_relative "sqa/trade"
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: sqa
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.11
4
+ version: 0.0.13
5
5
  platform: ruby
6
6
  authors:
7
7
  - Dewayne VanHoozer
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-09-13 00:00:00.000000000 Z
11
+ date: 2023-09-22 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: activesupport
@@ -280,6 +280,7 @@ files:
280
280
  - checksums/sqa-0.0.1.gem.sha512
281
281
  - checksums/sqa-0.0.10.gem.sha512
282
282
  - checksums/sqa-0.0.11.gem.sha512
283
+ - checksums/sqa-0.0.12.gem.sha512
283
284
  - checksums/sqa-0.0.2.gem.sha512
284
285
  - checksums/sqa-0.0.3.gem.sha512
285
286
  - checksums/sqa-0.0.4.gem.sha512
@@ -328,6 +329,7 @@ files:
328
329
  - lib/sqa/config.rb
329
330
  - lib/sqa/constants.rb
330
331
  - lib/sqa/data_frame.rb
332
+ - lib/sqa/data_frame/alpha_vantage.rb
331
333
  - lib/sqa/data_frame/yahoo_finance.rb
332
334
  - lib/sqa/errors.rb
333
335
  - lib/sqa/indicator.rb
@@ -365,6 +367,7 @@ files:
365
367
  - lib/sqa/strategy/random.rb
366
368
  - lib/sqa/strategy/rsi.rb
367
369
  - lib/sqa/strategy/sma.rb
370
+ - lib/sqa/ticker.rb
368
371
  - lib/sqa/trade.rb
369
372
  - lib/sqa/version.rb
370
373
  - lib/sqa/web.rb
@@ -390,7 +393,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
390
393
  - !ruby/object:Gem::Version
391
394
  version: '0'
392
395
  requirements: []
393
- rubygems_version: 3.4.18
396
+ rubygems_version: 3.4.19
394
397
  signing_key:
395
398
  specification_version: 4
396
399
  summary: sqa - Stock Qualitative Analysis