sq_detailed_metrics 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. checksums.yaml +7 -0
  2. data/extconf.rb +26 -0
  3. data/include/half.hpp +4575 -0
  4. data/include/msgpack.h +24 -0
  5. data/include/msgpack/fbuffer.h +42 -0
  6. data/include/msgpack/gcc_atomic.h +25 -0
  7. data/include/msgpack/object.h +118 -0
  8. data/include/msgpack/pack.h +174 -0
  9. data/include/msgpack/pack_define.h +18 -0
  10. data/include/msgpack/pack_template.h +952 -0
  11. data/include/msgpack/sbuffer.h +115 -0
  12. data/include/msgpack/sysdep.h +221 -0
  13. data/include/msgpack/timestamp.h +58 -0
  14. data/include/msgpack/unpack.h +281 -0
  15. data/include/msgpack/unpack_define.h +89 -0
  16. data/include/msgpack/unpack_template.h +471 -0
  17. data/include/msgpack/util.h +15 -0
  18. data/include/msgpack/version.h +38 -0
  19. data/include/msgpack/version_master.h +3 -0
  20. data/include/msgpack/vrefbuffer.h +144 -0
  21. data/include/msgpack/zbuffer.h +205 -0
  22. data/include/msgpack/zone.h +163 -0
  23. data/include/rapidjson/allocators.h +271 -0
  24. data/include/rapidjson/document.h +2575 -0
  25. data/include/rapidjson/encodedstream.h +299 -0
  26. data/include/rapidjson/encodings.h +716 -0
  27. data/include/rapidjson/error/en.h +74 -0
  28. data/include/rapidjson/error/error.h +155 -0
  29. data/include/rapidjson/filereadstream.h +99 -0
  30. data/include/rapidjson/filewritestream.h +104 -0
  31. data/include/rapidjson/fwd.h +151 -0
  32. data/include/rapidjson/internal/biginteger.h +290 -0
  33. data/include/rapidjson/internal/diyfp.h +258 -0
  34. data/include/rapidjson/internal/dtoa.h +245 -0
  35. data/include/rapidjson/internal/ieee754.h +78 -0
  36. data/include/rapidjson/internal/itoa.h +304 -0
  37. data/include/rapidjson/internal/meta.h +181 -0
  38. data/include/rapidjson/internal/pow10.h +55 -0
  39. data/include/rapidjson/internal/regex.h +701 -0
  40. data/include/rapidjson/internal/stack.h +230 -0
  41. data/include/rapidjson/internal/strfunc.h +55 -0
  42. data/include/rapidjson/internal/strtod.h +269 -0
  43. data/include/rapidjson/internal/swap.h +46 -0
  44. data/include/rapidjson/istreamwrapper.h +115 -0
  45. data/include/rapidjson/memorybuffer.h +70 -0
  46. data/include/rapidjson/memorystream.h +71 -0
  47. data/include/rapidjson/msinttypes/inttypes.h +316 -0
  48. data/include/rapidjson/msinttypes/stdint.h +300 -0
  49. data/include/rapidjson/ostreamwrapper.h +81 -0
  50. data/include/rapidjson/pointer.h +1358 -0
  51. data/include/rapidjson/prettywriter.h +255 -0
  52. data/include/rapidjson/rapidjson.h +615 -0
  53. data/include/rapidjson/reader.h +1879 -0
  54. data/include/rapidjson/schema.h +2006 -0
  55. data/include/rapidjson/stream.h +179 -0
  56. data/include/rapidjson/stringbuffer.h +117 -0
  57. data/include/rapidjson/writer.h +610 -0
  58. data/include/xxhash.h +328 -0
  59. data/json_conv.cpp +284 -0
  60. data/json_conv.hpp +17 -0
  61. data/metrics.cpp +239 -0
  62. data/metrics.hpp +84 -0
  63. data/msgpack/objectc.c +482 -0
  64. data/msgpack/unpack.c +703 -0
  65. data/msgpack/version.c +22 -0
  66. data/msgpack/vrefbuffer.c +250 -0
  67. data/msgpack/zone.c +222 -0
  68. data/sq_detailed_metrics.cpp +248 -0
  69. metadata +199 -0
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: a38eda9349f688e115d4e5aa5c33dde66dc0ada44e33e1a7d9a04446ef5a539c
4
+ data.tar.gz: edf3282941ac42ec326f6fe74bd7eda5a7b9520cfee3c33f1e3685aceae451bc
5
+ SHA512:
6
+ metadata.gz: 05c8c82fa5ca98839dabae7a2a04f4462fb784e85dba0349c05159662009885decbd73ac8c32243a3ffadeb8842cfb8d3de84ec51b78394c7f7dbc3f335c229a
7
+ data.tar.gz: 7b96e204233c774feb19f21cc21e012c073587a302760cf57fa9b4a1762e5c13ee2114197390bcca2acaa536634fb04238efa7267d413ffec05a67a36bfc144c
@@ -0,0 +1,26 @@
1
+ c = RbConfig::MAKEFILE_CONFIG
2
+
3
+ c['CC'] = ENV['LIBSQREEN_CC'] if ENV['LIBSQREEN_CC']
4
+ c['CFLAGS'] += ' ' + ENV['LIBSQREEN_CFLAGS'] if ENV['LIBSQREEN_CFLAGS']
5
+ c['LDFLAGS'] += ' ' + ENV['LIBSQREEN_LDFLAGS'] if ENV['LIBSQREEN_LDFLAGS']
6
+
7
+ require 'mkmf'
8
+ require 'shellwords'
9
+ require 'pathname'
10
+
11
+ dir = Pathname.new(File.dirname(__FILE__))
12
+ $srcs = Dir["#{dir}/msgpack/*.c", "#{dir}/*.c", "#{dir}/*.cpp"].map do |p|
13
+ Pathname.new(p).relative_path_from(dir).to_s
14
+ end
15
+ $VPATH << "$(srcdir)/msgpack"
16
+ $warnflags = '-Wall'
17
+ $INCFLAGS << " -I #{Shellwords.escape(dir.to_s)}/include"
18
+ if defined?($CXXFLAGS)
19
+ $CXXFLAGS += " -std=c++11 "
20
+ else
21
+ # old rubies
22
+ CONFIG['CXXFLAGS'] += " -std=c++11 "
23
+ end
24
+
25
+ create_header
26
+ create_makefile 'sq_detailed_metrics'
@@ -0,0 +1,4575 @@
1
+ // half - IEEE 754-based half-precision floating-point library.
2
+ //
3
+ // Copyright (c) 2012-2019 Christian Rau <rauy@users.sourceforge.net>
4
+ //
5
+ // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
6
+ // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
7
+ // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
8
+ // Software is furnished to do so, subject to the following conditions:
9
+ //
10
+ // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
11
+ //
12
+ // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
13
+ // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
14
+ // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
15
+ // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
16
+
17
+ // Version 2.1.0
18
+
19
+ /// \file
20
+ /// Main header file for half-precision functionality.
21
+
22
+ #ifndef HALF_HALF_HPP
23
+ #define HALF_HALF_HPP
24
+
25
+ #define HALF_GCC_VERSION (__GNUC__*100+__GNUC_MINOR__)
26
+
27
+ #if defined(__INTEL_COMPILER)
28
+ #define HALF_ICC_VERSION __INTEL_COMPILER
29
+ #elif defined(__ICC)
30
+ #define HALF_ICC_VERSION __ICC
31
+ #elif defined(__ICL)
32
+ #define HALF_ICC_VERSION __ICL
33
+ #else
34
+ #define HALF_ICC_VERSION 0
35
+ #endif
36
+
37
+ // check C++11 language features
38
+ #if defined(__clang__) // clang
39
+ #if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
40
+ #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
41
+ #endif
42
+ #if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
43
+ #define HALF_ENABLE_CPP11_CONSTEXPR 1
44
+ #endif
45
+ #if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
46
+ #define HALF_ENABLE_CPP11_NOEXCEPT 1
47
+ #endif
48
+ #if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
49
+ #define HALF_ENABLE_CPP11_USER_LITERALS 1
50
+ #endif
51
+ #if __has_feature(cxx_thread_local) && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
52
+ #define HALF_ENABLE_CPP11_THREAD_LOCAL 1
53
+ #endif
54
+ #if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
55
+ #define HALF_ENABLE_CPP11_LONG_LONG 1
56
+ #endif
57
+ #elif HALF_ICC_VERSION && defined(__INTEL_CXX11_MODE__) // Intel C++
58
+ #if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
59
+ #define HALF_ENABLE_CPP11_THREAD_LOCAL 1
60
+ #endif
61
+ #if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
62
+ #define HALF_ENABLE_CPP11_USER_LITERALS 1
63
+ #endif
64
+ #if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
65
+ #define HALF_ENABLE_CPP11_CONSTEXPR 1
66
+ #endif
67
+ #if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
68
+ #define HALF_ENABLE_CPP11_NOEXCEPT 1
69
+ #endif
70
+ #if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
71
+ #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
72
+ #endif
73
+ #if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
74
+ #define HALF_ENABLE_CPP11_LONG_LONG 1
75
+ #endif
76
+ #elif defined(__GNUC__) // gcc
77
+ #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
78
+ #if HALF_GCC_VERSION >= 408 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
79
+ #define HALF_ENABLE_CPP11_THREAD_LOCAL 1
80
+ #endif
81
+ #if HALF_GCC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
82
+ #define HALF_ENABLE_CPP11_USER_LITERALS 1
83
+ #endif
84
+ #if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
85
+ #define HALF_ENABLE_CPP11_CONSTEXPR 1
86
+ #endif
87
+ #if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
88
+ #define HALF_ENABLE_CPP11_NOEXCEPT 1
89
+ #endif
90
+ #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
91
+ #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
92
+ #endif
93
+ #if !defined(HALF_ENABLE_CPP11_LONG_LONG)
94
+ #define HALF_ENABLE_CPP11_LONG_LONG 1
95
+ #endif
96
+ #endif
97
+ #define HALF_TWOS_COMPLEMENT_INT 1
98
+ #elif defined(_MSC_VER) // Visual C++
99
+ #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
100
+ #define HALF_ENABLE_CPP11_THREAD_LOCAL 1
101
+ #endif
102
+ #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
103
+ #define HALF_ENABLE_CPP11_USER_LITERALS 1
104
+ #endif
105
+ #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
106
+ #define HALF_ENABLE_CPP11_CONSTEXPR 1
107
+ #endif
108
+ #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
109
+ #define HALF_ENABLE_CPP11_NOEXCEPT 1
110
+ #endif
111
+ #if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
112
+ #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
113
+ #endif
114
+ #if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
115
+ #define HALF_ENABLE_CPP11_LONG_LONG 1
116
+ #endif
117
+ #define HALF_TWOS_COMPLEMENT_INT 1
118
+ #define HALF_POP_WARNINGS 1
119
+ #pragma warning(push)
120
+ #pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned
121
+ #endif
122
+
123
+ // check C++11 library features
124
+ #include <utility>
125
+ #if defined(_LIBCPP_VERSION) // libc++
126
+ #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
127
+ #ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
128
+ #define HALF_ENABLE_CPP11_TYPE_TRAITS 1
129
+ #endif
130
+ #ifndef HALF_ENABLE_CPP11_CSTDINT
131
+ #define HALF_ENABLE_CPP11_CSTDINT 1
132
+ #endif
133
+ #ifndef HALF_ENABLE_CPP11_CMATH
134
+ #define HALF_ENABLE_CPP11_CMATH 1
135
+ #endif
136
+ #ifndef HALF_ENABLE_CPP11_HASH
137
+ #define HALF_ENABLE_CPP11_HASH 1
138
+ #endif
139
+ #ifndef HALF_ENABLE_CPP11_CFENV
140
+ #define HALF_ENABLE_CPP11_CFENV 1
141
+ #endif
142
+ #endif
143
+ #elif defined(__GLIBCXX__) // libstdc++
144
+ #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
145
+ #ifdef __clang__
146
+ #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
147
+ #define HALF_ENABLE_CPP11_TYPE_TRAITS 1
148
+ #endif
149
+ #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
150
+ #define HALF_ENABLE_CPP11_CSTDINT 1
151
+ #endif
152
+ #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
153
+ #define HALF_ENABLE_CPP11_CMATH 1
154
+ #endif
155
+ #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
156
+ #define HALF_ENABLE_CPP11_HASH 1
157
+ #endif
158
+ #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CFENV)
159
+ #define HALF_ENABLE_CPP11_CFENV 1
160
+ #endif
161
+ #else
162
+ #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
163
+ #define HALF_ENABLE_CPP11_TYPE_TRAITS 1
164
+ #endif
165
+ #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
166
+ #define HALF_ENABLE_CPP11_CSTDINT 1
167
+ #endif
168
+ #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
169
+ #define HALF_ENABLE_CPP11_CMATH 1
170
+ #endif
171
+ #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
172
+ #define HALF_ENABLE_CPP11_HASH 1
173
+ #endif
174
+ #if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CFENV)
175
+ #define HALF_ENABLE_CPP11_CFENV 1
176
+ #endif
177
+ #endif
178
+ #endif
179
+ #elif defined(_CPPLIB_VER) // Dinkumware/Visual C++
180
+ #if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
181
+ #define HALF_ENABLE_CPP11_TYPE_TRAITS 1
182
+ #endif
183
+ #if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_CSTDINT)
184
+ #define HALF_ENABLE_CPP11_CSTDINT 1
185
+ #endif
186
+ #if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_HASH)
187
+ #define HALF_ENABLE_CPP11_HASH 1
188
+ #endif
189
+ #if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CMATH)
190
+ #define HALF_ENABLE_CPP11_CMATH 1
191
+ #endif
192
+ #if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CFENV)
193
+ #define HALF_ENABLE_CPP11_CFENV 1
194
+ #endif
195
+ #endif
196
+ #undef HALF_GCC_VERSION
197
+ #undef HALF_ICC_VERSION
198
+
199
+ // any error throwing C++ exceptions?
200
+ #if defined(HALF_ERRHANDLING_THROW_INVALID) || defined(HALF_ERRHANDLING_THROW_DIVBYZERO) || defined(HALF_ERRHANDLING_THROW_OVERFLOW) || defined(HALF_ERRHANDLING_THROW_UNDERFLOW) || defined(HALF_ERRHANDLING_THROW_INEXACT)
201
+ #define HALF_ERRHANDLING_THROWS 1
202
+ #endif
203
+
204
+ // any error handling enabled?
205
+ #define HALF_ERRHANDLING (HALF_ERRHANDLING_FLAGS||HALF_ERRHANDLING_ERRNO||HALF_ERRHANDLING_FENV||HALF_ERRHANDLING_THROWS)
206
+
207
+ #if HALF_ERRHANDLING
208
+ #define HALF_UNUSED_NOERR(name) name
209
+ #else
210
+ #define HALF_UNUSED_NOERR(name)
211
+ #endif
212
+
213
+ // support constexpr
214
+ #if HALF_ENABLE_CPP11_CONSTEXPR
215
+ #define HALF_CONSTEXPR constexpr
216
+ #define HALF_CONSTEXPR_CONST constexpr
217
+ #if HALF_ERRHANDLING
218
+ #define HALF_CONSTEXPR_NOERR
219
+ #else
220
+ #define HALF_CONSTEXPR_NOERR constexpr
221
+ #endif
222
+ #else
223
+ #define HALF_CONSTEXPR
224
+ #define HALF_CONSTEXPR_CONST const
225
+ #define HALF_CONSTEXPR_NOERR
226
+ #endif
227
+
228
+ // support noexcept
229
+ #if HALF_ENABLE_CPP11_NOEXCEPT
230
+ #define HALF_NOEXCEPT noexcept
231
+ #define HALF_NOTHROW noexcept
232
+ #else
233
+ #define HALF_NOEXCEPT
234
+ #define HALF_NOTHROW throw()
235
+ #endif
236
+
237
+ // support thread storage
238
+ #if HALF_ENABLE_CPP11_THREAD_LOCAL
239
+ #define HALF_THREAD_LOCAL thread_local
240
+ #else
241
+ #define HALF_THREAD_LOCAL static
242
+ #endif
243
+
244
+ #include <utility>
245
+ #include <algorithm>
246
+ #include <istream>
247
+ #include <ostream>
248
+ #include <limits>
249
+ #include <stdexcept>
250
+ #include <climits>
251
+ #include <cmath>
252
+ #include <cstring>
253
+ #include <cstdlib>
254
+ #if HALF_ENABLE_CPP11_TYPE_TRAITS
255
+ #include <type_traits>
256
+ #endif
257
+ #if HALF_ENABLE_CPP11_CSTDINT
258
+ #include <cstdint>
259
+ #endif
260
+ #if HALF_ERRHANDLING_ERRNO
261
+ #include <cerrno>
262
+ #endif
263
+ #if HALF_ENABLE_CPP11_CFENV
264
+ #include <cfenv>
265
+ #endif
266
+ #if HALF_ENABLE_CPP11_HASH
267
+ #include <functional>
268
+ #endif
269
+ #if HALF_ENABLE_F16C_INTRINSICS
270
+ #include <immintrin.h>
271
+ #endif
272
+
273
+
274
+ #ifndef HALF_ENABLE_F16C_INTRINSICS
275
+ /// Enable F16C intruction set intrinsics.
276
+ /// Defining this to 1 enables the use of [F16C compiler intrinsics](https://en.wikipedia.org/wiki/F16C) for converting between
277
+ /// half-precision and single-precision values which may result in improved performance. This will not perform additional checks
278
+ /// for support of the F16C instruction set, so an appropriate target platform is required when enabling this feature.
279
+ ///
280
+ /// Unless predefined it will be enabled automatically when the `__F16C__` symbol is defined, which some compilers do on supporting platforms.
281
+ #define HALF_ENABLE_F16C_INTRINSICS __F16C__
282
+ #endif
283
+
284
+ #ifdef HALF_DOXYGEN_ONLY
285
+ /// Type for internal floating-point computations.
286
+ /// This can be predefined to a built-in floating-point type (`float`, `double` or `long double`) to override the internal
287
+ /// half-precision implementation to use this type for computing arithmetic operations and mathematical function (if available).
288
+ /// This can result in improved performance for arithmetic operators and mathematical functions but might cause results to
289
+ /// deviate from the specified half-precision rounding mode and inhibits proper detection of half-precision exceptions.
290
+ #define HALF_ARITHMETIC_TYPE (undefined)
291
+
292
+ /// Enable internal exception flags.
293
+ /// Defining this to 1 causes operations on half-precision values to raise internal floating-point exception flags according to
294
+ /// the IEEE 754 standard. These can then be cleared and checked with clearexcept(), testexcept().
295
+ #define HALF_ERRHANDLING_FLAGS 0
296
+
297
+ /// Enable exception propagation to `errno`.
298
+ /// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to
299
+ /// [errno](https://en.cppreference.com/w/cpp/error/errno) from `<cerrno>`. Specifically this will propagate domain errors as
300
+ /// [EDOM](https://en.cppreference.com/w/cpp/error/errno_macros) and pole, overflow and underflow errors as
301
+ /// [ERANGE](https://en.cppreference.com/w/cpp/error/errno_macros). Inexact errors won't be propagated.
302
+ #define HALF_ERRHANDLING_ERRNO 0
303
+
304
+ /// Enable exception propagation to built-in floating-point platform.
305
+ /// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to the built-in
306
+ /// single- and double-precision implementation's exception flags using the
307
+ /// [C++11 floating-point environment control](https://en.cppreference.com/w/cpp/numeric/fenv) from `<cfenv>`. However, this
308
+ /// does not work in reverse and single- or double-precision exceptions will not raise the corresponding half-precision
309
+ /// exception flags, nor will explicitly clearing flags clear the corresponding built-in flags.
310
+ #define HALF_ERRHANDLING_FENV 0
311
+
312
+ /// Throw C++ exception on domain errors.
313
+ /// Defining this to a string literal causes operations on half-precision values to throw a
314
+ /// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on domain errors.
315
+ #define HALF_ERRHANDLING_THROW_INVALID (undefined)
316
+
317
+ /// Throw C++ exception on pole errors.
318
+ /// Defining this to a string literal causes operations on half-precision values to throw a
319
+ /// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on pole errors.
320
+ #define HALF_ERRHANDLING_THROW_DIVBYZERO (undefined)
321
+
322
+ /// Throw C++ exception on overflow errors.
323
+ /// Defining this to a string literal causes operations on half-precision values to throw a
324
+ /// [std::overflow_error](https://en.cppreference.com/w/cpp/error/overflow_error) with the specified message on overflows.
325
+ #define HALF_ERRHANDLING_THROW_OVERFLOW (undefined)
326
+
327
+ /// Throw C++ exception on underflow errors.
328
+ /// Defining this to a string literal causes operations on half-precision values to throw a
329
+ /// [std::underflow_error](https://en.cppreference.com/w/cpp/error/underflow_error) with the specified message on underflows.
330
+ #define HALF_ERRHANDLING_THROW_UNDERFLOW (undefined)
331
+
332
+ /// Throw C++ exception on rounding errors.
333
+ /// Defining this to 1 causes operations on half-precision values to throw a
334
+ /// [std::range_error](https://en.cppreference.com/w/cpp/error/range_error) with the specified message on general rounding errors.
335
+ #define HALF_ERRHANDLING_THROW_INEXACT (undefined)
336
+ #endif
337
+
338
+ #ifndef HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
339
+ /// Raise INEXACT exception on overflow.
340
+ /// Defining this to 1 (default) causes overflow errors to automatically raise inexact exceptions in addition.
341
+ /// These will be raised after any possible handling of the underflow exception.
342
+ #define HALF_ERRHANDLING_OVERFLOW_TO_INEXACT 1
343
+ #endif
344
+
345
+ #ifndef HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
346
+ /// Raise INEXACT exception on underflow.
347
+ /// Defining this to 1 (default) causes underflow errors to automatically raise inexact exceptions in addition.
348
+ /// These will be raised after any possible handling of the underflow exception.
349
+ ///
350
+ /// **Note:** This will actually cause underflow (and the accompanying inexact) exceptions to be raised *only* when the result
351
+ /// is inexact, while if disabled bare underflow errors will be raised for *any* (possibly exact) subnormal result.
352
+ #define HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT 1
353
+ #endif
354
+
355
+ /// Default rounding mode.
356
+ /// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and more precise types
357
+ /// (unless using half_cast() and specifying the rounding mode directly) as well as in arithmetic operations and mathematical
358
+ /// functions. It can be redefined (before including half.hpp) to one of the standard rounding modes using their respective
359
+ /// constants or the equivalent values of
360
+ /// [std::float_round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/float_round_style):
361
+ ///
362
+ /// `std::float_round_style` | value | rounding
363
+ /// ---------------------------------|-------|-------------------------
364
+ /// `std::round_indeterminate` | -1 | fastest
365
+ /// `std::round_toward_zero` | 0 | toward zero
366
+ /// `std::round_to_nearest` | 1 | to nearest (default)
367
+ /// `std::round_toward_infinity` | 2 | toward positive infinity
368
+ /// `std::round_toward_neg_infinity` | 3 | toward negative infinity
369
+ ///
370
+ /// By default this is set to `1` (`std::round_to_nearest`), which rounds results to the nearest representable value. It can even
371
+ /// be set to [std::numeric_limits<float>::round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/round_style) to synchronize
372
+ /// the rounding mode with that of the built-in single-precision implementation (which is likely `std::round_to_nearest`, though).
373
+ #ifndef HALF_ROUND_STYLE
374
+ #define HALF_ROUND_STYLE 1 // = std::round_to_nearest
375
+ #endif
376
+
377
+ /// Value signaling overflow.
378
+ /// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an
379
+ /// operation, in particular it just evaluates to positive infinity.
380
+ ///
381
+ /// **See also:** Documentation for [HUGE_VAL](https://en.cppreference.com/w/cpp/numeric/math/HUGE_VAL)
382
+ #define HUGE_VALH std::numeric_limits<half_float::half>::infinity()
383
+
384
+ /// Fast half-precision fma function.
385
+ /// This symbol is defined if the fma() function generally executes as fast as, or faster than, a separate
386
+ /// half-precision multiplication followed by an addition, which is always the case.
387
+ ///
388
+ /// **See also:** Documentation for [FP_FAST_FMA](https://en.cppreference.com/w/cpp/numeric/math/fma)
389
+ #define FP_FAST_FMAH 1
390
+
391
+ /// Half rounding mode.
392
+ /// In correspondence with `FLT_ROUNDS` from `<cfloat>` this symbol expands to the rounding mode used for
393
+ /// half-precision operations. It is an alias for [HALF_ROUND_STYLE](\ref HALF_ROUND_STYLE).
394
+ ///
395
+ /// **See also:** Documentation for [FLT_ROUNDS](https://en.cppreference.com/w/cpp/types/climits/FLT_ROUNDS)
396
+ #define HLF_ROUNDS HALF_ROUND_STYLE
397
+
398
+ #ifndef FP_ILOGB0
399
+ #define FP_ILOGB0 INT_MIN
400
+ #endif
401
+ #ifndef FP_ILOGBNAN
402
+ #define FP_ILOGBNAN INT_MAX
403
+ #endif
404
+ #ifndef FP_SUBNORMAL
405
+ #define FP_SUBNORMAL 0
406
+ #endif
407
+ #ifndef FP_ZERO
408
+ #define FP_ZERO 1
409
+ #endif
410
+ #ifndef FP_NAN
411
+ #define FP_NAN 2
412
+ #endif
413
+ #ifndef FP_INFINITE
414
+ #define FP_INFINITE 3
415
+ #endif
416
+ #ifndef FP_NORMAL
417
+ #define FP_NORMAL 4
418
+ #endif
419
+
420
+ #if !HALF_ENABLE_CPP11_CFENV && !defined(FE_ALL_EXCEPT)
421
+ #define FE_INVALID 0x10
422
+ #define FE_DIVBYZERO 0x08
423
+ #define FE_OVERFLOW 0x04
424
+ #define FE_UNDERFLOW 0x02
425
+ #define FE_INEXACT 0x01
426
+ #define FE_ALL_EXCEPT (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT)
427
+ #endif
428
+
429
+
430
+ /// Main namespace for half-precision functionality.
431
+ /// This namespace contains all the functionality provided by the library.
432
+ namespace half_float
433
+ {
434
+ class half;
435
+
436
+ #if HALF_ENABLE_CPP11_USER_LITERALS
437
+ /// Library-defined half-precision literals.
438
+ /// Import this namespace to enable half-precision floating-point literals:
439
+ /// ~~~~{.cpp}
440
+ /// using namespace half_float::literal;
441
+ /// half_float::half = 4.2_h;
442
+ /// ~~~~
443
+ namespace literal
444
+ {
445
+ half operator "" _h(long double);
446
+ }
447
+ #endif
448
+
449
+ /// \internal
450
+ /// \brief Implementation details.
451
+ namespace detail
452
+ {
453
+ #if HALF_ENABLE_CPP11_TYPE_TRAITS
454
+ /// Conditional type.
455
+ template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {};
456
+
457
+ /// Helper for tag dispatching.
458
+ template<bool B> struct bool_type : std::integral_constant<bool,B> {};
459
+ using std::true_type;
460
+ using std::false_type;
461
+
462
+ /// Type traits for floating-point types.
463
+ template<typename T> struct is_float : std::is_floating_point<T> {};
464
+ #else
465
+ /// Conditional type.
466
+ template<bool,typename T,typename> struct conditional { typedef T type; };
467
+ template<typename T,typename F> struct conditional<false,T,F> { typedef F type; };
468
+
469
+ /// Helper for tag dispatching.
470
+ template<bool> struct bool_type {};
471
+ typedef bool_type<true> true_type;
472
+ typedef bool_type<false> false_type;
473
+
474
+ /// Type traits for floating-point types.
475
+ template<typename> struct is_float : false_type {};
476
+ template<typename T> struct is_float<const T> : is_float<T> {};
477
+ template<typename T> struct is_float<volatile T> : is_float<T> {};
478
+ template<typename T> struct is_float<const volatile T> : is_float<T> {};
479
+ template<> struct is_float<float> : true_type {};
480
+ template<> struct is_float<double> : true_type {};
481
+ template<> struct is_float<long double> : true_type {};
482
+ #endif
483
+
484
+ /// Type traits for floating-point bits.
485
+ template<typename T> struct bits { typedef unsigned char type; };
486
+ template<typename T> struct bits<const T> : bits<T> {};
487
+ template<typename T> struct bits<volatile T> : bits<T> {};
488
+ template<typename T> struct bits<const volatile T> : bits<T> {};
489
+
490
+ #if HALF_ENABLE_CPP11_CSTDINT
491
+ /// Unsigned integer of (at least) 16 bits width.
492
+ typedef std::uint_least16_t uint16;
493
+
494
+ /// Fastest unsigned integer of (at least) 32 bits width.
495
+ typedef std::uint_fast32_t uint32;
496
+
497
+ /// Fastest signed integer of (at least) 32 bits width.
498
+ typedef std::int_fast32_t int32;
499
+
500
+ /// Unsigned integer of (at least) 32 bits width.
501
+ template<> struct bits<float> { typedef std::uint_least32_t type; };
502
+
503
+ /// Unsigned integer of (at least) 64 bits width.
504
+ template<> struct bits<double> { typedef std::uint_least64_t type; };
505
+ #else
506
+ /// Unsigned integer of (at least) 16 bits width.
507
+ typedef unsigned short uint16;
508
+
509
+ /// Fastest unsigned integer of (at least) 32 bits width.
510
+ typedef unsigned long uint32;
511
+
512
+ /// Fastest unsigned integer of (at least) 32 bits width.
513
+ typedef long int32;
514
+
515
+ /// Unsigned integer of (at least) 32 bits width.
516
+ template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {};
517
+
518
+ #if HALF_ENABLE_CPP11_LONG_LONG
519
+ /// Unsigned integer of (at least) 64 bits width.
520
+ template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {};
521
+ #else
522
+ /// Unsigned integer of (at least) 64 bits width.
523
+ template<> struct bits<double> { typedef unsigned long type; };
524
+ #endif
525
+ #endif
526
+
527
+ #ifdef HALF_ARITHMETIC_TYPE
528
+ /// Type to use for arithmetic computations and mathematic functions internally.
529
+ typedef HALF_ARITHMETIC_TYPE internal_t;
530
+ #endif
531
+
532
+ /// Tag type for binary construction.
533
+ struct binary_t {};
534
+
535
+ /// Tag for binary construction.
536
+ HALF_CONSTEXPR_CONST binary_t binary = binary_t();
537
+
538
+ /// \name Implementation defined classification and arithmetic
539
+ /// \{
540
+
541
+ /// Check for infinity.
542
+ /// \tparam T argument type (builtin floating-point type)
543
+ /// \param arg value to query
544
+ /// \retval true if infinity
545
+ /// \retval false else
546
+ template<typename T> bool builtin_isinf(T arg)
547
+ {
548
+ #if HALF_ENABLE_CPP11_CMATH
549
+ return std::isinf(arg);
550
+ #elif defined(_MSC_VER)
551
+ return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg));
552
+ #else
553
+ return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity();
554
+ #endif
555
+ }
556
+
557
+ /// Check for NaN.
558
+ /// \tparam T argument type (builtin floating-point type)
559
+ /// \param arg value to query
560
+ /// \retval true if not a number
561
+ /// \retval false else
562
+ template<typename T> bool builtin_isnan(T arg)
563
+ {
564
+ #if HALF_ENABLE_CPP11_CMATH
565
+ return std::isnan(arg);
566
+ #elif defined(_MSC_VER)
567
+ return ::_isnan(static_cast<double>(arg)) != 0;
568
+ #else
569
+ return arg != arg;
570
+ #endif
571
+ }
572
+
573
+ /// Check sign.
574
+ /// \tparam T argument type (builtin floating-point type)
575
+ /// \param arg value to query
576
+ /// \retval true if signbit set
577
+ /// \retval false else
578
+ template<typename T> bool builtin_signbit(T arg)
579
+ {
580
+ #if HALF_ENABLE_CPP11_CMATH
581
+ return std::signbit(arg);
582
+ #else
583
+ return arg < T() || (arg == T() && T(1)/arg < T());
584
+ #endif
585
+ }
586
+
587
+ /// Platform-independent sign mask.
588
+ /// \param arg integer value in two's complement
589
+ /// \retval -1 if \a arg negative
590
+ /// \retval 0 if \a arg positive
591
+ inline uint32 sign_mask(uint32 arg)
592
+ {
593
+ static const int N = std::numeric_limits<uint32>::digits - 1;
594
+ #if HALF_TWOS_COMPLEMENT_INT
595
+ return static_cast<int32>(arg) >> N;
596
+ #else
597
+ return -((arg>>N)&1);
598
+ #endif
599
+ }
600
+
601
+ /// Platform-independent arithmetic right shift.
602
+ /// \param arg integer value in two's complement
603
+ /// \param i shift amount (at most 31)
604
+ /// \return \a arg right shifted for \a i bits with possible sign extension
605
+ inline uint32 arithmetic_shift(uint32 arg, int i)
606
+ {
607
+ #if HALF_TWOS_COMPLEMENT_INT
608
+ return static_cast<int32>(arg) >> i;
609
+ #else
610
+ return static_cast<int32>(arg)/(static_cast<int32>(1)<<i) - ((arg>>(std::numeric_limits<uint32>::digits-1))&1);
611
+ #endif
612
+ }
613
+
614
+ /// \}
615
+ /// \name Error handling
616
+ /// \{
617
+
618
+ /// Internal exception flags.
619
+ /// \return reference to global exception flags
620
+ inline int& errflags() { HALF_THREAD_LOCAL int flags = 0; return flags; }
621
+
622
+ /// Raise floating-point exception.
623
+ /// \param flags exceptions to raise
624
+ /// \param cond condition to raise exceptions for
625
+ inline void raise(int HALF_UNUSED_NOERR(flags), bool HALF_UNUSED_NOERR(cond) = true)
626
+ {
627
+ #if HALF_ERRHANDLING
628
+ if(!cond)
629
+ return;
630
+ #if HALF_ERRHANDLING_FLAGS
631
+ errflags() |= flags;
632
+ #endif
633
+ #if HALF_ERRHANDLING_ERRNO
634
+ if(flags & FE_INVALID)
635
+ errno = EDOM;
636
+ else if(flags & (FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW))
637
+ errno = ERANGE;
638
+ #endif
639
+ #if HALF_ERRHANDLING_FENV && HALF_ENABLE_CPP11_CFENV
640
+ std::feraiseexcept(flags);
641
+ #endif
642
+ #ifdef HALF_ERRHANDLING_THROW_INVALID
643
+ if(flags & FE_INVALID)
644
+ throw std::domain_error(HALF_ERRHANDLING_THROW_INVALID);
645
+ #endif
646
+ #ifdef HALF_ERRHANDLING_THROW_DIVBYZERO
647
+ if(flags & FE_DIVBYZERO)
648
+ throw std::domain_error(HALF_ERRHANDLING_THROW_DIVBYZERO);
649
+ #endif
650
+ #ifdef HALF_ERRHANDLING_THROW_OVERFLOW
651
+ if(flags & FE_OVERFLOW)
652
+ throw std::overflow_error(HALF_ERRHANDLING_THROW_OVERFLOW);
653
+ #endif
654
+ #ifdef HALF_ERRHANDLING_THROW_UNDERFLOW
655
+ if(flags & FE_UNDERFLOW)
656
+ throw std::underflow_error(HALF_ERRHANDLING_THROW_UNDERFLOW);
657
+ #endif
658
+ #ifdef HALF_ERRHANDLING_THROW_INEXACT
659
+ if(flags & FE_INEXACT)
660
+ throw std::range_error(HALF_ERRHANDLING_THROW_INEXACT);
661
+ #endif
662
+ #if HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
663
+ if((flags & FE_UNDERFLOW) && !(flags & FE_INEXACT))
664
+ raise(FE_INEXACT);
665
+ #endif
666
+ #if HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
667
+ if((flags & FE_OVERFLOW) && !(flags & FE_INEXACT))
668
+ raise(FE_INEXACT);
669
+ #endif
670
+ #endif
671
+ }
672
+
673
+ /// Check and signal for any NaN.
674
+ /// \param x first half-precision value to check
675
+ /// \param y second half-precision value to check
676
+ /// \retval true if either \a x or \a y is NaN
677
+ /// \retval false else
678
+ /// \exception FE_INVALID if \a x or \a y is NaN
679
+ inline HALF_CONSTEXPR_NOERR bool compsignal(unsigned int x, unsigned int y)
680
+ {
681
+ #if HALF_ERRHANDLING
682
+ raise(FE_INVALID, (x&0x7FFF)>0x7C00 || (y&0x7FFF)>0x7C00);
683
+ #endif
684
+ return (x&0x7FFF) > 0x7C00 || (y&0x7FFF) > 0x7C00;
685
+ }
686
+
687
+ /// Signal and silence signaling NaN.
688
+ /// \param nan half-precision NaN value
689
+ /// \return quiet NaN
690
+ /// \exception FE_INVALID if \a nan is signaling NaN
691
+ inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int nan)
692
+ {
693
+ #if HALF_ERRHANDLING
694
+ raise(FE_INVALID, !(nan&0x200));
695
+ #endif
696
+ return nan | 0x200;
697
+ }
698
+
699
+ /// Signal and silence signaling NaNs.
700
+ /// \param x first half-precision value to check
701
+ /// \param y second half-precision value to check
702
+ /// \return quiet NaN
703
+ /// \exception FE_INVALID if \a x or \a y is signaling NaN
704
+ inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y)
705
+ {
706
+ #if HALF_ERRHANDLING
707
+ raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)));
708
+ #endif
709
+ return ((x&0x7FFF)>0x7C00) ? (x|0x200) : (y|0x200);
710
+ }
711
+
712
+ /// Signal and silence signaling NaNs.
713
+ /// \param x first half-precision value to check
714
+ /// \param y second half-precision value to check
715
+ /// \param z third half-precision value to check
716
+ /// \return quiet NaN
717
+ /// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
718
+ inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y, unsigned int z)
719
+ {
720
+ #if HALF_ERRHANDLING
721
+ raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)) || ((z&0x7FFF)>0x7C00 && !(z&0x200)));
722
+ #endif
723
+ return ((x&0x7FFF)>0x7C00) ? (x|0x200) : ((y&0x7FFF)>0x7C00) ? (y|0x200) : (z|0x200);
724
+ }
725
+
726
+ /// Select value or signaling NaN.
727
+ /// \param x preferred half-precision value
728
+ /// \param y ignored half-precision value except for signaling NaN
729
+ /// \return \a y if signaling NaN, \a x otherwise
730
+ /// \exception FE_INVALID if \a y is signaling NaN
731
+ inline HALF_CONSTEXPR_NOERR unsigned int select(unsigned int x, unsigned int HALF_UNUSED_NOERR(y))
732
+ {
733
+ #if HALF_ERRHANDLING
734
+ return (((y&0x7FFF)>0x7C00) && !(y&0x200)) ? signal(y) : x;
735
+ #else
736
+ return x;
737
+ #endif
738
+ }
739
+
740
+ /// Raise domain error and return NaN.
741
+ /// return quiet NaN
742
+ /// \exception FE_INVALID
743
+ inline HALF_CONSTEXPR_NOERR unsigned int invalid()
744
+ {
745
+ #if HALF_ERRHANDLING
746
+ raise(FE_INVALID);
747
+ #endif
748
+ return 0x7FFF;
749
+ }
750
+
751
+ /// Raise pole error and return infinity.
752
+ /// \param sign half-precision value with sign bit only
753
+ /// \return half-precision infinity with sign of \a sign
754
+ /// \exception FE_DIVBYZERO
755
+ inline HALF_CONSTEXPR_NOERR unsigned int pole(unsigned int sign = 0)
756
+ {
757
+ #if HALF_ERRHANDLING
758
+ raise(FE_DIVBYZERO);
759
+ #endif
760
+ return sign | 0x7C00;
761
+ }
762
+
763
+ /// Check value for underflow.
764
+ /// \param arg non-zero half-precision value to check
765
+ /// \return \a arg
766
+ /// \exception FE_UNDERFLOW if arg is subnormal
767
+ inline HALF_CONSTEXPR_NOERR unsigned int check_underflow(unsigned int arg)
768
+ {
769
+ #if HALF_ERRHANDLING && !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
770
+ raise(FE_UNDERFLOW, !(arg&0x7C00));
771
+ #endif
772
+ return arg;
773
+ }
774
+
775
+ /// \}
776
+ /// \name Conversion and rounding
777
+ /// \{
778
+
779
+ /// Half-precision overflow.
780
+ /// \tparam R rounding mode to use
781
+ /// \param sign half-precision value with sign bit only
782
+ /// \return rounded overflowing half-precision value
783
+ /// \exception FE_OVERFLOW
784
+ template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int overflow(unsigned int sign = 0)
785
+ {
786
+ #if HALF_ERRHANDLING
787
+ raise(FE_OVERFLOW);
788
+ #endif
789
+ return (R==std::round_toward_infinity) ? (sign+0x7C00-(sign>>15)) :
790
+ (R==std::round_toward_neg_infinity) ? (sign+0x7BFF+(sign>>15)) :
791
+ (R==std::round_toward_zero) ? (sign|0x7BFF) :
792
+ (sign|0x7C00);
793
+ }
794
+
795
+ /// Half-precision underflow.
796
+ /// \tparam R rounding mode to use
797
+ /// \param sign half-precision value with sign bit only
798
+ /// \return rounded underflowing half-precision value
799
+ /// \exception FE_UNDERFLOW
800
+ template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int underflow(unsigned int sign = 0)
801
+ {
802
+ #if HALF_ERRHANDLING
803
+ raise(FE_UNDERFLOW);
804
+ #endif
805
+ return (R==std::round_toward_infinity) ? (sign+1-(sign>>15)) :
806
+ (R==std::round_toward_neg_infinity) ? (sign+(sign>>15)) :
807
+ sign;
808
+ }
809
+
810
+ /// Round half-precision number.
811
+ /// \tparam R rounding mode to use
812
+ /// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
813
+ /// \param value finite half-precision number to round
814
+ /// \param g guard bit (most significant discarded bit)
815
+ /// \param s sticky bit (or of all but the most significant discarded bits)
816
+ /// \return rounded half-precision value
817
+ /// \exception FE_OVERFLOW on overflows
818
+ /// \exception FE_UNDERFLOW on underflows
819
+ /// \exception FE_INEXACT if value had to be rounded or \a I is `true`
820
+ template<std::float_round_style R,bool I> HALF_CONSTEXPR_NOERR unsigned int rounded(unsigned int value, int g, int s)
821
+ {
822
+ #if HALF_ERRHANDLING
823
+ value += (R==std::round_to_nearest) ? (g&(s|value)) :
824
+ (R==std::round_toward_infinity) ? (~(value>>15)&(g|s)) :
825
+ (R==std::round_toward_neg_infinity) ? ((value>>15)&(g|s)) : 0;
826
+ if((value&0x7C00) == 0x7C00)
827
+ raise(FE_OVERFLOW);
828
+ else if(value & 0x7C00)
829
+ raise(FE_INEXACT, I || (g|s)!=0);
830
+ else
831
+ raise(FE_UNDERFLOW, !(HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT) || I || (g|s)!=0);
832
+ return value;
833
+ #else
834
+ return (R==std::round_to_nearest) ? (value+(g&(s|value))) :
835
+ (R==std::round_toward_infinity) ? (value+(~(value>>15)&(g|s))) :
836
+ (R==std::round_toward_neg_infinity) ? (value+((value>>15)&(g|s))) :
837
+ value;
838
+ #endif
839
+ }
840
+
841
+ /// Round half-precision number to nearest integer value.
842
+ /// \tparam R rounding mode to use
843
+ /// \tparam E `true` for round to even, `false` for round away from zero
844
+ /// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
845
+ /// \param value half-precision value to round
846
+ /// \return half-precision bits for nearest integral value
847
+ /// \exception FE_INVALID for signaling NaN
848
+ /// \exception FE_INEXACT if value had to be rounded and \a I is `true`
849
+ template<std::float_round_style R,bool E,bool I> unsigned int integral(unsigned int value)
850
+ {
851
+ unsigned int abs = value & 0x7FFF;
852
+ if(abs < 0x3C00)
853
+ {
854
+ raise(FE_INEXACT, I);
855
+ return ((R==std::round_to_nearest) ? (0x3C00&-static_cast<unsigned>(abs>=(0x3800+E))) :
856
+ (R==std::round_toward_infinity) ? (0x3C00&-(~(value>>15)&(abs!=0))) :
857
+ (R==std::round_toward_neg_infinity) ? (0x3C00&-static_cast<unsigned>(value>0x8000)) :
858
+ 0) | (value&0x8000);
859
+ }
860
+ if(abs >= 0x6400)
861
+ return (abs>0x7C00) ? signal(value) : value;
862
+ unsigned int exp = 25 - (abs>>10), mask = (1<<exp) - 1;
863
+ raise(FE_INEXACT, I && (value&mask));
864
+ return (( (R==std::round_to_nearest) ? ((1<<(exp-1))-(~(value>>exp)&E)) :
865
+ (R==std::round_toward_infinity) ? (mask&((value>>15)-1)) :
866
+ (R==std::round_toward_neg_infinity) ? (mask&-(value>>15)) :
867
+ 0) + value) & ~mask;
868
+ }
869
+
870
+ /// Convert fixed point to half-precision floating-point.
871
+ /// \tparam R rounding mode to use
872
+ /// \tparam F number of fractional bits (at least 11)
873
+ /// \tparam S `true` for signed, `false` for unsigned
874
+ /// \tparam N `true` for additional normalization step, `false` if already normalized to 1.F
875
+ /// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
876
+ /// \param m mantissa in Q1.F fixed point format
877
+ /// \param exp exponent
878
+ /// \param sign half-precision value with sign bit only
879
+ /// \param s sticky bit (or of all but the most significant already discarded bits)
880
+ /// \return value converted to half-precision
881
+ /// \exception FE_OVERFLOW on overflows
882
+ /// \exception FE_UNDERFLOW on underflows
883
+ /// \exception FE_INEXACT if value had to be rounded or \a I is `true`
884
+ template<std::float_round_style R,unsigned int F,bool S,bool N,bool I> unsigned int fixed2half(uint32 m, int exp = 14, unsigned int sign = 0, int s = 0)
885
+ {
886
+ if(S)
887
+ {
888
+ uint32 msign = sign_mask(m);
889
+ m = (m^msign) - msign;
890
+ sign = msign & 0x8000;
891
+ }
892
+ if(N)
893
+ for(; m<(static_cast<uint32>(1)<<F) && exp; m<<=1,--exp) ;
894
+ else if(exp < 0)
895
+ return rounded<R,I>(sign+(m>>(F-10-exp)), (m>>(F-11-exp))&1, s|((m&((static_cast<uint32>(1)<<(F-11-exp))-1))!=0));
896
+ return rounded<R,I>(sign+(exp<<10)+(m>>(F-10)), (m>>(F-11))&1, s|((m&((static_cast<uint32>(1)<<(F-11))-1))!=0));
897
+ }
898
+
899
+ /// Convert IEEE single-precision to half-precision.
900
+ /// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
901
+ /// \tparam R rounding mode to use
902
+ /// \param value single-precision value to convert
903
+ /// \return rounded half-precision value
904
+ /// \exception FE_OVERFLOW on overflows
905
+ /// \exception FE_UNDERFLOW on underflows
906
+ /// \exception FE_INEXACT if value had to be rounded
907
+ template<std::float_round_style R> unsigned int float2half_impl(float value, true_type)
908
+ {
909
+ #if HALF_ENABLE_F16C_INTRINSICS
910
+ return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(value),
911
+ (R==std::round_to_nearest) ? _MM_FROUND_TO_NEAREST_INT :
912
+ (R==std::round_toward_zero) ? _MM_FROUND_TO_ZERO :
913
+ (R==std::round_toward_infinity) ? _MM_FROUND_TO_POS_INF :
914
+ (R==std::round_toward_neg_infinity) ? _MM_FROUND_TO_NEG_INF :
915
+ _MM_FROUND_CUR_DIRECTION));
916
+ #else
917
+ bits<float>::type fbits;
918
+ std::memcpy(&fbits, &value, sizeof(float));
919
+ #if 1
920
+ unsigned int sign = (fbits>>16) & 0x8000;
921
+ fbits &= 0x7FFFFFFF;
922
+ if(fbits >= 0x7F800000)
923
+ return sign | 0x7C00 | ((fbits>0x7F800000) ? (0x200|((fbits>>13)&0x3FF)) : 0);
924
+ if(fbits >= 0x47800000)
925
+ return overflow<R>(sign);
926
+ if(fbits >= 0x38800000)
927
+ return rounded<R,false>(sign|(((fbits>>23)-112)<<10)|((fbits>>13)&0x3FF), (fbits>>12)&1, (fbits&0xFFF)!=0);
928
+ if(fbits >= 0x33000000)
929
+ {
930
+ int i = 125 - (fbits>>23);
931
+ fbits = (fbits&0x7FFFFF) | 0x800000;
932
+ return rounded<R,false>(sign|(fbits>>(i+1)), (fbits>>i)&1, (fbits&((static_cast<uint32>(1)<<i)-1))!=0);
933
+ }
934
+ if(fbits != 0)
935
+ return underflow<R>(sign);
936
+ return sign;
937
+ #else
938
+ static const uint16 base_table[512] = {
939
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
940
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
941
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
942
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
943
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
944
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
945
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100,
946
+ 0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00,
947
+ 0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7BFF,
948
+ 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
949
+ 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
950
+ 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
951
+ 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
952
+ 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
953
+ 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
954
+ 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7C00,
955
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
956
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
957
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
958
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
959
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
960
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
961
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100,
962
+ 0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00,
963
+ 0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFBFF,
964
+ 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
965
+ 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
966
+ 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
967
+ 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
968
+ 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
969
+ 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
970
+ 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFC00 };
971
+ static const unsigned char shift_table[256] = {
972
+ 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
973
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
974
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
975
+ 25, 25, 25, 25, 25, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
976
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
977
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
978
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
979
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 };
980
+ int sexp = fbits >> 23, exp = sexp & 0xFF, i = shift_table[exp];
981
+ fbits &= 0x7FFFFF;
982
+ uint32 m = (fbits|((exp!=0)<<23)) & -static_cast<uint32>(exp!=0xFF);
983
+ return rounded<R,false>(base_table[sexp]+(fbits>>i), (m>>(i-1))&1, (((static_cast<uint32>(1)<<(i-1))-1)&m)!=0);
984
+ #endif
985
+ #endif
986
+ }
987
+
988
+ /// Convert IEEE double-precision to half-precision.
989
+ /// \tparam R rounding mode to use
990
+ /// \param value double-precision value to convert
991
+ /// \return rounded half-precision value
992
+ /// \exception FE_OVERFLOW on overflows
993
+ /// \exception FE_UNDERFLOW on underflows
994
+ /// \exception FE_INEXACT if value had to be rounded
995
+ template<std::float_round_style R> unsigned int float2half_impl(double value, true_type)
996
+ {
997
+ #if HALF_ENABLE_F16C_INTRINSICS
998
+ if(R == std::round_indeterminate)
999
+ return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_cvtpd_ps(_mm_set_sd(value)), _MM_FROUND_CUR_DIRECTION));
1000
+ #endif
1001
+ bits<double>::type dbits;
1002
+ std::memcpy(&dbits, &value, sizeof(double));
1003
+ uint32 hi = dbits >> 32, lo = dbits & 0xFFFFFFFF;
1004
+ unsigned int sign = (hi>>16) & 0x8000;
1005
+ hi &= 0x7FFFFFFF;
1006
+ if(hi >= 0x7FF00000)
1007
+ return sign | 0x7C00 | ((dbits&0xFFFFFFFFFFFFF) ? (0x200|((hi>>10)&0x3FF)) : 0);
1008
+ if(hi >= 0x40F00000)
1009
+ return overflow<R>(sign);
1010
+ if(hi >= 0x3F100000)
1011
+ return rounded<R,false>(sign|(((hi>>20)-1008)<<10)|((hi>>10)&0x3FF), (hi>>9)&1, ((hi&0x1FF)|lo)!=0);
1012
+ if(hi >= 0x3E600000)
1013
+ {
1014
+ int i = 1018 - (hi>>20);
1015
+ hi = (hi&0xFFFFF) | 0x100000;
1016
+ return rounded<R,false>(sign|(hi>>(i+1)), (hi>>i)&1, ((hi&((static_cast<uint32>(1)<<i)-1))|lo)!=0);
1017
+ }
1018
+ if((hi|lo) != 0)
1019
+ return underflow<R>(sign);
1020
+ return sign;
1021
+ }
1022
+
1023
+ /// Convert non-IEEE floating-point to half-precision.
1024
+ /// \tparam R rounding mode to use
1025
+ /// \tparam T source type (builtin floating-point type)
1026
+ /// \param value floating-point value to convert
1027
+ /// \return rounded half-precision value
1028
+ /// \exception FE_OVERFLOW on overflows
1029
+ /// \exception FE_UNDERFLOW on underflows
1030
+ /// \exception FE_INEXACT if value had to be rounded
1031
+ template<std::float_round_style R,typename T> unsigned int float2half_impl(T value, ...)
1032
+ {
1033
+ unsigned int hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;
1034
+ if(value == T())
1035
+ return hbits;
1036
+ if(builtin_isnan(value))
1037
+ return hbits | 0x7FFF;
1038
+ if(builtin_isinf(value))
1039
+ return hbits | 0x7C00;
1040
+ int exp;
1041
+ std::frexp(value, &exp);
1042
+ if(exp > 16)
1043
+ return overflow<R>(hbits);
1044
+ if(exp < -13)
1045
+ value = std::ldexp(value, 25);
1046
+ else
1047
+ {
1048
+ value = std::ldexp(value, 12-exp);
1049
+ hbits |= ((exp+13)<<10);
1050
+ }
1051
+ T ival, frac = std::modf(value, &ival);
1052
+ int m = std::abs(static_cast<int>(ival));
1053
+ return rounded<R,false>(hbits+(m>>1), m&1, frac!=T());
1054
+ }
1055
+
1056
+ /// Convert floating-point to half-precision.
1057
+ /// \tparam R rounding mode to use
1058
+ /// \tparam T source type (builtin floating-point type)
1059
+ /// \param value floating-point value to convert
1060
+ /// \return rounded half-precision value
1061
+ /// \exception FE_OVERFLOW on overflows
1062
+ /// \exception FE_UNDERFLOW on underflows
1063
+ /// \exception FE_INEXACT if value had to be rounded
1064
+ template<std::float_round_style R,typename T> unsigned int float2half(T value)
1065
+ {
1066
+ return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
1067
+ }
1068
+
1069
+ /// Convert integer to half-precision floating-point.
1070
+ /// \tparam R rounding mode to use
1071
+ /// \tparam T type to convert (builtin integer type)
1072
+ /// \param value integral value to convert
1073
+ /// \return rounded half-precision value
1074
+ /// \exception FE_OVERFLOW on overflows
1075
+ /// \exception FE_INEXACT if value had to be rounded
1076
+ template<std::float_round_style R,typename T> unsigned int int2half(T value)
1077
+ {
1078
+ unsigned int bits = static_cast<unsigned>(value<0) << 15;
1079
+ if(!value)
1080
+ return bits;
1081
+ if(bits)
1082
+ value = -value;
1083
+ if(value > 0xFFFF)
1084
+ return overflow<R>(bits);
1085
+ unsigned int m = static_cast<unsigned int>(value), exp = 24;
1086
+ for(; m<0x400; m<<=1,--exp) ;
1087
+ for(; m>0x7FF; m>>=1,++exp) ;
1088
+ bits |= (exp<<10) + m;
1089
+ return (exp>24) ? rounded<R,false>(bits, (value>>(exp-25))&1, (((1<<(exp-25))-1)&value)!=0) : bits;
1090
+ }
1091
+
1092
+ /// Convert half-precision to IEEE single-precision.
1093
+ /// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
1094
+ /// \param value half-precision value to convert
1095
+ /// \return single-precision value
1096
+ inline float half2float_impl(unsigned int value, float, true_type)
1097
+ {
1098
+ #if HALF_ENABLE_F16C_INTRINSICS
1099
+ return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(value)));
1100
+ #else
1101
+ #if 0
1102
+ bits<float>::type fbits = static_cast<bits<float>::type>(value&0x8000) << 16;
1103
+ int abs = value & 0x7FFF;
1104
+ if(abs)
1105
+ {
1106
+ fbits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
1107
+ for(; abs<0x400; abs<<=1,fbits-=0x800000) ;
1108
+ fbits += static_cast<bits<float>::type>(abs) << 13;
1109
+ }
1110
+ #else
1111
+ static const bits<float>::type mantissa_table[2048] = {
1112
+ 0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000,
1113
+ 0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000,
1114
+ 0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000,
1115
+ 0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000,
1116
+ 0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000,
1117
+ 0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000,
1118
+ 0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000,
1119
+ 0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000,
1120
+ 0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000,
1121
+ 0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000,
1122
+ 0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000,
1123
+ 0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000,
1124
+ 0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000,
1125
+ 0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000,
1126
+ 0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000,
1127
+ 0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000,
1128
+ 0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000,
1129
+ 0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000,
1130
+ 0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000,
1131
+ 0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000,
1132
+ 0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000,
1133
+ 0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000,
1134
+ 0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000,
1135
+ 0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000,
1136
+ 0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000,
1137
+ 0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000,
1138
+ 0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000,
1139
+ 0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000,
1140
+ 0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000,
1141
+ 0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000,
1142
+ 0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000,
1143
+ 0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000,
1144
+ 0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000,
1145
+ 0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000,
1146
+ 0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000,
1147
+ 0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000,
1148
+ 0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000,
1149
+ 0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000,
1150
+ 0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000,
1151
+ 0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000,
1152
+ 0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000,
1153
+ 0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000,
1154
+ 0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000,
1155
+ 0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000,
1156
+ 0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000,
1157
+ 0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000,
1158
+ 0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000,
1159
+ 0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000,
1160
+ 0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000,
1161
+ 0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000,
1162
+ 0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000,
1163
+ 0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000,
1164
+ 0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000,
1165
+ 0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000,
1166
+ 0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000,
1167
+ 0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000,
1168
+ 0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000,
1169
+ 0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000,
1170
+ 0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000,
1171
+ 0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000,
1172
+ 0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000,
1173
+ 0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000,
1174
+ 0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000,
1175
+ 0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000,
1176
+ 0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000,
1177
+ 0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000,
1178
+ 0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000,
1179
+ 0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000,
1180
+ 0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000,
1181
+ 0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000,
1182
+ 0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000,
1183
+ 0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000,
1184
+ 0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000,
1185
+ 0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000,
1186
+ 0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000,
1187
+ 0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000,
1188
+ 0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000,
1189
+ 0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000,
1190
+ 0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000,
1191
+ 0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000,
1192
+ 0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000,
1193
+ 0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000,
1194
+ 0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000,
1195
+ 0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000,
1196
+ 0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000,
1197
+ 0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000,
1198
+ 0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000,
1199
+ 0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000,
1200
+ 0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000,
1201
+ 0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000,
1202
+ 0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000,
1203
+ 0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000,
1204
+ 0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000,
1205
+ 0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000,
1206
+ 0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000,
1207
+ 0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000,
1208
+ 0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000,
1209
+ 0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000,
1210
+ 0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000,
1211
+ 0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000,
1212
+ 0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000,
1213
+ 0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000,
1214
+ 0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000,
1215
+ 0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000,
1216
+ 0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000,
1217
+ 0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000,
1218
+ 0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000,
1219
+ 0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000,
1220
+ 0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000,
1221
+ 0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000,
1222
+ 0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000,
1223
+ 0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000,
1224
+ 0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000,
1225
+ 0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000,
1226
+ 0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000,
1227
+ 0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000,
1228
+ 0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000,
1229
+ 0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000,
1230
+ 0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000,
1231
+ 0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000,
1232
+ 0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000,
1233
+ 0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000,
1234
+ 0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000,
1235
+ 0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000,
1236
+ 0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000,
1237
+ 0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000,
1238
+ 0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000,
1239
+ 0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 };
1240
+ static const bits<float>::type exponent_table[64] = {
1241
+ 0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000,
1242
+ 0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000,
1243
+ 0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000,
1244
+ 0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 };
1245
+ static const unsigned short offset_table[64] = {
1246
+ 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1247
+ 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 };
1248
+ bits<float>::type fbits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10];
1249
+ #endif
1250
+ float out;
1251
+ std::memcpy(&out, &fbits, sizeof(float));
1252
+ return out;
1253
+ #endif
1254
+ }
1255
+
1256
+ /// Convert half-precision to IEEE double-precision.
1257
+ /// \param value half-precision value to convert
1258
+ /// \return double-precision value
1259
+ inline double half2float_impl(unsigned int value, double, true_type)
1260
+ {
1261
+ #if HALF_ENABLE_F16C_INTRINSICS
1262
+ return _mm_cvtsd_f64(_mm_cvtps_pd(_mm_cvtph_ps(_mm_cvtsi32_si128(value))));
1263
+ #else
1264
+ uint32 hi = static_cast<uint32>(value&0x8000) << 16;
1265
+ unsigned int abs = value & 0x7FFF;
1266
+ if(abs)
1267
+ {
1268
+ hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00);
1269
+ for(; abs<0x400; abs<<=1,hi-=0x100000) ;
1270
+ hi += static_cast<uint32>(abs) << 10;
1271
+ }
1272
+ bits<double>::type dbits = static_cast<bits<double>::type>(hi) << 32;
1273
+ double out;
1274
+ std::memcpy(&out, &dbits, sizeof(double));
1275
+ return out;
1276
+ #endif
1277
+ }
1278
+
1279
+ /// Convert half-precision to non-IEEE floating-point.
1280
+ /// \tparam T type to convert to (builtin integer type)
1281
+ /// \param value half-precision value to convert
1282
+ /// \return floating-point value
1283
+ template<typename T> T half2float_impl(unsigned int value, T, ...)
1284
+ {
1285
+ T out;
1286
+ unsigned int abs = value & 0x7FFF;
1287
+ if(abs > 0x7C00)
1288
+ out = (std::numeric_limits<T>::has_signaling_NaN && !(abs&0x200)) ? std::numeric_limits<T>::signaling_NaN() :
1289
+ std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T();
1290
+ else if(abs == 0x7C00)
1291
+ out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max();
1292
+ else if(abs > 0x3FF)
1293
+ out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25);
1294
+ else
1295
+ out = std::ldexp(static_cast<T>(abs), -24);
1296
+ return (value&0x8000) ? -out : out;
1297
+ }
1298
+
1299
+ /// Convert half-precision to floating-point.
1300
+ /// \tparam T type to convert to (builtin integer type)
1301
+ /// \param value half-precision value to convert
1302
+ /// \return floating-point value
1303
+ template<typename T> T half2float(unsigned int value)
1304
+ {
1305
+ return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
1306
+ }
1307
+
1308
+ /// Convert half-precision floating-point to integer.
1309
+ /// \tparam R rounding mode to use
1310
+ /// \tparam E `true` for round to even, `false` for round away from zero
1311
+ /// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
1312
+ /// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
1313
+ /// \param value half-precision value to convert
1314
+ /// \return rounded integer value
1315
+ /// \exception FE_INVALID if value is not representable in type \a T
1316
+ /// \exception FE_INEXACT if value had to be rounded and \a I is `true`
1317
+ template<std::float_round_style R,bool E,bool I,typename T> T half2int(unsigned int value)
1318
+ {
1319
+ unsigned int abs = value & 0x7FFF;
1320
+ if(abs >= 0x7C00)
1321
+ {
1322
+ raise(FE_INVALID);
1323
+ return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max();
1324
+ }
1325
+ if(abs < 0x3800)
1326
+ {
1327
+ raise(FE_INEXACT, I);
1328
+ return (R==std::round_toward_infinity) ? T(~(value>>15)&(abs!=0)) :
1329
+ (R==std::round_toward_neg_infinity) ? -T(value>0x8000) :
1330
+ T();
1331
+ }
1332
+ int exp = 25 - (abs>>10);
1333
+ unsigned int m = (value&0x3FF) | 0x400;
1334
+ int32 i = static_cast<int32>((exp<=0) ? (m<<-exp) : ((m+(
1335
+ (R==std::round_to_nearest) ? ((1<<(exp-1))-(~(m>>exp)&E)) :
1336
+ (R==std::round_toward_infinity) ? (((1<<exp)-1)&((value>>15)-1)) :
1337
+ (R==std::round_toward_neg_infinity) ? (((1<<exp)-1)&-(value>>15)) : 0))>>exp));
1338
+ if((!std::numeric_limits<T>::is_signed && (value&0x8000)) || (std::numeric_limits<T>::digits<16 &&
1339
+ ((value&0x8000) ? (-i<std::numeric_limits<T>::min()) : (i>std::numeric_limits<T>::max()))))
1340
+ raise(FE_INVALID);
1341
+ else if(I && exp > 0 && (m&((1<<exp)-1)))
1342
+ raise(FE_INEXACT);
1343
+ return static_cast<T>((value&0x8000) ? -i : i);
1344
+ }
1345
+
1346
+ /// \}
1347
+ /// \name Mathematics
1348
+ /// \{
1349
+
1350
+ /// upper part of 64-bit multiplication.
1351
+ /// \tparam R rounding mode to use
1352
+ /// \param x first factor
1353
+ /// \param y second factor
1354
+ /// \return upper 32 bit of \a x * \a y
1355
+ template<std::float_round_style R> uint32 mulhi(uint32 x, uint32 y)
1356
+ {
1357
+ uint32 xy = (x>>16) * (y&0xFFFF), yx = (x&0xFFFF) * (y>>16), c = (xy&0xFFFF) + (yx&0xFFFF) + (((x&0xFFFF)*(y&0xFFFF))>>16);
1358
+ return (x>>16)*(y>>16) + (xy>>16) + (yx>>16) + (c>>16) +
1359
+ ((R==std::round_to_nearest) ? ((c>>15)&1) : (R==std::round_toward_infinity) ? ((c&0xFFFF)!=0) : 0);
1360
+ }
1361
+
1362
+ /// 64-bit multiplication.
1363
+ /// \param x first factor
1364
+ /// \param y second factor
1365
+ /// \return upper 32 bit of \a x * \a y rounded to nearest
1366
+ inline uint32 multiply64(uint32 x, uint32 y)
1367
+ {
1368
+ #if HALF_ENABLE_CPP11_LONG_LONG
1369
+ return static_cast<uint32>((static_cast<unsigned long long>(x)*static_cast<unsigned long long>(y)+0x80000000)>>32);
1370
+ #else
1371
+ return mulhi<std::round_to_nearest>(x, y);
1372
+ #endif
1373
+ }
1374
+
1375
+ /// 64-bit division.
1376
+ /// \param x upper 32 bit of dividend
1377
+ /// \param y divisor
1378
+ /// \param s variable to store sticky bit for rounding
1379
+ /// \return (\a x << 32) / \a y
1380
+ inline uint32 divide64(uint32 x, uint32 y, int &s)
1381
+ {
1382
+ #if HALF_ENABLE_CPP11_LONG_LONG
1383
+ unsigned long long xx = static_cast<unsigned long long>(x) << 32;
1384
+ return s = (xx%y!=0), static_cast<uint32>(xx/y);
1385
+ #else
1386
+ y >>= 1;
1387
+ uint32 rem = x, div = 0;
1388
+ for(unsigned int i=0; i<32; ++i)
1389
+ {
1390
+ div <<= 1;
1391
+ if(rem >= y)
1392
+ {
1393
+ rem -= y;
1394
+ div |= 1;
1395
+ }
1396
+ rem <<= 1;
1397
+ }
1398
+ return s = rem > 1, div;
1399
+ #endif
1400
+ }
1401
+
1402
+ /// Half precision positive modulus.
1403
+ /// \tparam Q `true` to compute full quotient, `false` else
1404
+ /// \tparam R `true` to compute signed remainder, `false` for positive remainder
1405
+ /// \param x first operand as positive finite half-precision value
1406
+ /// \param y second operand as positive finite half-precision value
1407
+ /// \param quo adress to store quotient at, `nullptr` if \a Q `false`
1408
+ /// \return modulus of \a x / \a y
1409
+ template<bool Q,bool R> unsigned int mod(unsigned int x, unsigned int y, int *quo = NULL)
1410
+ {
1411
+ unsigned int q = 0;
1412
+ if(x > y)
1413
+ {
1414
+ int absx = x, absy = y, expx = 0, expy = 0;
1415
+ for(; absx<0x400; absx<<=1,--expx) ;
1416
+ for(; absy<0x400; absy<<=1,--expy) ;
1417
+ expx += absx >> 10;
1418
+ expy += absy >> 10;
1419
+ int mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
1420
+ for(int d=expx-expy; d; --d)
1421
+ {
1422
+ if(!Q && mx == my)
1423
+ return 0;
1424
+ if(mx >= my)
1425
+ {
1426
+ mx -= my;
1427
+ q += Q;
1428
+ }
1429
+ mx <<= 1;
1430
+ q <<= static_cast<int>(Q);
1431
+ }
1432
+ if(!Q && mx == my)
1433
+ return 0;
1434
+ if(mx >= my)
1435
+ {
1436
+ mx -= my;
1437
+ ++q;
1438
+ }
1439
+ if(Q)
1440
+ {
1441
+ q &= (1<<(std::numeric_limits<int>::digits-1)) - 1;
1442
+ if(!mx)
1443
+ return *quo = q, 0;
1444
+ }
1445
+ for(; mx<0x400; mx<<=1,--expy) ;
1446
+ x = (expy>0) ? ((expy<<10)|(mx&0x3FF)) : (mx>>(1-expy));
1447
+ }
1448
+ if(R)
1449
+ {
1450
+ unsigned int a, b;
1451
+ if(y < 0x800)
1452
+ {
1453
+ a = (x<0x400) ? (x<<1) : (x+0x400);
1454
+ b = y;
1455
+ }
1456
+ else
1457
+ {
1458
+ a = x;
1459
+ b = y - 0x400;
1460
+ }
1461
+ if(a > b || (a == b && (q&1)))
1462
+ {
1463
+ int exp = (y>>10) + (y<=0x3FF), d = exp - (x>>10) - (x<=0x3FF);
1464
+ int m = (((y&0x3FF)|((y>0x3FF)<<10))<<1) - (((x&0x3FF)|((x>0x3FF)<<10))<<(1-d));
1465
+ for(; m<0x800 && exp>1; m<<=1,--exp) ;
1466
+ x = 0x8000 + ((exp-1)<<10) + (m>>1);
1467
+ q += Q;
1468
+ }
1469
+ }
1470
+ if(Q)
1471
+ *quo = q;
1472
+ return x;
1473
+ }
1474
+
1475
+ /// Fixed point square root.
1476
+ /// \tparam F number of fractional bits
1477
+ /// \param r radicand in Q1.F fixed point format
1478
+ /// \param exp exponent
1479
+ /// \return square root as Q1.F/2
1480
+ template<unsigned int F> uint32 sqrt(uint32 &r, int &exp)
1481
+ {
1482
+ int i = exp & 1;
1483
+ r <<= i;
1484
+ exp = (exp-i) / 2;
1485
+ uint32 m = 0;
1486
+ for(uint32 bit=static_cast<uint32>(1)<<F; bit; bit>>=2)
1487
+ {
1488
+ if(r < m+bit)
1489
+ m >>= 1;
1490
+ else
1491
+ {
1492
+ r -= m + bit;
1493
+ m = (m>>1) + bit;
1494
+ }
1495
+ }
1496
+ return m;
1497
+ }
1498
+
1499
+ /// Fixed point binary exponential.
1500
+ /// This uses the BKM algorithm in E-mode.
1501
+ /// \param m exponent in [0,1) as Q0.31
1502
+ /// \param n number of iterations (at most 32)
1503
+ /// \return 2 ^ \a m as Q1.31
1504
+ inline uint32 exp2(uint32 m, unsigned int n = 32)
1505
+ {
1506
+ static const uint32 logs[] = {
1507
+ 0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
1508
+ 0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
1509
+ 0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
1510
+ 0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
1511
+ if(!m)
1512
+ return 0x80000000;
1513
+ uint32 mx = 0x80000000, my = 0;
1514
+ for(unsigned int i=1; i<n; ++i)
1515
+ {
1516
+ uint32 mz = my + logs[i];
1517
+ if(mz <= m)
1518
+ {
1519
+ my = mz;
1520
+ mx += mx >> i;
1521
+ }
1522
+ }
1523
+ return mx;
1524
+ }
1525
+
1526
+ /// Fixed point binary logarithm.
1527
+ /// This uses the BKM algorithm in L-mode.
1528
+ /// \param m mantissa in [1,2) as Q1.30
1529
+ /// \param n number of iterations (at most 32)
1530
+ /// \return log2(\a m) as Q0.31
1531
+ inline uint32 log2(uint32 m, unsigned int n = 32)
1532
+ {
1533
+ static const uint32 logs[] = {
1534
+ 0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
1535
+ 0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
1536
+ 0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
1537
+ 0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
1538
+ if(m == 0x40000000)
1539
+ return 0;
1540
+ uint32 mx = 0x40000000, my = 0;
1541
+ for(unsigned int i=1; i<n; ++i)
1542
+ {
1543
+ uint32 mz = mx + (mx>>i);
1544
+ if(mz <= m)
1545
+ {
1546
+ mx = mz;
1547
+ my += logs[i];
1548
+ }
1549
+ }
1550
+ return my;
1551
+ }
1552
+
1553
+ /// Fixed point sine and cosine.
1554
+ /// This uses the CORDIC algorithm in rotation mode.
1555
+ /// \param mz angle in [-pi/2,pi/2] as Q1.30
1556
+ /// \param n number of iterations (at most 31)
1557
+ /// \return sine and cosine of \a mz as Q1.30
1558
+ inline std::pair<uint32,uint32> sincos(uint32 mz, unsigned int n = 31)
1559
+ {
1560
+ static const uint32 angles[] = {
1561
+ 0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
1562
+ 0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
1563
+ 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
1564
+ 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
1565
+ uint32 mx = 0x26DD3B6A, my = 0;
1566
+ for(unsigned int i=0; i<n; ++i)
1567
+ {
1568
+ uint32 sign = sign_mask(mz);
1569
+ uint32 tx = mx - (arithmetic_shift(my, i)^sign) + sign;
1570
+ uint32 ty = my + (arithmetic_shift(mx, i)^sign) - sign;
1571
+ mx = tx; my = ty; mz -= (angles[i]^sign) - sign;
1572
+ }
1573
+ return std::make_pair(my, mx);
1574
+ }
1575
+
1576
+ /// Fixed point arc tangent.
1577
+ /// This uses the CORDIC algorithm in vectoring mode.
1578
+ /// \param my y coordinate as Q0.30
1579
+ /// \param mx x coordinate as Q0.30
1580
+ /// \param n number of iterations (at most 31)
1581
+ /// \return arc tangent of \a my / \a mx as Q1.30
1582
+ inline uint32 atan2(uint32 my, uint32 mx, unsigned int n = 31)
1583
+ {
1584
+ static const uint32 angles[] = {
1585
+ 0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
1586
+ 0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
1587
+ 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
1588
+ 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
1589
+ uint32 mz = 0;
1590
+ for(unsigned int i=0; i<n; ++i)
1591
+ {
1592
+ uint32 sign = sign_mask(my);
1593
+ uint32 tx = mx + (arithmetic_shift(my, i)^sign) - sign;
1594
+ uint32 ty = my - (arithmetic_shift(mx, i)^sign) + sign;
1595
+ mx = tx; my = ty; mz += (angles[i]^sign) - sign;
1596
+ }
1597
+ return mz;
1598
+ }
1599
+
1600
+ /// Reduce argument for trigonometric functions.
1601
+ /// \param abs half-precision floating-point value
1602
+ /// \param k value to take quarter period
1603
+ /// \return \a abs reduced to [-pi/4,pi/4] as Q0.30
1604
+ inline uint32 angle_arg(unsigned int abs, int &k)
1605
+ {
1606
+ uint32 m = (abs&0x3FF) | ((abs>0x3FF)<<10);
1607
+ int exp = (abs>>10) + (abs<=0x3FF) - 15;
1608
+ if(abs < 0x3A48)
1609
+ return k = 0, m << (exp+20);
1610
+ #if HALF_ENABLE_CPP11_LONG_LONG
1611
+ unsigned long long y = m * 0xA2F9836E4E442, mask = (1ULL<<(62-exp)) - 1, yi = (y+(mask>>1)) & ~mask, f = y - yi;
1612
+ uint32 sign = -static_cast<uint32>(f>>63);
1613
+ k = static_cast<int>(yi>>(62-exp));
1614
+ return (multiply64(static_cast<uint32>((sign ? -f : f)>>(31-exp)), 0xC90FDAA2)^sign) - sign;
1615
+ #else
1616
+ uint32 yh = m*0xA2F98 + mulhi<std::round_toward_zero>(m, 0x36E4E442), yl = (m*0x36E4E442) & 0xFFFFFFFF;
1617
+ uint32 mask = (static_cast<uint32>(1)<<(30-exp)) - 1, yi = (yh+(mask>>1)) & ~mask, sign = -static_cast<uint32>(yi>yh);
1618
+ k = static_cast<int>(yi>>(30-exp));
1619
+ uint32 fh = (yh^sign) + (yi^~sign) - ~sign, fl = (yl^sign) - sign;
1620
+ return (multiply64((exp>-1) ? (((fh<<(1+exp))&0xFFFFFFFF)|((fl&0xFFFFFFFF)>>(31-exp))) : fh, 0xC90FDAA2)^sign) - sign;
1621
+ #endif
1622
+ }
1623
+
1624
+ /// Get arguments for atan2 function.
1625
+ /// \param abs half-precision floating-point value
1626
+ /// \return \a abs and sqrt(1 - \a abs^2) as Q0.30
1627
+ inline std::pair<uint32,uint32> atan2_args(unsigned int abs)
1628
+ {
1629
+ int exp = -15;
1630
+ for(; abs<0x400; abs<<=1,--exp) ;
1631
+ exp += abs >> 10;
1632
+ uint32 my = ((abs&0x3FF)|0x400) << 5, r = my * my;
1633
+ int rexp = 2 * exp;
1634
+ r = 0x40000000 - ((rexp>-31) ? ((r>>-rexp)|((r&((static_cast<uint32>(1)<<-rexp)-1))!=0)) : 1);
1635
+ for(rexp=0; r<0x40000000; r<<=1,--rexp) ;
1636
+ uint32 mx = sqrt<30>(r, rexp);
1637
+ int d = exp - rexp;
1638
+ if(d < 0)
1639
+ return std::make_pair((d<-14) ? ((my>>(-d-14))+((my>>(-d-15))&1)) : (my<<(14+d)), (mx<<14)+(r<<13)/mx);
1640
+ if(d > 0)
1641
+ return std::make_pair(my<<14, (d>14) ? ((mx>>(d-14))+((mx>>(d-15))&1)) : ((d==14) ? mx : ((mx<<(14-d))+(r<<(13-d))/mx)));
1642
+ return std::make_pair(my<<13, (mx<<13)+(r<<12)/mx);
1643
+ }
1644
+
1645
+ /// Get exponentials for hyperbolic computation
1646
+ /// \param abs half-precision floating-point value
1647
+ /// \param exp variable to take unbiased exponent of larger result
1648
+ /// \param n number of BKM iterations (at most 32)
1649
+ /// \return exp(abs) and exp(-\a abs) as Q1.31 with same exponent
1650
+ inline std::pair<uint32,uint32> hyperbolic_args(unsigned int abs, int &exp, unsigned int n = 32)
1651
+ {
1652
+ uint32 mx = detail::multiply64(static_cast<uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29), my;
1653
+ int e = (abs>>10) + (abs<=0x3FF);
1654
+ if(e < 14)
1655
+ {
1656
+ exp = 0;
1657
+ mx >>= 14 - e;
1658
+ }
1659
+ else
1660
+ {
1661
+ exp = mx >> (45-e);
1662
+ mx = (mx<<(e-14)) & 0x7FFFFFFF;
1663
+ }
1664
+ mx = exp2(mx, n);
1665
+ int d = exp << 1, s;
1666
+ if(mx > 0x80000000)
1667
+ {
1668
+ my = divide64(0x80000000, mx, s);
1669
+ my |= s;
1670
+ ++d;
1671
+ }
1672
+ else
1673
+ my = mx;
1674
+ return std::make_pair(mx, (d<31) ? ((my>>d)|((my&((static_cast<uint32>(1)<<d)-1))!=0)) : 1);
1675
+ }
1676
+
1677
+ /// Postprocessing for binary exponential.
1678
+ /// \tparam R rounding mode to use
1679
+ /// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
1680
+ /// \param m mantissa as Q1.31
1681
+ /// \param exp absolute value of unbiased exponent
1682
+ /// \param esign sign of actual exponent
1683
+ /// \param sign sign bit of result
1684
+ /// \return value converted to half-precision
1685
+ /// \exception FE_OVERFLOW on overflows
1686
+ /// \exception FE_UNDERFLOW on underflows
1687
+ /// \exception FE_INEXACT if value had to be rounded or \a I is `true`
1688
+ template<std::float_round_style R,bool I> unsigned int exp2_post(uint32 m, int exp, bool esign, unsigned int sign = 0)
1689
+ {
1690
+ int s = 0;
1691
+ if(esign)
1692
+ {
1693
+ if(m > 0x80000000)
1694
+ {
1695
+ m = divide64(0x80000000, m, s);
1696
+ ++exp;
1697
+ }
1698
+ if(exp > 25)
1699
+ return underflow<R>(sign);
1700
+ else if(exp == 25)
1701
+ return rounded<R,I>(sign, 1, (m&0x7FFFFFFF)!=0);
1702
+ exp = -exp;
1703
+ }
1704
+ else if(exp > 15)
1705
+ return overflow<R>(sign);
1706
+ return fixed2half<R,31,false,false,I>(m, exp+14, sign, s);
1707
+ }
1708
+
1709
+ /// Postprocessing for binary logarithm.
1710
+ /// \tparam R rounding mode to use
1711
+ /// \tparam L logarithm for base transformation as Q1.31
1712
+ /// \param m fractional part of logarithm as Q0.31
1713
+ /// \param ilog signed integer part of logarithm
1714
+ /// \param exp biased exponent of result
1715
+ /// \param sign sign bit of result
1716
+ /// \return value base-transformed and converted to half-precision
1717
+ /// \exception FE_OVERFLOW on overflows
1718
+ /// \exception FE_UNDERFLOW on underflows
1719
+ /// \exception FE_INEXACT if no other exception occurred
1720
+ template<std::float_round_style R,uint32 L> unsigned int log2_post(uint32 m, int ilog, int exp, unsigned int sign = 0)
1721
+ {
1722
+ uint32 msign = sign_mask(ilog);
1723
+ m = (((static_cast<uint32>(ilog)<<27)+(m>>4))^msign) - msign;
1724
+ if(!m)
1725
+ return 0;
1726
+ for(; m<0x80000000; m<<=1,--exp) ;
1727
+ int i = m >= L, s;
1728
+ exp += i;
1729
+ m >>= 1 + i;
1730
+ sign ^= msign & 0x8000;
1731
+ if(exp < -11)
1732
+ return underflow<R>(sign);
1733
+ m = divide64(m, L, s);
1734
+ return fixed2half<R,30,false,false,true>(m, exp, sign, 1);
1735
+ }
1736
+
1737
+ /// Hypotenuse square root and postprocessing.
1738
+ /// \tparam R rounding mode to use
1739
+ /// \param r mantissa as Q2.30
1740
+ /// \param exp unbiased exponent
1741
+ /// \return square root converted to half-precision
1742
+ /// \exception FE_OVERFLOW on overflows
1743
+ /// \exception FE_UNDERFLOW on underflows
1744
+ /// \exception FE_INEXACT if value had to be rounded
1745
+ template<std::float_round_style R> unsigned int hypot_post(uint32 r, int exp)
1746
+ {
1747
+ int i = r >> 31;
1748
+ if((exp+=i) > 46)
1749
+ return overflow<R>();
1750
+ if(exp < -34)
1751
+ return underflow<R>();
1752
+ r = (r>>i) | (r&i);
1753
+ uint32 m = sqrt<30>(r, exp+=15);
1754
+ return fixed2half<R,15,false,false,false>(m, exp-1, 0, r!=0);
1755
+ }
1756
+
1757
+ /// Division and postprocessing for tangents.
1758
+ /// \tparam R rounding mode to use
1759
+ /// \param my dividend as Q1.31
1760
+ /// \param mx divisor as Q1.31
1761
+ /// \param exp biased exponent of result
1762
+ /// \param sign sign bit of result
1763
+ /// \return quotient converted to half-precision
1764
+ /// \exception FE_OVERFLOW on overflows
1765
+ /// \exception FE_UNDERFLOW on underflows
1766
+ /// \exception FE_INEXACT if no other exception occurred
1767
+ template<std::float_round_style R> unsigned int tangent_post(uint32 my, uint32 mx, int exp, unsigned int sign = 0)
1768
+ {
1769
+ int i = my >= mx, s;
1770
+ exp += i;
1771
+ if(exp > 29)
1772
+ return overflow<R>(sign);
1773
+ if(exp < -11)
1774
+ return underflow<R>(sign);
1775
+ uint32 m = divide64(my>>(i+1), mx, s);
1776
+ return fixed2half<R,30,false,false,true>(m, exp, sign, s);
1777
+ }
1778
+
1779
+ /// Area function and postprocessing.
1780
+ /// This computes the value directly in Q2.30 using the representation `asinh|acosh(x) = log(x+sqrt(x^2+|-1))`.
1781
+ /// \tparam R rounding mode to use
1782
+ /// \tparam S `true` for asinh, `false` for acosh
1783
+ /// \param arg half-precision argument
1784
+ /// \return asinh|acosh(\a arg) converted to half-precision
1785
+ /// \exception FE_OVERFLOW on overflows
1786
+ /// \exception FE_UNDERFLOW on underflows
1787
+ /// \exception FE_INEXACT if no other exception occurred
1788
+ template<std::float_round_style R,bool S> unsigned int area(unsigned int arg)
1789
+ {
1790
+ int abs = arg & 0x7FFF, expx = (abs>>10) + (abs<=0x3FF) - 15, expy = -15, ilog, i;
1791
+ uint32 mx = static_cast<uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << 20, my, r;
1792
+ for(; abs<0x400; abs<<=1,--expy) ;
1793
+ expy += abs >> 10;
1794
+ r = ((abs&0x3FF)|0x400) << 5;
1795
+ r *= r;
1796
+ i = r >> 31;
1797
+ expy = 2*expy + i;
1798
+ r >>= i;
1799
+ if(S)
1800
+ {
1801
+ if(expy < 0)
1802
+ {
1803
+ r = 0x40000000 + ((expy>-30) ? ((r>>-expy)|((r&((static_cast<uint32>(1)<<-expy)-1))!=0)) : 1);
1804
+ expy = 0;
1805
+ }
1806
+ else
1807
+ {
1808
+ r += 0x40000000 >> expy;
1809
+ i = r >> 31;
1810
+ r = (r>>i) | (r&i);
1811
+ expy += i;
1812
+ }
1813
+ }
1814
+ else
1815
+ {
1816
+ r -= 0x40000000 >> expy;
1817
+ for(; r<0x40000000; r<<=1,--expy) ;
1818
+ }
1819
+ my = sqrt<30>(r, expy);
1820
+ my = (my<<15) + (r<<14)/my;
1821
+ if(S)
1822
+ {
1823
+ mx >>= expy - expx;
1824
+ ilog = expy;
1825
+ }
1826
+ else
1827
+ {
1828
+ my >>= expx - expy;
1829
+ ilog = expx;
1830
+ }
1831
+ my += mx;
1832
+ i = my >> 31;
1833
+ static const int G = S && (R==std::round_to_nearest);
1834
+ return log2_post<R,0xB8AA3B2A>(log2(my>>i, 26+S+G)+(G<<3), ilog+i, 17, arg&(static_cast<unsigned>(S)<<15));
1835
+ }
1836
+
1837
+ /// Class for 1.31 unsigned floating-point computation
1838
+ struct f31
1839
+ {
1840
+ /// Constructor.
1841
+ /// \param mant mantissa as 1.31
1842
+ /// \param e exponent
1843
+ HALF_CONSTEXPR f31(uint32 mant, int e) : m(mant), exp(e) {}
1844
+
1845
+ /// Constructor.
1846
+ /// \param abs unsigned half-precision value
1847
+ f31(unsigned int abs) : exp(-15)
1848
+ {
1849
+ for(; abs<0x400; abs<<=1,--exp) ;
1850
+ m = static_cast<uint32>((abs&0x3FF)|0x400) << 21;
1851
+ exp += (abs>>10);
1852
+ }
1853
+
1854
+ /// Addition operator.
1855
+ /// \param a first operand
1856
+ /// \param b second operand
1857
+ /// \return \a a + \a b
1858
+ friend f31 operator+(f31 a, f31 b)
1859
+ {
1860
+ if(b.exp > a.exp)
1861
+ std::swap(a, b);
1862
+ int d = a.exp - b.exp;
1863
+ uint32 m = a.m + ((d<32) ? (b.m>>d) : 0);
1864
+ int i = (m&0xFFFFFFFF) < a.m;
1865
+ return f31(((m+i)>>i)|0x80000000, a.exp+i);
1866
+ }
1867
+
1868
+ /// Subtraction operator.
1869
+ /// \param a first operand
1870
+ /// \param b second operand
1871
+ /// \return \a a - \a b
1872
+ friend f31 operator-(f31 a, f31 b)
1873
+ {
1874
+ int d = a.exp - b.exp, exp = a.exp;
1875
+ uint32 m = a.m - ((d<32) ? (b.m>>d) : 0);
1876
+ if(!m)
1877
+ return f31(0, -32);
1878
+ for(; m<0x80000000; m<<=1,--exp) ;
1879
+ return f31(m, exp);
1880
+ }
1881
+
1882
+ /// Multiplication operator.
1883
+ /// \param a first operand
1884
+ /// \param b second operand
1885
+ /// \return \a a * \a b
1886
+ friend f31 operator*(f31 a, f31 b)
1887
+ {
1888
+ uint32 m = multiply64(a.m, b.m);
1889
+ int i = m >> 31;
1890
+ return f31(m<<(1-i), a.exp + b.exp + i);
1891
+ }
1892
+
1893
+ /// Division operator.
1894
+ /// \param a first operand
1895
+ /// \param b second operand
1896
+ /// \return \a a / \a b
1897
+ friend f31 operator/(f31 a, f31 b)
1898
+ {
1899
+ int i = a.m >= b.m, s;
1900
+ uint32 m = divide64((a.m+i)>>i, b.m, s);
1901
+ return f31(m, a.exp - b.exp + i - 1);
1902
+ }
1903
+
1904
+ uint32 m; ///< mantissa as 1.31.
1905
+ int exp; ///< exponent.
1906
+ };
1907
+
1908
+ /// Error function and postprocessing.
1909
+ /// This computes the value directly in Q1.31 using the approximations given
1910
+ /// [here](https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions).
1911
+ /// \tparam R rounding mode to use
1912
+ /// \tparam C `true` for comlementary error function, `false` else
1913
+ /// \param arg half-precision function argument
1914
+ /// \return approximated value of error function in half-precision
1915
+ /// \exception FE_OVERFLOW on overflows
1916
+ /// \exception FE_UNDERFLOW on underflows
1917
+ /// \exception FE_INEXACT if no other exception occurred
1918
+ template<std::float_round_style R,bool C> unsigned int erf(unsigned int arg)
1919
+ {
1920
+ unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
1921
+ f31 x(abs), x2 = x * x * f31(0xB8AA3B29, 0), t = f31(0x80000000, 0) / (f31(0x80000000, 0)+f31(0xA7BA054A, -2)*x), t2 = t * t;
1922
+ f31 e = ((f31(0x87DC2213, 0)*t2+f31(0xB5F0E2AE, 0))*t2+f31(0x82790637, -2)-(f31(0xBA00E2B8, 0)*t2+f31(0x91A98E62, -2))*t) * t /
1923
+ ((x2.exp<0) ? f31(exp2((x2.exp>-32) ? (x2.m>>-x2.exp) : 0, 30), 0) : f31(exp2((x2.m<<x2.exp)&0x7FFFFFFF, 22), x2.m>>(31-x2.exp)));
1924
+ return (!C || sign) ? fixed2half<R,31,false,true,true>(0x80000000-(e.m>>(C-e.exp)), 14+C, sign&(C-1U)) :
1925
+ (e.exp<-25) ? underflow<R>() : fixed2half<R,30,false,false,true>(e.m>>1, e.exp+14, 0, e.m&1);
1926
+ }
1927
+
1928
+ /// Gamma function and postprocessing.
1929
+ /// This approximates the value of either the gamma function or its logarithm directly in Q1.31.
1930
+ /// \tparam R rounding mode to use
1931
+ /// \tparam L `true` for lograithm of gamma function, `false` for gamma function
1932
+ /// \param arg half-precision floating-point value
1933
+ /// \return lgamma/tgamma(\a arg) in half-precision
1934
+ /// \exception FE_OVERFLOW on overflows
1935
+ /// \exception FE_UNDERFLOW on underflows
1936
+ /// \exception FE_INEXACT if \a arg is not a positive integer
1937
+ template<std::float_round_style R,bool L> unsigned int gamma(unsigned int arg)
1938
+ {
1939
+ /* static const double p[] ={ 2.50662827563479526904, 225.525584619175212544, -268.295973841304927459, 80.9030806934622512966, -5.00757863970517583837, 0.0114684895434781459556 };
1940
+ double t = arg + 4.65, s = p[0];
1941
+ for(unsigned int i=0; i<5; ++i)
1942
+ s += p[i+1] / (arg+i);
1943
+ return std::log(s) + (arg-0.5)*std::log(t) - t;
1944
+ */ static const f31 pi(0xC90FDAA2, 1), lbe(0xB8AA3B29, 0);
1945
+ unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
1946
+ bool bsign = sign != 0;
1947
+ f31 z(abs), x = sign ? (z+f31(0x80000000, 0)) : z, t = x + f31(0x94CCCCCD, 2), s =
1948
+ f31(0xA06C9901, 1) + f31(0xBBE654E2, -7)/(x+f31(0x80000000, 2)) + f31(0xA1CE6098, 6)/(x+f31(0x80000000, 1))
1949
+ + f31(0xE1868CB7, 7)/x - f31(0x8625E279, 8)/(x+f31(0x80000000, 0)) - f31(0xA03E158F, 2)/(x+f31(0xC0000000, 1));
1950
+ int i = (s.exp>=2) + (s.exp>=4) + (s.exp>=8) + (s.exp>=16);
1951
+ s = f31((static_cast<uint32>(s.exp)<<(31-i))+(log2(s.m>>1, 28)>>i), i) / lbe;
1952
+ if(x.exp != -1 || x.m != 0x80000000)
1953
+ {
1954
+ i = (t.exp>=2) + (t.exp>=4) + (t.exp>=8);
1955
+ f31 l = f31((static_cast<uint32>(t.exp)<<(31-i))+(log2(t.m>>1, 30)>>i), i) / lbe;
1956
+ s = (x.exp<-1) ? (s-(f31(0x80000000, -1)-x)*l) : (s+(x-f31(0x80000000, -1))*l);
1957
+ }
1958
+ s = x.exp ? (s-t) : (t-s);
1959
+ if(bsign)
1960
+ {
1961
+ if(z.exp >= 0)
1962
+ {
1963
+ sign &= (L|((z.m>>(31-z.exp))&1)) - 1;
1964
+ for(z=f31((z.m<<(1+z.exp))&0xFFFFFFFF, -1); z.m<0x80000000; z.m<<=1,--z.exp) ;
1965
+ }
1966
+ if(z.exp == -1)
1967
+ z = f31(0x80000000, 0) - z;
1968
+ if(z.exp < -1)
1969
+ {
1970
+ z = z * pi;
1971
+ z.m = sincos(z.m>>(1-z.exp), 30).first;
1972
+ for(z.exp=1; z.m<0x80000000; z.m<<=1,--z.exp) ;
1973
+ }
1974
+ else
1975
+ z = f31(0x80000000, 0);
1976
+ }
1977
+ if(L)
1978
+ {
1979
+ if(bsign)
1980
+ {
1981
+ f31 l(0x92868247, 0);
1982
+ if(z.exp < 0)
1983
+ {
1984
+ uint32 m = log2((z.m+1)>>1, 27);
1985
+ z = f31(-((static_cast<uint32>(z.exp)<<26)+(m>>5)), 5);
1986
+ for(; z.m<0x80000000; z.m<<=1,--z.exp) ;
1987
+ l = l + z / lbe;
1988
+ }
1989
+ sign = static_cast<unsigned>(x.exp&&(l.exp<s.exp||(l.exp==s.exp&&l.m<s.m))) << 15;
1990
+ s = sign ? (s-l) : x.exp ? (l-s) : (l+s);
1991
+ }
1992
+ else
1993
+ {
1994
+ sign = static_cast<unsigned>(x.exp==0) << 15;
1995
+ if(s.exp < -24)
1996
+ return underflow<R>(sign);
1997
+ if(s.exp > 15)
1998
+ return overflow<R>(sign);
1999
+ }
2000
+ }
2001
+ else
2002
+ {
2003
+ s = s * lbe;
2004
+ uint32 m;
2005
+ if(s.exp < 0)
2006
+ {
2007
+ m = s.m >> -s.exp;
2008
+ s.exp = 0;
2009
+ }
2010
+ else
2011
+ {
2012
+ m = (s.m<<s.exp) & 0x7FFFFFFF;
2013
+ s.exp = (s.m>>(31-s.exp));
2014
+ }
2015
+ s.m = exp2(m, 27);
2016
+ if(!x.exp)
2017
+ s = f31(0x80000000, 0) / s;
2018
+ if(bsign)
2019
+ {
2020
+ if(z.exp < 0)
2021
+ s = s * z;
2022
+ s = pi / s;
2023
+ if(s.exp < -24)
2024
+ return underflow<R>(sign);
2025
+ }
2026
+ else if(z.exp > 0 && !(z.m&((1<<(31-z.exp))-1)))
2027
+ return ((s.exp+14)<<10) + (s.m>>21);
2028
+ if(s.exp > 15)
2029
+ return overflow<R>(sign);
2030
+ }
2031
+ return fixed2half<R,31,false,false,true>(s.m, s.exp+14, sign);
2032
+ }
2033
+ /// \}
2034
+
2035
+ template<typename,typename,std::float_round_style> struct half_caster;
2036
+ }
2037
+
2038
+ /// Half-precision floating-point type.
2039
+ /// This class implements an IEEE-conformant half-precision floating-point type with the usual arithmetic
2040
+ /// operators and conversions. It is implicitly convertible to single-precision floating-point, which makes artihmetic
2041
+ /// expressions and functions with mixed-type operands to be of the most precise operand type.
2042
+ ///
2043
+ /// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and
2044
+ /// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which
2045
+ /// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the
2046
+ /// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of
2047
+ /// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most
2048
+ /// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit
2049
+ /// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if
2050
+ /// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on
2051
+ /// nearly any reasonable platform.
2052
+ ///
2053
+ /// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable
2054
+ /// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation.
2055
+ class half
2056
+ {
2057
+ public:
2058
+ /// \name Construction and assignment
2059
+ /// \{
2060
+
2061
+ /// Default constructor.
2062
+ /// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics
2063
+ /// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics.
2064
+ HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}
2065
+
2066
+ /// Conversion constructor.
2067
+ /// \param rhs float to convert
2068
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2069
+ explicit half(float rhs) : data_(static_cast<detail::uint16>(detail::float2half<round_style>(rhs))) {}
2070
+
2071
+ /// Conversion to single-precision.
2072
+ /// \return single precision value representing expression value
2073
+ operator float() const { return detail::half2float<float>(data_); }
2074
+
2075
+ /// Assignment operator.
2076
+ /// \param rhs single-precision value to copy from
2077
+ /// \return reference to this half
2078
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2079
+ half& operator=(float rhs) { data_ = static_cast<detail::uint16>(detail::float2half<round_style>(rhs)); return *this; }
2080
+
2081
+ /// \}
2082
+ /// \name Arithmetic updates
2083
+ /// \{
2084
+
2085
+ /// Arithmetic assignment.
2086
+ /// \tparam T type of concrete half expression
2087
+ /// \param rhs half expression to add
2088
+ /// \return reference to this half
2089
+ /// \exception FE_... according to operator+(half,half)
2090
+ half& operator+=(half rhs) { return *this = *this + rhs; }
2091
+
2092
+ /// Arithmetic assignment.
2093
+ /// \tparam T type of concrete half expression
2094
+ /// \param rhs half expression to subtract
2095
+ /// \return reference to this half
2096
+ /// \exception FE_... according to operator-(half,half)
2097
+ half& operator-=(half rhs) { return *this = *this - rhs; }
2098
+
2099
+ /// Arithmetic assignment.
2100
+ /// \tparam T type of concrete half expression
2101
+ /// \param rhs half expression to multiply with
2102
+ /// \return reference to this half
2103
+ /// \exception FE_... according to operator*(half,half)
2104
+ half& operator*=(half rhs) { return *this = *this * rhs; }
2105
+
2106
+ /// Arithmetic assignment.
2107
+ /// \tparam T type of concrete half expression
2108
+ /// \param rhs half expression to divide by
2109
+ /// \return reference to this half
2110
+ /// \exception FE_... according to operator/(half,half)
2111
+ half& operator/=(half rhs) { return *this = *this / rhs; }
2112
+
2113
+ /// Arithmetic assignment.
2114
+ /// \param rhs single-precision value to add
2115
+ /// \return reference to this half
2116
+ /// \exception FE_... according to operator=()
2117
+ half& operator+=(float rhs) { return *this = *this + rhs; }
2118
+
2119
+ /// Arithmetic assignment.
2120
+ /// \param rhs single-precision value to subtract
2121
+ /// \return reference to this half
2122
+ /// \exception FE_... according to operator=()
2123
+ half& operator-=(float rhs) { return *this = *this - rhs; }
2124
+
2125
+ /// Arithmetic assignment.
2126
+ /// \param rhs single-precision value to multiply with
2127
+ /// \return reference to this half
2128
+ /// \exception FE_... according to operator=()
2129
+ half& operator*=(float rhs) { return *this = *this * rhs; }
2130
+
2131
+ /// Arithmetic assignment.
2132
+ /// \param rhs single-precision value to divide by
2133
+ /// \return reference to this half
2134
+ /// \exception FE_... according to operator=()
2135
+ half& operator/=(float rhs) { return *this = *this / rhs; }
2136
+
2137
+ /// \}
2138
+ /// \name Increment and decrement
2139
+ /// \{
2140
+
2141
+ /// Prefix increment.
2142
+ /// \return incremented half value
2143
+ /// \exception FE_... according to operator+(half,half)
2144
+ half& operator++() { return *this = *this + half(detail::binary, 0x3C00); }
2145
+
2146
+ /// Prefix decrement.
2147
+ /// \return decremented half value
2148
+ /// \exception FE_... according to operator-(half,half)
2149
+ half& operator--() { return *this = *this + half(detail::binary, 0xBC00); }
2150
+
2151
+ /// Postfix increment.
2152
+ /// \return non-incremented half value
2153
+ /// \exception FE_... according to operator+(half,half)
2154
+ half operator++(int) { half out(*this); ++*this; return out; }
2155
+
2156
+ /// Postfix decrement.
2157
+ /// \return non-decremented half value
2158
+ /// \exception FE_... according to operator-(half,half)
2159
+ half operator--(int) { half out(*this); --*this; return out; }
2160
+ /// \}
2161
+
2162
+ private:
2163
+ /// Rounding mode to use
2164
+ static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE);
2165
+
2166
+ /// Constructor.
2167
+ /// \param bits binary representation to set half to
2168
+ HALF_CONSTEXPR half(detail::binary_t, unsigned int bits) HALF_NOEXCEPT : data_(static_cast<detail::uint16>(bits)) {}
2169
+
2170
+ /// Internal binary representation
2171
+ detail::uint16 data_;
2172
+
2173
+ #ifndef HALF_DOXYGEN_ONLY
2174
+ friend HALF_CONSTEXPR_NOERR bool operator==(half, half);
2175
+ friend HALF_CONSTEXPR_NOERR bool operator!=(half, half);
2176
+ friend HALF_CONSTEXPR_NOERR bool operator<(half, half);
2177
+ friend HALF_CONSTEXPR_NOERR bool operator>(half, half);
2178
+ friend HALF_CONSTEXPR_NOERR bool operator<=(half, half);
2179
+ friend HALF_CONSTEXPR_NOERR bool operator>=(half, half);
2180
+ friend HALF_CONSTEXPR half operator-(half);
2181
+ friend half operator+(half, half);
2182
+ friend half operator-(half, half);
2183
+ friend half operator*(half, half);
2184
+ friend half operator/(half, half);
2185
+ template<typename charT,typename traits> friend std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits>&, half);
2186
+ template<typename charT,typename traits> friend std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits>&, half&);
2187
+ friend HALF_CONSTEXPR half fabs(half);
2188
+ friend half fmod(half, half);
2189
+ friend half remainder(half, half);
2190
+ friend half remquo(half, half, int*);
2191
+ friend half fma(half, half, half);
2192
+ friend HALF_CONSTEXPR_NOERR half fmax(half, half);
2193
+ friend HALF_CONSTEXPR_NOERR half fmin(half, half);
2194
+ friend half fdim(half, half);
2195
+ friend half nanh(const char*);
2196
+ friend half exp(half);
2197
+ friend half exp2(half);
2198
+ friend half expm1(half);
2199
+ friend half log(half);
2200
+ friend half log10(half);
2201
+ friend half log2(half);
2202
+ friend half log1p(half);
2203
+ friend half sqrt(half);
2204
+ friend half cbrt(half);
2205
+ friend half hypot(half, half);
2206
+ friend half hypot(half, half, half);
2207
+ friend half pow(half, half);
2208
+ friend void sincos(half, half*, half*);
2209
+ friend half sin(half);
2210
+ friend half cos(half);
2211
+ friend half tan(half);
2212
+ friend half asin(half);
2213
+ friend half acos(half);
2214
+ friend half atan(half);
2215
+ friend half atan2(half, half);
2216
+ friend half sinh(half);
2217
+ friend half cosh(half);
2218
+ friend half tanh(half);
2219
+ friend half asinh(half);
2220
+ friend half acosh(half);
2221
+ friend half atanh(half);
2222
+ friend half erf(half);
2223
+ friend half erfc(half);
2224
+ friend half lgamma(half);
2225
+ friend half tgamma(half);
2226
+ friend half ceil(half);
2227
+ friend half floor(half);
2228
+ friend half trunc(half);
2229
+ friend half round(half);
2230
+ friend long lround(half);
2231
+ friend half rint(half);
2232
+ friend long lrint(half);
2233
+ friend half nearbyint(half);
2234
+ #ifdef HALF_ENABLE_CPP11_LONG_LONG
2235
+ friend long long llround(half);
2236
+ friend long long llrint(half);
2237
+ #endif
2238
+ friend half frexp(half, int*);
2239
+ friend half scalbln(half, long);
2240
+ friend half modf(half, half*);
2241
+ friend int ilogb(half);
2242
+ friend half logb(half);
2243
+ friend half nextafter(half, half);
2244
+ friend half nexttoward(half, long double);
2245
+ friend HALF_CONSTEXPR half copysign(half, half);
2246
+ friend HALF_CONSTEXPR int fpclassify(half);
2247
+ friend HALF_CONSTEXPR bool isfinite(half);
2248
+ friend HALF_CONSTEXPR bool isinf(half);
2249
+ friend HALF_CONSTEXPR bool isnan(half);
2250
+ friend HALF_CONSTEXPR bool isnormal(half);
2251
+ friend HALF_CONSTEXPR bool signbit(half);
2252
+ friend HALF_CONSTEXPR bool isgreater(half, half);
2253
+ friend HALF_CONSTEXPR bool isgreaterequal(half, half);
2254
+ friend HALF_CONSTEXPR bool isless(half, half);
2255
+ friend HALF_CONSTEXPR bool islessequal(half, half);
2256
+ friend HALF_CONSTEXPR bool islessgreater(half, half);
2257
+ template<typename,typename,std::float_round_style> friend struct detail::half_caster;
2258
+ friend class std::numeric_limits<half>;
2259
+ #if HALF_ENABLE_CPP11_HASH
2260
+ friend struct std::hash<half>;
2261
+ #endif
2262
+ #if HALF_ENABLE_CPP11_USER_LITERALS
2263
+ friend half literal::operator "" _h(long double);
2264
+ #endif
2265
+ #endif
2266
+ };
2267
+
2268
+ #if HALF_ENABLE_CPP11_USER_LITERALS
2269
+ namespace literal
2270
+ {
2271
+ /// Half literal.
2272
+ /// While this returns a properly rounded half-precision value, half literals can unfortunately not be constant
2273
+ /// expressions due to rather involved conversions. So don't expect this to be a literal literal without involving
2274
+ /// conversion operations at runtime. It is a convenience feature, not a performance optimization.
2275
+ /// \param value literal value
2276
+ /// \return half with of given value (possibly rounded)
2277
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2278
+ inline half operator "" _h(long double value) { return half(detail::binary, detail::float2half<half::round_style>(value)); }
2279
+ }
2280
+ #endif
2281
+
2282
+ namespace detail
2283
+ {
2284
+ /// Helper class for half casts.
2285
+ /// This class template has to be specialized for all valid cast arguments to define an appropriate static
2286
+ /// `cast` member function and a corresponding `type` member denoting its return type.
2287
+ /// \tparam T destination type
2288
+ /// \tparam U source type
2289
+ /// \tparam R rounding mode to use
2290
+ template<typename T,typename U,std::float_round_style R=(std::float_round_style)(HALF_ROUND_STYLE)> struct half_caster {};
2291
+ template<typename U,std::float_round_style R> struct half_caster<half,U,R>
2292
+ {
2293
+ #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
2294
+ static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type unsupported");
2295
+ #endif
2296
+
2297
+ static half cast(U arg) { return cast_impl(arg, is_float<U>()); };
2298
+
2299
+ private:
2300
+ static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(arg)); }
2301
+ static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); }
2302
+ };
2303
+ template<typename T,std::float_round_style R> struct half_caster<T,half,R>
2304
+ {
2305
+ #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
2306
+ static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");
2307
+ #endif
2308
+
2309
+ static T cast(half arg) { return cast_impl(arg, is_float<T>()); }
2310
+
2311
+ private:
2312
+ static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); }
2313
+ static T cast_impl(half arg, false_type) { return half2int<R,true,true,T>(arg.data_); }
2314
+ };
2315
+ template<std::float_round_style R> struct half_caster<half,half,R>
2316
+ {
2317
+ static half cast(half arg) { return arg; }
2318
+ };
2319
+ }
2320
+ }
2321
+
2322
+ /// Extensions to the C++ standard library.
2323
+ namespace std
2324
+ {
2325
+ /// Numeric limits for half-precision floats.
2326
+ /// **See also:** Documentation for [std::numeric_limits](https://en.cppreference.com/w/cpp/types/numeric_limits)
2327
+ template<> class numeric_limits<half_float::half>
2328
+ {
2329
+ public:
2330
+ /// Is template specialization.
2331
+ static HALF_CONSTEXPR_CONST bool is_specialized = true;
2332
+
2333
+ /// Supports signed values.
2334
+ static HALF_CONSTEXPR_CONST bool is_signed = true;
2335
+
2336
+ /// Is not an integer type.
2337
+ static HALF_CONSTEXPR_CONST bool is_integer = false;
2338
+
2339
+ /// Is not exact.
2340
+ static HALF_CONSTEXPR_CONST bool is_exact = false;
2341
+
2342
+ /// Doesn't provide modulo arithmetic.
2343
+ static HALF_CONSTEXPR_CONST bool is_modulo = false;
2344
+
2345
+ /// Has a finite set of values.
2346
+ static HALF_CONSTEXPR_CONST bool is_bounded = true;
2347
+
2348
+ /// IEEE conformant.
2349
+ static HALF_CONSTEXPR_CONST bool is_iec559 = true;
2350
+
2351
+ /// Supports infinity.
2352
+ static HALF_CONSTEXPR_CONST bool has_infinity = true;
2353
+
2354
+ /// Supports quiet NaNs.
2355
+ static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;
2356
+
2357
+ /// Supports signaling NaNs.
2358
+ static HALF_CONSTEXPR_CONST bool has_signaling_NaN = true;
2359
+
2360
+ /// Supports subnormal values.
2361
+ static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;
2362
+
2363
+ /// Supports no denormalization detection.
2364
+ static HALF_CONSTEXPR_CONST bool has_denorm_loss = false;
2365
+
2366
+ #if HALF_ERRHANDLING_THROWS
2367
+ static HALF_CONSTEXPR_CONST bool traps = true;
2368
+ #else
2369
+ /// Traps only if [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID) is acitvated.
2370
+ static HALF_CONSTEXPR_CONST bool traps = false;
2371
+ #endif
2372
+
2373
+ /// Does not support no pre-rounding underflow detection.
2374
+ static HALF_CONSTEXPR_CONST bool tinyness_before = false;
2375
+
2376
+ /// Rounding mode.
2377
+ static HALF_CONSTEXPR_CONST float_round_style round_style = half_float::half::round_style;
2378
+
2379
+ /// Significant digits.
2380
+ static HALF_CONSTEXPR_CONST int digits = 11;
2381
+
2382
+ /// Significant decimal digits.
2383
+ static HALF_CONSTEXPR_CONST int digits10 = 3;
2384
+
2385
+ /// Required decimal digits to represent all possible values.
2386
+ static HALF_CONSTEXPR_CONST int max_digits10 = 5;
2387
+
2388
+ /// Number base.
2389
+ static HALF_CONSTEXPR_CONST int radix = 2;
2390
+
2391
+ /// One more than smallest exponent.
2392
+ static HALF_CONSTEXPR_CONST int min_exponent = -13;
2393
+
2394
+ /// Smallest normalized representable power of 10.
2395
+ static HALF_CONSTEXPR_CONST int min_exponent10 = -4;
2396
+
2397
+ /// One more than largest exponent
2398
+ static HALF_CONSTEXPR_CONST int max_exponent = 16;
2399
+
2400
+ /// Largest finitely representable power of 10.
2401
+ static HALF_CONSTEXPR_CONST int max_exponent10 = 4;
2402
+
2403
+ /// Smallest positive normal value.
2404
+ static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); }
2405
+
2406
+ /// Smallest finite value.
2407
+ static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); }
2408
+
2409
+ /// Largest finite value.
2410
+ static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); }
2411
+
2412
+ /// Difference between 1 and next representable value.
2413
+ static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); }
2414
+
2415
+ /// Maximum rounding error in ULP (units in the last place).
2416
+ static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW
2417
+ { return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); }
2418
+
2419
+ /// Positive infinity.
2420
+ static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); }
2421
+
2422
+ /// Quiet NaN.
2423
+ static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); }
2424
+
2425
+ /// Signaling NaN.
2426
+ static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); }
2427
+
2428
+ /// Smallest positive subnormal value.
2429
+ static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); }
2430
+ };
2431
+
2432
+ #if HALF_ENABLE_CPP11_HASH
2433
+ /// Hash function for half-precision floats.
2434
+ /// This is only defined if C++11 `std::hash` is supported and enabled.
2435
+ ///
2436
+ /// **See also:** Documentation for [std::hash](https://en.cppreference.com/w/cpp/utility/hash)
2437
+ template<> struct hash<half_float::half>
2438
+ {
2439
+ /// Type of function argument.
2440
+ typedef half_float::half argument_type;
2441
+
2442
+ /// Function return type.
2443
+ typedef size_t result_type;
2444
+
2445
+ /// Compute hash function.
2446
+ /// \param arg half to hash
2447
+ /// \return hash value
2448
+ result_type operator()(argument_type arg) const { return hash<half_float::detail::uint16>()(arg.data_&-static_cast<unsigned>(arg.data_!=0x8000)); }
2449
+ };
2450
+ #endif
2451
+ }
2452
+
2453
+ namespace half_float
2454
+ {
2455
+ /// \anchor compop
2456
+ /// \name Comparison operators
2457
+ /// \{
2458
+
2459
+ /// Comparison for equality.
2460
+ /// \param x first operand
2461
+ /// \param y second operand
2462
+ /// \retval true if operands equal
2463
+ /// \retval false else
2464
+ /// \exception FE_INVALID if \a x or \a y is NaN
2465
+ inline HALF_CONSTEXPR_NOERR bool operator==(half x, half y)
2466
+ {
2467
+ return !detail::compsignal(x.data_, y.data_) && (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF));
2468
+ }
2469
+
2470
+ /// Comparison for inequality.
2471
+ /// \param x first operand
2472
+ /// \param y second operand
2473
+ /// \retval true if operands not equal
2474
+ /// \retval false else
2475
+ /// \exception FE_INVALID if \a x or \a y is NaN
2476
+ inline HALF_CONSTEXPR_NOERR bool operator!=(half x, half y)
2477
+ {
2478
+ return detail::compsignal(x.data_, y.data_) || (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF));
2479
+ }
2480
+
2481
+ /// Comparison for less than.
2482
+ /// \param x first operand
2483
+ /// \param y second operand
2484
+ /// \retval true if \a x less than \a y
2485
+ /// \retval false else
2486
+ /// \exception FE_INVALID if \a x or \a y is NaN
2487
+ inline HALF_CONSTEXPR_NOERR bool operator<(half x, half y)
2488
+ {
2489
+ return !detail::compsignal(x.data_, y.data_) &&
2490
+ ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
2491
+ }
2492
+
2493
+ /// Comparison for greater than.
2494
+ /// \param x first operand
2495
+ /// \param y second operand
2496
+ /// \retval true if \a x greater than \a y
2497
+ /// \retval false else
2498
+ /// \exception FE_INVALID if \a x or \a y is NaN
2499
+ inline HALF_CONSTEXPR_NOERR bool operator>(half x, half y)
2500
+ {
2501
+ return !detail::compsignal(x.data_, y.data_) &&
2502
+ ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
2503
+ }
2504
+
2505
+ /// Comparison for less equal.
2506
+ /// \param x first operand
2507
+ /// \param y second operand
2508
+ /// \retval true if \a x less equal \a y
2509
+ /// \retval false else
2510
+ /// \exception FE_INVALID if \a x or \a y is NaN
2511
+ inline HALF_CONSTEXPR_NOERR bool operator<=(half x, half y)
2512
+ {
2513
+ return !detail::compsignal(x.data_, y.data_) &&
2514
+ ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
2515
+ }
2516
+
2517
+ /// Comparison for greater equal.
2518
+ /// \param x first operand
2519
+ /// \param y second operand
2520
+ /// \retval true if \a x greater equal \a y
2521
+ /// \retval false else
2522
+ /// \exception FE_INVALID if \a x or \a y is NaN
2523
+ inline HALF_CONSTEXPR_NOERR bool operator>=(half x, half y)
2524
+ {
2525
+ return !detail::compsignal(x.data_, y.data_) &&
2526
+ ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
2527
+ }
2528
+
2529
+ /// \}
2530
+ /// \anchor arithmetics
2531
+ /// \name Arithmetic operators
2532
+ /// \{
2533
+
2534
+ /// Identity.
2535
+ /// \param arg operand
2536
+ /// \return unchanged operand
2537
+ inline HALF_CONSTEXPR half operator+(half arg) { return arg; }
2538
+
2539
+ /// Negation.
2540
+ /// \param arg operand
2541
+ /// \return negated operand
2542
+ inline HALF_CONSTEXPR half operator-(half arg) { return half(detail::binary, arg.data_^0x8000); }
2543
+
2544
+ /// Addition.
2545
+ /// This operation is exact to rounding for all rounding modes.
2546
+ /// \param x left operand
2547
+ /// \param y right operand
2548
+ /// \return sum of half expressions
2549
+ /// \exception FE_INVALID if \a x and \a y are infinities with different signs or signaling NaNs
2550
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2551
+ inline half operator+(half x, half y)
2552
+ {
2553
+ #ifdef HALF_ARITHMETIC_TYPE
2554
+ return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)+detail::half2float<detail::internal_t>(y.data_)));
2555
+ #else
2556
+ int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF;
2557
+ bool sub = ((x.data_^y.data_)&0x8000) != 0;
2558
+ if(absx >= 0x7C00 || absy >= 0x7C00)
2559
+ return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : (absy!=0x7C00) ? x.data_ :
2560
+ (sub && absx==0x7C00) ? detail::invalid() : y.data_);
2561
+ if(!absx)
2562
+ return absy ? y : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (x.data_|y.data_) : (x.data_&y.data_));
2563
+ if(!absy)
2564
+ return x;
2565
+ unsigned int sign = ((sub && absy>absx) ? y.data_ : x.data_) & 0x8000;
2566
+ if(absy > absx)
2567
+ std::swap(absx, absy);
2568
+ int exp = (absx>>10) + (absx<=0x3FF), d = exp - (absy>>10) - (absy<=0x3FF), mx = ((absx&0x3FF)|((absx>0x3FF)<<10)) << 3, my;
2569
+ if(d < 13)
2570
+ {
2571
+ my = ((absy&0x3FF)|((absy>0x3FF)<<10)) << 3;
2572
+ my = (my>>d) | ((my&((1<<d)-1))!=0);
2573
+ }
2574
+ else
2575
+ my = 1;
2576
+ if(sub)
2577
+ {
2578
+ if(!(mx-=my))
2579
+ return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15);
2580
+ for(; mx<0x2000 && exp>1; mx<<=1,--exp) ;
2581
+ }
2582
+ else
2583
+ {
2584
+ mx += my;
2585
+ int i = mx >> 14;
2586
+ if((exp+=i) > 30)
2587
+ return half(detail::binary, detail::overflow<half::round_style>(sign));
2588
+ mx = (mx>>i) | (mx&i);
2589
+ }
2590
+ return half(detail::binary, detail::rounded<half::round_style,false>(sign+((exp-1)<<10)+(mx>>3), (mx>>2)&1, (mx&0x3)!=0));
2591
+ #endif
2592
+ }
2593
+
2594
+ /// Subtraction.
2595
+ /// This operation is exact to rounding for all rounding modes.
2596
+ /// \param x left operand
2597
+ /// \param y right operand
2598
+ /// \return difference of half expressions
2599
+ /// \exception FE_INVALID if \a x and \a y are infinities with equal signs or signaling NaNs
2600
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2601
+ inline half operator-(half x, half y)
2602
+ {
2603
+ #ifdef HALF_ARITHMETIC_TYPE
2604
+ return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)-detail::half2float<detail::internal_t>(y.data_)));
2605
+ #else
2606
+ return x + -y;
2607
+ #endif
2608
+ }
2609
+
2610
+ /// Multiplication.
2611
+ /// This operation is exact to rounding for all rounding modes.
2612
+ /// \param x left operand
2613
+ /// \param y right operand
2614
+ /// \return product of half expressions
2615
+ /// \exception FE_INVALID if multiplying 0 with infinity or if \a x or \a y is signaling NaN
2616
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2617
+ inline half operator*(half x, half y)
2618
+ {
2619
+ #ifdef HALF_ARITHMETIC_TYPE
2620
+ return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)*detail::half2float<detail::internal_t>(y.data_)));
2621
+ #else
2622
+ int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -16;
2623
+ unsigned int sign = (x.data_^y.data_) & 0x8000;
2624
+ if(absx >= 0x7C00 || absy >= 0x7C00)
2625
+ return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
2626
+ ((absx==0x7C00 && !absy)||(absy==0x7C00 && !absx)) ? detail::invalid() : (sign|0x7C00));
2627
+ if(!absx || !absy)
2628
+ return half(detail::binary, sign);
2629
+ for(; absx<0x400; absx<<=1,--exp) ;
2630
+ for(; absy<0x400; absy<<=1,--exp) ;
2631
+ detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400);
2632
+ int i = m >> 21, s = m & i;
2633
+ exp += (absx>>10) + (absy>>10) + i;
2634
+ if(exp > 29)
2635
+ return half(detail::binary, detail::overflow<half::round_style>(sign));
2636
+ else if(exp < -11)
2637
+ return half(detail::binary, detail::underflow<half::round_style>(sign));
2638
+ return half(detail::binary, detail::fixed2half<half::round_style,20,false,false,false>(m>>i, exp, sign, s));
2639
+ #endif
2640
+ }
2641
+
2642
+ /// Division.
2643
+ /// This operation is exact to rounding for all rounding modes.
2644
+ /// \param x left operand
2645
+ /// \param y right operand
2646
+ /// \return quotient of half expressions
2647
+ /// \exception FE_INVALID if dividing 0s or infinities with each other or if \a x or \a y is signaling NaN
2648
+ /// \exception FE_DIVBYZERO if dividing finite value by 0
2649
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2650
+ inline half operator/(half x, half y)
2651
+ {
2652
+ #ifdef HALF_ARITHMETIC_TYPE
2653
+ return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)/detail::half2float<detail::internal_t>(y.data_)));
2654
+ #else
2655
+ int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = 14;
2656
+ unsigned int sign = (x.data_^y.data_) & 0x8000;
2657
+ if(absx >= 0x7C00 || absy >= 0x7C00)
2658
+ return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
2659
+ (absx==absy) ? detail::invalid() : (sign|((absx==0x7C00) ? 0x7C00 : 0)));
2660
+ if(!absx)
2661
+ return half(detail::binary, absy ? sign : detail::invalid());
2662
+ if(!absy)
2663
+ return half(detail::binary, detail::pole(sign));
2664
+ for(; absx<0x400; absx<<=1,--exp) ;
2665
+ for(; absy<0x400; absy<<=1,++exp) ;
2666
+ detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
2667
+ int i = mx < my;
2668
+ exp += (absx>>10) - (absy>>10) - i;
2669
+ if(exp > 29)
2670
+ return half(detail::binary, detail::overflow<half::round_style>(sign));
2671
+ else if(exp < -11)
2672
+ return half(detail::binary, detail::underflow<half::round_style>(sign));
2673
+ mx <<= 12 + i;
2674
+ my <<= 1;
2675
+ return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,false>(mx/my, exp, sign, mx%my!=0));
2676
+ #endif
2677
+ }
2678
+
2679
+ /// \}
2680
+ /// \anchor streaming
2681
+ /// \name Input and output
2682
+ /// \{
2683
+
2684
+ /// Output operator.
2685
+ /// This uses the built-in functionality for streaming out floating-point numbers.
2686
+ /// \param out output stream to write into
2687
+ /// \param arg half expression to write
2688
+ /// \return reference to output stream
2689
+ template<typename charT,typename traits> std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits> &out, half arg)
2690
+ {
2691
+ #ifdef HALF_ARITHMETIC_TYPE
2692
+ return out << detail::half2float<detail::internal_t>(arg.data_);
2693
+ #else
2694
+ return out << detail::half2float<float>(arg.data_);
2695
+ #endif
2696
+ }
2697
+
2698
+ /// Input operator.
2699
+ /// This uses the built-in functionality for streaming in floating-point numbers, specifically double precision floating
2700
+ /// point numbers (unless overridden with [HALF_ARITHMETIC_TYPE](\ref HALF_ARITHMETIC_TYPE)). So the input string is first
2701
+ /// rounded to double precision using the underlying platform's current floating-point rounding mode before being rounded
2702
+ /// to half-precision using the library's half-precision rounding mode.
2703
+ /// \param in input stream to read from
2704
+ /// \param arg half to read into
2705
+ /// \return reference to input stream
2706
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2707
+ template<typename charT,typename traits> std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits> &in, half &arg)
2708
+ {
2709
+ #ifdef HALF_ARITHMETIC_TYPE
2710
+ detail::internal_t f;
2711
+ #else
2712
+ double f;
2713
+ #endif
2714
+ if(in >> f)
2715
+ arg.data_ = detail::float2half<half::round_style>(f);
2716
+ return in;
2717
+ }
2718
+
2719
+ /// \}
2720
+ /// \anchor basic
2721
+ /// \name Basic mathematical operations
2722
+ /// \{
2723
+
2724
+ /// Absolute value.
2725
+ /// **See also:** Documentation for [std::fabs](https://en.cppreference.com/w/cpp/numeric/math/fabs).
2726
+ /// \param arg operand
2727
+ /// \return absolute value of \a arg
2728
+ inline HALF_CONSTEXPR half fabs(half arg) { return half(detail::binary, arg.data_&0x7FFF); }
2729
+
2730
+ /// Absolute value.
2731
+ /// **See also:** Documentation for [std::abs](https://en.cppreference.com/w/cpp/numeric/math/fabs).
2732
+ /// \param arg operand
2733
+ /// \return absolute value of \a arg
2734
+ inline HALF_CONSTEXPR half abs(half arg) { return fabs(arg); }
2735
+
2736
+ /// Remainder of division.
2737
+ /// **See also:** Documentation for [std::fmod](https://en.cppreference.com/w/cpp/numeric/math/fmod).
2738
+ /// \param x first operand
2739
+ /// \param y second operand
2740
+ /// \return remainder of floating-point division.
2741
+ /// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
2742
+ inline half fmod(half x, half y)
2743
+ {
2744
+ unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000;
2745
+ if(absx >= 0x7C00 || absy >= 0x7C00)
2746
+ return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
2747
+ (absx==0x7C00) ? detail::invalid() : x.data_);
2748
+ if(!absy)
2749
+ return half(detail::binary, detail::invalid());
2750
+ if(!absx)
2751
+ return x;
2752
+ if(absx == absy)
2753
+ return half(detail::binary, sign);
2754
+ return half(detail::binary, sign|detail::mod<false,false>(absx, absy));
2755
+ }
2756
+
2757
+ /// Remainder of division.
2758
+ /// **See also:** Documentation for [std::remainder](https://en.cppreference.com/w/cpp/numeric/math/remainder).
2759
+ /// \param x first operand
2760
+ /// \param y second operand
2761
+ /// \return remainder of floating-point division.
2762
+ /// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
2763
+ inline half remainder(half x, half y)
2764
+ {
2765
+ unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000;
2766
+ if(absx >= 0x7C00 || absy >= 0x7C00)
2767
+ return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
2768
+ (absx==0x7C00) ? detail::invalid() : x.data_);
2769
+ if(!absy)
2770
+ return half(detail::binary, detail::invalid());
2771
+ if(absx == absy)
2772
+ return half(detail::binary, sign);
2773
+ return half(detail::binary, sign^detail::mod<false,true>(absx, absy));
2774
+ }
2775
+
2776
+ /// Remainder of division.
2777
+ /// **See also:** Documentation for [std::remquo](https://en.cppreference.com/w/cpp/numeric/math/remquo).
2778
+ /// \param x first operand
2779
+ /// \param y second operand
2780
+ /// \param quo address to store some bits of quotient at
2781
+ /// \return remainder of floating-point division.
2782
+ /// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
2783
+ inline half remquo(half x, half y, int *quo)
2784
+ {
2785
+ unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, value = x.data_ & 0x8000;
2786
+ if(absx >= 0x7C00 || absy >= 0x7C00)
2787
+ return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
2788
+ (absx==0x7C00) ? detail::invalid() : (*quo = 0, x.data_));
2789
+ if(!absy)
2790
+ return half(detail::binary, detail::invalid());
2791
+ bool qsign = ((value^y.data_)&0x8000) != 0;
2792
+ int q = 1;
2793
+ if(absx != absy)
2794
+ value ^= detail::mod<true, true>(absx, absy, &q);
2795
+ return *quo = qsign ? -q : q, half(detail::binary, value);
2796
+ }
2797
+
2798
+ /// Fused multiply add.
2799
+ /// This function is exact to rounding for all rounding modes.
2800
+ ///
2801
+ /// **See also:** Documentation for [std::fma](https://en.cppreference.com/w/cpp/numeric/math/fma).
2802
+ /// \param x first operand
2803
+ /// \param y second operand
2804
+ /// \param z third operand
2805
+ /// \return ( \a x * \a y ) + \a z rounded as one operation.
2806
+ /// \exception FE_INVALID according to operator*() and operator+() unless any argument is a quiet NaN and no argument is a signaling NaN
2807
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding the final addition
2808
+ inline half fma(half x, half y, half z)
2809
+ {
2810
+ #ifdef HALF_ARITHMETIC_TYPE
2811
+ detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_);
2812
+ #if HALF_ENABLE_CPP11_CMATH && FP_FAST_FMA
2813
+ return half(detail::binary, detail::float2half<half::round_style>(std::fma(fx, fy, fz)));
2814
+ #else
2815
+ return half(detail::binary, detail::float2half<half::round_style>(fx*fy+fz));
2816
+ #endif
2817
+ #else
2818
+ int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, exp = -15;
2819
+ unsigned int sign = (x.data_^y.data_) & 0x8000;
2820
+ bool sub = ((sign^z.data_)&0x8000) != 0;
2821
+ if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
2822
+ return (absx>0x7C00 || absy>0x7C00 || absz>0x7C00) ? half(detail::binary, detail::signal(x.data_, y.data_, z.data_)) :
2823
+ (absx==0x7C00) ? half(detail::binary, (!absy || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) :
2824
+ (absy==0x7C00) ? half(detail::binary, (!absx || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) : z;
2825
+ if(!absx || !absy)
2826
+ return absz ? z : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (z.data_|sign) : (z.data_&sign));
2827
+ for(; absx<0x400; absx<<=1,--exp) ;
2828
+ for(; absy<0x400; absy<<=1,--exp) ;
2829
+ detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400);
2830
+ int i = m >> 21;
2831
+ exp += (absx>>10) + (absy>>10) + i;
2832
+ m <<= 3 - i;
2833
+ if(absz)
2834
+ {
2835
+ int expz = 0;
2836
+ for(; absz<0x400; absz<<=1,--expz) ;
2837
+ expz += absz >> 10;
2838
+ detail::uint32 mz = static_cast<detail::uint32>((absz&0x3FF)|0x400) << 13;
2839
+ if(expz > exp || (expz == exp && mz > m))
2840
+ {
2841
+ std::swap(m, mz);
2842
+ std::swap(exp, expz);
2843
+ if(sub)
2844
+ sign = z.data_ & 0x8000;
2845
+ }
2846
+ int d = exp - expz;
2847
+ mz = (d<23) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
2848
+ if(sub)
2849
+ {
2850
+ m = m - mz;
2851
+ if(!m)
2852
+ return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15);
2853
+ for(; m<0x800000; m<<=1,--exp) ;
2854
+ }
2855
+ else
2856
+ {
2857
+ m += mz;
2858
+ i = m >> 24;
2859
+ m = (m>>i) | (m&i);
2860
+ exp += i;
2861
+ }
2862
+ }
2863
+ if(exp > 30)
2864
+ return half(detail::binary, detail::overflow<half::round_style>(sign));
2865
+ else if(exp < -10)
2866
+ return half(detail::binary, detail::underflow<half::round_style>(sign));
2867
+ return half(detail::binary, detail::fixed2half<half::round_style,23,false,false,false>(m, exp-1, sign));
2868
+ #endif
2869
+ }
2870
+
2871
+ /// Maximum of half expressions.
2872
+ /// **See also:** Documentation for [std::fmax](https://en.cppreference.com/w/cpp/numeric/math/fmax).
2873
+ /// \param x first operand
2874
+ /// \param y second operand
2875
+ /// \return maximum of operands, ignoring quiet NaNs
2876
+ /// \exception FE_INVALID if \a x or \a y is signaling NaN
2877
+ inline HALF_CONSTEXPR_NOERR half fmax(half x, half y)
2878
+ {
2879
+ return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) <
2880
+ (y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_));
2881
+ }
2882
+
2883
+ /// Minimum of half expressions.
2884
+ /// **See also:** Documentation for [std::fmin](https://en.cppreference.com/w/cpp/numeric/math/fmin).
2885
+ /// \param x first operand
2886
+ /// \param y second operand
2887
+ /// \return minimum of operands, ignoring quiet NaNs
2888
+ /// \exception FE_INVALID if \a x or \a y is signaling NaN
2889
+ inline HALF_CONSTEXPR_NOERR half fmin(half x, half y)
2890
+ {
2891
+ return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) >
2892
+ (y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_));
2893
+ }
2894
+
2895
+ /// Positive difference.
2896
+ /// This function is exact to rounding for all rounding modes.
2897
+ ///
2898
+ /// **See also:** Documentation for [std::fdim](https://en.cppreference.com/w/cpp/numeric/math/fdim).
2899
+ /// \param x first operand
2900
+ /// \param y second operand
2901
+ /// \return \a x - \a y or 0 if difference negative
2902
+ /// \exception FE_... according to operator-(half,half)
2903
+ inline half fdim(half x, half y)
2904
+ {
2905
+ if(isnan(x) || isnan(y))
2906
+ return half(detail::binary, detail::signal(x.data_, y.data_));
2907
+ return (x.data_^(0x8000|(0x8000-(x.data_>>15)))) <= (y.data_^(0x8000|(0x8000-(y.data_>>15)))) ? half(detail::binary, 0) : (x-y);
2908
+ }
2909
+
2910
+ /// Get NaN value.
2911
+ /// **See also:** Documentation for [std::nan](https://en.cppreference.com/w/cpp/numeric/math/nan).
2912
+ /// \param arg string code
2913
+ /// \return quiet NaN
2914
+ inline half nanh(const char *arg)
2915
+ {
2916
+ unsigned int value = 0x7FFF;
2917
+ while(*arg)
2918
+ value ^= static_cast<unsigned>(*arg++) & 0xFF;
2919
+ return half(detail::binary, value);
2920
+ }
2921
+
2922
+ /// \}
2923
+ /// \anchor exponential
2924
+ /// \name Exponential functions
2925
+ /// \{
2926
+
2927
+ /// Exponential function.
2928
+ /// This function is exact to rounding for all rounding modes.
2929
+ ///
2930
+ /// **See also:** Documentation for [std::exp](https://en.cppreference.com/w/cpp/numeric/math/exp).
2931
+ /// \param arg function argument
2932
+ /// \return e raised to \a arg
2933
+ /// \exception FE_INVALID for signaling NaN
2934
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2935
+ inline half exp(half arg)
2936
+ {
2937
+ #ifdef HALF_ARITHMETIC_TYPE
2938
+ return half(detail::binary, detail::float2half<half::round_style>(std::exp(detail::half2float<detail::internal_t>(arg.data_))));
2939
+ #else
2940
+ int abs = arg.data_ & 0x7FFF;
2941
+ if(!abs)
2942
+ return half(detail::binary, 0x3C00);
2943
+ if(abs >= 0x7C00)
2944
+ return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_));
2945
+ if(abs >= 0x4C80)
2946
+ return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>());
2947
+ detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29);
2948
+ int e = (abs>>10) + (abs<=0x3FF), exp;
2949
+ if(e < 14)
2950
+ {
2951
+ exp = 0;
2952
+ m >>= 14 - e;
2953
+ }
2954
+ else
2955
+ {
2956
+ exp = m >> (45-e);
2957
+ m = (m<<(e-14)) & 0x7FFFFFFF;
2958
+ }
2959
+ return half(detail::binary, detail::exp2_post<half::round_style,true>(detail::exp2(m, 26), exp, (arg.data_&0x8000)!=0));
2960
+ #endif
2961
+ }
2962
+
2963
+ /// Binary exponential.
2964
+ /// This function is exact to rounding for all rounding modes.
2965
+ ///
2966
+ /// **See also:** Documentation for [std::exp2](https://en.cppreference.com/w/cpp/numeric/math/exp2).
2967
+ /// \param arg function argument
2968
+ /// \return 2 raised to \a arg
2969
+ /// \exception FE_INVALID for signaling NaN
2970
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
2971
+ inline half exp2(half arg)
2972
+ {
2973
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
2974
+ return half(detail::binary, detail::float2half<half::round_style>(std::exp2(detail::half2float<detail::internal_t>(arg.data_))));
2975
+ #else
2976
+ int abs = arg.data_ & 0x7FFF;
2977
+ if(!abs)
2978
+ return half(detail::binary, 0x3C00);
2979
+ if(abs >= 0x7C00)
2980
+ return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_));
2981
+ if(abs >= 0x4E40)
2982
+ return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>());
2983
+ int e = (abs>>10) + (abs<=0x3FF), exp = (abs&0x3FF) + ((abs>0x3FF)<<10);
2984
+ detail::uint32 m = detail::exp2((static_cast<detail::uint32>(exp)<<(6+e))&0x7FFFFFFF, 28);
2985
+ exp >>= 25 - e;
2986
+ if(m == 0x80000000)
2987
+ {
2988
+ if(arg.data_&0x8000)
2989
+ exp = -exp;
2990
+ else if(exp > 15)
2991
+ return half(detail::binary, detail::overflow<half::round_style>());
2992
+ return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,false>(m, exp+14));
2993
+ }
2994
+ return half(detail::binary, detail::exp2_post<half::round_style,true>(m, exp, (arg.data_&0x8000)!=0));
2995
+ #endif
2996
+ }
2997
+
2998
+ /// Exponential minus one.
2999
+ /// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest`
3000
+ /// and in <1% of inputs for any other rounding mode.
3001
+ ///
3002
+ /// **See also:** Documentation for [std::expm1](https://en.cppreference.com/w/cpp/numeric/math/expm1).
3003
+ /// \param arg function argument
3004
+ /// \return e raised to \a arg and subtracted by 1
3005
+ /// \exception FE_INVALID for signaling NaN
3006
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3007
+ inline half expm1(half arg)
3008
+ {
3009
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3010
+ return half(detail::binary, detail::float2half<half::round_style>(std::expm1(detail::half2float<detail::internal_t>(arg.data_))));
3011
+ #else
3012
+ unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
3013
+ if(!abs)
3014
+ return arg;
3015
+ if(abs >= 0x7C00)
3016
+ return half(detail::binary, (abs==0x7C00) ? (0x7C00+(sign>>1)) : detail::signal(arg.data_));
3017
+ if(abs >= 0x4A00)
3018
+ return half(detail::binary, (arg.data_&0x8000) ? detail::rounded<half::round_style,true>(0xBBFF, 1, 1) : detail::overflow<half::round_style>());
3019
+ detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29);
3020
+ int e = (abs>>10) + (abs<=0x3FF), exp;
3021
+ if(e < 14)
3022
+ {
3023
+ exp = 0;
3024
+ m >>= 14 - e;
3025
+ }
3026
+ else
3027
+ {
3028
+ exp = m >> (45-e);
3029
+ m = (m<<(e-14)) & 0x7FFFFFFF;
3030
+ }
3031
+ m = detail::exp2(m);
3032
+ if(sign)
3033
+ {
3034
+ int s = 0;
3035
+ if(m > 0x80000000)
3036
+ {
3037
+ ++exp;
3038
+ m = detail::divide64(0x80000000, m, s);
3039
+ }
3040
+ m = 0x80000000 - ((m>>exp)|((m&((static_cast<detail::uint32>(1)<<exp)-1))!=0)|s);
3041
+ exp = 0;
3042
+ }
3043
+ else
3044
+ m -= (exp<31) ? (0x80000000>>exp) : 1;
3045
+ for(exp+=14; m<0x80000000 && exp; m<<=1,--exp) ;
3046
+ if(exp > 29)
3047
+ return half(detail::binary, detail::overflow<half::round_style>());
3048
+ return half(detail::binary, detail::rounded<half::round_style,true>(sign+(exp<<10)+(m>>21), (m>>20)&1, (m&0xFFFFF)!=0));
3049
+ #endif
3050
+ }
3051
+
3052
+ /// Natural logarithm.
3053
+ /// This function is exact to rounding for all rounding modes.
3054
+ ///
3055
+ /// **See also:** Documentation for [std::log](https://en.cppreference.com/w/cpp/numeric/math/log).
3056
+ /// \param arg function argument
3057
+ /// \return logarithm of \a arg to base e
3058
+ /// \exception FE_INVALID for signaling NaN or negative argument
3059
+ /// \exception FE_DIVBYZERO for 0
3060
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3061
+ inline half log(half arg)
3062
+ {
3063
+ #ifdef HALF_ARITHMETIC_TYPE
3064
+ return half(detail::binary, detail::float2half<half::round_style>(std::log(detail::half2float<detail::internal_t>(arg.data_))));
3065
+ #else
3066
+ int abs = arg.data_ & 0x7FFF, exp = -15;
3067
+ if(!abs)
3068
+ return half(detail::binary, detail::pole(0x8000));
3069
+ if(arg.data_ & 0x8000)
3070
+ return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
3071
+ if(abs >= 0x7C00)
3072
+ return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
3073
+ for(; abs<0x400; abs<<=1,--exp) ;
3074
+ exp += abs >> 10;
3075
+ return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(
3076
+ detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 17));
3077
+ #endif
3078
+ }
3079
+
3080
+ /// Common logarithm.
3081
+ /// This function is exact to rounding for all rounding modes.
3082
+ ///
3083
+ /// **See also:** Documentation for [std::log10](https://en.cppreference.com/w/cpp/numeric/math/log10).
3084
+ /// \param arg function argument
3085
+ /// \return logarithm of \a arg to base 10
3086
+ /// \exception FE_INVALID for signaling NaN or negative argument
3087
+ /// \exception FE_DIVBYZERO for 0
3088
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3089
+ inline half log10(half arg)
3090
+ {
3091
+ #ifdef HALF_ARITHMETIC_TYPE
3092
+ return half(detail::binary, detail::float2half<half::round_style>(std::log10(detail::half2float<detail::internal_t>(arg.data_))));
3093
+ #else
3094
+ int abs = arg.data_ & 0x7FFF, exp = -15;
3095
+ if(!abs)
3096
+ return half(detail::binary, detail::pole(0x8000));
3097
+ if(arg.data_ & 0x8000)
3098
+ return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
3099
+ if(abs >= 0x7C00)
3100
+ return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
3101
+ switch(abs)
3102
+ {
3103
+ case 0x4900: return half(detail::binary, 0x3C00);
3104
+ case 0x5640: return half(detail::binary, 0x4000);
3105
+ case 0x63D0: return half(detail::binary, 0x4200);
3106
+ case 0x70E2: return half(detail::binary, 0x4400);
3107
+ }
3108
+ for(; abs<0x400; abs<<=1,--exp) ;
3109
+ exp += abs >> 10;
3110
+ return half(detail::binary, detail::log2_post<half::round_style,0xD49A784C>(
3111
+ detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 16));
3112
+ #endif
3113
+ }
3114
+
3115
+ /// Binary logarithm.
3116
+ /// This function is exact to rounding for all rounding modes.
3117
+ ///
3118
+ /// **See also:** Documentation for [std::log2](https://en.cppreference.com/w/cpp/numeric/math/log2).
3119
+ /// \param arg function argument
3120
+ /// \return logarithm of \a arg to base 2
3121
+ /// \exception FE_INVALID for signaling NaN or negative argument
3122
+ /// \exception FE_DIVBYZERO for 0
3123
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3124
+ inline half log2(half arg)
3125
+ {
3126
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3127
+ return half(detail::binary, detail::float2half<half::round_style>(std::log2(detail::half2float<detail::internal_t>(arg.data_))));
3128
+ #else
3129
+ int abs = arg.data_ & 0x7FFF, exp = -15, s = 0;
3130
+ if(!abs)
3131
+ return half(detail::binary, detail::pole(0x8000));
3132
+ if(arg.data_ & 0x8000)
3133
+ return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
3134
+ if(abs >= 0x7C00)
3135
+ return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
3136
+ if(abs == 0x3C00)
3137
+ return half(detail::binary, 0);
3138
+ for(; abs<0x400; abs<<=1,--exp) ;
3139
+ exp += (abs>>10);
3140
+ if(!(abs&0x3FF))
3141
+ {
3142
+ unsigned int value = static_cast<unsigned>(exp<0) << 15, m = std::abs(exp) << 6;
3143
+ for(exp=18; m<0x400; m<<=1,--exp) ;
3144
+ return half(detail::binary, value+(exp<<10)+m);
3145
+ }
3146
+ detail::uint32 ilog = exp, sign = detail::sign_mask(ilog), m =
3147
+ (((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 28)>>4))^sign) - sign;
3148
+ if(!m)
3149
+ return half(detail::binary, 0);
3150
+ for(exp=14; m<0x8000000 && exp; m<<=1,--exp) ;
3151
+ for(; m>0xFFFFFFF; m>>=1,++exp)
3152
+ s |= m & 1;
3153
+ return half(detail::binary, detail::fixed2half<half::round_style,27,false,false,true>(m, exp, sign&0x8000, s));
3154
+ #endif
3155
+ }
3156
+
3157
+ /// Natural logarithm plus one.
3158
+ /// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest`
3159
+ /// and in ~1% of inputs for any other rounding mode.
3160
+ ///
3161
+ /// **See also:** Documentation for [std::log1p](https://en.cppreference.com/w/cpp/numeric/math/log1p).
3162
+ /// \param arg function argument
3163
+ /// \return logarithm of \a arg plus 1 to base e
3164
+ /// \exception FE_INVALID for signaling NaN or argument <-1
3165
+ /// \exception FE_DIVBYZERO for -1
3166
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3167
+ inline half log1p(half arg)
3168
+ {
3169
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3170
+ return half(detail::binary, detail::float2half<half::round_style>(std::log1p(detail::half2float<detail::internal_t>(arg.data_))));
3171
+ #else
3172
+ if(arg.data_ >= 0xBC00)
3173
+ return half(detail::binary, (arg.data_==0xBC00) ? detail::pole(0x8000) : (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
3174
+ int abs = arg.data_ & 0x7FFF, exp = -15;
3175
+ if(!abs || abs >= 0x7C00)
3176
+ return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
3177
+ for(; abs<0x400; abs<<=1,--exp) ;
3178
+ exp += abs >> 10;
3179
+ detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 20;
3180
+ if(arg.data_ & 0x8000)
3181
+ {
3182
+ m = 0x40000000 - (m>>-exp);
3183
+ for(exp=0; m<0x40000000; m<<=1,--exp) ;
3184
+ }
3185
+ else
3186
+ {
3187
+ if(exp < 0)
3188
+ {
3189
+ m = 0x40000000 + (m>>-exp);
3190
+ exp = 0;
3191
+ }
3192
+ else
3193
+ {
3194
+ m += 0x40000000 >> exp;
3195
+ int i = m >> 31;
3196
+ m >>= i;
3197
+ exp += i;
3198
+ }
3199
+ }
3200
+ return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2(m), exp, 17));
3201
+ #endif
3202
+ }
3203
+
3204
+ /// \}
3205
+ /// \anchor power
3206
+ /// \name Power functions
3207
+ /// \{
3208
+
3209
+ /// Square root.
3210
+ /// This function is exact to rounding for all rounding modes.
3211
+ ///
3212
+ /// **See also:** Documentation for [std::sqrt](https://en.cppreference.com/w/cpp/numeric/math/sqrt).
3213
+ /// \param arg function argument
3214
+ /// \return square root of \a arg
3215
+ /// \exception FE_INVALID for signaling NaN and negative arguments
3216
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3217
+ inline half sqrt(half arg)
3218
+ {
3219
+ #ifdef HALF_ARITHMETIC_TYPE
3220
+ return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(detail::half2float<detail::internal_t>(arg.data_))));
3221
+ #else
3222
+ int abs = arg.data_ & 0x7FFF, exp = 15;
3223
+ if(!abs || arg.data_ >= 0x7C00)
3224
+ return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ? detail::invalid() : arg.data_);
3225
+ for(; abs<0x400; abs<<=1,--exp) ;
3226
+ detail::uint32 r = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 10, m = detail::sqrt<20>(r, exp+=abs>>10);
3227
+ return half(detail::binary, detail::rounded<half::round_style,false>((exp<<10)+(m&0x3FF), r>m, r!=0));
3228
+ #endif
3229
+ }
3230
+
3231
+ /// Cubic root.
3232
+ /// This function is exact to rounding for all rounding modes.
3233
+ ///
3234
+ /// **See also:** Documentation for [std::cbrt](https://en.cppreference.com/w/cpp/numeric/math/cbrt).
3235
+ /// \param arg function argument
3236
+ /// \return cubic root of \a arg
3237
+ /// \exception FE_INVALID for signaling NaN
3238
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3239
+ inline half cbrt(half arg)
3240
+ {
3241
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3242
+ return half(detail::binary, detail::float2half<half::round_style>(std::cbrt(detail::half2float<detail::internal_t>(arg.data_))));
3243
+ #else
3244
+ int abs = arg.data_ & 0x7FFF, exp = -15;
3245
+ if(!abs || abs == 0x3C00 || abs >= 0x7C00)
3246
+ return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
3247
+ for(; abs<0x400; abs<<=1, --exp);
3248
+ detail::uint32 ilog = exp + (abs>>10), sign = detail::sign_mask(ilog), f, m =
3249
+ (((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 24)>>4))^sign) - sign;
3250
+ for(exp=2; m<0x80000000; m<<=1,--exp) ;
3251
+ m = detail::multiply64(m, 0xAAAAAAAB);
3252
+ int i = m >> 31, s;
3253
+ exp += i;
3254
+ m <<= 1 - i;
3255
+ if(exp < 0)
3256
+ {
3257
+ f = m >> -exp;
3258
+ exp = 0;
3259
+ }
3260
+ else
3261
+ {
3262
+ f = (m<<exp) & 0x7FFFFFFF;
3263
+ exp = m >> (31-exp);
3264
+ }
3265
+ m = detail::exp2(f, (half::round_style==std::round_to_nearest) ? 29 : 26);
3266
+ if(sign)
3267
+ {
3268
+ if(m > 0x80000000)
3269
+ {
3270
+ m = detail::divide64(0x80000000, m, s);
3271
+ ++exp;
3272
+ }
3273
+ exp = -exp;
3274
+ }
3275
+ return half(detail::binary, (half::round_style==std::round_to_nearest) ?
3276
+ detail::fixed2half<half::round_style,31,false,false,false>(m, exp+14, arg.data_&0x8000) :
3277
+ detail::fixed2half<half::round_style,23,false,false,false>((m+0x80)>>8, exp+14, arg.data_&0x8000));
3278
+ #endif
3279
+ }
3280
+
3281
+ /// Hypotenuse function.
3282
+ /// This function is exact to rounding for all rounding modes.
3283
+ ///
3284
+ /// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot).
3285
+ /// \param x first argument
3286
+ /// \param y second argument
3287
+ /// \return square root of sum of squares without internal over- or underflows
3288
+ /// \exception FE_INVALID if \a x or \a y is signaling NaN
3289
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root
3290
+ inline half hypot(half x, half y)
3291
+ {
3292
+ #ifdef HALF_ARITHMETIC_TYPE
3293
+ detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_);
3294
+ #if HALF_ENABLE_CPP11_CMATH
3295
+ return half(detail::binary, detail::float2half<half::round_style>(std::hypot(fx, fy)));
3296
+ #else
3297
+ return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy)));
3298
+ #endif
3299
+ #else
3300
+ int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, expx = 0, expy = 0;
3301
+ if(absx >= 0x7C00 || absy >= 0x7C00)
3302
+ return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, y.data_) :
3303
+ (absy==0x7C00) ? detail::select(0x7C00, x.data_) : detail::signal(x.data_, y.data_));
3304
+ if(!absx)
3305
+ return half(detail::binary, absy ? detail::check_underflow(absy) : 0);
3306
+ if(!absy)
3307
+ return half(detail::binary, detail::check_underflow(absx));
3308
+ if(absy > absx)
3309
+ std::swap(absx, absy);
3310
+ for(; absx<0x400; absx<<=1,--expx) ;
3311
+ for(; absy<0x400; absy<<=1,--expy) ;
3312
+ detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
3313
+ mx *= mx;
3314
+ my *= my;
3315
+ int ix = mx >> 21, iy = my >> 21;
3316
+ expx = 2*(expx+(absx>>10)) - 15 + ix;
3317
+ expy = 2*(expy+(absy>>10)) - 15 + iy;
3318
+ mx <<= 10 - ix;
3319
+ my <<= 10 - iy;
3320
+ int d = expx - expy;
3321
+ my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
3322
+ return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx));
3323
+ #endif
3324
+ }
3325
+
3326
+ /// Hypotenuse function.
3327
+ /// This function is exact to rounding for all rounding modes.
3328
+ ///
3329
+ /// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot).
3330
+ /// \param x first argument
3331
+ /// \param y second argument
3332
+ /// \param z third argument
3333
+ /// \return square root of sum of squares without internal over- or underflows
3334
+ /// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
3335
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root
3336
+ inline half hypot(half x, half y, half z)
3337
+ {
3338
+ #ifdef HALF_ARITHMETIC_TYPE
3339
+ detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_);
3340
+ return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy+fz*fz)));
3341
+ #else
3342
+ int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, expx = 0, expy = 0, expz = 0;
3343
+ if(!absx)
3344
+ return hypot(y, z);
3345
+ if(!absy)
3346
+ return hypot(x, z);
3347
+ if(!absz)
3348
+ return hypot(x, y);
3349
+ if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
3350
+ return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, detail::select(y.data_, z.data_)) :
3351
+ (absy==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, z.data_)) :
3352
+ (absz==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, y.data_)) :
3353
+ detail::signal(x.data_, y.data_, z.data_));
3354
+ if(absz > absy)
3355
+ std::swap(absy, absz);
3356
+ if(absy > absx)
3357
+ std::swap(absx, absy);
3358
+ if(absz > absy)
3359
+ std::swap(absy, absz);
3360
+ for(; absx<0x400; absx<<=1,--expx) ;
3361
+ for(; absy<0x400; absy<<=1,--expy) ;
3362
+ for(; absz<0x400; absz<<=1,--expz) ;
3363
+ detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400, mz = (absz&0x3FF) | 0x400;
3364
+ mx *= mx;
3365
+ my *= my;
3366
+ mz *= mz;
3367
+ int ix = mx >> 21, iy = my >> 21, iz = mz >> 21;
3368
+ expx = 2*(expx+(absx>>10)) - 15 + ix;
3369
+ expy = 2*(expy+(absy>>10)) - 15 + iy;
3370
+ expz = 2*(expz+(absz>>10)) - 15 + iz;
3371
+ mx <<= 10 - ix;
3372
+ my <<= 10 - iy;
3373
+ mz <<= 10 - iz;
3374
+ int d = expy - expz;
3375
+ mz = (d<30) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
3376
+ my += mz;
3377
+ if(my & 0x80000000)
3378
+ {
3379
+ my = (my>>1) | (my&1);
3380
+ if(++expy > expx)
3381
+ {
3382
+ std::swap(mx, my);
3383
+ std::swap(expx, expy);
3384
+ }
3385
+ }
3386
+ d = expx - expy;
3387
+ my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
3388
+ return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx));
3389
+ #endif
3390
+ }
3391
+
3392
+ /// Power function.
3393
+ /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.00025% of inputs.
3394
+ ///
3395
+ /// **See also:** Documentation for [std::pow](https://en.cppreference.com/w/cpp/numeric/math/pow).
3396
+ /// \param x base
3397
+ /// \param y exponent
3398
+ /// \return \a x raised to \a y
3399
+ /// \exception FE_INVALID if \a x or \a y is signaling NaN or if \a x is finite an negative and \a y is finite and not integral
3400
+ /// \exception FE_DIVBYZERO if \a x is 0 and \a y is negative
3401
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3402
+ inline half pow(half x, half y)
3403
+ {
3404
+ #ifdef HALF_ARITHMETIC_TYPE
3405
+ return half(detail::binary, detail::float2half<half::round_style>(std::pow(detail::half2float<detail::internal_t>(x.data_), detail::half2float<detail::internal_t>(y.data_))));
3406
+ #else
3407
+ int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -15;
3408
+ if(!absy || x.data_ == 0x3C00)
3409
+ return half(detail::binary, detail::select(0x3C00, (x.data_==0x3C00) ? y.data_ : x.data_));
3410
+ bool is_int = absy >= 0x6400 || (absy>=0x3C00 && !(absy&((1<<(25-(absy>>10)))-1)));
3411
+ unsigned int sign = x.data_ & (static_cast<unsigned>((absy<0x6800)&&is_int&&((absy>>(25-(absy>>10)))&1))<<15);
3412
+ if(absx >= 0x7C00 || absy >= 0x7C00)
3413
+ return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
3414
+ (absy==0x7C00) ? ((absx==0x3C00) ? 0x3C00 : (!absx && y.data_==0xFC00) ? detail::pole() :
3415
+ (0x7C00&-((y.data_>>15)^(absx>0x3C00)))) : (sign|(0x7C00&((y.data_>>15)-1U))));
3416
+ if(!absx)
3417
+ return half(detail::binary, (y.data_&0x8000) ? detail::pole(sign) : sign);
3418
+ if((x.data_&0x8000) && !is_int)
3419
+ return half(detail::binary, detail::invalid());
3420
+ if(x.data_ == 0xBC00)
3421
+ return half(detail::binary, sign|0x3C00);
3422
+ if(y.data_ == 0x3800)
3423
+ return sqrt(x);
3424
+ if(y.data_ == 0x3C00)
3425
+ return half(detail::binary, detail::check_underflow(x.data_));
3426
+ if(y.data_ == 0x4000)
3427
+ return x * x;
3428
+ for(; absx<0x400; absx<<=1,--exp) ;
3429
+ detail::uint32 ilog = exp + (absx>>10), msign = detail::sign_mask(ilog), f, m =
3430
+ (((ilog<<27)+((detail::log2(static_cast<detail::uint32>((absx&0x3FF)|0x400)<<20)+8)>>4))^msign) - msign;
3431
+ for(exp=-11; m<0x80000000; m<<=1,--exp) ;
3432
+ for(; absy<0x400; absy<<=1,--exp) ;
3433
+ m = detail::multiply64(m, static_cast<detail::uint32>((absy&0x3FF)|0x400)<<21);
3434
+ int i = m >> 31;
3435
+ exp += (absy>>10) + i;
3436
+ m <<= 1 - i;
3437
+ if(exp < 0)
3438
+ {
3439
+ f = m >> -exp;
3440
+ exp = 0;
3441
+ }
3442
+ else
3443
+ {
3444
+ f = (m<<exp) & 0x7FFFFFFF;
3445
+ exp = m >> (31-exp);
3446
+ }
3447
+ return half(detail::binary, detail::exp2_post<half::round_style,false>(detail::exp2(f), exp, ((msign&1)^(y.data_>>15))!=0, sign));
3448
+ #endif
3449
+ }
3450
+
3451
+ /// \}
3452
+ /// \anchor trigonometric
3453
+ /// \name Trigonometric functions
3454
+ /// \{
3455
+
3456
+ /// Compute sine and cosine simultaneously.
3457
+ /// This returns the same results as sin() and cos() but is faster than calling each function individually.
3458
+ ///
3459
+ /// This function is exact to rounding for all rounding modes.
3460
+ /// \param arg function argument
3461
+ /// \param sin variable to take sine of \a arg
3462
+ /// \param cos variable to take cosine of \a arg
3463
+ /// \exception FE_INVALID for signaling NaN or infinity
3464
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3465
+ inline void sincos(half arg, half *sin, half *cos)
3466
+ {
3467
+ #ifdef HALF_ARITHMETIC_TYPE
3468
+ detail::internal_t f = detail::half2float<detail::internal_t>(arg.data_);
3469
+ *sin = half(detail::binary, detail::float2half<half::round_style>(std::sin(f)));
3470
+ *cos = half(detail::binary, detail::float2half<half::round_style>(std::cos(f)));
3471
+ #else
3472
+ int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15, k;
3473
+ if(abs >= 0x7C00)
3474
+ *sin = *cos = half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
3475
+ else if(!abs)
3476
+ {
3477
+ *sin = arg;
3478
+ *cos = half(detail::binary, 0x3C00);
3479
+ }
3480
+ else if(abs < 0x2500)
3481
+ {
3482
+ *sin = half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
3483
+ *cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
3484
+ }
3485
+ else
3486
+ {
3487
+ if(half::round_style != std::round_to_nearest)
3488
+ {
3489
+ switch(abs)
3490
+ {
3491
+ case 0x48B7:
3492
+ *sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1));
3493
+ *cos = half(detail::binary, detail::rounded<half::round_style,true>(0xBBFF, 1, 1));
3494
+ return;
3495
+ case 0x598C:
3496
+ *sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
3497
+ *cos = half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1));
3498
+ return;
3499
+ case 0x6A64:
3500
+ *sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1));
3501
+ *cos = half(detail::binary, detail::rounded<half::round_style,true>(0x27FF, 1, 1));
3502
+ return;
3503
+ case 0x6D8C:
3504
+ *sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1));
3505
+ *cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
3506
+ return;
3507
+ }
3508
+ }
3509
+ std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
3510
+ switch(k & 3)
3511
+ {
3512
+ case 1: sc = std::make_pair(sc.second, -sc.first); break;
3513
+ case 2: sc = std::make_pair(-sc.first, -sc.second); break;
3514
+ case 3: sc = std::make_pair(-sc.second, sc.first); break;
3515
+ }
3516
+ *sin = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((sc.first^-static_cast<detail::uint32>(sign))+sign));
3517
+ *cos = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>(sc.second));
3518
+ }
3519
+ #endif
3520
+ }
3521
+
3522
+ /// Sine function.
3523
+ /// This function is exact to rounding for all rounding modes.
3524
+ ///
3525
+ /// **See also:** Documentation for [std::sin](https://en.cppreference.com/w/cpp/numeric/math/sin).
3526
+ /// \param arg function argument
3527
+ /// \return sine value of \a arg
3528
+ /// \exception FE_INVALID for signaling NaN or infinity
3529
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3530
+ inline half sin(half arg)
3531
+ {
3532
+ #ifdef HALF_ARITHMETIC_TYPE
3533
+ return half(detail::binary, detail::float2half<half::round_style>(std::sin(detail::half2float<detail::internal_t>(arg.data_))));
3534
+ #else
3535
+ int abs = arg.data_ & 0x7FFF, k;
3536
+ if(!abs)
3537
+ return arg;
3538
+ if(abs >= 0x7C00)
3539
+ return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
3540
+ if(abs < 0x2900)
3541
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
3542
+ if(half::round_style != std::round_to_nearest)
3543
+ switch(abs)
3544
+ {
3545
+ case 0x48B7: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1));
3546
+ case 0x6A64: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1));
3547
+ case 0x6D8C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1));
3548
+ }
3549
+ std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
3550
+ detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)&1)^(arg.data_>>15));
3551
+ return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.second : sc.first)^sign) - sign));
3552
+ #endif
3553
+ }
3554
+
3555
+ /// Cosine function.
3556
+ /// This function is exact to rounding for all rounding modes.
3557
+ ///
3558
+ /// **See also:** Documentation for [std::cos](https://en.cppreference.com/w/cpp/numeric/math/cos).
3559
+ /// \param arg function argument
3560
+ /// \return cosine value of \a arg
3561
+ /// \exception FE_INVALID for signaling NaN or infinity
3562
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3563
+ inline half cos(half arg)
3564
+ {
3565
+ #ifdef HALF_ARITHMETIC_TYPE
3566
+ return half(detail::binary, detail::float2half<half::round_style>(std::cos(detail::half2float<detail::internal_t>(arg.data_))));
3567
+ #else
3568
+ int abs = arg.data_ & 0x7FFF, k;
3569
+ if(!abs)
3570
+ return half(detail::binary, 0x3C00);
3571
+ if(abs >= 0x7C00)
3572
+ return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
3573
+ if(abs < 0x2500)
3574
+ return half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
3575
+ if(half::round_style != std::round_to_nearest && abs == 0x598C)
3576
+ return half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1));
3577
+ std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
3578
+ detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)^k)&1);
3579
+ return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.first : sc.second)^sign) - sign));
3580
+ #endif
3581
+ }
3582
+
3583
+ /// Tangent function.
3584
+ /// This function is exact to rounding for all rounding modes.
3585
+ ///
3586
+ /// **See also:** Documentation for [std::tan](https://en.cppreference.com/w/cpp/numeric/math/tan).
3587
+ /// \param arg function argument
3588
+ /// \return tangent value of \a arg
3589
+ /// \exception FE_INVALID for signaling NaN or infinity
3590
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3591
+ inline half tan(half arg)
3592
+ {
3593
+ #ifdef HALF_ARITHMETIC_TYPE
3594
+ return half(detail::binary, detail::float2half<half::round_style>(std::tan(detail::half2float<detail::internal_t>(arg.data_))));
3595
+ #else
3596
+ int abs = arg.data_ & 0x7FFF, exp = 13, k;
3597
+ if(!abs)
3598
+ return arg;
3599
+ if(abs >= 0x7C00)
3600
+ return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
3601
+ if(abs < 0x2700)
3602
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
3603
+ if(half::round_style != std::round_to_nearest)
3604
+ switch(abs)
3605
+ {
3606
+ case 0x658C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x07E6, 1, 1));
3607
+ case 0x7330: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x4B62, 1, 1));
3608
+ }
3609
+ std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 30);
3610
+ if(k & 1)
3611
+ sc = std::make_pair(-sc.second, sc.first);
3612
+ detail::uint32 signy = detail::sign_mask(sc.first), signx = detail::sign_mask(sc.second);
3613
+ detail::uint32 my = (sc.first^signy) - signy, mx = (sc.second^signx) - signx;
3614
+ for(; my<0x80000000; my<<=1,--exp) ;
3615
+ for(; mx<0x80000000; mx<<=1,++exp) ;
3616
+ return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp, (signy^signx^arg.data_)&0x8000));
3617
+ #endif
3618
+ }
3619
+
3620
+ /// Arc sine.
3621
+ /// This function is exact to rounding for all rounding modes.
3622
+ ///
3623
+ /// **See also:** Documentation for [std::asin](https://en.cppreference.com/w/cpp/numeric/math/asin).
3624
+ /// \param arg function argument
3625
+ /// \return arc sine value of \a arg
3626
+ /// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
3627
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3628
+ inline half asin(half arg)
3629
+ {
3630
+ #ifdef HALF_ARITHMETIC_TYPE
3631
+ return half(detail::binary, detail::float2half<half::round_style>(std::asin(detail::half2float<detail::internal_t>(arg.data_))));
3632
+ #else
3633
+ unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
3634
+ if(!abs)
3635
+ return arg;
3636
+ if(abs >= 0x3C00)
3637
+ return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() :
3638
+ detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1));
3639
+ if(abs < 0x2900)
3640
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
3641
+ if(half::round_style != std::round_to_nearest && (abs == 0x2B44 || abs == 0x2DC3))
3642
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_+1, 1, 1));
3643
+ std::pair<detail::uint32,detail::uint32> sc = detail::atan2_args(abs);
3644
+ detail::uint32 m = detail::atan2(sc.first, sc.second, (half::round_style==std::round_to_nearest) ? 27 : 26);
3645
+ return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign));
3646
+ #endif
3647
+ }
3648
+
3649
+ /// Arc cosine function.
3650
+ /// This function is exact to rounding for all rounding modes.
3651
+ ///
3652
+ /// **See also:** Documentation for [std::acos](https://en.cppreference.com/w/cpp/numeric/math/acos).
3653
+ /// \param arg function argument
3654
+ /// \return arc cosine value of \a arg
3655
+ /// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
3656
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3657
+ inline half acos(half arg)
3658
+ {
3659
+ #ifdef HALF_ARITHMETIC_TYPE
3660
+ return half(detail::binary, detail::float2half<half::round_style>(std::acos(detail::half2float<detail::internal_t>(arg.data_))));
3661
+ #else
3662
+ unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15;
3663
+ if(!abs)
3664
+ return half(detail::binary, detail::rounded<half::round_style,true>(0x3E48, 0, 1));
3665
+ if(abs >= 0x3C00)
3666
+ return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() :
3667
+ sign ? detail::rounded<half::round_style,true>(0x4248, 0, 1) : 0);
3668
+ std::pair<detail::uint32,detail::uint32> cs = detail::atan2_args(abs);
3669
+ detail::uint32 m = detail::atan2(cs.second, cs.first, 28);
3670
+ return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(sign ? (0xC90FDAA2-m) : m, 15, 0, sign));
3671
+ #endif
3672
+ }
3673
+
3674
+ /// Arc tangent function.
3675
+ /// This function is exact to rounding for all rounding modes.
3676
+ ///
3677
+ /// **See also:** Documentation for [std::atan](https://en.cppreference.com/w/cpp/numeric/math/atan).
3678
+ /// \param arg function argument
3679
+ /// \return arc tangent value of \a arg
3680
+ /// \exception FE_INVALID for signaling NaN
3681
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3682
+ inline half atan(half arg)
3683
+ {
3684
+ #ifdef HALF_ARITHMETIC_TYPE
3685
+ return half(detail::binary, detail::float2half<half::round_style>(std::atan(detail::half2float<detail::internal_t>(arg.data_))));
3686
+ #else
3687
+ unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
3688
+ if(!abs)
3689
+ return arg;
3690
+ if(abs >= 0x7C00)
3691
+ return half(detail::binary, (abs==0x7C00) ? detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1) : detail::signal(arg.data_));
3692
+ if(abs <= 0x2700)
3693
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
3694
+ int exp = (abs>>10) + (abs<=0x3FF);
3695
+ detail::uint32 my = (abs&0x3FF) | ((abs>0x3FF)<<10);
3696
+ detail::uint32 m = (exp>15) ? detail::atan2(my<<19, 0x20000000>>(exp-15), (half::round_style==std::round_to_nearest) ? 26 : 24) :
3697
+ detail::atan2(my<<(exp+4), 0x20000000, (half::round_style==std::round_to_nearest) ? 30 : 28);
3698
+ return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign));
3699
+ #endif
3700
+ }
3701
+
3702
+ /// Arc tangent function.
3703
+ /// This function may be 1 ULP off the correctly rounded exact result in ~0.005% of inputs for `std::round_to_nearest`,
3704
+ /// in ~0.1% of inputs for `std::round_toward_zero` and in ~0.02% of inputs for any other rounding mode.
3705
+ ///
3706
+ /// **See also:** Documentation for [std::atan2](https://en.cppreference.com/w/cpp/numeric/math/atan2).
3707
+ /// \param y numerator
3708
+ /// \param x denominator
3709
+ /// \return arc tangent value
3710
+ /// \exception FE_INVALID if \a x or \a y is signaling NaN
3711
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3712
+ inline half atan2(half y, half x)
3713
+ {
3714
+ #ifdef HALF_ARITHMETIC_TYPE
3715
+ return half(detail::binary, detail::float2half<half::round_style>(std::atan2(detail::half2float<detail::internal_t>(y.data_), detail::half2float<detail::internal_t>(x.data_))));
3716
+ #else
3717
+ unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, signx = x.data_ >> 15, signy = y.data_ & 0x8000;
3718
+ if(absx >= 0x7C00 || absy >= 0x7C00)
3719
+ {
3720
+ if(absx > 0x7C00 || absy > 0x7C00)
3721
+ return half(detail::binary, detail::signal(x.data_, y.data_));
3722
+ if(absy == 0x7C00)
3723
+ return half(detail::binary, (absx<0x7C00) ? detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1) :
3724
+ signx ? detail::rounded<half::round_style,true>(signy|0x40B6, 0, 1) :
3725
+ detail::rounded<half::round_style,true>(signy|0x3A48, 0, 1));
3726
+ return (x.data_==0x7C00) ? half(detail::binary, signy) : half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1));
3727
+ }
3728
+ if(!absy)
3729
+ return signx ? half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1)) : y;
3730
+ if(!absx)
3731
+ return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1));
3732
+ int d = (absy>>10) + (absy<=0x3FF) - (absx>>10) - (absx<=0x3FF);
3733
+ if(d > (signx ? 18 : 12))
3734
+ return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1));
3735
+ if(signx && d < -11)
3736
+ return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1));
3737
+ if(!signx && d < ((half::round_style==std::round_toward_zero) ? -15 : -9))
3738
+ {
3739
+ for(; absy<0x400; absy<<=1,--d) ;
3740
+ detail::uint32 mx = ((absx<<1)&0x7FF) | 0x800, my = ((absy<<1)&0x7FF) | 0x800;
3741
+ int i = my < mx;
3742
+ d -= i;
3743
+ if(d < -25)
3744
+ return half(detail::binary, detail::underflow<half::round_style>(signy));
3745
+ my <<= 11 + i;
3746
+ return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,true>(my/mx, d+14, signy, my%mx!=0));
3747
+ }
3748
+ detail::uint32 m = detail::atan2( ((absy&0x3FF)|((absy>0x3FF)<<10))<<(19+((d<0) ? d : (d>0) ? 0 : -1)),
3749
+ ((absx&0x3FF)|((absx>0x3FF)<<10))<<(19-((d>0) ? d : (d<0) ? 0 : 1)));
3750
+ return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(signx ? (0xC90FDAA2-m) : m, 15, signy, signx));
3751
+ #endif
3752
+ }
3753
+
3754
+ /// \}
3755
+ /// \anchor hyperbolic
3756
+ /// \name Hyperbolic functions
3757
+ /// \{
3758
+
3759
+ /// Hyperbolic sine.
3760
+ /// This function is exact to rounding for all rounding modes.
3761
+ ///
3762
+ /// **See also:** Documentation for [std::sinh](https://en.cppreference.com/w/cpp/numeric/math/sinh).
3763
+ /// \param arg function argument
3764
+ /// \return hyperbolic sine value of \a arg
3765
+ /// \exception FE_INVALID for signaling NaN
3766
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3767
+ inline half sinh(half arg)
3768
+ {
3769
+ #ifdef HALF_ARITHMETIC_TYPE
3770
+ return half(detail::binary, detail::float2half<half::round_style>(std::sinh(detail::half2float<detail::internal_t>(arg.data_))));
3771
+ #else
3772
+ int abs = arg.data_ & 0x7FFF, exp;
3773
+ if(!abs || abs >= 0x7C00)
3774
+ return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
3775
+ if(abs <= 0x2900)
3776
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
3777
+ std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 29 : 27);
3778
+ detail::uint32 m = mm.first - mm.second;
3779
+ for(exp+=13; m<0x80000000 && exp; m<<=1,--exp) ;
3780
+ unsigned int sign = arg.data_ & 0x8000;
3781
+ if(exp > 29)
3782
+ return half(detail::binary, detail::overflow<half::round_style>(sign));
3783
+ return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp, sign));
3784
+ #endif
3785
+ }
3786
+
3787
+ /// Hyperbolic cosine.
3788
+ /// This function is exact to rounding for all rounding modes.
3789
+ ///
3790
+ /// **See also:** Documentation for [std::cosh](https://en.cppreference.com/w/cpp/numeric/math/cosh).
3791
+ /// \param arg function argument
3792
+ /// \return hyperbolic cosine value of \a arg
3793
+ /// \exception FE_INVALID for signaling NaN
3794
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3795
+ inline half cosh(half arg)
3796
+ {
3797
+ #ifdef HALF_ARITHMETIC_TYPE
3798
+ return half(detail::binary, detail::float2half<half::round_style>(std::cosh(detail::half2float<detail::internal_t>(arg.data_))));
3799
+ #else
3800
+ int abs = arg.data_ & 0x7FFF, exp;
3801
+ if(!abs)
3802
+ return half(detail::binary, 0x3C00);
3803
+ if(abs >= 0x7C00)
3804
+ return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : 0x7C00);
3805
+ std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 23 : 26);
3806
+ detail::uint32 m = mm.first + mm.second, i = (~m&0xFFFFFFFF) >> 31;
3807
+ m = (m>>i) | (m&i) | 0x80000000;
3808
+ if((exp+=13+i) > 29)
3809
+ return half(detail::binary, detail::overflow<half::round_style>());
3810
+ return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp));
3811
+ #endif
3812
+ }
3813
+
3814
+ /// Hyperbolic tangent.
3815
+ /// This function is exact to rounding for all rounding modes.
3816
+ ///
3817
+ /// **See also:** Documentation for [std::tanh](https://en.cppreference.com/w/cpp/numeric/math/tanh).
3818
+ /// \param arg function argument
3819
+ /// \return hyperbolic tangent value of \a arg
3820
+ /// \exception FE_INVALID for signaling NaN
3821
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3822
+ inline half tanh(half arg)
3823
+ {
3824
+ #ifdef HALF_ARITHMETIC_TYPE
3825
+ return half(detail::binary, detail::float2half<half::round_style>(std::tanh(detail::half2float<detail::internal_t>(arg.data_))));
3826
+ #else
3827
+ int abs = arg.data_ & 0x7FFF, exp;
3828
+ if(!abs)
3829
+ return arg;
3830
+ if(abs >= 0x7C00)
3831
+ return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_-0x4000));
3832
+ if(abs >= 0x4500)
3833
+ return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
3834
+ if(abs < 0x2700)
3835
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
3836
+ if(half::round_style != std::round_to_nearest && abs == 0x2D3F)
3837
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-3, 0, 1));
3838
+ std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, 27);
3839
+ detail::uint32 my = mm.first - mm.second - (half::round_style!=std::round_to_nearest), mx = mm.first + mm.second, i = (~mx&0xFFFFFFFF) >> 31;
3840
+ for(exp=13; my<0x80000000; my<<=1,--exp) ;
3841
+ mx = (mx>>i) | 0x80000000;
3842
+ return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp-i, arg.data_&0x8000));
3843
+ #endif
3844
+ }
3845
+
3846
+ /// Hyperbolic area sine.
3847
+ /// This function is exact to rounding for all rounding modes.
3848
+ ///
3849
+ /// **See also:** Documentation for [std::asinh](https://en.cppreference.com/w/cpp/numeric/math/asinh).
3850
+ /// \param arg function argument
3851
+ /// \return area sine value of \a arg
3852
+ /// \exception FE_INVALID for signaling NaN
3853
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3854
+ inline half asinh(half arg)
3855
+ {
3856
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3857
+ return half(detail::binary, detail::float2half<half::round_style>(std::asinh(detail::half2float<detail::internal_t>(arg.data_))));
3858
+ #else
3859
+ int abs = arg.data_ & 0x7FFF;
3860
+ if(!abs || abs >= 0x7C00)
3861
+ return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
3862
+ if(abs <= 0x2900)
3863
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
3864
+ if(half::round_style != std::round_to_nearest)
3865
+ switch(abs)
3866
+ {
3867
+ case 0x32D4: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-13, 1, 1));
3868
+ case 0x3B5B: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-197, 1, 1));
3869
+ }
3870
+ return half(detail::binary, detail::area<half::round_style,true>(arg.data_));
3871
+ #endif
3872
+ }
3873
+
3874
+ /// Hyperbolic area cosine.
3875
+ /// This function is exact to rounding for all rounding modes.
3876
+ ///
3877
+ /// **See also:** Documentation for [std::acosh](https://en.cppreference.com/w/cpp/numeric/math/acosh).
3878
+ /// \param arg function argument
3879
+ /// \return area cosine value of \a arg
3880
+ /// \exception FE_INVALID for signaling NaN or arguments <1
3881
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3882
+ inline half acosh(half arg)
3883
+ {
3884
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3885
+ return half(detail::binary, detail::float2half<half::round_style>(std::acosh(detail::half2float<detail::internal_t>(arg.data_))));
3886
+ #else
3887
+ int abs = arg.data_ & 0x7FFF;
3888
+ if((arg.data_&0x8000) || abs < 0x3C00)
3889
+ return half(detail::binary, (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_));
3890
+ if(abs == 0x3C00)
3891
+ return half(detail::binary, 0);
3892
+ if(arg.data_ >= 0x7C00)
3893
+ return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
3894
+ return half(detail::binary, detail::area<half::round_style,false>(arg.data_));
3895
+ #endif
3896
+ }
3897
+
3898
+ /// Hyperbolic area tangent.
3899
+ /// This function is exact to rounding for all rounding modes.
3900
+ ///
3901
+ /// **See also:** Documentation for [std::atanh](https://en.cppreference.com/w/cpp/numeric/math/atanh).
3902
+ /// \param arg function argument
3903
+ /// \return area tangent value of \a arg
3904
+ /// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
3905
+ /// \exception FE_DIVBYZERO for +/-1
3906
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3907
+ inline half atanh(half arg)
3908
+ {
3909
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3910
+ return half(detail::binary, detail::float2half<half::round_style>(std::atanh(detail::half2float<detail::internal_t>(arg.data_))));
3911
+ #else
3912
+ int abs = arg.data_ & 0x7FFF, exp = 0;
3913
+ if(!abs)
3914
+ return arg;
3915
+ if(abs >= 0x3C00)
3916
+ return half(detail::binary, (abs==0x3C00) ? detail::pole(arg.data_&0x8000) : (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_));
3917
+ if(abs < 0x2700)
3918
+ return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
3919
+ detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << ((abs>>10)+(abs<=0x3FF)+6), my = 0x80000000 + m, mx = 0x80000000 - m;
3920
+ for(; mx<0x80000000; mx<<=1,++exp) ;
3921
+ int i = my >= mx, s;
3922
+ return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2(
3923
+ (detail::divide64(my>>i, mx, s)+1)>>1, 27)+0x10, exp+i-1, 16, arg.data_&0x8000));
3924
+ #endif
3925
+ }
3926
+
3927
+ /// \}
3928
+ /// \anchor special
3929
+ /// \name Error and gamma functions
3930
+ /// \{
3931
+
3932
+ /// Error function.
3933
+ /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs.
3934
+ ///
3935
+ /// **See also:** Documentation for [std::erf](https://en.cppreference.com/w/cpp/numeric/math/erf).
3936
+ /// \param arg function argument
3937
+ /// \return error function value of \a arg
3938
+ /// \exception FE_INVALID for signaling NaN
3939
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3940
+ inline half erf(half arg)
3941
+ {
3942
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3943
+ return half(detail::binary, detail::float2half<half::round_style>(std::erf(detail::half2float<detail::internal_t>(arg.data_))));
3944
+ #else
3945
+ unsigned int abs = arg.data_ & 0x7FFF;
3946
+ if(!abs || abs >= 0x7C00)
3947
+ return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (arg.data_-0x4000) : detail::signal(arg.data_)) : arg;
3948
+ if(abs >= 0x4200)
3949
+ return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
3950
+ return half(detail::binary, detail::erf<half::round_style,false>(arg.data_));
3951
+ #endif
3952
+ }
3953
+
3954
+ /// Complementary error function.
3955
+ /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs.
3956
+ ///
3957
+ /// **See also:** Documentation for [std::erfc](https://en.cppreference.com/w/cpp/numeric/math/erfc).
3958
+ /// \param arg function argument
3959
+ /// \return 1 minus error function value of \a arg
3960
+ /// \exception FE_INVALID for signaling NaN
3961
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3962
+ inline half erfc(half arg)
3963
+ {
3964
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3965
+ return half(detail::binary, detail::float2half<half::round_style>(std::erfc(detail::half2float<detail::internal_t>(arg.data_))));
3966
+ #else
3967
+ unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
3968
+ if(abs >= 0x7C00)
3969
+ return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (sign>>1) : detail::signal(arg.data_)) : arg;
3970
+ if(!abs)
3971
+ return half(detail::binary, 0x3C00);
3972
+ if(abs >= 0x4400)
3973
+ return half(detail::binary, detail::rounded<half::round_style,true>((sign>>1)-(sign>>15), sign>>15, 1));
3974
+ return half(detail::binary, detail::erf<half::round_style,true>(arg.data_));
3975
+ #endif
3976
+ }
3977
+
3978
+ /// Natural logarithm of gamma function.
3979
+ /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.025% of inputs.
3980
+ ///
3981
+ /// **See also:** Documentation for [std::lgamma](https://en.cppreference.com/w/cpp/numeric/math/lgamma).
3982
+ /// \param arg function argument
3983
+ /// \return natural logarith of gamma function for \a arg
3984
+ /// \exception FE_INVALID for signaling NaN
3985
+ /// \exception FE_DIVBYZERO for 0 or negative integer arguments
3986
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
3987
+ inline half lgamma(half arg)
3988
+ {
3989
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
3990
+ return half(detail::binary, detail::float2half<half::round_style>(std::lgamma(detail::half2float<detail::internal_t>(arg.data_))));
3991
+ #else
3992
+ int abs = arg.data_ & 0x7FFF;
3993
+ if(abs >= 0x7C00)
3994
+ return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_));
3995
+ if(!abs || arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1))))
3996
+ return half(detail::binary, detail::pole());
3997
+ if(arg.data_ == 0x3C00 || arg.data_ == 0x4000)
3998
+ return half(detail::binary, 0);
3999
+ return half(detail::binary, detail::gamma<half::round_style,true>(arg.data_));
4000
+ #endif
4001
+ }
4002
+
4003
+ /// Gamma function.
4004
+ /// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.25% of inputs.
4005
+ ///
4006
+ /// **See also:** Documentation for [std::tgamma](https://en.cppreference.com/w/cpp/numeric/math/tgamma).
4007
+ /// \param arg function argument
4008
+ /// \return gamma function value of \a arg
4009
+ /// \exception FE_INVALID for signaling NaN, negative infinity or negative integer arguments
4010
+ /// \exception FE_DIVBYZERO for 0
4011
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
4012
+ inline half tgamma(half arg)
4013
+ {
4014
+ #if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
4015
+ return half(detail::binary, detail::float2half<half::round_style>(std::tgamma(detail::half2float<detail::internal_t>(arg.data_))));
4016
+ #else
4017
+ unsigned int abs = arg.data_ & 0x7FFF;
4018
+ if(!abs)
4019
+ return half(detail::binary, detail::pole(arg.data_));
4020
+ if(abs >= 0x7C00)
4021
+ return (arg.data_==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
4022
+ if(arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1))))
4023
+ return half(detail::binary, detail::invalid());
4024
+ if(arg.data_ >= 0xCA80)
4025
+ return half(detail::binary, detail::underflow<half::round_style>((1-((abs>>(25-(abs>>10)))&1))<<15));
4026
+ if(arg.data_ <= 0x100 || (arg.data_ >= 0x4900 && arg.data_ < 0x8000))
4027
+ return half(detail::binary, detail::overflow<half::round_style>());
4028
+ if(arg.data_ == 0x3C00)
4029
+ return arg;
4030
+ return half(detail::binary, detail::gamma<half::round_style,false>(arg.data_));
4031
+ #endif
4032
+ }
4033
+
4034
+ /// \}
4035
+ /// \anchor rounding
4036
+ /// \name Rounding
4037
+ /// \{
4038
+
4039
+ /// Nearest integer not less than half value.
4040
+ /// **See also:** Documentation for [std::ceil](https://en.cppreference.com/w/cpp/numeric/math/ceil).
4041
+ /// \param arg half to round
4042
+ /// \return nearest integer not less than \a arg
4043
+ /// \exception FE_INVALID for signaling NaN
4044
+ /// \exception FE_INEXACT if value had to be rounded
4045
+ inline half ceil(half arg) { return half(detail::binary, detail::integral<std::round_toward_infinity,true,true>(arg.data_)); }
4046
+
4047
+ /// Nearest integer not greater than half value.
4048
+ /// **See also:** Documentation for [std::floor](https://en.cppreference.com/w/cpp/numeric/math/floor).
4049
+ /// \param arg half to round
4050
+ /// \return nearest integer not greater than \a arg
4051
+ /// \exception FE_INVALID for signaling NaN
4052
+ /// \exception FE_INEXACT if value had to be rounded
4053
+ inline half floor(half arg) { return half(detail::binary, detail::integral<std::round_toward_neg_infinity,true,true>(arg.data_)); }
4054
+
4055
+ /// Nearest integer not greater in magnitude than half value.
4056
+ /// **See also:** Documentation for [std::trunc](https://en.cppreference.com/w/cpp/numeric/math/trunc).
4057
+ /// \param arg half to round
4058
+ /// \return nearest integer not greater in magnitude than \a arg
4059
+ /// \exception FE_INVALID for signaling NaN
4060
+ /// \exception FE_INEXACT if value had to be rounded
4061
+ inline half trunc(half arg) { return half(detail::binary, detail::integral<std::round_toward_zero,true,true>(arg.data_)); }
4062
+
4063
+ /// Nearest integer.
4064
+ /// **See also:** Documentation for [std::round](https://en.cppreference.com/w/cpp/numeric/math/round).
4065
+ /// \param arg half to round
4066
+ /// \return nearest integer, rounded away from zero in half-way cases
4067
+ /// \exception FE_INVALID for signaling NaN
4068
+ /// \exception FE_INEXACT if value had to be rounded
4069
+ inline half round(half arg) { return half(detail::binary, detail::integral<std::round_to_nearest,false,true>(arg.data_)); }
4070
+
4071
+ /// Nearest integer.
4072
+ /// **See also:** Documentation for [std::lround](https://en.cppreference.com/w/cpp/numeric/math/round).
4073
+ /// \param arg half to round
4074
+ /// \return nearest integer, rounded away from zero in half-way cases
4075
+ /// \exception FE_INVALID if value is not representable as `long`
4076
+ inline long lround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long>(arg.data_); }
4077
+
4078
+ /// Nearest integer using half's internal rounding mode.
4079
+ /// **See also:** Documentation for [std::rint](https://en.cppreference.com/w/cpp/numeric/math/rint).
4080
+ /// \param arg half expression to round
4081
+ /// \return nearest integer using default rounding mode
4082
+ /// \exception FE_INVALID for signaling NaN
4083
+ /// \exception FE_INEXACT if value had to be rounded
4084
+ inline half rint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,true>(arg.data_)); }
4085
+
4086
+ /// Nearest integer using half's internal rounding mode.
4087
+ /// **See also:** Documentation for [std::lrint](https://en.cppreference.com/w/cpp/numeric/math/rint).
4088
+ /// \param arg half expression to round
4089
+ /// \return nearest integer using default rounding mode
4090
+ /// \exception FE_INVALID if value is not representable as `long`
4091
+ /// \exception FE_INEXACT if value had to be rounded
4092
+ inline long lrint(half arg) { return detail::half2int<half::round_style,true,true,long>(arg.data_); }
4093
+
4094
+ /// Nearest integer using half's internal rounding mode.
4095
+ /// **See also:** Documentation for [std::nearbyint](https://en.cppreference.com/w/cpp/numeric/math/nearbyint).
4096
+ /// \param arg half expression to round
4097
+ /// \return nearest integer using default rounding mode
4098
+ /// \exception FE_INVALID for signaling NaN
4099
+ inline half nearbyint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,false>(arg.data_)); }
4100
+ #if HALF_ENABLE_CPP11_LONG_LONG
4101
+ /// Nearest integer.
4102
+ /// **See also:** Documentation for [std::llround](https://en.cppreference.com/w/cpp/numeric/math/round).
4103
+ /// \param arg half to round
4104
+ /// \return nearest integer, rounded away from zero in half-way cases
4105
+ /// \exception FE_INVALID if value is not representable as `long long`
4106
+ inline long long llround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long long>(arg.data_); }
4107
+
4108
+ /// Nearest integer using half's internal rounding mode.
4109
+ /// **See also:** Documentation for [std::llrint](https://en.cppreference.com/w/cpp/numeric/math/rint).
4110
+ /// \param arg half expression to round
4111
+ /// \return nearest integer using default rounding mode
4112
+ /// \exception FE_INVALID if value is not representable as `long long`
4113
+ /// \exception FE_INEXACT if value had to be rounded
4114
+ inline long long llrint(half arg) { return detail::half2int<half::round_style,true,true,long long>(arg.data_); }
4115
+ #endif
4116
+
4117
+ /// \}
4118
+ /// \anchor float
4119
+ /// \name Floating point manipulation
4120
+ /// \{
4121
+
4122
+ /// Decompress floating-point number.
4123
+ /// **See also:** Documentation for [std::frexp](https://en.cppreference.com/w/cpp/numeric/math/frexp).
4124
+ /// \param arg number to decompress
4125
+ /// \param exp address to store exponent at
4126
+ /// \return significant in range [0.5, 1)
4127
+ /// \exception FE_INVALID for signaling NaN
4128
+ inline half frexp(half arg, int *exp)
4129
+ {
4130
+ *exp = 0;
4131
+ unsigned int abs = arg.data_ & 0x7FFF;
4132
+ if(abs >= 0x7C00 || !abs)
4133
+ return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
4134
+ for(; abs<0x400; abs<<=1,--*exp) ;
4135
+ *exp += (abs>>10) - 14;
4136
+ return half(detail::binary, (arg.data_&0x8000)|0x3800|(abs&0x3FF));
4137
+ }
4138
+
4139
+ /// Multiply by power of two.
4140
+ /// This function is exact to rounding for all rounding modes.
4141
+ ///
4142
+ /// **See also:** Documentation for [std::scalbln](https://en.cppreference.com/w/cpp/numeric/math/scalbn).
4143
+ /// \param arg number to modify
4144
+ /// \param exp power of two to multiply with
4145
+ /// \return \a arg multplied by 2 raised to \a exp
4146
+ /// \exception FE_INVALID for signaling NaN
4147
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
4148
+ inline half scalbln(half arg, long exp)
4149
+ {
4150
+ unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
4151
+ if(abs >= 0x7C00 || !abs)
4152
+ return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
4153
+ for(; abs<0x400; abs<<=1,--exp) ;
4154
+ exp += abs >> 10;
4155
+ if(exp > 30)
4156
+ return half(detail::binary, detail::overflow<half::round_style>(sign));
4157
+ else if(exp < -10)
4158
+ return half(detail::binary, detail::underflow<half::round_style>(sign));
4159
+ else if(exp > 0)
4160
+ return half(detail::binary, sign|(exp<<10)|(abs&0x3FF));
4161
+ unsigned int m = (abs&0x3FF) | 0x400;
4162
+ return half(detail::binary, detail::rounded<half::round_style,false>(sign|(m>>(1-exp)), (m>>-exp)&1, (m&((1<<-exp)-1))!=0));
4163
+ }
4164
+
4165
+ /// Multiply by power of two.
4166
+ /// This function is exact to rounding for all rounding modes.
4167
+ ///
4168
+ /// **See also:** Documentation for [std::scalbn](https://en.cppreference.com/w/cpp/numeric/math/scalbn).
4169
+ /// \param arg number to modify
4170
+ /// \param exp power of two to multiply with
4171
+ /// \return \a arg multplied by 2 raised to \a exp
4172
+ /// \exception FE_INVALID for signaling NaN
4173
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
4174
+ inline half scalbn(half arg, int exp) { return scalbln(arg, exp); }
4175
+
4176
+ /// Multiply by power of two.
4177
+ /// This function is exact to rounding for all rounding modes.
4178
+ ///
4179
+ /// **See also:** Documentation for [std::ldexp](https://en.cppreference.com/w/cpp/numeric/math/ldexp).
4180
+ /// \param arg number to modify
4181
+ /// \param exp power of two to multiply with
4182
+ /// \return \a arg multplied by 2 raised to \a exp
4183
+ /// \exception FE_INVALID for signaling NaN
4184
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
4185
+ inline half ldexp(half arg, int exp) { return scalbln(arg, exp); }
4186
+
4187
+ /// Extract integer and fractional parts.
4188
+ /// **See also:** Documentation for [std::modf](https://en.cppreference.com/w/cpp/numeric/math/modf).
4189
+ /// \param arg number to decompress
4190
+ /// \param iptr address to store integer part at
4191
+ /// \return fractional part
4192
+ /// \exception FE_INVALID for signaling NaN
4193
+ inline half modf(half arg, half *iptr)
4194
+ {
4195
+ unsigned int abs = arg.data_ & 0x7FFF;
4196
+ if(abs > 0x7C00)
4197
+ {
4198
+ arg = half(detail::binary, detail::signal(arg.data_));
4199
+ return *iptr = arg, arg;
4200
+ }
4201
+ if(abs >= 0x6400)
4202
+ return *iptr = arg, half(detail::binary, arg.data_&0x8000);
4203
+ if(abs < 0x3C00)
4204
+ return iptr->data_ = arg.data_ & 0x8000, arg;
4205
+ unsigned int exp = abs >> 10, mask = (1<<(25-exp)) - 1, m = arg.data_ & mask;
4206
+ iptr->data_ = arg.data_ & ~mask;
4207
+ if(!m)
4208
+ return half(detail::binary, arg.data_&0x8000);
4209
+ for(; m<0x400; m<<=1,--exp) ;
4210
+ return half(detail::binary, (arg.data_&0x8000)|(exp<<10)|(m&0x3FF));
4211
+ }
4212
+
4213
+ /// Extract exponent.
4214
+ /// **See also:** Documentation for [std::ilogb](https://en.cppreference.com/w/cpp/numeric/math/ilogb).
4215
+ /// \param arg number to query
4216
+ /// \return floating-point exponent
4217
+ /// \retval FP_ILOGB0 for zero
4218
+ /// \retval FP_ILOGBNAN for NaN
4219
+ /// \retval INT_MAX for infinity
4220
+ /// \exception FE_INVALID for 0 or infinite values
4221
+ inline int ilogb(half arg)
4222
+ {
4223
+ int abs = arg.data_ & 0x7FFF, exp;
4224
+ if(!abs || abs >= 0x7C00)
4225
+ {
4226
+ detail::raise(FE_INVALID);
4227
+ return !abs ? FP_ILOGB0 : (abs==0x7C00) ? INT_MAX : FP_ILOGBNAN;
4228
+ }
4229
+ for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ;
4230
+ return exp;
4231
+ }
4232
+
4233
+ /// Extract exponent.
4234
+ /// **See also:** Documentation for [std::logb](https://en.cppreference.com/w/cpp/numeric/math/logb).
4235
+ /// \param arg number to query
4236
+ /// \return floating-point exponent
4237
+ /// \exception FE_INVALID for signaling NaN
4238
+ /// \exception FE_DIVBYZERO for 0
4239
+ inline half logb(half arg)
4240
+ {
4241
+ int abs = arg.data_ & 0x7FFF, exp;
4242
+ if(!abs)
4243
+ return half(detail::binary, detail::pole(0x8000));
4244
+ if(abs >= 0x7C00)
4245
+ return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_));
4246
+ for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ;
4247
+ unsigned int value = static_cast<unsigned>(exp<0) << 15;
4248
+ if(exp)
4249
+ {
4250
+ unsigned int m = std::abs(exp) << 6;
4251
+ for(exp=18; m<0x400; m<<=1,--exp) ;
4252
+ value |= (exp<<10) + m;
4253
+ }
4254
+ return half(detail::binary, value);
4255
+ }
4256
+
4257
+ /// Next representable value.
4258
+ /// **See also:** Documentation for [std::nextafter](https://en.cppreference.com/w/cpp/numeric/math/nextafter).
4259
+ /// \param from value to compute next representable value for
4260
+ /// \param to direction towards which to compute next value
4261
+ /// \return next representable value after \a from in direction towards \a to
4262
+ /// \exception FE_INVALID for signaling NaN
4263
+ /// \exception FE_OVERFLOW for infinite result from finite argument
4264
+ /// \exception FE_UNDERFLOW for subnormal result
4265
+ inline half nextafter(half from, half to)
4266
+ {
4267
+ int fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;
4268
+ if(fabs > 0x7C00 || tabs > 0x7C00)
4269
+ return half(detail::binary, detail::signal(from.data_, to.data_));
4270
+ if(from.data_ == to.data_ || !(fabs|tabs))
4271
+ return to;
4272
+ if(!fabs)
4273
+ {
4274
+ detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
4275
+ return half(detail::binary, (to.data_&0x8000)+1);
4276
+ }
4277
+ unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>(
4278
+ (from.data_^(0x8000|(0x8000-(from.data_>>15))))<(to.data_^(0x8000|(0x8000-(to.data_>>15))))))<<1) - 1;
4279
+ detail::raise(FE_OVERFLOW, fabs<0x7C00 && (out&0x7C00)==0x7C00);
4280
+ detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7C00)<0x400);
4281
+ return half(detail::binary, out);
4282
+ }
4283
+
4284
+ /// Next representable value.
4285
+ /// **See also:** Documentation for [std::nexttoward](https://en.cppreference.com/w/cpp/numeric/math/nexttoward).
4286
+ /// \param from value to compute next representable value for
4287
+ /// \param to direction towards which to compute next value
4288
+ /// \return next representable value after \a from in direction towards \a to
4289
+ /// \exception FE_INVALID for signaling NaN
4290
+ /// \exception FE_OVERFLOW for infinite result from finite argument
4291
+ /// \exception FE_UNDERFLOW for subnormal result
4292
+ inline half nexttoward(half from, long double to)
4293
+ {
4294
+ int fabs = from.data_ & 0x7FFF;
4295
+ if(fabs > 0x7C00)
4296
+ return half(detail::binary, detail::signal(from.data_));
4297
+ long double lfrom = static_cast<long double>(from);
4298
+ if(detail::builtin_isnan(to) || lfrom == to)
4299
+ return half(static_cast<float>(to));
4300
+ if(!fabs)
4301
+ {
4302
+ detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
4303
+ return half(detail::binary, (static_cast<unsigned>(detail::builtin_signbit(to))<<15)+1);
4304
+ }
4305
+ unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>(lfrom<to))<<1) - 1;
4306
+ detail::raise(FE_OVERFLOW, (out&0x7FFF)==0x7C00);
4307
+ detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7FFF)<0x400);
4308
+ return half(detail::binary, out);
4309
+ }
4310
+
4311
+ /// Take sign.
4312
+ /// **See also:** Documentation for [std::copysign](https://en.cppreference.com/w/cpp/numeric/math/copysign).
4313
+ /// \param x value to change sign for
4314
+ /// \param y value to take sign from
4315
+ /// \return value equal to \a x in magnitude and to \a y in sign
4316
+ inline HALF_CONSTEXPR half copysign(half x, half y) { return half(detail::binary, x.data_^((x.data_^y.data_)&0x8000)); }
4317
+
4318
+ /// \}
4319
+ /// \anchor classification
4320
+ /// \name Floating point classification
4321
+ /// \{
4322
+
4323
+ /// Classify floating-point value.
4324
+ /// **See also:** Documentation for [std::fpclassify](https://en.cppreference.com/w/cpp/numeric/math/fpclassify).
4325
+ /// \param arg number to classify
4326
+ /// \retval FP_ZERO for positive and negative zero
4327
+ /// \retval FP_SUBNORMAL for subnormal numbers
4328
+ /// \retval FP_INFINITY for positive and negative infinity
4329
+ /// \retval FP_NAN for NaNs
4330
+ /// \retval FP_NORMAL for all other (normal) values
4331
+ inline HALF_CONSTEXPR int fpclassify(half arg)
4332
+ {
4333
+ return !(arg.data_&0x7FFF) ? FP_ZERO :
4334
+ ((arg.data_&0x7FFF)<0x400) ? FP_SUBNORMAL :
4335
+ ((arg.data_&0x7FFF)<0x7C00) ? FP_NORMAL :
4336
+ ((arg.data_&0x7FFF)==0x7C00) ? FP_INFINITE :
4337
+ FP_NAN;
4338
+ }
4339
+
4340
+ /// Check if finite number.
4341
+ /// **See also:** Documentation for [std::isfinite](https://en.cppreference.com/w/cpp/numeric/math/isfinite).
4342
+ /// \param arg number to check
4343
+ /// \retval true if neither infinity nor NaN
4344
+ /// \retval false else
4345
+ inline HALF_CONSTEXPR bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; }
4346
+
4347
+ /// Check for infinity.
4348
+ /// **See also:** Documentation for [std::isinf](https://en.cppreference.com/w/cpp/numeric/math/isinf).
4349
+ /// \param arg number to check
4350
+ /// \retval true for positive or negative infinity
4351
+ /// \retval false else
4352
+ inline HALF_CONSTEXPR bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; }
4353
+
4354
+ /// Check for NaN.
4355
+ /// **See also:** Documentation for [std::isnan](https://en.cppreference.com/w/cpp/numeric/math/isnan).
4356
+ /// \param arg number to check
4357
+ /// \retval true for NaNs
4358
+ /// \retval false else
4359
+ inline HALF_CONSTEXPR bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; }
4360
+
4361
+ /// Check if normal number.
4362
+ /// **See also:** Documentation for [std::isnormal](https://en.cppreference.com/w/cpp/numeric/math/isnormal).
4363
+ /// \param arg number to check
4364
+ /// \retval true if normal number
4365
+ /// \retval false if either subnormal, zero, infinity or NaN
4366
+ inline HALF_CONSTEXPR bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); }
4367
+
4368
+ /// Check sign.
4369
+ /// **See also:** Documentation for [std::signbit](https://en.cppreference.com/w/cpp/numeric/math/signbit).
4370
+ /// \param arg number to check
4371
+ /// \retval true for negative number
4372
+ /// \retval false for positive number
4373
+ inline HALF_CONSTEXPR bool signbit(half arg) { return (arg.data_&0x8000) != 0; }
4374
+
4375
+ /// \}
4376
+ /// \anchor compfunc
4377
+ /// \name Comparison
4378
+ /// \{
4379
+
4380
+ /// Quiet comparison for greater than.
4381
+ /// **See also:** Documentation for [std::isgreater](https://en.cppreference.com/w/cpp/numeric/math/isgreater).
4382
+ /// \param x first operand
4383
+ /// \param y second operand
4384
+ /// \retval true if \a x greater than \a y
4385
+ /// \retval false else
4386
+ inline HALF_CONSTEXPR bool isgreater(half x, half y)
4387
+ {
4388
+ return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
4389
+ }
4390
+
4391
+ /// Quiet comparison for greater equal.
4392
+ /// **See also:** Documentation for [std::isgreaterequal](https://en.cppreference.com/w/cpp/numeric/math/isgreaterequal).
4393
+ /// \param x first operand
4394
+ /// \param y second operand
4395
+ /// \retval true if \a x greater equal \a y
4396
+ /// \retval false else
4397
+ inline HALF_CONSTEXPR bool isgreaterequal(half x, half y)
4398
+ {
4399
+ return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
4400
+ }
4401
+
4402
+ /// Quiet comparison for less than.
4403
+ /// **See also:** Documentation for [std::isless](https://en.cppreference.com/w/cpp/numeric/math/isless).
4404
+ /// \param x first operand
4405
+ /// \param y second operand
4406
+ /// \retval true if \a x less than \a y
4407
+ /// \retval false else
4408
+ inline HALF_CONSTEXPR bool isless(half x, half y)
4409
+ {
4410
+ return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
4411
+ }
4412
+
4413
+ /// Quiet comparison for less equal.
4414
+ /// **See also:** Documentation for [std::islessequal](https://en.cppreference.com/w/cpp/numeric/math/islessequal).
4415
+ /// \param x first operand
4416
+ /// \param y second operand
4417
+ /// \retval true if \a x less equal \a y
4418
+ /// \retval false else
4419
+ inline HALF_CONSTEXPR bool islessequal(half x, half y)
4420
+ {
4421
+ return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
4422
+ }
4423
+
4424
+ /// Quiet comarison for less or greater.
4425
+ /// **See also:** Documentation for [std::islessgreater](https://en.cppreference.com/w/cpp/numeric/math/islessgreater).
4426
+ /// \param x first operand
4427
+ /// \param y second operand
4428
+ /// \retval true if either less or greater
4429
+ /// \retval false else
4430
+ inline HALF_CONSTEXPR bool islessgreater(half x, half y)
4431
+ {
4432
+ return x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF) && !isnan(x) && !isnan(y);
4433
+ }
4434
+
4435
+ /// Quiet check if unordered.
4436
+ /// **See also:** Documentation for [std::isunordered](https://en.cppreference.com/w/cpp/numeric/math/isunordered).
4437
+ /// \param x first operand
4438
+ /// \param y second operand
4439
+ /// \retval true if unordered (one or two NaN operands)
4440
+ /// \retval false else
4441
+ inline HALF_CONSTEXPR bool isunordered(half x, half y) { return isnan(x) || isnan(y); }
4442
+
4443
+ /// \}
4444
+ /// \anchor casting
4445
+ /// \name Casting
4446
+ /// \{
4447
+
4448
+ /// Cast to or from half-precision floating-point number.
4449
+ /// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
4450
+ /// directly using the default rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
4451
+ ///
4452
+ /// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
4453
+ /// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
4454
+ /// error and casting between [half](\ref half_float::half)s returns the argument unmodified.
4455
+ /// \tparam T destination type (half or built-in arithmetic type)
4456
+ /// \tparam U source type (half or built-in arithmetic type)
4457
+ /// \param arg value to cast
4458
+ /// \return \a arg converted to destination type
4459
+ /// \exception FE_INVALID if \a T is integer type and result is not representable as \a T
4460
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
4461
+ template<typename T,typename U> T half_cast(U arg) { return detail::half_caster<T,U>::cast(arg); }
4462
+
4463
+ /// Cast to or from half-precision floating-point number.
4464
+ /// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
4465
+ /// directly using the specified rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
4466
+ ///
4467
+ /// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
4468
+ /// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
4469
+ /// error and casting between [half](\ref half_float::half)s returns the argument unmodified.
4470
+ /// \tparam T destination type (half or built-in arithmetic type)
4471
+ /// \tparam R rounding mode to use.
4472
+ /// \tparam U source type (half or built-in arithmetic type)
4473
+ /// \param arg value to cast
4474
+ /// \return \a arg converted to destination type
4475
+ /// \exception FE_INVALID if \a T is integer type and result is not representable as \a T
4476
+ /// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
4477
+ template<typename T,std::float_round_style R,typename U> T half_cast(U arg) { return detail::half_caster<T,U,R>::cast(arg); }
4478
+ /// \}
4479
+
4480
+ /// \}
4481
+ /// \anchor errors
4482
+ /// \name Error handling
4483
+ /// \{
4484
+
4485
+ /// Clear exception flags.
4486
+ /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
4487
+ /// but in that case manual flag management is the only way to raise flags.
4488
+ ///
4489
+ /// **See also:** Documentation for [std::feclearexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feclearexcept).
4490
+ /// \param excepts OR of exceptions to clear
4491
+ /// \retval 0 all selected flags cleared successfully
4492
+ inline int feclearexcept(int excepts) { detail::errflags() &= ~excepts; return 0; }
4493
+
4494
+ /// Test exception flags.
4495
+ /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
4496
+ /// but in that case manual flag management is the only way to raise flags.
4497
+ ///
4498
+ /// **See also:** Documentation for [std::fetestexcept](https://en.cppreference.com/w/cpp/numeric/fenv/fetestexcept).
4499
+ /// \param excepts OR of exceptions to test
4500
+ /// \return OR of selected exceptions if raised
4501
+ inline int fetestexcept(int excepts) { return detail::errflags() & excepts; }
4502
+
4503
+ /// Raise exception flags.
4504
+ /// This raises the specified floating point exceptions and also invokes any additional automatic exception handling as
4505
+ /// configured with the [HALF_ERRHANDLIG_...](\ref HALF_ERRHANDLING_ERRNO) preprocessor symbols.
4506
+ /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
4507
+ /// but in that case manual flag management is the only way to raise flags.
4508
+ ///
4509
+ /// **See also:** Documentation for [std::feraiseexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feraiseexcept).
4510
+ /// \param excepts OR of exceptions to raise
4511
+ /// \retval 0 all selected exceptions raised successfully
4512
+ inline int feraiseexcept(int excepts) { detail::errflags() |= excepts; detail::raise(excepts); return 0; }
4513
+
4514
+ /// Save exception flags.
4515
+ /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
4516
+ /// but in that case manual flag management is the only way to raise flags.
4517
+ ///
4518
+ /// **See also:** Documentation for [std::fegetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
4519
+ /// \param flagp adress to store flag state at
4520
+ /// \param excepts OR of flags to save
4521
+ /// \retval 0 for success
4522
+ inline int fegetexceptflag(int *flagp, int excepts) { *flagp = detail::errflags() & excepts; return 0; }
4523
+
4524
+ /// Restore exception flags.
4525
+ /// This only copies the specified exception state (including unset flags) without incurring any additional exception handling.
4526
+ /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
4527
+ /// but in that case manual flag management is the only way to raise flags.
4528
+ ///
4529
+ /// **See also:** Documentation for [std::fesetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
4530
+ /// \param flagp adress to take flag state from
4531
+ /// \param excepts OR of flags to restore
4532
+ /// \retval 0 for success
4533
+ inline int fesetexceptflag(const int *flagp, int excepts) { detail::errflags() = (detail::errflags()|(*flagp&excepts)) & (*flagp|~excepts); return 0; }
4534
+
4535
+ /// Throw C++ exceptions based on set exception flags.
4536
+ /// This function manually throws a corresponding C++ exception if one of the specified flags is set,
4537
+ /// no matter if automatic throwing (via [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID)) is enabled or not.
4538
+ /// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
4539
+ /// but in that case manual flag management is the only way to raise flags.
4540
+ /// \param excepts OR of exceptions to test
4541
+ /// \param msg error message to use for exception description
4542
+ /// \throw std::domain_error if `FE_INVALID` or `FE_DIVBYZERO` is selected and set
4543
+ /// \throw std::overflow_error if `FE_OVERFLOW` is selected and set
4544
+ /// \throw std::underflow_error if `FE_UNDERFLOW` is selected and set
4545
+ /// \throw std::range_error if `FE_INEXACT` is selected and set
4546
+ inline void fethrowexcept(int excepts, const char *msg = "")
4547
+ {
4548
+ excepts &= detail::errflags();
4549
+ if(excepts & (FE_INVALID|FE_DIVBYZERO))
4550
+ throw std::domain_error(msg);
4551
+ if(excepts & FE_OVERFLOW)
4552
+ throw std::overflow_error(msg);
4553
+ if(excepts & FE_UNDERFLOW)
4554
+ throw std::underflow_error(msg);
4555
+ if(excepts & FE_INEXACT)
4556
+ throw std::range_error(msg);
4557
+ }
4558
+ /// \}
4559
+ }
4560
+
4561
+
4562
+ #undef HALF_UNUSED_NOERR
4563
+ #undef HALF_CONSTEXPR
4564
+ #undef HALF_CONSTEXPR_CONST
4565
+ #undef HALF_CONSTEXPR_NOERR
4566
+ #undef HALF_NOEXCEPT
4567
+ #undef HALF_NOTHROW
4568
+ #undef HALF_THREAD_LOCAL
4569
+ #undef HALF_TWOS_COMPLEMENT_INT
4570
+ #ifdef HALF_POP_WARNINGS
4571
+ #pragma warning(pop)
4572
+ #undef HALF_POP_WARNINGS
4573
+ #endif
4574
+
4575
+ #endif