sq_detailed_metrics 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/extconf.rb +26 -0
- data/include/half.hpp +4575 -0
- data/include/msgpack.h +24 -0
- data/include/msgpack/fbuffer.h +42 -0
- data/include/msgpack/gcc_atomic.h +25 -0
- data/include/msgpack/object.h +118 -0
- data/include/msgpack/pack.h +174 -0
- data/include/msgpack/pack_define.h +18 -0
- data/include/msgpack/pack_template.h +952 -0
- data/include/msgpack/sbuffer.h +115 -0
- data/include/msgpack/sysdep.h +221 -0
- data/include/msgpack/timestamp.h +58 -0
- data/include/msgpack/unpack.h +281 -0
- data/include/msgpack/unpack_define.h +89 -0
- data/include/msgpack/unpack_template.h +471 -0
- data/include/msgpack/util.h +15 -0
- data/include/msgpack/version.h +38 -0
- data/include/msgpack/version_master.h +3 -0
- data/include/msgpack/vrefbuffer.h +144 -0
- data/include/msgpack/zbuffer.h +205 -0
- data/include/msgpack/zone.h +163 -0
- data/include/rapidjson/allocators.h +271 -0
- data/include/rapidjson/document.h +2575 -0
- data/include/rapidjson/encodedstream.h +299 -0
- data/include/rapidjson/encodings.h +716 -0
- data/include/rapidjson/error/en.h +74 -0
- data/include/rapidjson/error/error.h +155 -0
- data/include/rapidjson/filereadstream.h +99 -0
- data/include/rapidjson/filewritestream.h +104 -0
- data/include/rapidjson/fwd.h +151 -0
- data/include/rapidjson/internal/biginteger.h +290 -0
- data/include/rapidjson/internal/diyfp.h +258 -0
- data/include/rapidjson/internal/dtoa.h +245 -0
- data/include/rapidjson/internal/ieee754.h +78 -0
- data/include/rapidjson/internal/itoa.h +304 -0
- data/include/rapidjson/internal/meta.h +181 -0
- data/include/rapidjson/internal/pow10.h +55 -0
- data/include/rapidjson/internal/regex.h +701 -0
- data/include/rapidjson/internal/stack.h +230 -0
- data/include/rapidjson/internal/strfunc.h +55 -0
- data/include/rapidjson/internal/strtod.h +269 -0
- data/include/rapidjson/internal/swap.h +46 -0
- data/include/rapidjson/istreamwrapper.h +115 -0
- data/include/rapidjson/memorybuffer.h +70 -0
- data/include/rapidjson/memorystream.h +71 -0
- data/include/rapidjson/msinttypes/inttypes.h +316 -0
- data/include/rapidjson/msinttypes/stdint.h +300 -0
- data/include/rapidjson/ostreamwrapper.h +81 -0
- data/include/rapidjson/pointer.h +1358 -0
- data/include/rapidjson/prettywriter.h +255 -0
- data/include/rapidjson/rapidjson.h +615 -0
- data/include/rapidjson/reader.h +1879 -0
- data/include/rapidjson/schema.h +2006 -0
- data/include/rapidjson/stream.h +179 -0
- data/include/rapidjson/stringbuffer.h +117 -0
- data/include/rapidjson/writer.h +610 -0
- data/include/xxhash.h +328 -0
- data/json_conv.cpp +284 -0
- data/json_conv.hpp +17 -0
- data/metrics.cpp +239 -0
- data/metrics.hpp +84 -0
- data/msgpack/objectc.c +482 -0
- data/msgpack/unpack.c +703 -0
- data/msgpack/version.c +22 -0
- data/msgpack/vrefbuffer.c +250 -0
- data/msgpack/zone.c +222 -0
- data/sq_detailed_metrics.cpp +248 -0
- metadata +199 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: a38eda9349f688e115d4e5aa5c33dde66dc0ada44e33e1a7d9a04446ef5a539c
|
4
|
+
data.tar.gz: edf3282941ac42ec326f6fe74bd7eda5a7b9520cfee3c33f1e3685aceae451bc
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 05c8c82fa5ca98839dabae7a2a04f4462fb784e85dba0349c05159662009885decbd73ac8c32243a3ffadeb8842cfb8d3de84ec51b78394c7f7dbc3f335c229a
|
7
|
+
data.tar.gz: 7b96e204233c774feb19f21cc21e012c073587a302760cf57fa9b4a1762e5c13ee2114197390bcca2acaa536634fb04238efa7267d413ffec05a67a36bfc144c
|
data/extconf.rb
ADDED
@@ -0,0 +1,26 @@
|
|
1
|
+
c = RbConfig::MAKEFILE_CONFIG
|
2
|
+
|
3
|
+
c['CC'] = ENV['LIBSQREEN_CC'] if ENV['LIBSQREEN_CC']
|
4
|
+
c['CFLAGS'] += ' ' + ENV['LIBSQREEN_CFLAGS'] if ENV['LIBSQREEN_CFLAGS']
|
5
|
+
c['LDFLAGS'] += ' ' + ENV['LIBSQREEN_LDFLAGS'] if ENV['LIBSQREEN_LDFLAGS']
|
6
|
+
|
7
|
+
require 'mkmf'
|
8
|
+
require 'shellwords'
|
9
|
+
require 'pathname'
|
10
|
+
|
11
|
+
dir = Pathname.new(File.dirname(__FILE__))
|
12
|
+
$srcs = Dir["#{dir}/msgpack/*.c", "#{dir}/*.c", "#{dir}/*.cpp"].map do |p|
|
13
|
+
Pathname.new(p).relative_path_from(dir).to_s
|
14
|
+
end
|
15
|
+
$VPATH << "$(srcdir)/msgpack"
|
16
|
+
$warnflags = '-Wall'
|
17
|
+
$INCFLAGS << " -I #{Shellwords.escape(dir.to_s)}/include"
|
18
|
+
if defined?($CXXFLAGS)
|
19
|
+
$CXXFLAGS += " -std=c++11 "
|
20
|
+
else
|
21
|
+
# old rubies
|
22
|
+
CONFIG['CXXFLAGS'] += " -std=c++11 "
|
23
|
+
end
|
24
|
+
|
25
|
+
create_header
|
26
|
+
create_makefile 'sq_detailed_metrics'
|
data/include/half.hpp
ADDED
@@ -0,0 +1,4575 @@
|
|
1
|
+
// half - IEEE 754-based half-precision floating-point library.
|
2
|
+
//
|
3
|
+
// Copyright (c) 2012-2019 Christian Rau <rauy@users.sourceforge.net>
|
4
|
+
//
|
5
|
+
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
|
6
|
+
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
|
7
|
+
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
8
|
+
// Software is furnished to do so, subject to the following conditions:
|
9
|
+
//
|
10
|
+
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
11
|
+
//
|
12
|
+
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
|
13
|
+
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
14
|
+
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
15
|
+
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
16
|
+
|
17
|
+
// Version 2.1.0
|
18
|
+
|
19
|
+
/// \file
|
20
|
+
/// Main header file for half-precision functionality.
|
21
|
+
|
22
|
+
#ifndef HALF_HALF_HPP
|
23
|
+
#define HALF_HALF_HPP
|
24
|
+
|
25
|
+
#define HALF_GCC_VERSION (__GNUC__*100+__GNUC_MINOR__)
|
26
|
+
|
27
|
+
#if defined(__INTEL_COMPILER)
|
28
|
+
#define HALF_ICC_VERSION __INTEL_COMPILER
|
29
|
+
#elif defined(__ICC)
|
30
|
+
#define HALF_ICC_VERSION __ICC
|
31
|
+
#elif defined(__ICL)
|
32
|
+
#define HALF_ICC_VERSION __ICL
|
33
|
+
#else
|
34
|
+
#define HALF_ICC_VERSION 0
|
35
|
+
#endif
|
36
|
+
|
37
|
+
// check C++11 language features
|
38
|
+
#if defined(__clang__) // clang
|
39
|
+
#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
|
40
|
+
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
|
41
|
+
#endif
|
42
|
+
#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
|
43
|
+
#define HALF_ENABLE_CPP11_CONSTEXPR 1
|
44
|
+
#endif
|
45
|
+
#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
|
46
|
+
#define HALF_ENABLE_CPP11_NOEXCEPT 1
|
47
|
+
#endif
|
48
|
+
#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
|
49
|
+
#define HALF_ENABLE_CPP11_USER_LITERALS 1
|
50
|
+
#endif
|
51
|
+
#if __has_feature(cxx_thread_local) && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
|
52
|
+
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
|
53
|
+
#endif
|
54
|
+
#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
|
55
|
+
#define HALF_ENABLE_CPP11_LONG_LONG 1
|
56
|
+
#endif
|
57
|
+
#elif HALF_ICC_VERSION && defined(__INTEL_CXX11_MODE__) // Intel C++
|
58
|
+
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
|
59
|
+
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
|
60
|
+
#endif
|
61
|
+
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
|
62
|
+
#define HALF_ENABLE_CPP11_USER_LITERALS 1
|
63
|
+
#endif
|
64
|
+
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
|
65
|
+
#define HALF_ENABLE_CPP11_CONSTEXPR 1
|
66
|
+
#endif
|
67
|
+
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
|
68
|
+
#define HALF_ENABLE_CPP11_NOEXCEPT 1
|
69
|
+
#endif
|
70
|
+
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
|
71
|
+
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
|
72
|
+
#endif
|
73
|
+
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
|
74
|
+
#define HALF_ENABLE_CPP11_LONG_LONG 1
|
75
|
+
#endif
|
76
|
+
#elif defined(__GNUC__) // gcc
|
77
|
+
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
|
78
|
+
#if HALF_GCC_VERSION >= 408 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
|
79
|
+
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
|
80
|
+
#endif
|
81
|
+
#if HALF_GCC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
|
82
|
+
#define HALF_ENABLE_CPP11_USER_LITERALS 1
|
83
|
+
#endif
|
84
|
+
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
|
85
|
+
#define HALF_ENABLE_CPP11_CONSTEXPR 1
|
86
|
+
#endif
|
87
|
+
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
|
88
|
+
#define HALF_ENABLE_CPP11_NOEXCEPT 1
|
89
|
+
#endif
|
90
|
+
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
|
91
|
+
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
|
92
|
+
#endif
|
93
|
+
#if !defined(HALF_ENABLE_CPP11_LONG_LONG)
|
94
|
+
#define HALF_ENABLE_CPP11_LONG_LONG 1
|
95
|
+
#endif
|
96
|
+
#endif
|
97
|
+
#define HALF_TWOS_COMPLEMENT_INT 1
|
98
|
+
#elif defined(_MSC_VER) // Visual C++
|
99
|
+
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
|
100
|
+
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
|
101
|
+
#endif
|
102
|
+
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
|
103
|
+
#define HALF_ENABLE_CPP11_USER_LITERALS 1
|
104
|
+
#endif
|
105
|
+
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
|
106
|
+
#define HALF_ENABLE_CPP11_CONSTEXPR 1
|
107
|
+
#endif
|
108
|
+
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
|
109
|
+
#define HALF_ENABLE_CPP11_NOEXCEPT 1
|
110
|
+
#endif
|
111
|
+
#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
|
112
|
+
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
|
113
|
+
#endif
|
114
|
+
#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
|
115
|
+
#define HALF_ENABLE_CPP11_LONG_LONG 1
|
116
|
+
#endif
|
117
|
+
#define HALF_TWOS_COMPLEMENT_INT 1
|
118
|
+
#define HALF_POP_WARNINGS 1
|
119
|
+
#pragma warning(push)
|
120
|
+
#pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned
|
121
|
+
#endif
|
122
|
+
|
123
|
+
// check C++11 library features
|
124
|
+
#include <utility>
|
125
|
+
#if defined(_LIBCPP_VERSION) // libc++
|
126
|
+
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
|
127
|
+
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
|
128
|
+
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
|
129
|
+
#endif
|
130
|
+
#ifndef HALF_ENABLE_CPP11_CSTDINT
|
131
|
+
#define HALF_ENABLE_CPP11_CSTDINT 1
|
132
|
+
#endif
|
133
|
+
#ifndef HALF_ENABLE_CPP11_CMATH
|
134
|
+
#define HALF_ENABLE_CPP11_CMATH 1
|
135
|
+
#endif
|
136
|
+
#ifndef HALF_ENABLE_CPP11_HASH
|
137
|
+
#define HALF_ENABLE_CPP11_HASH 1
|
138
|
+
#endif
|
139
|
+
#ifndef HALF_ENABLE_CPP11_CFENV
|
140
|
+
#define HALF_ENABLE_CPP11_CFENV 1
|
141
|
+
#endif
|
142
|
+
#endif
|
143
|
+
#elif defined(__GLIBCXX__) // libstdc++
|
144
|
+
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
|
145
|
+
#ifdef __clang__
|
146
|
+
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
|
147
|
+
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
|
148
|
+
#endif
|
149
|
+
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
|
150
|
+
#define HALF_ENABLE_CPP11_CSTDINT 1
|
151
|
+
#endif
|
152
|
+
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
|
153
|
+
#define HALF_ENABLE_CPP11_CMATH 1
|
154
|
+
#endif
|
155
|
+
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
|
156
|
+
#define HALF_ENABLE_CPP11_HASH 1
|
157
|
+
#endif
|
158
|
+
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CFENV)
|
159
|
+
#define HALF_ENABLE_CPP11_CFENV 1
|
160
|
+
#endif
|
161
|
+
#else
|
162
|
+
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
|
163
|
+
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
|
164
|
+
#endif
|
165
|
+
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
|
166
|
+
#define HALF_ENABLE_CPP11_CSTDINT 1
|
167
|
+
#endif
|
168
|
+
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
|
169
|
+
#define HALF_ENABLE_CPP11_CMATH 1
|
170
|
+
#endif
|
171
|
+
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
|
172
|
+
#define HALF_ENABLE_CPP11_HASH 1
|
173
|
+
#endif
|
174
|
+
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CFENV)
|
175
|
+
#define HALF_ENABLE_CPP11_CFENV 1
|
176
|
+
#endif
|
177
|
+
#endif
|
178
|
+
#endif
|
179
|
+
#elif defined(_CPPLIB_VER) // Dinkumware/Visual C++
|
180
|
+
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
|
181
|
+
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
|
182
|
+
#endif
|
183
|
+
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_CSTDINT)
|
184
|
+
#define HALF_ENABLE_CPP11_CSTDINT 1
|
185
|
+
#endif
|
186
|
+
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_HASH)
|
187
|
+
#define HALF_ENABLE_CPP11_HASH 1
|
188
|
+
#endif
|
189
|
+
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CMATH)
|
190
|
+
#define HALF_ENABLE_CPP11_CMATH 1
|
191
|
+
#endif
|
192
|
+
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CFENV)
|
193
|
+
#define HALF_ENABLE_CPP11_CFENV 1
|
194
|
+
#endif
|
195
|
+
#endif
|
196
|
+
#undef HALF_GCC_VERSION
|
197
|
+
#undef HALF_ICC_VERSION
|
198
|
+
|
199
|
+
// any error throwing C++ exceptions?
|
200
|
+
#if defined(HALF_ERRHANDLING_THROW_INVALID) || defined(HALF_ERRHANDLING_THROW_DIVBYZERO) || defined(HALF_ERRHANDLING_THROW_OVERFLOW) || defined(HALF_ERRHANDLING_THROW_UNDERFLOW) || defined(HALF_ERRHANDLING_THROW_INEXACT)
|
201
|
+
#define HALF_ERRHANDLING_THROWS 1
|
202
|
+
#endif
|
203
|
+
|
204
|
+
// any error handling enabled?
|
205
|
+
#define HALF_ERRHANDLING (HALF_ERRHANDLING_FLAGS||HALF_ERRHANDLING_ERRNO||HALF_ERRHANDLING_FENV||HALF_ERRHANDLING_THROWS)
|
206
|
+
|
207
|
+
#if HALF_ERRHANDLING
|
208
|
+
#define HALF_UNUSED_NOERR(name) name
|
209
|
+
#else
|
210
|
+
#define HALF_UNUSED_NOERR(name)
|
211
|
+
#endif
|
212
|
+
|
213
|
+
// support constexpr
|
214
|
+
#if HALF_ENABLE_CPP11_CONSTEXPR
|
215
|
+
#define HALF_CONSTEXPR constexpr
|
216
|
+
#define HALF_CONSTEXPR_CONST constexpr
|
217
|
+
#if HALF_ERRHANDLING
|
218
|
+
#define HALF_CONSTEXPR_NOERR
|
219
|
+
#else
|
220
|
+
#define HALF_CONSTEXPR_NOERR constexpr
|
221
|
+
#endif
|
222
|
+
#else
|
223
|
+
#define HALF_CONSTEXPR
|
224
|
+
#define HALF_CONSTEXPR_CONST const
|
225
|
+
#define HALF_CONSTEXPR_NOERR
|
226
|
+
#endif
|
227
|
+
|
228
|
+
// support noexcept
|
229
|
+
#if HALF_ENABLE_CPP11_NOEXCEPT
|
230
|
+
#define HALF_NOEXCEPT noexcept
|
231
|
+
#define HALF_NOTHROW noexcept
|
232
|
+
#else
|
233
|
+
#define HALF_NOEXCEPT
|
234
|
+
#define HALF_NOTHROW throw()
|
235
|
+
#endif
|
236
|
+
|
237
|
+
// support thread storage
|
238
|
+
#if HALF_ENABLE_CPP11_THREAD_LOCAL
|
239
|
+
#define HALF_THREAD_LOCAL thread_local
|
240
|
+
#else
|
241
|
+
#define HALF_THREAD_LOCAL static
|
242
|
+
#endif
|
243
|
+
|
244
|
+
#include <utility>
|
245
|
+
#include <algorithm>
|
246
|
+
#include <istream>
|
247
|
+
#include <ostream>
|
248
|
+
#include <limits>
|
249
|
+
#include <stdexcept>
|
250
|
+
#include <climits>
|
251
|
+
#include <cmath>
|
252
|
+
#include <cstring>
|
253
|
+
#include <cstdlib>
|
254
|
+
#if HALF_ENABLE_CPP11_TYPE_TRAITS
|
255
|
+
#include <type_traits>
|
256
|
+
#endif
|
257
|
+
#if HALF_ENABLE_CPP11_CSTDINT
|
258
|
+
#include <cstdint>
|
259
|
+
#endif
|
260
|
+
#if HALF_ERRHANDLING_ERRNO
|
261
|
+
#include <cerrno>
|
262
|
+
#endif
|
263
|
+
#if HALF_ENABLE_CPP11_CFENV
|
264
|
+
#include <cfenv>
|
265
|
+
#endif
|
266
|
+
#if HALF_ENABLE_CPP11_HASH
|
267
|
+
#include <functional>
|
268
|
+
#endif
|
269
|
+
#if HALF_ENABLE_F16C_INTRINSICS
|
270
|
+
#include <immintrin.h>
|
271
|
+
#endif
|
272
|
+
|
273
|
+
|
274
|
+
#ifndef HALF_ENABLE_F16C_INTRINSICS
|
275
|
+
/// Enable F16C intruction set intrinsics.
|
276
|
+
/// Defining this to 1 enables the use of [F16C compiler intrinsics](https://en.wikipedia.org/wiki/F16C) for converting between
|
277
|
+
/// half-precision and single-precision values which may result in improved performance. This will not perform additional checks
|
278
|
+
/// for support of the F16C instruction set, so an appropriate target platform is required when enabling this feature.
|
279
|
+
///
|
280
|
+
/// Unless predefined it will be enabled automatically when the `__F16C__` symbol is defined, which some compilers do on supporting platforms.
|
281
|
+
#define HALF_ENABLE_F16C_INTRINSICS __F16C__
|
282
|
+
#endif
|
283
|
+
|
284
|
+
#ifdef HALF_DOXYGEN_ONLY
|
285
|
+
/// Type for internal floating-point computations.
|
286
|
+
/// This can be predefined to a built-in floating-point type (`float`, `double` or `long double`) to override the internal
|
287
|
+
/// half-precision implementation to use this type for computing arithmetic operations and mathematical function (if available).
|
288
|
+
/// This can result in improved performance for arithmetic operators and mathematical functions but might cause results to
|
289
|
+
/// deviate from the specified half-precision rounding mode and inhibits proper detection of half-precision exceptions.
|
290
|
+
#define HALF_ARITHMETIC_TYPE (undefined)
|
291
|
+
|
292
|
+
/// Enable internal exception flags.
|
293
|
+
/// Defining this to 1 causes operations on half-precision values to raise internal floating-point exception flags according to
|
294
|
+
/// the IEEE 754 standard. These can then be cleared and checked with clearexcept(), testexcept().
|
295
|
+
#define HALF_ERRHANDLING_FLAGS 0
|
296
|
+
|
297
|
+
/// Enable exception propagation to `errno`.
|
298
|
+
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to
|
299
|
+
/// [errno](https://en.cppreference.com/w/cpp/error/errno) from `<cerrno>`. Specifically this will propagate domain errors as
|
300
|
+
/// [EDOM](https://en.cppreference.com/w/cpp/error/errno_macros) and pole, overflow and underflow errors as
|
301
|
+
/// [ERANGE](https://en.cppreference.com/w/cpp/error/errno_macros). Inexact errors won't be propagated.
|
302
|
+
#define HALF_ERRHANDLING_ERRNO 0
|
303
|
+
|
304
|
+
/// Enable exception propagation to built-in floating-point platform.
|
305
|
+
/// Defining this to 1 causes operations on half-precision values to propagate floating-point exceptions to the built-in
|
306
|
+
/// single- and double-precision implementation's exception flags using the
|
307
|
+
/// [C++11 floating-point environment control](https://en.cppreference.com/w/cpp/numeric/fenv) from `<cfenv>`. However, this
|
308
|
+
/// does not work in reverse and single- or double-precision exceptions will not raise the corresponding half-precision
|
309
|
+
/// exception flags, nor will explicitly clearing flags clear the corresponding built-in flags.
|
310
|
+
#define HALF_ERRHANDLING_FENV 0
|
311
|
+
|
312
|
+
/// Throw C++ exception on domain errors.
|
313
|
+
/// Defining this to a string literal causes operations on half-precision values to throw a
|
314
|
+
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on domain errors.
|
315
|
+
#define HALF_ERRHANDLING_THROW_INVALID (undefined)
|
316
|
+
|
317
|
+
/// Throw C++ exception on pole errors.
|
318
|
+
/// Defining this to a string literal causes operations on half-precision values to throw a
|
319
|
+
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error) with the specified message on pole errors.
|
320
|
+
#define HALF_ERRHANDLING_THROW_DIVBYZERO (undefined)
|
321
|
+
|
322
|
+
/// Throw C++ exception on overflow errors.
|
323
|
+
/// Defining this to a string literal causes operations on half-precision values to throw a
|
324
|
+
/// [std::overflow_error](https://en.cppreference.com/w/cpp/error/overflow_error) with the specified message on overflows.
|
325
|
+
#define HALF_ERRHANDLING_THROW_OVERFLOW (undefined)
|
326
|
+
|
327
|
+
/// Throw C++ exception on underflow errors.
|
328
|
+
/// Defining this to a string literal causes operations on half-precision values to throw a
|
329
|
+
/// [std::underflow_error](https://en.cppreference.com/w/cpp/error/underflow_error) with the specified message on underflows.
|
330
|
+
#define HALF_ERRHANDLING_THROW_UNDERFLOW (undefined)
|
331
|
+
|
332
|
+
/// Throw C++ exception on rounding errors.
|
333
|
+
/// Defining this to 1 causes operations on half-precision values to throw a
|
334
|
+
/// [std::range_error](https://en.cppreference.com/w/cpp/error/range_error) with the specified message on general rounding errors.
|
335
|
+
#define HALF_ERRHANDLING_THROW_INEXACT (undefined)
|
336
|
+
#endif
|
337
|
+
|
338
|
+
#ifndef HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
|
339
|
+
/// Raise INEXACT exception on overflow.
|
340
|
+
/// Defining this to 1 (default) causes overflow errors to automatically raise inexact exceptions in addition.
|
341
|
+
/// These will be raised after any possible handling of the underflow exception.
|
342
|
+
#define HALF_ERRHANDLING_OVERFLOW_TO_INEXACT 1
|
343
|
+
#endif
|
344
|
+
|
345
|
+
#ifndef HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
|
346
|
+
/// Raise INEXACT exception on underflow.
|
347
|
+
/// Defining this to 1 (default) causes underflow errors to automatically raise inexact exceptions in addition.
|
348
|
+
/// These will be raised after any possible handling of the underflow exception.
|
349
|
+
///
|
350
|
+
/// **Note:** This will actually cause underflow (and the accompanying inexact) exceptions to be raised *only* when the result
|
351
|
+
/// is inexact, while if disabled bare underflow errors will be raised for *any* (possibly exact) subnormal result.
|
352
|
+
#define HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT 1
|
353
|
+
#endif
|
354
|
+
|
355
|
+
/// Default rounding mode.
|
356
|
+
/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and more precise types
|
357
|
+
/// (unless using half_cast() and specifying the rounding mode directly) as well as in arithmetic operations and mathematical
|
358
|
+
/// functions. It can be redefined (before including half.hpp) to one of the standard rounding modes using their respective
|
359
|
+
/// constants or the equivalent values of
|
360
|
+
/// [std::float_round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/float_round_style):
|
361
|
+
///
|
362
|
+
/// `std::float_round_style` | value | rounding
|
363
|
+
/// ---------------------------------|-------|-------------------------
|
364
|
+
/// `std::round_indeterminate` | -1 | fastest
|
365
|
+
/// `std::round_toward_zero` | 0 | toward zero
|
366
|
+
/// `std::round_to_nearest` | 1 | to nearest (default)
|
367
|
+
/// `std::round_toward_infinity` | 2 | toward positive infinity
|
368
|
+
/// `std::round_toward_neg_infinity` | 3 | toward negative infinity
|
369
|
+
///
|
370
|
+
/// By default this is set to `1` (`std::round_to_nearest`), which rounds results to the nearest representable value. It can even
|
371
|
+
/// be set to [std::numeric_limits<float>::round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/round_style) to synchronize
|
372
|
+
/// the rounding mode with that of the built-in single-precision implementation (which is likely `std::round_to_nearest`, though).
|
373
|
+
#ifndef HALF_ROUND_STYLE
|
374
|
+
#define HALF_ROUND_STYLE 1 // = std::round_to_nearest
|
375
|
+
#endif
|
376
|
+
|
377
|
+
/// Value signaling overflow.
|
378
|
+
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an
|
379
|
+
/// operation, in particular it just evaluates to positive infinity.
|
380
|
+
///
|
381
|
+
/// **See also:** Documentation for [HUGE_VAL](https://en.cppreference.com/w/cpp/numeric/math/HUGE_VAL)
|
382
|
+
#define HUGE_VALH std::numeric_limits<half_float::half>::infinity()
|
383
|
+
|
384
|
+
/// Fast half-precision fma function.
|
385
|
+
/// This symbol is defined if the fma() function generally executes as fast as, or faster than, a separate
|
386
|
+
/// half-precision multiplication followed by an addition, which is always the case.
|
387
|
+
///
|
388
|
+
/// **See also:** Documentation for [FP_FAST_FMA](https://en.cppreference.com/w/cpp/numeric/math/fma)
|
389
|
+
#define FP_FAST_FMAH 1
|
390
|
+
|
391
|
+
/// Half rounding mode.
|
392
|
+
/// In correspondence with `FLT_ROUNDS` from `<cfloat>` this symbol expands to the rounding mode used for
|
393
|
+
/// half-precision operations. It is an alias for [HALF_ROUND_STYLE](\ref HALF_ROUND_STYLE).
|
394
|
+
///
|
395
|
+
/// **See also:** Documentation for [FLT_ROUNDS](https://en.cppreference.com/w/cpp/types/climits/FLT_ROUNDS)
|
396
|
+
#define HLF_ROUNDS HALF_ROUND_STYLE
|
397
|
+
|
398
|
+
#ifndef FP_ILOGB0
|
399
|
+
#define FP_ILOGB0 INT_MIN
|
400
|
+
#endif
|
401
|
+
#ifndef FP_ILOGBNAN
|
402
|
+
#define FP_ILOGBNAN INT_MAX
|
403
|
+
#endif
|
404
|
+
#ifndef FP_SUBNORMAL
|
405
|
+
#define FP_SUBNORMAL 0
|
406
|
+
#endif
|
407
|
+
#ifndef FP_ZERO
|
408
|
+
#define FP_ZERO 1
|
409
|
+
#endif
|
410
|
+
#ifndef FP_NAN
|
411
|
+
#define FP_NAN 2
|
412
|
+
#endif
|
413
|
+
#ifndef FP_INFINITE
|
414
|
+
#define FP_INFINITE 3
|
415
|
+
#endif
|
416
|
+
#ifndef FP_NORMAL
|
417
|
+
#define FP_NORMAL 4
|
418
|
+
#endif
|
419
|
+
|
420
|
+
#if !HALF_ENABLE_CPP11_CFENV && !defined(FE_ALL_EXCEPT)
|
421
|
+
#define FE_INVALID 0x10
|
422
|
+
#define FE_DIVBYZERO 0x08
|
423
|
+
#define FE_OVERFLOW 0x04
|
424
|
+
#define FE_UNDERFLOW 0x02
|
425
|
+
#define FE_INEXACT 0x01
|
426
|
+
#define FE_ALL_EXCEPT (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT)
|
427
|
+
#endif
|
428
|
+
|
429
|
+
|
430
|
+
/// Main namespace for half-precision functionality.
|
431
|
+
/// This namespace contains all the functionality provided by the library.
|
432
|
+
namespace half_float
|
433
|
+
{
|
434
|
+
class half;
|
435
|
+
|
436
|
+
#if HALF_ENABLE_CPP11_USER_LITERALS
|
437
|
+
/// Library-defined half-precision literals.
|
438
|
+
/// Import this namespace to enable half-precision floating-point literals:
|
439
|
+
/// ~~~~{.cpp}
|
440
|
+
/// using namespace half_float::literal;
|
441
|
+
/// half_float::half = 4.2_h;
|
442
|
+
/// ~~~~
|
443
|
+
namespace literal
|
444
|
+
{
|
445
|
+
half operator "" _h(long double);
|
446
|
+
}
|
447
|
+
#endif
|
448
|
+
|
449
|
+
/// \internal
|
450
|
+
/// \brief Implementation details.
|
451
|
+
namespace detail
|
452
|
+
{
|
453
|
+
#if HALF_ENABLE_CPP11_TYPE_TRAITS
|
454
|
+
/// Conditional type.
|
455
|
+
template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {};
|
456
|
+
|
457
|
+
/// Helper for tag dispatching.
|
458
|
+
template<bool B> struct bool_type : std::integral_constant<bool,B> {};
|
459
|
+
using std::true_type;
|
460
|
+
using std::false_type;
|
461
|
+
|
462
|
+
/// Type traits for floating-point types.
|
463
|
+
template<typename T> struct is_float : std::is_floating_point<T> {};
|
464
|
+
#else
|
465
|
+
/// Conditional type.
|
466
|
+
template<bool,typename T,typename> struct conditional { typedef T type; };
|
467
|
+
template<typename T,typename F> struct conditional<false,T,F> { typedef F type; };
|
468
|
+
|
469
|
+
/// Helper for tag dispatching.
|
470
|
+
template<bool> struct bool_type {};
|
471
|
+
typedef bool_type<true> true_type;
|
472
|
+
typedef bool_type<false> false_type;
|
473
|
+
|
474
|
+
/// Type traits for floating-point types.
|
475
|
+
template<typename> struct is_float : false_type {};
|
476
|
+
template<typename T> struct is_float<const T> : is_float<T> {};
|
477
|
+
template<typename T> struct is_float<volatile T> : is_float<T> {};
|
478
|
+
template<typename T> struct is_float<const volatile T> : is_float<T> {};
|
479
|
+
template<> struct is_float<float> : true_type {};
|
480
|
+
template<> struct is_float<double> : true_type {};
|
481
|
+
template<> struct is_float<long double> : true_type {};
|
482
|
+
#endif
|
483
|
+
|
484
|
+
/// Type traits for floating-point bits.
|
485
|
+
template<typename T> struct bits { typedef unsigned char type; };
|
486
|
+
template<typename T> struct bits<const T> : bits<T> {};
|
487
|
+
template<typename T> struct bits<volatile T> : bits<T> {};
|
488
|
+
template<typename T> struct bits<const volatile T> : bits<T> {};
|
489
|
+
|
490
|
+
#if HALF_ENABLE_CPP11_CSTDINT
|
491
|
+
/// Unsigned integer of (at least) 16 bits width.
|
492
|
+
typedef std::uint_least16_t uint16;
|
493
|
+
|
494
|
+
/// Fastest unsigned integer of (at least) 32 bits width.
|
495
|
+
typedef std::uint_fast32_t uint32;
|
496
|
+
|
497
|
+
/// Fastest signed integer of (at least) 32 bits width.
|
498
|
+
typedef std::int_fast32_t int32;
|
499
|
+
|
500
|
+
/// Unsigned integer of (at least) 32 bits width.
|
501
|
+
template<> struct bits<float> { typedef std::uint_least32_t type; };
|
502
|
+
|
503
|
+
/// Unsigned integer of (at least) 64 bits width.
|
504
|
+
template<> struct bits<double> { typedef std::uint_least64_t type; };
|
505
|
+
#else
|
506
|
+
/// Unsigned integer of (at least) 16 bits width.
|
507
|
+
typedef unsigned short uint16;
|
508
|
+
|
509
|
+
/// Fastest unsigned integer of (at least) 32 bits width.
|
510
|
+
typedef unsigned long uint32;
|
511
|
+
|
512
|
+
/// Fastest unsigned integer of (at least) 32 bits width.
|
513
|
+
typedef long int32;
|
514
|
+
|
515
|
+
/// Unsigned integer of (at least) 32 bits width.
|
516
|
+
template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {};
|
517
|
+
|
518
|
+
#if HALF_ENABLE_CPP11_LONG_LONG
|
519
|
+
/// Unsigned integer of (at least) 64 bits width.
|
520
|
+
template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {};
|
521
|
+
#else
|
522
|
+
/// Unsigned integer of (at least) 64 bits width.
|
523
|
+
template<> struct bits<double> { typedef unsigned long type; };
|
524
|
+
#endif
|
525
|
+
#endif
|
526
|
+
|
527
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
528
|
+
/// Type to use for arithmetic computations and mathematic functions internally.
|
529
|
+
typedef HALF_ARITHMETIC_TYPE internal_t;
|
530
|
+
#endif
|
531
|
+
|
532
|
+
/// Tag type for binary construction.
|
533
|
+
struct binary_t {};
|
534
|
+
|
535
|
+
/// Tag for binary construction.
|
536
|
+
HALF_CONSTEXPR_CONST binary_t binary = binary_t();
|
537
|
+
|
538
|
+
/// \name Implementation defined classification and arithmetic
|
539
|
+
/// \{
|
540
|
+
|
541
|
+
/// Check for infinity.
|
542
|
+
/// \tparam T argument type (builtin floating-point type)
|
543
|
+
/// \param arg value to query
|
544
|
+
/// \retval true if infinity
|
545
|
+
/// \retval false else
|
546
|
+
template<typename T> bool builtin_isinf(T arg)
|
547
|
+
{
|
548
|
+
#if HALF_ENABLE_CPP11_CMATH
|
549
|
+
return std::isinf(arg);
|
550
|
+
#elif defined(_MSC_VER)
|
551
|
+
return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg));
|
552
|
+
#else
|
553
|
+
return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity();
|
554
|
+
#endif
|
555
|
+
}
|
556
|
+
|
557
|
+
/// Check for NaN.
|
558
|
+
/// \tparam T argument type (builtin floating-point type)
|
559
|
+
/// \param arg value to query
|
560
|
+
/// \retval true if not a number
|
561
|
+
/// \retval false else
|
562
|
+
template<typename T> bool builtin_isnan(T arg)
|
563
|
+
{
|
564
|
+
#if HALF_ENABLE_CPP11_CMATH
|
565
|
+
return std::isnan(arg);
|
566
|
+
#elif defined(_MSC_VER)
|
567
|
+
return ::_isnan(static_cast<double>(arg)) != 0;
|
568
|
+
#else
|
569
|
+
return arg != arg;
|
570
|
+
#endif
|
571
|
+
}
|
572
|
+
|
573
|
+
/// Check sign.
|
574
|
+
/// \tparam T argument type (builtin floating-point type)
|
575
|
+
/// \param arg value to query
|
576
|
+
/// \retval true if signbit set
|
577
|
+
/// \retval false else
|
578
|
+
template<typename T> bool builtin_signbit(T arg)
|
579
|
+
{
|
580
|
+
#if HALF_ENABLE_CPP11_CMATH
|
581
|
+
return std::signbit(arg);
|
582
|
+
#else
|
583
|
+
return arg < T() || (arg == T() && T(1)/arg < T());
|
584
|
+
#endif
|
585
|
+
}
|
586
|
+
|
587
|
+
/// Platform-independent sign mask.
|
588
|
+
/// \param arg integer value in two's complement
|
589
|
+
/// \retval -1 if \a arg negative
|
590
|
+
/// \retval 0 if \a arg positive
|
591
|
+
inline uint32 sign_mask(uint32 arg)
|
592
|
+
{
|
593
|
+
static const int N = std::numeric_limits<uint32>::digits - 1;
|
594
|
+
#if HALF_TWOS_COMPLEMENT_INT
|
595
|
+
return static_cast<int32>(arg) >> N;
|
596
|
+
#else
|
597
|
+
return -((arg>>N)&1);
|
598
|
+
#endif
|
599
|
+
}
|
600
|
+
|
601
|
+
/// Platform-independent arithmetic right shift.
|
602
|
+
/// \param arg integer value in two's complement
|
603
|
+
/// \param i shift amount (at most 31)
|
604
|
+
/// \return \a arg right shifted for \a i bits with possible sign extension
|
605
|
+
inline uint32 arithmetic_shift(uint32 arg, int i)
|
606
|
+
{
|
607
|
+
#if HALF_TWOS_COMPLEMENT_INT
|
608
|
+
return static_cast<int32>(arg) >> i;
|
609
|
+
#else
|
610
|
+
return static_cast<int32>(arg)/(static_cast<int32>(1)<<i) - ((arg>>(std::numeric_limits<uint32>::digits-1))&1);
|
611
|
+
#endif
|
612
|
+
}
|
613
|
+
|
614
|
+
/// \}
|
615
|
+
/// \name Error handling
|
616
|
+
/// \{
|
617
|
+
|
618
|
+
/// Internal exception flags.
|
619
|
+
/// \return reference to global exception flags
|
620
|
+
inline int& errflags() { HALF_THREAD_LOCAL int flags = 0; return flags; }
|
621
|
+
|
622
|
+
/// Raise floating-point exception.
|
623
|
+
/// \param flags exceptions to raise
|
624
|
+
/// \param cond condition to raise exceptions for
|
625
|
+
inline void raise(int HALF_UNUSED_NOERR(flags), bool HALF_UNUSED_NOERR(cond) = true)
|
626
|
+
{
|
627
|
+
#if HALF_ERRHANDLING
|
628
|
+
if(!cond)
|
629
|
+
return;
|
630
|
+
#if HALF_ERRHANDLING_FLAGS
|
631
|
+
errflags() |= flags;
|
632
|
+
#endif
|
633
|
+
#if HALF_ERRHANDLING_ERRNO
|
634
|
+
if(flags & FE_INVALID)
|
635
|
+
errno = EDOM;
|
636
|
+
else if(flags & (FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW))
|
637
|
+
errno = ERANGE;
|
638
|
+
#endif
|
639
|
+
#if HALF_ERRHANDLING_FENV && HALF_ENABLE_CPP11_CFENV
|
640
|
+
std::feraiseexcept(flags);
|
641
|
+
#endif
|
642
|
+
#ifdef HALF_ERRHANDLING_THROW_INVALID
|
643
|
+
if(flags & FE_INVALID)
|
644
|
+
throw std::domain_error(HALF_ERRHANDLING_THROW_INVALID);
|
645
|
+
#endif
|
646
|
+
#ifdef HALF_ERRHANDLING_THROW_DIVBYZERO
|
647
|
+
if(flags & FE_DIVBYZERO)
|
648
|
+
throw std::domain_error(HALF_ERRHANDLING_THROW_DIVBYZERO);
|
649
|
+
#endif
|
650
|
+
#ifdef HALF_ERRHANDLING_THROW_OVERFLOW
|
651
|
+
if(flags & FE_OVERFLOW)
|
652
|
+
throw std::overflow_error(HALF_ERRHANDLING_THROW_OVERFLOW);
|
653
|
+
#endif
|
654
|
+
#ifdef HALF_ERRHANDLING_THROW_UNDERFLOW
|
655
|
+
if(flags & FE_UNDERFLOW)
|
656
|
+
throw std::underflow_error(HALF_ERRHANDLING_THROW_UNDERFLOW);
|
657
|
+
#endif
|
658
|
+
#ifdef HALF_ERRHANDLING_THROW_INEXACT
|
659
|
+
if(flags & FE_INEXACT)
|
660
|
+
throw std::range_error(HALF_ERRHANDLING_THROW_INEXACT);
|
661
|
+
#endif
|
662
|
+
#if HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
|
663
|
+
if((flags & FE_UNDERFLOW) && !(flags & FE_INEXACT))
|
664
|
+
raise(FE_INEXACT);
|
665
|
+
#endif
|
666
|
+
#if HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
|
667
|
+
if((flags & FE_OVERFLOW) && !(flags & FE_INEXACT))
|
668
|
+
raise(FE_INEXACT);
|
669
|
+
#endif
|
670
|
+
#endif
|
671
|
+
}
|
672
|
+
|
673
|
+
/// Check and signal for any NaN.
|
674
|
+
/// \param x first half-precision value to check
|
675
|
+
/// \param y second half-precision value to check
|
676
|
+
/// \retval true if either \a x or \a y is NaN
|
677
|
+
/// \retval false else
|
678
|
+
/// \exception FE_INVALID if \a x or \a y is NaN
|
679
|
+
inline HALF_CONSTEXPR_NOERR bool compsignal(unsigned int x, unsigned int y)
|
680
|
+
{
|
681
|
+
#if HALF_ERRHANDLING
|
682
|
+
raise(FE_INVALID, (x&0x7FFF)>0x7C00 || (y&0x7FFF)>0x7C00);
|
683
|
+
#endif
|
684
|
+
return (x&0x7FFF) > 0x7C00 || (y&0x7FFF) > 0x7C00;
|
685
|
+
}
|
686
|
+
|
687
|
+
/// Signal and silence signaling NaN.
|
688
|
+
/// \param nan half-precision NaN value
|
689
|
+
/// \return quiet NaN
|
690
|
+
/// \exception FE_INVALID if \a nan is signaling NaN
|
691
|
+
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int nan)
|
692
|
+
{
|
693
|
+
#if HALF_ERRHANDLING
|
694
|
+
raise(FE_INVALID, !(nan&0x200));
|
695
|
+
#endif
|
696
|
+
return nan | 0x200;
|
697
|
+
}
|
698
|
+
|
699
|
+
/// Signal and silence signaling NaNs.
|
700
|
+
/// \param x first half-precision value to check
|
701
|
+
/// \param y second half-precision value to check
|
702
|
+
/// \return quiet NaN
|
703
|
+
/// \exception FE_INVALID if \a x or \a y is signaling NaN
|
704
|
+
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y)
|
705
|
+
{
|
706
|
+
#if HALF_ERRHANDLING
|
707
|
+
raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)));
|
708
|
+
#endif
|
709
|
+
return ((x&0x7FFF)>0x7C00) ? (x|0x200) : (y|0x200);
|
710
|
+
}
|
711
|
+
|
712
|
+
/// Signal and silence signaling NaNs.
|
713
|
+
/// \param x first half-precision value to check
|
714
|
+
/// \param y second half-precision value to check
|
715
|
+
/// \param z third half-precision value to check
|
716
|
+
/// \return quiet NaN
|
717
|
+
/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
|
718
|
+
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y, unsigned int z)
|
719
|
+
{
|
720
|
+
#if HALF_ERRHANDLING
|
721
|
+
raise(FE_INVALID, ((x&0x7FFF)>0x7C00 && !(x&0x200)) || ((y&0x7FFF)>0x7C00 && !(y&0x200)) || ((z&0x7FFF)>0x7C00 && !(z&0x200)));
|
722
|
+
#endif
|
723
|
+
return ((x&0x7FFF)>0x7C00) ? (x|0x200) : ((y&0x7FFF)>0x7C00) ? (y|0x200) : (z|0x200);
|
724
|
+
}
|
725
|
+
|
726
|
+
/// Select value or signaling NaN.
|
727
|
+
/// \param x preferred half-precision value
|
728
|
+
/// \param y ignored half-precision value except for signaling NaN
|
729
|
+
/// \return \a y if signaling NaN, \a x otherwise
|
730
|
+
/// \exception FE_INVALID if \a y is signaling NaN
|
731
|
+
inline HALF_CONSTEXPR_NOERR unsigned int select(unsigned int x, unsigned int HALF_UNUSED_NOERR(y))
|
732
|
+
{
|
733
|
+
#if HALF_ERRHANDLING
|
734
|
+
return (((y&0x7FFF)>0x7C00) && !(y&0x200)) ? signal(y) : x;
|
735
|
+
#else
|
736
|
+
return x;
|
737
|
+
#endif
|
738
|
+
}
|
739
|
+
|
740
|
+
/// Raise domain error and return NaN.
|
741
|
+
/// return quiet NaN
|
742
|
+
/// \exception FE_INVALID
|
743
|
+
inline HALF_CONSTEXPR_NOERR unsigned int invalid()
|
744
|
+
{
|
745
|
+
#if HALF_ERRHANDLING
|
746
|
+
raise(FE_INVALID);
|
747
|
+
#endif
|
748
|
+
return 0x7FFF;
|
749
|
+
}
|
750
|
+
|
751
|
+
/// Raise pole error and return infinity.
|
752
|
+
/// \param sign half-precision value with sign bit only
|
753
|
+
/// \return half-precision infinity with sign of \a sign
|
754
|
+
/// \exception FE_DIVBYZERO
|
755
|
+
inline HALF_CONSTEXPR_NOERR unsigned int pole(unsigned int sign = 0)
|
756
|
+
{
|
757
|
+
#if HALF_ERRHANDLING
|
758
|
+
raise(FE_DIVBYZERO);
|
759
|
+
#endif
|
760
|
+
return sign | 0x7C00;
|
761
|
+
}
|
762
|
+
|
763
|
+
/// Check value for underflow.
|
764
|
+
/// \param arg non-zero half-precision value to check
|
765
|
+
/// \return \a arg
|
766
|
+
/// \exception FE_UNDERFLOW if arg is subnormal
|
767
|
+
inline HALF_CONSTEXPR_NOERR unsigned int check_underflow(unsigned int arg)
|
768
|
+
{
|
769
|
+
#if HALF_ERRHANDLING && !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
|
770
|
+
raise(FE_UNDERFLOW, !(arg&0x7C00));
|
771
|
+
#endif
|
772
|
+
return arg;
|
773
|
+
}
|
774
|
+
|
775
|
+
/// \}
|
776
|
+
/// \name Conversion and rounding
|
777
|
+
/// \{
|
778
|
+
|
779
|
+
/// Half-precision overflow.
|
780
|
+
/// \tparam R rounding mode to use
|
781
|
+
/// \param sign half-precision value with sign bit only
|
782
|
+
/// \return rounded overflowing half-precision value
|
783
|
+
/// \exception FE_OVERFLOW
|
784
|
+
template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int overflow(unsigned int sign = 0)
|
785
|
+
{
|
786
|
+
#if HALF_ERRHANDLING
|
787
|
+
raise(FE_OVERFLOW);
|
788
|
+
#endif
|
789
|
+
return (R==std::round_toward_infinity) ? (sign+0x7C00-(sign>>15)) :
|
790
|
+
(R==std::round_toward_neg_infinity) ? (sign+0x7BFF+(sign>>15)) :
|
791
|
+
(R==std::round_toward_zero) ? (sign|0x7BFF) :
|
792
|
+
(sign|0x7C00);
|
793
|
+
}
|
794
|
+
|
795
|
+
/// Half-precision underflow.
|
796
|
+
/// \tparam R rounding mode to use
|
797
|
+
/// \param sign half-precision value with sign bit only
|
798
|
+
/// \return rounded underflowing half-precision value
|
799
|
+
/// \exception FE_UNDERFLOW
|
800
|
+
template<std::float_round_style R> HALF_CONSTEXPR_NOERR unsigned int underflow(unsigned int sign = 0)
|
801
|
+
{
|
802
|
+
#if HALF_ERRHANDLING
|
803
|
+
raise(FE_UNDERFLOW);
|
804
|
+
#endif
|
805
|
+
return (R==std::round_toward_infinity) ? (sign+1-(sign>>15)) :
|
806
|
+
(R==std::round_toward_neg_infinity) ? (sign+(sign>>15)) :
|
807
|
+
sign;
|
808
|
+
}
|
809
|
+
|
810
|
+
/// Round half-precision number.
|
811
|
+
/// \tparam R rounding mode to use
|
812
|
+
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
|
813
|
+
/// \param value finite half-precision number to round
|
814
|
+
/// \param g guard bit (most significant discarded bit)
|
815
|
+
/// \param s sticky bit (or of all but the most significant discarded bits)
|
816
|
+
/// \return rounded half-precision value
|
817
|
+
/// \exception FE_OVERFLOW on overflows
|
818
|
+
/// \exception FE_UNDERFLOW on underflows
|
819
|
+
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
|
820
|
+
template<std::float_round_style R,bool I> HALF_CONSTEXPR_NOERR unsigned int rounded(unsigned int value, int g, int s)
|
821
|
+
{
|
822
|
+
#if HALF_ERRHANDLING
|
823
|
+
value += (R==std::round_to_nearest) ? (g&(s|value)) :
|
824
|
+
(R==std::round_toward_infinity) ? (~(value>>15)&(g|s)) :
|
825
|
+
(R==std::round_toward_neg_infinity) ? ((value>>15)&(g|s)) : 0;
|
826
|
+
if((value&0x7C00) == 0x7C00)
|
827
|
+
raise(FE_OVERFLOW);
|
828
|
+
else if(value & 0x7C00)
|
829
|
+
raise(FE_INEXACT, I || (g|s)!=0);
|
830
|
+
else
|
831
|
+
raise(FE_UNDERFLOW, !(HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT) || I || (g|s)!=0);
|
832
|
+
return value;
|
833
|
+
#else
|
834
|
+
return (R==std::round_to_nearest) ? (value+(g&(s|value))) :
|
835
|
+
(R==std::round_toward_infinity) ? (value+(~(value>>15)&(g|s))) :
|
836
|
+
(R==std::round_toward_neg_infinity) ? (value+((value>>15)&(g|s))) :
|
837
|
+
value;
|
838
|
+
#endif
|
839
|
+
}
|
840
|
+
|
841
|
+
/// Round half-precision number to nearest integer value.
|
842
|
+
/// \tparam R rounding mode to use
|
843
|
+
/// \tparam E `true` for round to even, `false` for round away from zero
|
844
|
+
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
|
845
|
+
/// \param value half-precision value to round
|
846
|
+
/// \return half-precision bits for nearest integral value
|
847
|
+
/// \exception FE_INVALID for signaling NaN
|
848
|
+
/// \exception FE_INEXACT if value had to be rounded and \a I is `true`
|
849
|
+
template<std::float_round_style R,bool E,bool I> unsigned int integral(unsigned int value)
|
850
|
+
{
|
851
|
+
unsigned int abs = value & 0x7FFF;
|
852
|
+
if(abs < 0x3C00)
|
853
|
+
{
|
854
|
+
raise(FE_INEXACT, I);
|
855
|
+
return ((R==std::round_to_nearest) ? (0x3C00&-static_cast<unsigned>(abs>=(0x3800+E))) :
|
856
|
+
(R==std::round_toward_infinity) ? (0x3C00&-(~(value>>15)&(abs!=0))) :
|
857
|
+
(R==std::round_toward_neg_infinity) ? (0x3C00&-static_cast<unsigned>(value>0x8000)) :
|
858
|
+
0) | (value&0x8000);
|
859
|
+
}
|
860
|
+
if(abs >= 0x6400)
|
861
|
+
return (abs>0x7C00) ? signal(value) : value;
|
862
|
+
unsigned int exp = 25 - (abs>>10), mask = (1<<exp) - 1;
|
863
|
+
raise(FE_INEXACT, I && (value&mask));
|
864
|
+
return (( (R==std::round_to_nearest) ? ((1<<(exp-1))-(~(value>>exp)&E)) :
|
865
|
+
(R==std::round_toward_infinity) ? (mask&((value>>15)-1)) :
|
866
|
+
(R==std::round_toward_neg_infinity) ? (mask&-(value>>15)) :
|
867
|
+
0) + value) & ~mask;
|
868
|
+
}
|
869
|
+
|
870
|
+
/// Convert fixed point to half-precision floating-point.
|
871
|
+
/// \tparam R rounding mode to use
|
872
|
+
/// \tparam F number of fractional bits (at least 11)
|
873
|
+
/// \tparam S `true` for signed, `false` for unsigned
|
874
|
+
/// \tparam N `true` for additional normalization step, `false` if already normalized to 1.F
|
875
|
+
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
|
876
|
+
/// \param m mantissa in Q1.F fixed point format
|
877
|
+
/// \param exp exponent
|
878
|
+
/// \param sign half-precision value with sign bit only
|
879
|
+
/// \param s sticky bit (or of all but the most significant already discarded bits)
|
880
|
+
/// \return value converted to half-precision
|
881
|
+
/// \exception FE_OVERFLOW on overflows
|
882
|
+
/// \exception FE_UNDERFLOW on underflows
|
883
|
+
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
|
884
|
+
template<std::float_round_style R,unsigned int F,bool S,bool N,bool I> unsigned int fixed2half(uint32 m, int exp = 14, unsigned int sign = 0, int s = 0)
|
885
|
+
{
|
886
|
+
if(S)
|
887
|
+
{
|
888
|
+
uint32 msign = sign_mask(m);
|
889
|
+
m = (m^msign) - msign;
|
890
|
+
sign = msign & 0x8000;
|
891
|
+
}
|
892
|
+
if(N)
|
893
|
+
for(; m<(static_cast<uint32>(1)<<F) && exp; m<<=1,--exp) ;
|
894
|
+
else if(exp < 0)
|
895
|
+
return rounded<R,I>(sign+(m>>(F-10-exp)), (m>>(F-11-exp))&1, s|((m&((static_cast<uint32>(1)<<(F-11-exp))-1))!=0));
|
896
|
+
return rounded<R,I>(sign+(exp<<10)+(m>>(F-10)), (m>>(F-11))&1, s|((m&((static_cast<uint32>(1)<<(F-11))-1))!=0));
|
897
|
+
}
|
898
|
+
|
899
|
+
/// Convert IEEE single-precision to half-precision.
|
900
|
+
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
|
901
|
+
/// \tparam R rounding mode to use
|
902
|
+
/// \param value single-precision value to convert
|
903
|
+
/// \return rounded half-precision value
|
904
|
+
/// \exception FE_OVERFLOW on overflows
|
905
|
+
/// \exception FE_UNDERFLOW on underflows
|
906
|
+
/// \exception FE_INEXACT if value had to be rounded
|
907
|
+
template<std::float_round_style R> unsigned int float2half_impl(float value, true_type)
|
908
|
+
{
|
909
|
+
#if HALF_ENABLE_F16C_INTRINSICS
|
910
|
+
return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(value),
|
911
|
+
(R==std::round_to_nearest) ? _MM_FROUND_TO_NEAREST_INT :
|
912
|
+
(R==std::round_toward_zero) ? _MM_FROUND_TO_ZERO :
|
913
|
+
(R==std::round_toward_infinity) ? _MM_FROUND_TO_POS_INF :
|
914
|
+
(R==std::round_toward_neg_infinity) ? _MM_FROUND_TO_NEG_INF :
|
915
|
+
_MM_FROUND_CUR_DIRECTION));
|
916
|
+
#else
|
917
|
+
bits<float>::type fbits;
|
918
|
+
std::memcpy(&fbits, &value, sizeof(float));
|
919
|
+
#if 1
|
920
|
+
unsigned int sign = (fbits>>16) & 0x8000;
|
921
|
+
fbits &= 0x7FFFFFFF;
|
922
|
+
if(fbits >= 0x7F800000)
|
923
|
+
return sign | 0x7C00 | ((fbits>0x7F800000) ? (0x200|((fbits>>13)&0x3FF)) : 0);
|
924
|
+
if(fbits >= 0x47800000)
|
925
|
+
return overflow<R>(sign);
|
926
|
+
if(fbits >= 0x38800000)
|
927
|
+
return rounded<R,false>(sign|(((fbits>>23)-112)<<10)|((fbits>>13)&0x3FF), (fbits>>12)&1, (fbits&0xFFF)!=0);
|
928
|
+
if(fbits >= 0x33000000)
|
929
|
+
{
|
930
|
+
int i = 125 - (fbits>>23);
|
931
|
+
fbits = (fbits&0x7FFFFF) | 0x800000;
|
932
|
+
return rounded<R,false>(sign|(fbits>>(i+1)), (fbits>>i)&1, (fbits&((static_cast<uint32>(1)<<i)-1))!=0);
|
933
|
+
}
|
934
|
+
if(fbits != 0)
|
935
|
+
return underflow<R>(sign);
|
936
|
+
return sign;
|
937
|
+
#else
|
938
|
+
static const uint16 base_table[512] = {
|
939
|
+
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
940
|
+
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
941
|
+
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
942
|
+
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
943
|
+
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
944
|
+
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
945
|
+
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100,
|
946
|
+
0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00,
|
947
|
+
0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7BFF,
|
948
|
+
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
|
949
|
+
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
|
950
|
+
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
|
951
|
+
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
|
952
|
+
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
|
953
|
+
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
|
954
|
+
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7C00,
|
955
|
+
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
956
|
+
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
957
|
+
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
958
|
+
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
959
|
+
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
960
|
+
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
961
|
+
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100,
|
962
|
+
0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00,
|
963
|
+
0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFBFF,
|
964
|
+
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
|
965
|
+
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
|
966
|
+
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
|
967
|
+
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
|
968
|
+
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
|
969
|
+
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
|
970
|
+
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFC00 };
|
971
|
+
static const unsigned char shift_table[256] = {
|
972
|
+
24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
|
973
|
+
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
|
974
|
+
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
|
975
|
+
25, 25, 25, 25, 25, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
|
976
|
+
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
977
|
+
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
978
|
+
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
979
|
+
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 };
|
980
|
+
int sexp = fbits >> 23, exp = sexp & 0xFF, i = shift_table[exp];
|
981
|
+
fbits &= 0x7FFFFF;
|
982
|
+
uint32 m = (fbits|((exp!=0)<<23)) & -static_cast<uint32>(exp!=0xFF);
|
983
|
+
return rounded<R,false>(base_table[sexp]+(fbits>>i), (m>>(i-1))&1, (((static_cast<uint32>(1)<<(i-1))-1)&m)!=0);
|
984
|
+
#endif
|
985
|
+
#endif
|
986
|
+
}
|
987
|
+
|
988
|
+
/// Convert IEEE double-precision to half-precision.
|
989
|
+
/// \tparam R rounding mode to use
|
990
|
+
/// \param value double-precision value to convert
|
991
|
+
/// \return rounded half-precision value
|
992
|
+
/// \exception FE_OVERFLOW on overflows
|
993
|
+
/// \exception FE_UNDERFLOW on underflows
|
994
|
+
/// \exception FE_INEXACT if value had to be rounded
|
995
|
+
template<std::float_round_style R> unsigned int float2half_impl(double value, true_type)
|
996
|
+
{
|
997
|
+
#if HALF_ENABLE_F16C_INTRINSICS
|
998
|
+
if(R == std::round_indeterminate)
|
999
|
+
return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_cvtpd_ps(_mm_set_sd(value)), _MM_FROUND_CUR_DIRECTION));
|
1000
|
+
#endif
|
1001
|
+
bits<double>::type dbits;
|
1002
|
+
std::memcpy(&dbits, &value, sizeof(double));
|
1003
|
+
uint32 hi = dbits >> 32, lo = dbits & 0xFFFFFFFF;
|
1004
|
+
unsigned int sign = (hi>>16) & 0x8000;
|
1005
|
+
hi &= 0x7FFFFFFF;
|
1006
|
+
if(hi >= 0x7FF00000)
|
1007
|
+
return sign | 0x7C00 | ((dbits&0xFFFFFFFFFFFFF) ? (0x200|((hi>>10)&0x3FF)) : 0);
|
1008
|
+
if(hi >= 0x40F00000)
|
1009
|
+
return overflow<R>(sign);
|
1010
|
+
if(hi >= 0x3F100000)
|
1011
|
+
return rounded<R,false>(sign|(((hi>>20)-1008)<<10)|((hi>>10)&0x3FF), (hi>>9)&1, ((hi&0x1FF)|lo)!=0);
|
1012
|
+
if(hi >= 0x3E600000)
|
1013
|
+
{
|
1014
|
+
int i = 1018 - (hi>>20);
|
1015
|
+
hi = (hi&0xFFFFF) | 0x100000;
|
1016
|
+
return rounded<R,false>(sign|(hi>>(i+1)), (hi>>i)&1, ((hi&((static_cast<uint32>(1)<<i)-1))|lo)!=0);
|
1017
|
+
}
|
1018
|
+
if((hi|lo) != 0)
|
1019
|
+
return underflow<R>(sign);
|
1020
|
+
return sign;
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
/// Convert non-IEEE floating-point to half-precision.
|
1024
|
+
/// \tparam R rounding mode to use
|
1025
|
+
/// \tparam T source type (builtin floating-point type)
|
1026
|
+
/// \param value floating-point value to convert
|
1027
|
+
/// \return rounded half-precision value
|
1028
|
+
/// \exception FE_OVERFLOW on overflows
|
1029
|
+
/// \exception FE_UNDERFLOW on underflows
|
1030
|
+
/// \exception FE_INEXACT if value had to be rounded
|
1031
|
+
template<std::float_round_style R,typename T> unsigned int float2half_impl(T value, ...)
|
1032
|
+
{
|
1033
|
+
unsigned int hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;
|
1034
|
+
if(value == T())
|
1035
|
+
return hbits;
|
1036
|
+
if(builtin_isnan(value))
|
1037
|
+
return hbits | 0x7FFF;
|
1038
|
+
if(builtin_isinf(value))
|
1039
|
+
return hbits | 0x7C00;
|
1040
|
+
int exp;
|
1041
|
+
std::frexp(value, &exp);
|
1042
|
+
if(exp > 16)
|
1043
|
+
return overflow<R>(hbits);
|
1044
|
+
if(exp < -13)
|
1045
|
+
value = std::ldexp(value, 25);
|
1046
|
+
else
|
1047
|
+
{
|
1048
|
+
value = std::ldexp(value, 12-exp);
|
1049
|
+
hbits |= ((exp+13)<<10);
|
1050
|
+
}
|
1051
|
+
T ival, frac = std::modf(value, &ival);
|
1052
|
+
int m = std::abs(static_cast<int>(ival));
|
1053
|
+
return rounded<R,false>(hbits+(m>>1), m&1, frac!=T());
|
1054
|
+
}
|
1055
|
+
|
1056
|
+
/// Convert floating-point to half-precision.
|
1057
|
+
/// \tparam R rounding mode to use
|
1058
|
+
/// \tparam T source type (builtin floating-point type)
|
1059
|
+
/// \param value floating-point value to convert
|
1060
|
+
/// \return rounded half-precision value
|
1061
|
+
/// \exception FE_OVERFLOW on overflows
|
1062
|
+
/// \exception FE_UNDERFLOW on underflows
|
1063
|
+
/// \exception FE_INEXACT if value had to be rounded
|
1064
|
+
template<std::float_round_style R,typename T> unsigned int float2half(T value)
|
1065
|
+
{
|
1066
|
+
return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
|
1067
|
+
}
|
1068
|
+
|
1069
|
+
/// Convert integer to half-precision floating-point.
|
1070
|
+
/// \tparam R rounding mode to use
|
1071
|
+
/// \tparam T type to convert (builtin integer type)
|
1072
|
+
/// \param value integral value to convert
|
1073
|
+
/// \return rounded half-precision value
|
1074
|
+
/// \exception FE_OVERFLOW on overflows
|
1075
|
+
/// \exception FE_INEXACT if value had to be rounded
|
1076
|
+
template<std::float_round_style R,typename T> unsigned int int2half(T value)
|
1077
|
+
{
|
1078
|
+
unsigned int bits = static_cast<unsigned>(value<0) << 15;
|
1079
|
+
if(!value)
|
1080
|
+
return bits;
|
1081
|
+
if(bits)
|
1082
|
+
value = -value;
|
1083
|
+
if(value > 0xFFFF)
|
1084
|
+
return overflow<R>(bits);
|
1085
|
+
unsigned int m = static_cast<unsigned int>(value), exp = 24;
|
1086
|
+
for(; m<0x400; m<<=1,--exp) ;
|
1087
|
+
for(; m>0x7FF; m>>=1,++exp) ;
|
1088
|
+
bits |= (exp<<10) + m;
|
1089
|
+
return (exp>24) ? rounded<R,false>(bits, (value>>(exp-25))&1, (((1<<(exp-25))-1)&value)!=0) : bits;
|
1090
|
+
}
|
1091
|
+
|
1092
|
+
/// Convert half-precision to IEEE single-precision.
|
1093
|
+
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
|
1094
|
+
/// \param value half-precision value to convert
|
1095
|
+
/// \return single-precision value
|
1096
|
+
inline float half2float_impl(unsigned int value, float, true_type)
|
1097
|
+
{
|
1098
|
+
#if HALF_ENABLE_F16C_INTRINSICS
|
1099
|
+
return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(value)));
|
1100
|
+
#else
|
1101
|
+
#if 0
|
1102
|
+
bits<float>::type fbits = static_cast<bits<float>::type>(value&0x8000) << 16;
|
1103
|
+
int abs = value & 0x7FFF;
|
1104
|
+
if(abs)
|
1105
|
+
{
|
1106
|
+
fbits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
|
1107
|
+
for(; abs<0x400; abs<<=1,fbits-=0x800000) ;
|
1108
|
+
fbits += static_cast<bits<float>::type>(abs) << 13;
|
1109
|
+
}
|
1110
|
+
#else
|
1111
|
+
static const bits<float>::type mantissa_table[2048] = {
|
1112
|
+
0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000,
|
1113
|
+
0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000,
|
1114
|
+
0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000,
|
1115
|
+
0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000,
|
1116
|
+
0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000,
|
1117
|
+
0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000,
|
1118
|
+
0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000,
|
1119
|
+
0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000,
|
1120
|
+
0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000,
|
1121
|
+
0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000,
|
1122
|
+
0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000,
|
1123
|
+
0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000,
|
1124
|
+
0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000,
|
1125
|
+
0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000,
|
1126
|
+
0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000,
|
1127
|
+
0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000,
|
1128
|
+
0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000,
|
1129
|
+
0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000,
|
1130
|
+
0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000,
|
1131
|
+
0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000,
|
1132
|
+
0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000,
|
1133
|
+
0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000,
|
1134
|
+
0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000,
|
1135
|
+
0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000,
|
1136
|
+
0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000,
|
1137
|
+
0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000,
|
1138
|
+
0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000,
|
1139
|
+
0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000,
|
1140
|
+
0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000,
|
1141
|
+
0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000,
|
1142
|
+
0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000,
|
1143
|
+
0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000,
|
1144
|
+
0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000,
|
1145
|
+
0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000,
|
1146
|
+
0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000,
|
1147
|
+
0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000,
|
1148
|
+
0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000,
|
1149
|
+
0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000,
|
1150
|
+
0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000,
|
1151
|
+
0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000,
|
1152
|
+
0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000,
|
1153
|
+
0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000,
|
1154
|
+
0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000,
|
1155
|
+
0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000,
|
1156
|
+
0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000,
|
1157
|
+
0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000,
|
1158
|
+
0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000,
|
1159
|
+
0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000,
|
1160
|
+
0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000,
|
1161
|
+
0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000,
|
1162
|
+
0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000,
|
1163
|
+
0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000,
|
1164
|
+
0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000,
|
1165
|
+
0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000,
|
1166
|
+
0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000,
|
1167
|
+
0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000,
|
1168
|
+
0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000,
|
1169
|
+
0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000,
|
1170
|
+
0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000,
|
1171
|
+
0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000,
|
1172
|
+
0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000,
|
1173
|
+
0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000,
|
1174
|
+
0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000,
|
1175
|
+
0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000,
|
1176
|
+
0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000,
|
1177
|
+
0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000,
|
1178
|
+
0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000,
|
1179
|
+
0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000,
|
1180
|
+
0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000,
|
1181
|
+
0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000,
|
1182
|
+
0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000,
|
1183
|
+
0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000,
|
1184
|
+
0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000,
|
1185
|
+
0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000,
|
1186
|
+
0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000,
|
1187
|
+
0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000,
|
1188
|
+
0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000,
|
1189
|
+
0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000,
|
1190
|
+
0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000,
|
1191
|
+
0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000,
|
1192
|
+
0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000,
|
1193
|
+
0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000,
|
1194
|
+
0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000,
|
1195
|
+
0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000,
|
1196
|
+
0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000,
|
1197
|
+
0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000,
|
1198
|
+
0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000,
|
1199
|
+
0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000,
|
1200
|
+
0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000,
|
1201
|
+
0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000,
|
1202
|
+
0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000,
|
1203
|
+
0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000,
|
1204
|
+
0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000,
|
1205
|
+
0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000,
|
1206
|
+
0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000,
|
1207
|
+
0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000,
|
1208
|
+
0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000,
|
1209
|
+
0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000,
|
1210
|
+
0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000,
|
1211
|
+
0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000,
|
1212
|
+
0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000,
|
1213
|
+
0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000,
|
1214
|
+
0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000,
|
1215
|
+
0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000,
|
1216
|
+
0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000,
|
1217
|
+
0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000,
|
1218
|
+
0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000,
|
1219
|
+
0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000,
|
1220
|
+
0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000,
|
1221
|
+
0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000,
|
1222
|
+
0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000,
|
1223
|
+
0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000,
|
1224
|
+
0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000,
|
1225
|
+
0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000,
|
1226
|
+
0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000,
|
1227
|
+
0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000,
|
1228
|
+
0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000,
|
1229
|
+
0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000,
|
1230
|
+
0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000,
|
1231
|
+
0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000,
|
1232
|
+
0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000,
|
1233
|
+
0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000,
|
1234
|
+
0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000,
|
1235
|
+
0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000,
|
1236
|
+
0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000,
|
1237
|
+
0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000,
|
1238
|
+
0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000,
|
1239
|
+
0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 };
|
1240
|
+
static const bits<float>::type exponent_table[64] = {
|
1241
|
+
0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000,
|
1242
|
+
0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000,
|
1243
|
+
0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000,
|
1244
|
+
0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 };
|
1245
|
+
static const unsigned short offset_table[64] = {
|
1246
|
+
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
|
1247
|
+
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 };
|
1248
|
+
bits<float>::type fbits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10];
|
1249
|
+
#endif
|
1250
|
+
float out;
|
1251
|
+
std::memcpy(&out, &fbits, sizeof(float));
|
1252
|
+
return out;
|
1253
|
+
#endif
|
1254
|
+
}
|
1255
|
+
|
1256
|
+
/// Convert half-precision to IEEE double-precision.
|
1257
|
+
/// \param value half-precision value to convert
|
1258
|
+
/// \return double-precision value
|
1259
|
+
inline double half2float_impl(unsigned int value, double, true_type)
|
1260
|
+
{
|
1261
|
+
#if HALF_ENABLE_F16C_INTRINSICS
|
1262
|
+
return _mm_cvtsd_f64(_mm_cvtps_pd(_mm_cvtph_ps(_mm_cvtsi32_si128(value))));
|
1263
|
+
#else
|
1264
|
+
uint32 hi = static_cast<uint32>(value&0x8000) << 16;
|
1265
|
+
unsigned int abs = value & 0x7FFF;
|
1266
|
+
if(abs)
|
1267
|
+
{
|
1268
|
+
hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00);
|
1269
|
+
for(; abs<0x400; abs<<=1,hi-=0x100000) ;
|
1270
|
+
hi += static_cast<uint32>(abs) << 10;
|
1271
|
+
}
|
1272
|
+
bits<double>::type dbits = static_cast<bits<double>::type>(hi) << 32;
|
1273
|
+
double out;
|
1274
|
+
std::memcpy(&out, &dbits, sizeof(double));
|
1275
|
+
return out;
|
1276
|
+
#endif
|
1277
|
+
}
|
1278
|
+
|
1279
|
+
/// Convert half-precision to non-IEEE floating-point.
|
1280
|
+
/// \tparam T type to convert to (builtin integer type)
|
1281
|
+
/// \param value half-precision value to convert
|
1282
|
+
/// \return floating-point value
|
1283
|
+
template<typename T> T half2float_impl(unsigned int value, T, ...)
|
1284
|
+
{
|
1285
|
+
T out;
|
1286
|
+
unsigned int abs = value & 0x7FFF;
|
1287
|
+
if(abs > 0x7C00)
|
1288
|
+
out = (std::numeric_limits<T>::has_signaling_NaN && !(abs&0x200)) ? std::numeric_limits<T>::signaling_NaN() :
|
1289
|
+
std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T();
|
1290
|
+
else if(abs == 0x7C00)
|
1291
|
+
out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max();
|
1292
|
+
else if(abs > 0x3FF)
|
1293
|
+
out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25);
|
1294
|
+
else
|
1295
|
+
out = std::ldexp(static_cast<T>(abs), -24);
|
1296
|
+
return (value&0x8000) ? -out : out;
|
1297
|
+
}
|
1298
|
+
|
1299
|
+
/// Convert half-precision to floating-point.
|
1300
|
+
/// \tparam T type to convert to (builtin integer type)
|
1301
|
+
/// \param value half-precision value to convert
|
1302
|
+
/// \return floating-point value
|
1303
|
+
template<typename T> T half2float(unsigned int value)
|
1304
|
+
{
|
1305
|
+
return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
|
1306
|
+
}
|
1307
|
+
|
1308
|
+
/// Convert half-precision floating-point to integer.
|
1309
|
+
/// \tparam R rounding mode to use
|
1310
|
+
/// \tparam E `true` for round to even, `false` for round away from zero
|
1311
|
+
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never raise it
|
1312
|
+
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
|
1313
|
+
/// \param value half-precision value to convert
|
1314
|
+
/// \return rounded integer value
|
1315
|
+
/// \exception FE_INVALID if value is not representable in type \a T
|
1316
|
+
/// \exception FE_INEXACT if value had to be rounded and \a I is `true`
|
1317
|
+
template<std::float_round_style R,bool E,bool I,typename T> T half2int(unsigned int value)
|
1318
|
+
{
|
1319
|
+
unsigned int abs = value & 0x7FFF;
|
1320
|
+
if(abs >= 0x7C00)
|
1321
|
+
{
|
1322
|
+
raise(FE_INVALID);
|
1323
|
+
return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max();
|
1324
|
+
}
|
1325
|
+
if(abs < 0x3800)
|
1326
|
+
{
|
1327
|
+
raise(FE_INEXACT, I);
|
1328
|
+
return (R==std::round_toward_infinity) ? T(~(value>>15)&(abs!=0)) :
|
1329
|
+
(R==std::round_toward_neg_infinity) ? -T(value>0x8000) :
|
1330
|
+
T();
|
1331
|
+
}
|
1332
|
+
int exp = 25 - (abs>>10);
|
1333
|
+
unsigned int m = (value&0x3FF) | 0x400;
|
1334
|
+
int32 i = static_cast<int32>((exp<=0) ? (m<<-exp) : ((m+(
|
1335
|
+
(R==std::round_to_nearest) ? ((1<<(exp-1))-(~(m>>exp)&E)) :
|
1336
|
+
(R==std::round_toward_infinity) ? (((1<<exp)-1)&((value>>15)-1)) :
|
1337
|
+
(R==std::round_toward_neg_infinity) ? (((1<<exp)-1)&-(value>>15)) : 0))>>exp));
|
1338
|
+
if((!std::numeric_limits<T>::is_signed && (value&0x8000)) || (std::numeric_limits<T>::digits<16 &&
|
1339
|
+
((value&0x8000) ? (-i<std::numeric_limits<T>::min()) : (i>std::numeric_limits<T>::max()))))
|
1340
|
+
raise(FE_INVALID);
|
1341
|
+
else if(I && exp > 0 && (m&((1<<exp)-1)))
|
1342
|
+
raise(FE_INEXACT);
|
1343
|
+
return static_cast<T>((value&0x8000) ? -i : i);
|
1344
|
+
}
|
1345
|
+
|
1346
|
+
/// \}
|
1347
|
+
/// \name Mathematics
|
1348
|
+
/// \{
|
1349
|
+
|
1350
|
+
/// upper part of 64-bit multiplication.
|
1351
|
+
/// \tparam R rounding mode to use
|
1352
|
+
/// \param x first factor
|
1353
|
+
/// \param y second factor
|
1354
|
+
/// \return upper 32 bit of \a x * \a y
|
1355
|
+
template<std::float_round_style R> uint32 mulhi(uint32 x, uint32 y)
|
1356
|
+
{
|
1357
|
+
uint32 xy = (x>>16) * (y&0xFFFF), yx = (x&0xFFFF) * (y>>16), c = (xy&0xFFFF) + (yx&0xFFFF) + (((x&0xFFFF)*(y&0xFFFF))>>16);
|
1358
|
+
return (x>>16)*(y>>16) + (xy>>16) + (yx>>16) + (c>>16) +
|
1359
|
+
((R==std::round_to_nearest) ? ((c>>15)&1) : (R==std::round_toward_infinity) ? ((c&0xFFFF)!=0) : 0);
|
1360
|
+
}
|
1361
|
+
|
1362
|
+
/// 64-bit multiplication.
|
1363
|
+
/// \param x first factor
|
1364
|
+
/// \param y second factor
|
1365
|
+
/// \return upper 32 bit of \a x * \a y rounded to nearest
|
1366
|
+
inline uint32 multiply64(uint32 x, uint32 y)
|
1367
|
+
{
|
1368
|
+
#if HALF_ENABLE_CPP11_LONG_LONG
|
1369
|
+
return static_cast<uint32>((static_cast<unsigned long long>(x)*static_cast<unsigned long long>(y)+0x80000000)>>32);
|
1370
|
+
#else
|
1371
|
+
return mulhi<std::round_to_nearest>(x, y);
|
1372
|
+
#endif
|
1373
|
+
}
|
1374
|
+
|
1375
|
+
/// 64-bit division.
|
1376
|
+
/// \param x upper 32 bit of dividend
|
1377
|
+
/// \param y divisor
|
1378
|
+
/// \param s variable to store sticky bit for rounding
|
1379
|
+
/// \return (\a x << 32) / \a y
|
1380
|
+
inline uint32 divide64(uint32 x, uint32 y, int &s)
|
1381
|
+
{
|
1382
|
+
#if HALF_ENABLE_CPP11_LONG_LONG
|
1383
|
+
unsigned long long xx = static_cast<unsigned long long>(x) << 32;
|
1384
|
+
return s = (xx%y!=0), static_cast<uint32>(xx/y);
|
1385
|
+
#else
|
1386
|
+
y >>= 1;
|
1387
|
+
uint32 rem = x, div = 0;
|
1388
|
+
for(unsigned int i=0; i<32; ++i)
|
1389
|
+
{
|
1390
|
+
div <<= 1;
|
1391
|
+
if(rem >= y)
|
1392
|
+
{
|
1393
|
+
rem -= y;
|
1394
|
+
div |= 1;
|
1395
|
+
}
|
1396
|
+
rem <<= 1;
|
1397
|
+
}
|
1398
|
+
return s = rem > 1, div;
|
1399
|
+
#endif
|
1400
|
+
}
|
1401
|
+
|
1402
|
+
/// Half precision positive modulus.
|
1403
|
+
/// \tparam Q `true` to compute full quotient, `false` else
|
1404
|
+
/// \tparam R `true` to compute signed remainder, `false` for positive remainder
|
1405
|
+
/// \param x first operand as positive finite half-precision value
|
1406
|
+
/// \param y second operand as positive finite half-precision value
|
1407
|
+
/// \param quo adress to store quotient at, `nullptr` if \a Q `false`
|
1408
|
+
/// \return modulus of \a x / \a y
|
1409
|
+
template<bool Q,bool R> unsigned int mod(unsigned int x, unsigned int y, int *quo = NULL)
|
1410
|
+
{
|
1411
|
+
unsigned int q = 0;
|
1412
|
+
if(x > y)
|
1413
|
+
{
|
1414
|
+
int absx = x, absy = y, expx = 0, expy = 0;
|
1415
|
+
for(; absx<0x400; absx<<=1,--expx) ;
|
1416
|
+
for(; absy<0x400; absy<<=1,--expy) ;
|
1417
|
+
expx += absx >> 10;
|
1418
|
+
expy += absy >> 10;
|
1419
|
+
int mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
|
1420
|
+
for(int d=expx-expy; d; --d)
|
1421
|
+
{
|
1422
|
+
if(!Q && mx == my)
|
1423
|
+
return 0;
|
1424
|
+
if(mx >= my)
|
1425
|
+
{
|
1426
|
+
mx -= my;
|
1427
|
+
q += Q;
|
1428
|
+
}
|
1429
|
+
mx <<= 1;
|
1430
|
+
q <<= static_cast<int>(Q);
|
1431
|
+
}
|
1432
|
+
if(!Q && mx == my)
|
1433
|
+
return 0;
|
1434
|
+
if(mx >= my)
|
1435
|
+
{
|
1436
|
+
mx -= my;
|
1437
|
+
++q;
|
1438
|
+
}
|
1439
|
+
if(Q)
|
1440
|
+
{
|
1441
|
+
q &= (1<<(std::numeric_limits<int>::digits-1)) - 1;
|
1442
|
+
if(!mx)
|
1443
|
+
return *quo = q, 0;
|
1444
|
+
}
|
1445
|
+
for(; mx<0x400; mx<<=1,--expy) ;
|
1446
|
+
x = (expy>0) ? ((expy<<10)|(mx&0x3FF)) : (mx>>(1-expy));
|
1447
|
+
}
|
1448
|
+
if(R)
|
1449
|
+
{
|
1450
|
+
unsigned int a, b;
|
1451
|
+
if(y < 0x800)
|
1452
|
+
{
|
1453
|
+
a = (x<0x400) ? (x<<1) : (x+0x400);
|
1454
|
+
b = y;
|
1455
|
+
}
|
1456
|
+
else
|
1457
|
+
{
|
1458
|
+
a = x;
|
1459
|
+
b = y - 0x400;
|
1460
|
+
}
|
1461
|
+
if(a > b || (a == b && (q&1)))
|
1462
|
+
{
|
1463
|
+
int exp = (y>>10) + (y<=0x3FF), d = exp - (x>>10) - (x<=0x3FF);
|
1464
|
+
int m = (((y&0x3FF)|((y>0x3FF)<<10))<<1) - (((x&0x3FF)|((x>0x3FF)<<10))<<(1-d));
|
1465
|
+
for(; m<0x800 && exp>1; m<<=1,--exp) ;
|
1466
|
+
x = 0x8000 + ((exp-1)<<10) + (m>>1);
|
1467
|
+
q += Q;
|
1468
|
+
}
|
1469
|
+
}
|
1470
|
+
if(Q)
|
1471
|
+
*quo = q;
|
1472
|
+
return x;
|
1473
|
+
}
|
1474
|
+
|
1475
|
+
/// Fixed point square root.
|
1476
|
+
/// \tparam F number of fractional bits
|
1477
|
+
/// \param r radicand in Q1.F fixed point format
|
1478
|
+
/// \param exp exponent
|
1479
|
+
/// \return square root as Q1.F/2
|
1480
|
+
template<unsigned int F> uint32 sqrt(uint32 &r, int &exp)
|
1481
|
+
{
|
1482
|
+
int i = exp & 1;
|
1483
|
+
r <<= i;
|
1484
|
+
exp = (exp-i) / 2;
|
1485
|
+
uint32 m = 0;
|
1486
|
+
for(uint32 bit=static_cast<uint32>(1)<<F; bit; bit>>=2)
|
1487
|
+
{
|
1488
|
+
if(r < m+bit)
|
1489
|
+
m >>= 1;
|
1490
|
+
else
|
1491
|
+
{
|
1492
|
+
r -= m + bit;
|
1493
|
+
m = (m>>1) + bit;
|
1494
|
+
}
|
1495
|
+
}
|
1496
|
+
return m;
|
1497
|
+
}
|
1498
|
+
|
1499
|
+
/// Fixed point binary exponential.
|
1500
|
+
/// This uses the BKM algorithm in E-mode.
|
1501
|
+
/// \param m exponent in [0,1) as Q0.31
|
1502
|
+
/// \param n number of iterations (at most 32)
|
1503
|
+
/// \return 2 ^ \a m as Q1.31
|
1504
|
+
inline uint32 exp2(uint32 m, unsigned int n = 32)
|
1505
|
+
{
|
1506
|
+
static const uint32 logs[] = {
|
1507
|
+
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
|
1508
|
+
0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
|
1509
|
+
0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
|
1510
|
+
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
|
1511
|
+
if(!m)
|
1512
|
+
return 0x80000000;
|
1513
|
+
uint32 mx = 0x80000000, my = 0;
|
1514
|
+
for(unsigned int i=1; i<n; ++i)
|
1515
|
+
{
|
1516
|
+
uint32 mz = my + logs[i];
|
1517
|
+
if(mz <= m)
|
1518
|
+
{
|
1519
|
+
my = mz;
|
1520
|
+
mx += mx >> i;
|
1521
|
+
}
|
1522
|
+
}
|
1523
|
+
return mx;
|
1524
|
+
}
|
1525
|
+
|
1526
|
+
/// Fixed point binary logarithm.
|
1527
|
+
/// This uses the BKM algorithm in L-mode.
|
1528
|
+
/// \param m mantissa in [1,2) as Q1.30
|
1529
|
+
/// \param n number of iterations (at most 32)
|
1530
|
+
/// \return log2(\a m) as Q0.31
|
1531
|
+
inline uint32 log2(uint32 m, unsigned int n = 32)
|
1532
|
+
{
|
1533
|
+
static const uint32 logs[] = {
|
1534
|
+
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD, 0x02DCF2D1, 0x016FE50B,
|
1535
|
+
0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6, 0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153,
|
1536
|
+
0x0000B8AA, 0x00005C55, 0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
|
1537
|
+
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006, 0x00000003, 0x00000001 };
|
1538
|
+
if(m == 0x40000000)
|
1539
|
+
return 0;
|
1540
|
+
uint32 mx = 0x40000000, my = 0;
|
1541
|
+
for(unsigned int i=1; i<n; ++i)
|
1542
|
+
{
|
1543
|
+
uint32 mz = mx + (mx>>i);
|
1544
|
+
if(mz <= m)
|
1545
|
+
{
|
1546
|
+
mx = mz;
|
1547
|
+
my += logs[i];
|
1548
|
+
}
|
1549
|
+
}
|
1550
|
+
return my;
|
1551
|
+
}
|
1552
|
+
|
1553
|
+
/// Fixed point sine and cosine.
|
1554
|
+
/// This uses the CORDIC algorithm in rotation mode.
|
1555
|
+
/// \param mz angle in [-pi/2,pi/2] as Q1.30
|
1556
|
+
/// \param n number of iterations (at most 31)
|
1557
|
+
/// \return sine and cosine of \a mz as Q1.30
|
1558
|
+
inline std::pair<uint32,uint32> sincos(uint32 mz, unsigned int n = 31)
|
1559
|
+
{
|
1560
|
+
static const uint32 angles[] = {
|
1561
|
+
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
|
1562
|
+
0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
|
1563
|
+
0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
|
1564
|
+
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
|
1565
|
+
uint32 mx = 0x26DD3B6A, my = 0;
|
1566
|
+
for(unsigned int i=0; i<n; ++i)
|
1567
|
+
{
|
1568
|
+
uint32 sign = sign_mask(mz);
|
1569
|
+
uint32 tx = mx - (arithmetic_shift(my, i)^sign) + sign;
|
1570
|
+
uint32 ty = my + (arithmetic_shift(mx, i)^sign) - sign;
|
1571
|
+
mx = tx; my = ty; mz -= (angles[i]^sign) - sign;
|
1572
|
+
}
|
1573
|
+
return std::make_pair(my, mx);
|
1574
|
+
}
|
1575
|
+
|
1576
|
+
/// Fixed point arc tangent.
|
1577
|
+
/// This uses the CORDIC algorithm in vectoring mode.
|
1578
|
+
/// \param my y coordinate as Q0.30
|
1579
|
+
/// \param mx x coordinate as Q0.30
|
1580
|
+
/// \param n number of iterations (at most 31)
|
1581
|
+
/// \return arc tangent of \a my / \a mx as Q1.30
|
1582
|
+
inline uint32 atan2(uint32 my, uint32 mx, unsigned int n = 31)
|
1583
|
+
{
|
1584
|
+
static const uint32 angles[] = {
|
1585
|
+
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C, 0x00FFFAAB, 0x007FFF55,
|
1586
|
+
0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000,
|
1587
|
+
0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
|
1588
|
+
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 };
|
1589
|
+
uint32 mz = 0;
|
1590
|
+
for(unsigned int i=0; i<n; ++i)
|
1591
|
+
{
|
1592
|
+
uint32 sign = sign_mask(my);
|
1593
|
+
uint32 tx = mx + (arithmetic_shift(my, i)^sign) - sign;
|
1594
|
+
uint32 ty = my - (arithmetic_shift(mx, i)^sign) + sign;
|
1595
|
+
mx = tx; my = ty; mz += (angles[i]^sign) - sign;
|
1596
|
+
}
|
1597
|
+
return mz;
|
1598
|
+
}
|
1599
|
+
|
1600
|
+
/// Reduce argument for trigonometric functions.
|
1601
|
+
/// \param abs half-precision floating-point value
|
1602
|
+
/// \param k value to take quarter period
|
1603
|
+
/// \return \a abs reduced to [-pi/4,pi/4] as Q0.30
|
1604
|
+
inline uint32 angle_arg(unsigned int abs, int &k)
|
1605
|
+
{
|
1606
|
+
uint32 m = (abs&0x3FF) | ((abs>0x3FF)<<10);
|
1607
|
+
int exp = (abs>>10) + (abs<=0x3FF) - 15;
|
1608
|
+
if(abs < 0x3A48)
|
1609
|
+
return k = 0, m << (exp+20);
|
1610
|
+
#if HALF_ENABLE_CPP11_LONG_LONG
|
1611
|
+
unsigned long long y = m * 0xA2F9836E4E442, mask = (1ULL<<(62-exp)) - 1, yi = (y+(mask>>1)) & ~mask, f = y - yi;
|
1612
|
+
uint32 sign = -static_cast<uint32>(f>>63);
|
1613
|
+
k = static_cast<int>(yi>>(62-exp));
|
1614
|
+
return (multiply64(static_cast<uint32>((sign ? -f : f)>>(31-exp)), 0xC90FDAA2)^sign) - sign;
|
1615
|
+
#else
|
1616
|
+
uint32 yh = m*0xA2F98 + mulhi<std::round_toward_zero>(m, 0x36E4E442), yl = (m*0x36E4E442) & 0xFFFFFFFF;
|
1617
|
+
uint32 mask = (static_cast<uint32>(1)<<(30-exp)) - 1, yi = (yh+(mask>>1)) & ~mask, sign = -static_cast<uint32>(yi>yh);
|
1618
|
+
k = static_cast<int>(yi>>(30-exp));
|
1619
|
+
uint32 fh = (yh^sign) + (yi^~sign) - ~sign, fl = (yl^sign) - sign;
|
1620
|
+
return (multiply64((exp>-1) ? (((fh<<(1+exp))&0xFFFFFFFF)|((fl&0xFFFFFFFF)>>(31-exp))) : fh, 0xC90FDAA2)^sign) - sign;
|
1621
|
+
#endif
|
1622
|
+
}
|
1623
|
+
|
1624
|
+
/// Get arguments for atan2 function.
|
1625
|
+
/// \param abs half-precision floating-point value
|
1626
|
+
/// \return \a abs and sqrt(1 - \a abs^2) as Q0.30
|
1627
|
+
inline std::pair<uint32,uint32> atan2_args(unsigned int abs)
|
1628
|
+
{
|
1629
|
+
int exp = -15;
|
1630
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
1631
|
+
exp += abs >> 10;
|
1632
|
+
uint32 my = ((abs&0x3FF)|0x400) << 5, r = my * my;
|
1633
|
+
int rexp = 2 * exp;
|
1634
|
+
r = 0x40000000 - ((rexp>-31) ? ((r>>-rexp)|((r&((static_cast<uint32>(1)<<-rexp)-1))!=0)) : 1);
|
1635
|
+
for(rexp=0; r<0x40000000; r<<=1,--rexp) ;
|
1636
|
+
uint32 mx = sqrt<30>(r, rexp);
|
1637
|
+
int d = exp - rexp;
|
1638
|
+
if(d < 0)
|
1639
|
+
return std::make_pair((d<-14) ? ((my>>(-d-14))+((my>>(-d-15))&1)) : (my<<(14+d)), (mx<<14)+(r<<13)/mx);
|
1640
|
+
if(d > 0)
|
1641
|
+
return std::make_pair(my<<14, (d>14) ? ((mx>>(d-14))+((mx>>(d-15))&1)) : ((d==14) ? mx : ((mx<<(14-d))+(r<<(13-d))/mx)));
|
1642
|
+
return std::make_pair(my<<13, (mx<<13)+(r<<12)/mx);
|
1643
|
+
}
|
1644
|
+
|
1645
|
+
/// Get exponentials for hyperbolic computation
|
1646
|
+
/// \param abs half-precision floating-point value
|
1647
|
+
/// \param exp variable to take unbiased exponent of larger result
|
1648
|
+
/// \param n number of BKM iterations (at most 32)
|
1649
|
+
/// \return exp(abs) and exp(-\a abs) as Q1.31 with same exponent
|
1650
|
+
inline std::pair<uint32,uint32> hyperbolic_args(unsigned int abs, int &exp, unsigned int n = 32)
|
1651
|
+
{
|
1652
|
+
uint32 mx = detail::multiply64(static_cast<uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29), my;
|
1653
|
+
int e = (abs>>10) + (abs<=0x3FF);
|
1654
|
+
if(e < 14)
|
1655
|
+
{
|
1656
|
+
exp = 0;
|
1657
|
+
mx >>= 14 - e;
|
1658
|
+
}
|
1659
|
+
else
|
1660
|
+
{
|
1661
|
+
exp = mx >> (45-e);
|
1662
|
+
mx = (mx<<(e-14)) & 0x7FFFFFFF;
|
1663
|
+
}
|
1664
|
+
mx = exp2(mx, n);
|
1665
|
+
int d = exp << 1, s;
|
1666
|
+
if(mx > 0x80000000)
|
1667
|
+
{
|
1668
|
+
my = divide64(0x80000000, mx, s);
|
1669
|
+
my |= s;
|
1670
|
+
++d;
|
1671
|
+
}
|
1672
|
+
else
|
1673
|
+
my = mx;
|
1674
|
+
return std::make_pair(mx, (d<31) ? ((my>>d)|((my&((static_cast<uint32>(1)<<d)-1))!=0)) : 1);
|
1675
|
+
}
|
1676
|
+
|
1677
|
+
/// Postprocessing for binary exponential.
|
1678
|
+
/// \tparam R rounding mode to use
|
1679
|
+
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only for rounded results
|
1680
|
+
/// \param m mantissa as Q1.31
|
1681
|
+
/// \param exp absolute value of unbiased exponent
|
1682
|
+
/// \param esign sign of actual exponent
|
1683
|
+
/// \param sign sign bit of result
|
1684
|
+
/// \return value converted to half-precision
|
1685
|
+
/// \exception FE_OVERFLOW on overflows
|
1686
|
+
/// \exception FE_UNDERFLOW on underflows
|
1687
|
+
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
|
1688
|
+
template<std::float_round_style R,bool I> unsigned int exp2_post(uint32 m, int exp, bool esign, unsigned int sign = 0)
|
1689
|
+
{
|
1690
|
+
int s = 0;
|
1691
|
+
if(esign)
|
1692
|
+
{
|
1693
|
+
if(m > 0x80000000)
|
1694
|
+
{
|
1695
|
+
m = divide64(0x80000000, m, s);
|
1696
|
+
++exp;
|
1697
|
+
}
|
1698
|
+
if(exp > 25)
|
1699
|
+
return underflow<R>(sign);
|
1700
|
+
else if(exp == 25)
|
1701
|
+
return rounded<R,I>(sign, 1, (m&0x7FFFFFFF)!=0);
|
1702
|
+
exp = -exp;
|
1703
|
+
}
|
1704
|
+
else if(exp > 15)
|
1705
|
+
return overflow<R>(sign);
|
1706
|
+
return fixed2half<R,31,false,false,I>(m, exp+14, sign, s);
|
1707
|
+
}
|
1708
|
+
|
1709
|
+
/// Postprocessing for binary logarithm.
|
1710
|
+
/// \tparam R rounding mode to use
|
1711
|
+
/// \tparam L logarithm for base transformation as Q1.31
|
1712
|
+
/// \param m fractional part of logarithm as Q0.31
|
1713
|
+
/// \param ilog signed integer part of logarithm
|
1714
|
+
/// \param exp biased exponent of result
|
1715
|
+
/// \param sign sign bit of result
|
1716
|
+
/// \return value base-transformed and converted to half-precision
|
1717
|
+
/// \exception FE_OVERFLOW on overflows
|
1718
|
+
/// \exception FE_UNDERFLOW on underflows
|
1719
|
+
/// \exception FE_INEXACT if no other exception occurred
|
1720
|
+
template<std::float_round_style R,uint32 L> unsigned int log2_post(uint32 m, int ilog, int exp, unsigned int sign = 0)
|
1721
|
+
{
|
1722
|
+
uint32 msign = sign_mask(ilog);
|
1723
|
+
m = (((static_cast<uint32>(ilog)<<27)+(m>>4))^msign) - msign;
|
1724
|
+
if(!m)
|
1725
|
+
return 0;
|
1726
|
+
for(; m<0x80000000; m<<=1,--exp) ;
|
1727
|
+
int i = m >= L, s;
|
1728
|
+
exp += i;
|
1729
|
+
m >>= 1 + i;
|
1730
|
+
sign ^= msign & 0x8000;
|
1731
|
+
if(exp < -11)
|
1732
|
+
return underflow<R>(sign);
|
1733
|
+
m = divide64(m, L, s);
|
1734
|
+
return fixed2half<R,30,false,false,true>(m, exp, sign, 1);
|
1735
|
+
}
|
1736
|
+
|
1737
|
+
/// Hypotenuse square root and postprocessing.
|
1738
|
+
/// \tparam R rounding mode to use
|
1739
|
+
/// \param r mantissa as Q2.30
|
1740
|
+
/// \param exp unbiased exponent
|
1741
|
+
/// \return square root converted to half-precision
|
1742
|
+
/// \exception FE_OVERFLOW on overflows
|
1743
|
+
/// \exception FE_UNDERFLOW on underflows
|
1744
|
+
/// \exception FE_INEXACT if value had to be rounded
|
1745
|
+
template<std::float_round_style R> unsigned int hypot_post(uint32 r, int exp)
|
1746
|
+
{
|
1747
|
+
int i = r >> 31;
|
1748
|
+
if((exp+=i) > 46)
|
1749
|
+
return overflow<R>();
|
1750
|
+
if(exp < -34)
|
1751
|
+
return underflow<R>();
|
1752
|
+
r = (r>>i) | (r&i);
|
1753
|
+
uint32 m = sqrt<30>(r, exp+=15);
|
1754
|
+
return fixed2half<R,15,false,false,false>(m, exp-1, 0, r!=0);
|
1755
|
+
}
|
1756
|
+
|
1757
|
+
/// Division and postprocessing for tangents.
|
1758
|
+
/// \tparam R rounding mode to use
|
1759
|
+
/// \param my dividend as Q1.31
|
1760
|
+
/// \param mx divisor as Q1.31
|
1761
|
+
/// \param exp biased exponent of result
|
1762
|
+
/// \param sign sign bit of result
|
1763
|
+
/// \return quotient converted to half-precision
|
1764
|
+
/// \exception FE_OVERFLOW on overflows
|
1765
|
+
/// \exception FE_UNDERFLOW on underflows
|
1766
|
+
/// \exception FE_INEXACT if no other exception occurred
|
1767
|
+
template<std::float_round_style R> unsigned int tangent_post(uint32 my, uint32 mx, int exp, unsigned int sign = 0)
|
1768
|
+
{
|
1769
|
+
int i = my >= mx, s;
|
1770
|
+
exp += i;
|
1771
|
+
if(exp > 29)
|
1772
|
+
return overflow<R>(sign);
|
1773
|
+
if(exp < -11)
|
1774
|
+
return underflow<R>(sign);
|
1775
|
+
uint32 m = divide64(my>>(i+1), mx, s);
|
1776
|
+
return fixed2half<R,30,false,false,true>(m, exp, sign, s);
|
1777
|
+
}
|
1778
|
+
|
1779
|
+
/// Area function and postprocessing.
|
1780
|
+
/// This computes the value directly in Q2.30 using the representation `asinh|acosh(x) = log(x+sqrt(x^2+|-1))`.
|
1781
|
+
/// \tparam R rounding mode to use
|
1782
|
+
/// \tparam S `true` for asinh, `false` for acosh
|
1783
|
+
/// \param arg half-precision argument
|
1784
|
+
/// \return asinh|acosh(\a arg) converted to half-precision
|
1785
|
+
/// \exception FE_OVERFLOW on overflows
|
1786
|
+
/// \exception FE_UNDERFLOW on underflows
|
1787
|
+
/// \exception FE_INEXACT if no other exception occurred
|
1788
|
+
template<std::float_round_style R,bool S> unsigned int area(unsigned int arg)
|
1789
|
+
{
|
1790
|
+
int abs = arg & 0x7FFF, expx = (abs>>10) + (abs<=0x3FF) - 15, expy = -15, ilog, i;
|
1791
|
+
uint32 mx = static_cast<uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << 20, my, r;
|
1792
|
+
for(; abs<0x400; abs<<=1,--expy) ;
|
1793
|
+
expy += abs >> 10;
|
1794
|
+
r = ((abs&0x3FF)|0x400) << 5;
|
1795
|
+
r *= r;
|
1796
|
+
i = r >> 31;
|
1797
|
+
expy = 2*expy + i;
|
1798
|
+
r >>= i;
|
1799
|
+
if(S)
|
1800
|
+
{
|
1801
|
+
if(expy < 0)
|
1802
|
+
{
|
1803
|
+
r = 0x40000000 + ((expy>-30) ? ((r>>-expy)|((r&((static_cast<uint32>(1)<<-expy)-1))!=0)) : 1);
|
1804
|
+
expy = 0;
|
1805
|
+
}
|
1806
|
+
else
|
1807
|
+
{
|
1808
|
+
r += 0x40000000 >> expy;
|
1809
|
+
i = r >> 31;
|
1810
|
+
r = (r>>i) | (r&i);
|
1811
|
+
expy += i;
|
1812
|
+
}
|
1813
|
+
}
|
1814
|
+
else
|
1815
|
+
{
|
1816
|
+
r -= 0x40000000 >> expy;
|
1817
|
+
for(; r<0x40000000; r<<=1,--expy) ;
|
1818
|
+
}
|
1819
|
+
my = sqrt<30>(r, expy);
|
1820
|
+
my = (my<<15) + (r<<14)/my;
|
1821
|
+
if(S)
|
1822
|
+
{
|
1823
|
+
mx >>= expy - expx;
|
1824
|
+
ilog = expy;
|
1825
|
+
}
|
1826
|
+
else
|
1827
|
+
{
|
1828
|
+
my >>= expx - expy;
|
1829
|
+
ilog = expx;
|
1830
|
+
}
|
1831
|
+
my += mx;
|
1832
|
+
i = my >> 31;
|
1833
|
+
static const int G = S && (R==std::round_to_nearest);
|
1834
|
+
return log2_post<R,0xB8AA3B2A>(log2(my>>i, 26+S+G)+(G<<3), ilog+i, 17, arg&(static_cast<unsigned>(S)<<15));
|
1835
|
+
}
|
1836
|
+
|
1837
|
+
/// Class for 1.31 unsigned floating-point computation
|
1838
|
+
struct f31
|
1839
|
+
{
|
1840
|
+
/// Constructor.
|
1841
|
+
/// \param mant mantissa as 1.31
|
1842
|
+
/// \param e exponent
|
1843
|
+
HALF_CONSTEXPR f31(uint32 mant, int e) : m(mant), exp(e) {}
|
1844
|
+
|
1845
|
+
/// Constructor.
|
1846
|
+
/// \param abs unsigned half-precision value
|
1847
|
+
f31(unsigned int abs) : exp(-15)
|
1848
|
+
{
|
1849
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
1850
|
+
m = static_cast<uint32>((abs&0x3FF)|0x400) << 21;
|
1851
|
+
exp += (abs>>10);
|
1852
|
+
}
|
1853
|
+
|
1854
|
+
/// Addition operator.
|
1855
|
+
/// \param a first operand
|
1856
|
+
/// \param b second operand
|
1857
|
+
/// \return \a a + \a b
|
1858
|
+
friend f31 operator+(f31 a, f31 b)
|
1859
|
+
{
|
1860
|
+
if(b.exp > a.exp)
|
1861
|
+
std::swap(a, b);
|
1862
|
+
int d = a.exp - b.exp;
|
1863
|
+
uint32 m = a.m + ((d<32) ? (b.m>>d) : 0);
|
1864
|
+
int i = (m&0xFFFFFFFF) < a.m;
|
1865
|
+
return f31(((m+i)>>i)|0x80000000, a.exp+i);
|
1866
|
+
}
|
1867
|
+
|
1868
|
+
/// Subtraction operator.
|
1869
|
+
/// \param a first operand
|
1870
|
+
/// \param b second operand
|
1871
|
+
/// \return \a a - \a b
|
1872
|
+
friend f31 operator-(f31 a, f31 b)
|
1873
|
+
{
|
1874
|
+
int d = a.exp - b.exp, exp = a.exp;
|
1875
|
+
uint32 m = a.m - ((d<32) ? (b.m>>d) : 0);
|
1876
|
+
if(!m)
|
1877
|
+
return f31(0, -32);
|
1878
|
+
for(; m<0x80000000; m<<=1,--exp) ;
|
1879
|
+
return f31(m, exp);
|
1880
|
+
}
|
1881
|
+
|
1882
|
+
/// Multiplication operator.
|
1883
|
+
/// \param a first operand
|
1884
|
+
/// \param b second operand
|
1885
|
+
/// \return \a a * \a b
|
1886
|
+
friend f31 operator*(f31 a, f31 b)
|
1887
|
+
{
|
1888
|
+
uint32 m = multiply64(a.m, b.m);
|
1889
|
+
int i = m >> 31;
|
1890
|
+
return f31(m<<(1-i), a.exp + b.exp + i);
|
1891
|
+
}
|
1892
|
+
|
1893
|
+
/// Division operator.
|
1894
|
+
/// \param a first operand
|
1895
|
+
/// \param b second operand
|
1896
|
+
/// \return \a a / \a b
|
1897
|
+
friend f31 operator/(f31 a, f31 b)
|
1898
|
+
{
|
1899
|
+
int i = a.m >= b.m, s;
|
1900
|
+
uint32 m = divide64((a.m+i)>>i, b.m, s);
|
1901
|
+
return f31(m, a.exp - b.exp + i - 1);
|
1902
|
+
}
|
1903
|
+
|
1904
|
+
uint32 m; ///< mantissa as 1.31.
|
1905
|
+
int exp; ///< exponent.
|
1906
|
+
};
|
1907
|
+
|
1908
|
+
/// Error function and postprocessing.
|
1909
|
+
/// This computes the value directly in Q1.31 using the approximations given
|
1910
|
+
/// [here](https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions).
|
1911
|
+
/// \tparam R rounding mode to use
|
1912
|
+
/// \tparam C `true` for comlementary error function, `false` else
|
1913
|
+
/// \param arg half-precision function argument
|
1914
|
+
/// \return approximated value of error function in half-precision
|
1915
|
+
/// \exception FE_OVERFLOW on overflows
|
1916
|
+
/// \exception FE_UNDERFLOW on underflows
|
1917
|
+
/// \exception FE_INEXACT if no other exception occurred
|
1918
|
+
template<std::float_round_style R,bool C> unsigned int erf(unsigned int arg)
|
1919
|
+
{
|
1920
|
+
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
|
1921
|
+
f31 x(abs), x2 = x * x * f31(0xB8AA3B29, 0), t = f31(0x80000000, 0) / (f31(0x80000000, 0)+f31(0xA7BA054A, -2)*x), t2 = t * t;
|
1922
|
+
f31 e = ((f31(0x87DC2213, 0)*t2+f31(0xB5F0E2AE, 0))*t2+f31(0x82790637, -2)-(f31(0xBA00E2B8, 0)*t2+f31(0x91A98E62, -2))*t) * t /
|
1923
|
+
((x2.exp<0) ? f31(exp2((x2.exp>-32) ? (x2.m>>-x2.exp) : 0, 30), 0) : f31(exp2((x2.m<<x2.exp)&0x7FFFFFFF, 22), x2.m>>(31-x2.exp)));
|
1924
|
+
return (!C || sign) ? fixed2half<R,31,false,true,true>(0x80000000-(e.m>>(C-e.exp)), 14+C, sign&(C-1U)) :
|
1925
|
+
(e.exp<-25) ? underflow<R>() : fixed2half<R,30,false,false,true>(e.m>>1, e.exp+14, 0, e.m&1);
|
1926
|
+
}
|
1927
|
+
|
1928
|
+
/// Gamma function and postprocessing.
|
1929
|
+
/// This approximates the value of either the gamma function or its logarithm directly in Q1.31.
|
1930
|
+
/// \tparam R rounding mode to use
|
1931
|
+
/// \tparam L `true` for lograithm of gamma function, `false` for gamma function
|
1932
|
+
/// \param arg half-precision floating-point value
|
1933
|
+
/// \return lgamma/tgamma(\a arg) in half-precision
|
1934
|
+
/// \exception FE_OVERFLOW on overflows
|
1935
|
+
/// \exception FE_UNDERFLOW on underflows
|
1936
|
+
/// \exception FE_INEXACT if \a arg is not a positive integer
|
1937
|
+
template<std::float_round_style R,bool L> unsigned int gamma(unsigned int arg)
|
1938
|
+
{
|
1939
|
+
/* static const double p[] ={ 2.50662827563479526904, 225.525584619175212544, -268.295973841304927459, 80.9030806934622512966, -5.00757863970517583837, 0.0114684895434781459556 };
|
1940
|
+
double t = arg + 4.65, s = p[0];
|
1941
|
+
for(unsigned int i=0; i<5; ++i)
|
1942
|
+
s += p[i+1] / (arg+i);
|
1943
|
+
return std::log(s) + (arg-0.5)*std::log(t) - t;
|
1944
|
+
*/ static const f31 pi(0xC90FDAA2, 1), lbe(0xB8AA3B29, 0);
|
1945
|
+
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
|
1946
|
+
bool bsign = sign != 0;
|
1947
|
+
f31 z(abs), x = sign ? (z+f31(0x80000000, 0)) : z, t = x + f31(0x94CCCCCD, 2), s =
|
1948
|
+
f31(0xA06C9901, 1) + f31(0xBBE654E2, -7)/(x+f31(0x80000000, 2)) + f31(0xA1CE6098, 6)/(x+f31(0x80000000, 1))
|
1949
|
+
+ f31(0xE1868CB7, 7)/x - f31(0x8625E279, 8)/(x+f31(0x80000000, 0)) - f31(0xA03E158F, 2)/(x+f31(0xC0000000, 1));
|
1950
|
+
int i = (s.exp>=2) + (s.exp>=4) + (s.exp>=8) + (s.exp>=16);
|
1951
|
+
s = f31((static_cast<uint32>(s.exp)<<(31-i))+(log2(s.m>>1, 28)>>i), i) / lbe;
|
1952
|
+
if(x.exp != -1 || x.m != 0x80000000)
|
1953
|
+
{
|
1954
|
+
i = (t.exp>=2) + (t.exp>=4) + (t.exp>=8);
|
1955
|
+
f31 l = f31((static_cast<uint32>(t.exp)<<(31-i))+(log2(t.m>>1, 30)>>i), i) / lbe;
|
1956
|
+
s = (x.exp<-1) ? (s-(f31(0x80000000, -1)-x)*l) : (s+(x-f31(0x80000000, -1))*l);
|
1957
|
+
}
|
1958
|
+
s = x.exp ? (s-t) : (t-s);
|
1959
|
+
if(bsign)
|
1960
|
+
{
|
1961
|
+
if(z.exp >= 0)
|
1962
|
+
{
|
1963
|
+
sign &= (L|((z.m>>(31-z.exp))&1)) - 1;
|
1964
|
+
for(z=f31((z.m<<(1+z.exp))&0xFFFFFFFF, -1); z.m<0x80000000; z.m<<=1,--z.exp) ;
|
1965
|
+
}
|
1966
|
+
if(z.exp == -1)
|
1967
|
+
z = f31(0x80000000, 0) - z;
|
1968
|
+
if(z.exp < -1)
|
1969
|
+
{
|
1970
|
+
z = z * pi;
|
1971
|
+
z.m = sincos(z.m>>(1-z.exp), 30).first;
|
1972
|
+
for(z.exp=1; z.m<0x80000000; z.m<<=1,--z.exp) ;
|
1973
|
+
}
|
1974
|
+
else
|
1975
|
+
z = f31(0x80000000, 0);
|
1976
|
+
}
|
1977
|
+
if(L)
|
1978
|
+
{
|
1979
|
+
if(bsign)
|
1980
|
+
{
|
1981
|
+
f31 l(0x92868247, 0);
|
1982
|
+
if(z.exp < 0)
|
1983
|
+
{
|
1984
|
+
uint32 m = log2((z.m+1)>>1, 27);
|
1985
|
+
z = f31(-((static_cast<uint32>(z.exp)<<26)+(m>>5)), 5);
|
1986
|
+
for(; z.m<0x80000000; z.m<<=1,--z.exp) ;
|
1987
|
+
l = l + z / lbe;
|
1988
|
+
}
|
1989
|
+
sign = static_cast<unsigned>(x.exp&&(l.exp<s.exp||(l.exp==s.exp&&l.m<s.m))) << 15;
|
1990
|
+
s = sign ? (s-l) : x.exp ? (l-s) : (l+s);
|
1991
|
+
}
|
1992
|
+
else
|
1993
|
+
{
|
1994
|
+
sign = static_cast<unsigned>(x.exp==0) << 15;
|
1995
|
+
if(s.exp < -24)
|
1996
|
+
return underflow<R>(sign);
|
1997
|
+
if(s.exp > 15)
|
1998
|
+
return overflow<R>(sign);
|
1999
|
+
}
|
2000
|
+
}
|
2001
|
+
else
|
2002
|
+
{
|
2003
|
+
s = s * lbe;
|
2004
|
+
uint32 m;
|
2005
|
+
if(s.exp < 0)
|
2006
|
+
{
|
2007
|
+
m = s.m >> -s.exp;
|
2008
|
+
s.exp = 0;
|
2009
|
+
}
|
2010
|
+
else
|
2011
|
+
{
|
2012
|
+
m = (s.m<<s.exp) & 0x7FFFFFFF;
|
2013
|
+
s.exp = (s.m>>(31-s.exp));
|
2014
|
+
}
|
2015
|
+
s.m = exp2(m, 27);
|
2016
|
+
if(!x.exp)
|
2017
|
+
s = f31(0x80000000, 0) / s;
|
2018
|
+
if(bsign)
|
2019
|
+
{
|
2020
|
+
if(z.exp < 0)
|
2021
|
+
s = s * z;
|
2022
|
+
s = pi / s;
|
2023
|
+
if(s.exp < -24)
|
2024
|
+
return underflow<R>(sign);
|
2025
|
+
}
|
2026
|
+
else if(z.exp > 0 && !(z.m&((1<<(31-z.exp))-1)))
|
2027
|
+
return ((s.exp+14)<<10) + (s.m>>21);
|
2028
|
+
if(s.exp > 15)
|
2029
|
+
return overflow<R>(sign);
|
2030
|
+
}
|
2031
|
+
return fixed2half<R,31,false,false,true>(s.m, s.exp+14, sign);
|
2032
|
+
}
|
2033
|
+
/// \}
|
2034
|
+
|
2035
|
+
template<typename,typename,std::float_round_style> struct half_caster;
|
2036
|
+
}
|
2037
|
+
|
2038
|
+
/// Half-precision floating-point type.
|
2039
|
+
/// This class implements an IEEE-conformant half-precision floating-point type with the usual arithmetic
|
2040
|
+
/// operators and conversions. It is implicitly convertible to single-precision floating-point, which makes artihmetic
|
2041
|
+
/// expressions and functions with mixed-type operands to be of the most precise operand type.
|
2042
|
+
///
|
2043
|
+
/// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and
|
2044
|
+
/// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which
|
2045
|
+
/// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the
|
2046
|
+
/// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of
|
2047
|
+
/// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most
|
2048
|
+
/// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit
|
2049
|
+
/// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if
|
2050
|
+
/// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on
|
2051
|
+
/// nearly any reasonable platform.
|
2052
|
+
///
|
2053
|
+
/// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable
|
2054
|
+
/// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation.
|
2055
|
+
class half
|
2056
|
+
{
|
2057
|
+
public:
|
2058
|
+
/// \name Construction and assignment
|
2059
|
+
/// \{
|
2060
|
+
|
2061
|
+
/// Default constructor.
|
2062
|
+
/// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics
|
2063
|
+
/// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics.
|
2064
|
+
HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}
|
2065
|
+
|
2066
|
+
/// Conversion constructor.
|
2067
|
+
/// \param rhs float to convert
|
2068
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2069
|
+
explicit half(float rhs) : data_(static_cast<detail::uint16>(detail::float2half<round_style>(rhs))) {}
|
2070
|
+
|
2071
|
+
/// Conversion to single-precision.
|
2072
|
+
/// \return single precision value representing expression value
|
2073
|
+
operator float() const { return detail::half2float<float>(data_); }
|
2074
|
+
|
2075
|
+
/// Assignment operator.
|
2076
|
+
/// \param rhs single-precision value to copy from
|
2077
|
+
/// \return reference to this half
|
2078
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2079
|
+
half& operator=(float rhs) { data_ = static_cast<detail::uint16>(detail::float2half<round_style>(rhs)); return *this; }
|
2080
|
+
|
2081
|
+
/// \}
|
2082
|
+
/// \name Arithmetic updates
|
2083
|
+
/// \{
|
2084
|
+
|
2085
|
+
/// Arithmetic assignment.
|
2086
|
+
/// \tparam T type of concrete half expression
|
2087
|
+
/// \param rhs half expression to add
|
2088
|
+
/// \return reference to this half
|
2089
|
+
/// \exception FE_... according to operator+(half,half)
|
2090
|
+
half& operator+=(half rhs) { return *this = *this + rhs; }
|
2091
|
+
|
2092
|
+
/// Arithmetic assignment.
|
2093
|
+
/// \tparam T type of concrete half expression
|
2094
|
+
/// \param rhs half expression to subtract
|
2095
|
+
/// \return reference to this half
|
2096
|
+
/// \exception FE_... according to operator-(half,half)
|
2097
|
+
half& operator-=(half rhs) { return *this = *this - rhs; }
|
2098
|
+
|
2099
|
+
/// Arithmetic assignment.
|
2100
|
+
/// \tparam T type of concrete half expression
|
2101
|
+
/// \param rhs half expression to multiply with
|
2102
|
+
/// \return reference to this half
|
2103
|
+
/// \exception FE_... according to operator*(half,half)
|
2104
|
+
half& operator*=(half rhs) { return *this = *this * rhs; }
|
2105
|
+
|
2106
|
+
/// Arithmetic assignment.
|
2107
|
+
/// \tparam T type of concrete half expression
|
2108
|
+
/// \param rhs half expression to divide by
|
2109
|
+
/// \return reference to this half
|
2110
|
+
/// \exception FE_... according to operator/(half,half)
|
2111
|
+
half& operator/=(half rhs) { return *this = *this / rhs; }
|
2112
|
+
|
2113
|
+
/// Arithmetic assignment.
|
2114
|
+
/// \param rhs single-precision value to add
|
2115
|
+
/// \return reference to this half
|
2116
|
+
/// \exception FE_... according to operator=()
|
2117
|
+
half& operator+=(float rhs) { return *this = *this + rhs; }
|
2118
|
+
|
2119
|
+
/// Arithmetic assignment.
|
2120
|
+
/// \param rhs single-precision value to subtract
|
2121
|
+
/// \return reference to this half
|
2122
|
+
/// \exception FE_... according to operator=()
|
2123
|
+
half& operator-=(float rhs) { return *this = *this - rhs; }
|
2124
|
+
|
2125
|
+
/// Arithmetic assignment.
|
2126
|
+
/// \param rhs single-precision value to multiply with
|
2127
|
+
/// \return reference to this half
|
2128
|
+
/// \exception FE_... according to operator=()
|
2129
|
+
half& operator*=(float rhs) { return *this = *this * rhs; }
|
2130
|
+
|
2131
|
+
/// Arithmetic assignment.
|
2132
|
+
/// \param rhs single-precision value to divide by
|
2133
|
+
/// \return reference to this half
|
2134
|
+
/// \exception FE_... according to operator=()
|
2135
|
+
half& operator/=(float rhs) { return *this = *this / rhs; }
|
2136
|
+
|
2137
|
+
/// \}
|
2138
|
+
/// \name Increment and decrement
|
2139
|
+
/// \{
|
2140
|
+
|
2141
|
+
/// Prefix increment.
|
2142
|
+
/// \return incremented half value
|
2143
|
+
/// \exception FE_... according to operator+(half,half)
|
2144
|
+
half& operator++() { return *this = *this + half(detail::binary, 0x3C00); }
|
2145
|
+
|
2146
|
+
/// Prefix decrement.
|
2147
|
+
/// \return decremented half value
|
2148
|
+
/// \exception FE_... according to operator-(half,half)
|
2149
|
+
half& operator--() { return *this = *this + half(detail::binary, 0xBC00); }
|
2150
|
+
|
2151
|
+
/// Postfix increment.
|
2152
|
+
/// \return non-incremented half value
|
2153
|
+
/// \exception FE_... according to operator+(half,half)
|
2154
|
+
half operator++(int) { half out(*this); ++*this; return out; }
|
2155
|
+
|
2156
|
+
/// Postfix decrement.
|
2157
|
+
/// \return non-decremented half value
|
2158
|
+
/// \exception FE_... according to operator-(half,half)
|
2159
|
+
half operator--(int) { half out(*this); --*this; return out; }
|
2160
|
+
/// \}
|
2161
|
+
|
2162
|
+
private:
|
2163
|
+
/// Rounding mode to use
|
2164
|
+
static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE);
|
2165
|
+
|
2166
|
+
/// Constructor.
|
2167
|
+
/// \param bits binary representation to set half to
|
2168
|
+
HALF_CONSTEXPR half(detail::binary_t, unsigned int bits) HALF_NOEXCEPT : data_(static_cast<detail::uint16>(bits)) {}
|
2169
|
+
|
2170
|
+
/// Internal binary representation
|
2171
|
+
detail::uint16 data_;
|
2172
|
+
|
2173
|
+
#ifndef HALF_DOXYGEN_ONLY
|
2174
|
+
friend HALF_CONSTEXPR_NOERR bool operator==(half, half);
|
2175
|
+
friend HALF_CONSTEXPR_NOERR bool operator!=(half, half);
|
2176
|
+
friend HALF_CONSTEXPR_NOERR bool operator<(half, half);
|
2177
|
+
friend HALF_CONSTEXPR_NOERR bool operator>(half, half);
|
2178
|
+
friend HALF_CONSTEXPR_NOERR bool operator<=(half, half);
|
2179
|
+
friend HALF_CONSTEXPR_NOERR bool operator>=(half, half);
|
2180
|
+
friend HALF_CONSTEXPR half operator-(half);
|
2181
|
+
friend half operator+(half, half);
|
2182
|
+
friend half operator-(half, half);
|
2183
|
+
friend half operator*(half, half);
|
2184
|
+
friend half operator/(half, half);
|
2185
|
+
template<typename charT,typename traits> friend std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits>&, half);
|
2186
|
+
template<typename charT,typename traits> friend std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits>&, half&);
|
2187
|
+
friend HALF_CONSTEXPR half fabs(half);
|
2188
|
+
friend half fmod(half, half);
|
2189
|
+
friend half remainder(half, half);
|
2190
|
+
friend half remquo(half, half, int*);
|
2191
|
+
friend half fma(half, half, half);
|
2192
|
+
friend HALF_CONSTEXPR_NOERR half fmax(half, half);
|
2193
|
+
friend HALF_CONSTEXPR_NOERR half fmin(half, half);
|
2194
|
+
friend half fdim(half, half);
|
2195
|
+
friend half nanh(const char*);
|
2196
|
+
friend half exp(half);
|
2197
|
+
friend half exp2(half);
|
2198
|
+
friend half expm1(half);
|
2199
|
+
friend half log(half);
|
2200
|
+
friend half log10(half);
|
2201
|
+
friend half log2(half);
|
2202
|
+
friend half log1p(half);
|
2203
|
+
friend half sqrt(half);
|
2204
|
+
friend half cbrt(half);
|
2205
|
+
friend half hypot(half, half);
|
2206
|
+
friend half hypot(half, half, half);
|
2207
|
+
friend half pow(half, half);
|
2208
|
+
friend void sincos(half, half*, half*);
|
2209
|
+
friend half sin(half);
|
2210
|
+
friend half cos(half);
|
2211
|
+
friend half tan(half);
|
2212
|
+
friend half asin(half);
|
2213
|
+
friend half acos(half);
|
2214
|
+
friend half atan(half);
|
2215
|
+
friend half atan2(half, half);
|
2216
|
+
friend half sinh(half);
|
2217
|
+
friend half cosh(half);
|
2218
|
+
friend half tanh(half);
|
2219
|
+
friend half asinh(half);
|
2220
|
+
friend half acosh(half);
|
2221
|
+
friend half atanh(half);
|
2222
|
+
friend half erf(half);
|
2223
|
+
friend half erfc(half);
|
2224
|
+
friend half lgamma(half);
|
2225
|
+
friend half tgamma(half);
|
2226
|
+
friend half ceil(half);
|
2227
|
+
friend half floor(half);
|
2228
|
+
friend half trunc(half);
|
2229
|
+
friend half round(half);
|
2230
|
+
friend long lround(half);
|
2231
|
+
friend half rint(half);
|
2232
|
+
friend long lrint(half);
|
2233
|
+
friend half nearbyint(half);
|
2234
|
+
#ifdef HALF_ENABLE_CPP11_LONG_LONG
|
2235
|
+
friend long long llround(half);
|
2236
|
+
friend long long llrint(half);
|
2237
|
+
#endif
|
2238
|
+
friend half frexp(half, int*);
|
2239
|
+
friend half scalbln(half, long);
|
2240
|
+
friend half modf(half, half*);
|
2241
|
+
friend int ilogb(half);
|
2242
|
+
friend half logb(half);
|
2243
|
+
friend half nextafter(half, half);
|
2244
|
+
friend half nexttoward(half, long double);
|
2245
|
+
friend HALF_CONSTEXPR half copysign(half, half);
|
2246
|
+
friend HALF_CONSTEXPR int fpclassify(half);
|
2247
|
+
friend HALF_CONSTEXPR bool isfinite(half);
|
2248
|
+
friend HALF_CONSTEXPR bool isinf(half);
|
2249
|
+
friend HALF_CONSTEXPR bool isnan(half);
|
2250
|
+
friend HALF_CONSTEXPR bool isnormal(half);
|
2251
|
+
friend HALF_CONSTEXPR bool signbit(half);
|
2252
|
+
friend HALF_CONSTEXPR bool isgreater(half, half);
|
2253
|
+
friend HALF_CONSTEXPR bool isgreaterequal(half, half);
|
2254
|
+
friend HALF_CONSTEXPR bool isless(half, half);
|
2255
|
+
friend HALF_CONSTEXPR bool islessequal(half, half);
|
2256
|
+
friend HALF_CONSTEXPR bool islessgreater(half, half);
|
2257
|
+
template<typename,typename,std::float_round_style> friend struct detail::half_caster;
|
2258
|
+
friend class std::numeric_limits<half>;
|
2259
|
+
#if HALF_ENABLE_CPP11_HASH
|
2260
|
+
friend struct std::hash<half>;
|
2261
|
+
#endif
|
2262
|
+
#if HALF_ENABLE_CPP11_USER_LITERALS
|
2263
|
+
friend half literal::operator "" _h(long double);
|
2264
|
+
#endif
|
2265
|
+
#endif
|
2266
|
+
};
|
2267
|
+
|
2268
|
+
#if HALF_ENABLE_CPP11_USER_LITERALS
|
2269
|
+
namespace literal
|
2270
|
+
{
|
2271
|
+
/// Half literal.
|
2272
|
+
/// While this returns a properly rounded half-precision value, half literals can unfortunately not be constant
|
2273
|
+
/// expressions due to rather involved conversions. So don't expect this to be a literal literal without involving
|
2274
|
+
/// conversion operations at runtime. It is a convenience feature, not a performance optimization.
|
2275
|
+
/// \param value literal value
|
2276
|
+
/// \return half with of given value (possibly rounded)
|
2277
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2278
|
+
inline half operator "" _h(long double value) { return half(detail::binary, detail::float2half<half::round_style>(value)); }
|
2279
|
+
}
|
2280
|
+
#endif
|
2281
|
+
|
2282
|
+
namespace detail
|
2283
|
+
{
|
2284
|
+
/// Helper class for half casts.
|
2285
|
+
/// This class template has to be specialized for all valid cast arguments to define an appropriate static
|
2286
|
+
/// `cast` member function and a corresponding `type` member denoting its return type.
|
2287
|
+
/// \tparam T destination type
|
2288
|
+
/// \tparam U source type
|
2289
|
+
/// \tparam R rounding mode to use
|
2290
|
+
template<typename T,typename U,std::float_round_style R=(std::float_round_style)(HALF_ROUND_STYLE)> struct half_caster {};
|
2291
|
+
template<typename U,std::float_round_style R> struct half_caster<half,U,R>
|
2292
|
+
{
|
2293
|
+
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
|
2294
|
+
static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type unsupported");
|
2295
|
+
#endif
|
2296
|
+
|
2297
|
+
static half cast(U arg) { return cast_impl(arg, is_float<U>()); };
|
2298
|
+
|
2299
|
+
private:
|
2300
|
+
static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(arg)); }
|
2301
|
+
static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); }
|
2302
|
+
};
|
2303
|
+
template<typename T,std::float_round_style R> struct half_caster<T,half,R>
|
2304
|
+
{
|
2305
|
+
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
|
2306
|
+
static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");
|
2307
|
+
#endif
|
2308
|
+
|
2309
|
+
static T cast(half arg) { return cast_impl(arg, is_float<T>()); }
|
2310
|
+
|
2311
|
+
private:
|
2312
|
+
static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); }
|
2313
|
+
static T cast_impl(half arg, false_type) { return half2int<R,true,true,T>(arg.data_); }
|
2314
|
+
};
|
2315
|
+
template<std::float_round_style R> struct half_caster<half,half,R>
|
2316
|
+
{
|
2317
|
+
static half cast(half arg) { return arg; }
|
2318
|
+
};
|
2319
|
+
}
|
2320
|
+
}
|
2321
|
+
|
2322
|
+
/// Extensions to the C++ standard library.
|
2323
|
+
namespace std
|
2324
|
+
{
|
2325
|
+
/// Numeric limits for half-precision floats.
|
2326
|
+
/// **See also:** Documentation for [std::numeric_limits](https://en.cppreference.com/w/cpp/types/numeric_limits)
|
2327
|
+
template<> class numeric_limits<half_float::half>
|
2328
|
+
{
|
2329
|
+
public:
|
2330
|
+
/// Is template specialization.
|
2331
|
+
static HALF_CONSTEXPR_CONST bool is_specialized = true;
|
2332
|
+
|
2333
|
+
/// Supports signed values.
|
2334
|
+
static HALF_CONSTEXPR_CONST bool is_signed = true;
|
2335
|
+
|
2336
|
+
/// Is not an integer type.
|
2337
|
+
static HALF_CONSTEXPR_CONST bool is_integer = false;
|
2338
|
+
|
2339
|
+
/// Is not exact.
|
2340
|
+
static HALF_CONSTEXPR_CONST bool is_exact = false;
|
2341
|
+
|
2342
|
+
/// Doesn't provide modulo arithmetic.
|
2343
|
+
static HALF_CONSTEXPR_CONST bool is_modulo = false;
|
2344
|
+
|
2345
|
+
/// Has a finite set of values.
|
2346
|
+
static HALF_CONSTEXPR_CONST bool is_bounded = true;
|
2347
|
+
|
2348
|
+
/// IEEE conformant.
|
2349
|
+
static HALF_CONSTEXPR_CONST bool is_iec559 = true;
|
2350
|
+
|
2351
|
+
/// Supports infinity.
|
2352
|
+
static HALF_CONSTEXPR_CONST bool has_infinity = true;
|
2353
|
+
|
2354
|
+
/// Supports quiet NaNs.
|
2355
|
+
static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;
|
2356
|
+
|
2357
|
+
/// Supports signaling NaNs.
|
2358
|
+
static HALF_CONSTEXPR_CONST bool has_signaling_NaN = true;
|
2359
|
+
|
2360
|
+
/// Supports subnormal values.
|
2361
|
+
static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;
|
2362
|
+
|
2363
|
+
/// Supports no denormalization detection.
|
2364
|
+
static HALF_CONSTEXPR_CONST bool has_denorm_loss = false;
|
2365
|
+
|
2366
|
+
#if HALF_ERRHANDLING_THROWS
|
2367
|
+
static HALF_CONSTEXPR_CONST bool traps = true;
|
2368
|
+
#else
|
2369
|
+
/// Traps only if [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID) is acitvated.
|
2370
|
+
static HALF_CONSTEXPR_CONST bool traps = false;
|
2371
|
+
#endif
|
2372
|
+
|
2373
|
+
/// Does not support no pre-rounding underflow detection.
|
2374
|
+
static HALF_CONSTEXPR_CONST bool tinyness_before = false;
|
2375
|
+
|
2376
|
+
/// Rounding mode.
|
2377
|
+
static HALF_CONSTEXPR_CONST float_round_style round_style = half_float::half::round_style;
|
2378
|
+
|
2379
|
+
/// Significant digits.
|
2380
|
+
static HALF_CONSTEXPR_CONST int digits = 11;
|
2381
|
+
|
2382
|
+
/// Significant decimal digits.
|
2383
|
+
static HALF_CONSTEXPR_CONST int digits10 = 3;
|
2384
|
+
|
2385
|
+
/// Required decimal digits to represent all possible values.
|
2386
|
+
static HALF_CONSTEXPR_CONST int max_digits10 = 5;
|
2387
|
+
|
2388
|
+
/// Number base.
|
2389
|
+
static HALF_CONSTEXPR_CONST int radix = 2;
|
2390
|
+
|
2391
|
+
/// One more than smallest exponent.
|
2392
|
+
static HALF_CONSTEXPR_CONST int min_exponent = -13;
|
2393
|
+
|
2394
|
+
/// Smallest normalized representable power of 10.
|
2395
|
+
static HALF_CONSTEXPR_CONST int min_exponent10 = -4;
|
2396
|
+
|
2397
|
+
/// One more than largest exponent
|
2398
|
+
static HALF_CONSTEXPR_CONST int max_exponent = 16;
|
2399
|
+
|
2400
|
+
/// Largest finitely representable power of 10.
|
2401
|
+
static HALF_CONSTEXPR_CONST int max_exponent10 = 4;
|
2402
|
+
|
2403
|
+
/// Smallest positive normal value.
|
2404
|
+
static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); }
|
2405
|
+
|
2406
|
+
/// Smallest finite value.
|
2407
|
+
static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); }
|
2408
|
+
|
2409
|
+
/// Largest finite value.
|
2410
|
+
static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); }
|
2411
|
+
|
2412
|
+
/// Difference between 1 and next representable value.
|
2413
|
+
static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); }
|
2414
|
+
|
2415
|
+
/// Maximum rounding error in ULP (units in the last place).
|
2416
|
+
static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW
|
2417
|
+
{ return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); }
|
2418
|
+
|
2419
|
+
/// Positive infinity.
|
2420
|
+
static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); }
|
2421
|
+
|
2422
|
+
/// Quiet NaN.
|
2423
|
+
static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); }
|
2424
|
+
|
2425
|
+
/// Signaling NaN.
|
2426
|
+
static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); }
|
2427
|
+
|
2428
|
+
/// Smallest positive subnormal value.
|
2429
|
+
static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); }
|
2430
|
+
};
|
2431
|
+
|
2432
|
+
#if HALF_ENABLE_CPP11_HASH
|
2433
|
+
/// Hash function for half-precision floats.
|
2434
|
+
/// This is only defined if C++11 `std::hash` is supported and enabled.
|
2435
|
+
///
|
2436
|
+
/// **See also:** Documentation for [std::hash](https://en.cppreference.com/w/cpp/utility/hash)
|
2437
|
+
template<> struct hash<half_float::half>
|
2438
|
+
{
|
2439
|
+
/// Type of function argument.
|
2440
|
+
typedef half_float::half argument_type;
|
2441
|
+
|
2442
|
+
/// Function return type.
|
2443
|
+
typedef size_t result_type;
|
2444
|
+
|
2445
|
+
/// Compute hash function.
|
2446
|
+
/// \param arg half to hash
|
2447
|
+
/// \return hash value
|
2448
|
+
result_type operator()(argument_type arg) const { return hash<half_float::detail::uint16>()(arg.data_&-static_cast<unsigned>(arg.data_!=0x8000)); }
|
2449
|
+
};
|
2450
|
+
#endif
|
2451
|
+
}
|
2452
|
+
|
2453
|
+
namespace half_float
|
2454
|
+
{
|
2455
|
+
/// \anchor compop
|
2456
|
+
/// \name Comparison operators
|
2457
|
+
/// \{
|
2458
|
+
|
2459
|
+
/// Comparison for equality.
|
2460
|
+
/// \param x first operand
|
2461
|
+
/// \param y second operand
|
2462
|
+
/// \retval true if operands equal
|
2463
|
+
/// \retval false else
|
2464
|
+
/// \exception FE_INVALID if \a x or \a y is NaN
|
2465
|
+
inline HALF_CONSTEXPR_NOERR bool operator==(half x, half y)
|
2466
|
+
{
|
2467
|
+
return !detail::compsignal(x.data_, y.data_) && (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF));
|
2468
|
+
}
|
2469
|
+
|
2470
|
+
/// Comparison for inequality.
|
2471
|
+
/// \param x first operand
|
2472
|
+
/// \param y second operand
|
2473
|
+
/// \retval true if operands not equal
|
2474
|
+
/// \retval false else
|
2475
|
+
/// \exception FE_INVALID if \a x or \a y is NaN
|
2476
|
+
inline HALF_CONSTEXPR_NOERR bool operator!=(half x, half y)
|
2477
|
+
{
|
2478
|
+
return detail::compsignal(x.data_, y.data_) || (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF));
|
2479
|
+
}
|
2480
|
+
|
2481
|
+
/// Comparison for less than.
|
2482
|
+
/// \param x first operand
|
2483
|
+
/// \param y second operand
|
2484
|
+
/// \retval true if \a x less than \a y
|
2485
|
+
/// \retval false else
|
2486
|
+
/// \exception FE_INVALID if \a x or \a y is NaN
|
2487
|
+
inline HALF_CONSTEXPR_NOERR bool operator<(half x, half y)
|
2488
|
+
{
|
2489
|
+
return !detail::compsignal(x.data_, y.data_) &&
|
2490
|
+
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
|
2491
|
+
}
|
2492
|
+
|
2493
|
+
/// Comparison for greater than.
|
2494
|
+
/// \param x first operand
|
2495
|
+
/// \param y second operand
|
2496
|
+
/// \retval true if \a x greater than \a y
|
2497
|
+
/// \retval false else
|
2498
|
+
/// \exception FE_INVALID if \a x or \a y is NaN
|
2499
|
+
inline HALF_CONSTEXPR_NOERR bool operator>(half x, half y)
|
2500
|
+
{
|
2501
|
+
return !detail::compsignal(x.data_, y.data_) &&
|
2502
|
+
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
|
2503
|
+
}
|
2504
|
+
|
2505
|
+
/// Comparison for less equal.
|
2506
|
+
/// \param x first operand
|
2507
|
+
/// \param y second operand
|
2508
|
+
/// \retval true if \a x less equal \a y
|
2509
|
+
/// \retval false else
|
2510
|
+
/// \exception FE_INVALID if \a x or \a y is NaN
|
2511
|
+
inline HALF_CONSTEXPR_NOERR bool operator<=(half x, half y)
|
2512
|
+
{
|
2513
|
+
return !detail::compsignal(x.data_, y.data_) &&
|
2514
|
+
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
|
2515
|
+
}
|
2516
|
+
|
2517
|
+
/// Comparison for greater equal.
|
2518
|
+
/// \param x first operand
|
2519
|
+
/// \param y second operand
|
2520
|
+
/// \retval true if \a x greater equal \a y
|
2521
|
+
/// \retval false else
|
2522
|
+
/// \exception FE_INVALID if \a x or \a y is NaN
|
2523
|
+
inline HALF_CONSTEXPR_NOERR bool operator>=(half x, half y)
|
2524
|
+
{
|
2525
|
+
return !detail::compsignal(x.data_, y.data_) &&
|
2526
|
+
((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15));
|
2527
|
+
}
|
2528
|
+
|
2529
|
+
/// \}
|
2530
|
+
/// \anchor arithmetics
|
2531
|
+
/// \name Arithmetic operators
|
2532
|
+
/// \{
|
2533
|
+
|
2534
|
+
/// Identity.
|
2535
|
+
/// \param arg operand
|
2536
|
+
/// \return unchanged operand
|
2537
|
+
inline HALF_CONSTEXPR half operator+(half arg) { return arg; }
|
2538
|
+
|
2539
|
+
/// Negation.
|
2540
|
+
/// \param arg operand
|
2541
|
+
/// \return negated operand
|
2542
|
+
inline HALF_CONSTEXPR half operator-(half arg) { return half(detail::binary, arg.data_^0x8000); }
|
2543
|
+
|
2544
|
+
/// Addition.
|
2545
|
+
/// This operation is exact to rounding for all rounding modes.
|
2546
|
+
/// \param x left operand
|
2547
|
+
/// \param y right operand
|
2548
|
+
/// \return sum of half expressions
|
2549
|
+
/// \exception FE_INVALID if \a x and \a y are infinities with different signs or signaling NaNs
|
2550
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2551
|
+
inline half operator+(half x, half y)
|
2552
|
+
{
|
2553
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2554
|
+
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)+detail::half2float<detail::internal_t>(y.data_)));
|
2555
|
+
#else
|
2556
|
+
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF;
|
2557
|
+
bool sub = ((x.data_^y.data_)&0x8000) != 0;
|
2558
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
2559
|
+
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) : (absy!=0x7C00) ? x.data_ :
|
2560
|
+
(sub && absx==0x7C00) ? detail::invalid() : y.data_);
|
2561
|
+
if(!absx)
|
2562
|
+
return absy ? y : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (x.data_|y.data_) : (x.data_&y.data_));
|
2563
|
+
if(!absy)
|
2564
|
+
return x;
|
2565
|
+
unsigned int sign = ((sub && absy>absx) ? y.data_ : x.data_) & 0x8000;
|
2566
|
+
if(absy > absx)
|
2567
|
+
std::swap(absx, absy);
|
2568
|
+
int exp = (absx>>10) + (absx<=0x3FF), d = exp - (absy>>10) - (absy<=0x3FF), mx = ((absx&0x3FF)|((absx>0x3FF)<<10)) << 3, my;
|
2569
|
+
if(d < 13)
|
2570
|
+
{
|
2571
|
+
my = ((absy&0x3FF)|((absy>0x3FF)<<10)) << 3;
|
2572
|
+
my = (my>>d) | ((my&((1<<d)-1))!=0);
|
2573
|
+
}
|
2574
|
+
else
|
2575
|
+
my = 1;
|
2576
|
+
if(sub)
|
2577
|
+
{
|
2578
|
+
if(!(mx-=my))
|
2579
|
+
return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15);
|
2580
|
+
for(; mx<0x2000 && exp>1; mx<<=1,--exp) ;
|
2581
|
+
}
|
2582
|
+
else
|
2583
|
+
{
|
2584
|
+
mx += my;
|
2585
|
+
int i = mx >> 14;
|
2586
|
+
if((exp+=i) > 30)
|
2587
|
+
return half(detail::binary, detail::overflow<half::round_style>(sign));
|
2588
|
+
mx = (mx>>i) | (mx&i);
|
2589
|
+
}
|
2590
|
+
return half(detail::binary, detail::rounded<half::round_style,false>(sign+((exp-1)<<10)+(mx>>3), (mx>>2)&1, (mx&0x3)!=0));
|
2591
|
+
#endif
|
2592
|
+
}
|
2593
|
+
|
2594
|
+
/// Subtraction.
|
2595
|
+
/// This operation is exact to rounding for all rounding modes.
|
2596
|
+
/// \param x left operand
|
2597
|
+
/// \param y right operand
|
2598
|
+
/// \return difference of half expressions
|
2599
|
+
/// \exception FE_INVALID if \a x and \a y are infinities with equal signs or signaling NaNs
|
2600
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2601
|
+
inline half operator-(half x, half y)
|
2602
|
+
{
|
2603
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2604
|
+
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)-detail::half2float<detail::internal_t>(y.data_)));
|
2605
|
+
#else
|
2606
|
+
return x + -y;
|
2607
|
+
#endif
|
2608
|
+
}
|
2609
|
+
|
2610
|
+
/// Multiplication.
|
2611
|
+
/// This operation is exact to rounding for all rounding modes.
|
2612
|
+
/// \param x left operand
|
2613
|
+
/// \param y right operand
|
2614
|
+
/// \return product of half expressions
|
2615
|
+
/// \exception FE_INVALID if multiplying 0 with infinity or if \a x or \a y is signaling NaN
|
2616
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2617
|
+
inline half operator*(half x, half y)
|
2618
|
+
{
|
2619
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2620
|
+
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)*detail::half2float<detail::internal_t>(y.data_)));
|
2621
|
+
#else
|
2622
|
+
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -16;
|
2623
|
+
unsigned int sign = (x.data_^y.data_) & 0x8000;
|
2624
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
2625
|
+
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
|
2626
|
+
((absx==0x7C00 && !absy)||(absy==0x7C00 && !absx)) ? detail::invalid() : (sign|0x7C00));
|
2627
|
+
if(!absx || !absy)
|
2628
|
+
return half(detail::binary, sign);
|
2629
|
+
for(; absx<0x400; absx<<=1,--exp) ;
|
2630
|
+
for(; absy<0x400; absy<<=1,--exp) ;
|
2631
|
+
detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400);
|
2632
|
+
int i = m >> 21, s = m & i;
|
2633
|
+
exp += (absx>>10) + (absy>>10) + i;
|
2634
|
+
if(exp > 29)
|
2635
|
+
return half(detail::binary, detail::overflow<half::round_style>(sign));
|
2636
|
+
else if(exp < -11)
|
2637
|
+
return half(detail::binary, detail::underflow<half::round_style>(sign));
|
2638
|
+
return half(detail::binary, detail::fixed2half<half::round_style,20,false,false,false>(m>>i, exp, sign, s));
|
2639
|
+
#endif
|
2640
|
+
}
|
2641
|
+
|
2642
|
+
/// Division.
|
2643
|
+
/// This operation is exact to rounding for all rounding modes.
|
2644
|
+
/// \param x left operand
|
2645
|
+
/// \param y right operand
|
2646
|
+
/// \return quotient of half expressions
|
2647
|
+
/// \exception FE_INVALID if dividing 0s or infinities with each other or if \a x or \a y is signaling NaN
|
2648
|
+
/// \exception FE_DIVBYZERO if dividing finite value by 0
|
2649
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2650
|
+
inline half operator/(half x, half y)
|
2651
|
+
{
|
2652
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2653
|
+
return half(detail::binary, detail::float2half<half::round_style>(detail::half2float<detail::internal_t>(x.data_)/detail::half2float<detail::internal_t>(y.data_)));
|
2654
|
+
#else
|
2655
|
+
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = 14;
|
2656
|
+
unsigned int sign = (x.data_^y.data_) & 0x8000;
|
2657
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
2658
|
+
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
|
2659
|
+
(absx==absy) ? detail::invalid() : (sign|((absx==0x7C00) ? 0x7C00 : 0)));
|
2660
|
+
if(!absx)
|
2661
|
+
return half(detail::binary, absy ? sign : detail::invalid());
|
2662
|
+
if(!absy)
|
2663
|
+
return half(detail::binary, detail::pole(sign));
|
2664
|
+
for(; absx<0x400; absx<<=1,--exp) ;
|
2665
|
+
for(; absy<0x400; absy<<=1,++exp) ;
|
2666
|
+
detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
|
2667
|
+
int i = mx < my;
|
2668
|
+
exp += (absx>>10) - (absy>>10) - i;
|
2669
|
+
if(exp > 29)
|
2670
|
+
return half(detail::binary, detail::overflow<half::round_style>(sign));
|
2671
|
+
else if(exp < -11)
|
2672
|
+
return half(detail::binary, detail::underflow<half::round_style>(sign));
|
2673
|
+
mx <<= 12 + i;
|
2674
|
+
my <<= 1;
|
2675
|
+
return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,false>(mx/my, exp, sign, mx%my!=0));
|
2676
|
+
#endif
|
2677
|
+
}
|
2678
|
+
|
2679
|
+
/// \}
|
2680
|
+
/// \anchor streaming
|
2681
|
+
/// \name Input and output
|
2682
|
+
/// \{
|
2683
|
+
|
2684
|
+
/// Output operator.
|
2685
|
+
/// This uses the built-in functionality for streaming out floating-point numbers.
|
2686
|
+
/// \param out output stream to write into
|
2687
|
+
/// \param arg half expression to write
|
2688
|
+
/// \return reference to output stream
|
2689
|
+
template<typename charT,typename traits> std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits> &out, half arg)
|
2690
|
+
{
|
2691
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2692
|
+
return out << detail::half2float<detail::internal_t>(arg.data_);
|
2693
|
+
#else
|
2694
|
+
return out << detail::half2float<float>(arg.data_);
|
2695
|
+
#endif
|
2696
|
+
}
|
2697
|
+
|
2698
|
+
/// Input operator.
|
2699
|
+
/// This uses the built-in functionality for streaming in floating-point numbers, specifically double precision floating
|
2700
|
+
/// point numbers (unless overridden with [HALF_ARITHMETIC_TYPE](\ref HALF_ARITHMETIC_TYPE)). So the input string is first
|
2701
|
+
/// rounded to double precision using the underlying platform's current floating-point rounding mode before being rounded
|
2702
|
+
/// to half-precision using the library's half-precision rounding mode.
|
2703
|
+
/// \param in input stream to read from
|
2704
|
+
/// \param arg half to read into
|
2705
|
+
/// \return reference to input stream
|
2706
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2707
|
+
template<typename charT,typename traits> std::basic_istream<charT,traits>& operator>>(std::basic_istream<charT,traits> &in, half &arg)
|
2708
|
+
{
|
2709
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2710
|
+
detail::internal_t f;
|
2711
|
+
#else
|
2712
|
+
double f;
|
2713
|
+
#endif
|
2714
|
+
if(in >> f)
|
2715
|
+
arg.data_ = detail::float2half<half::round_style>(f);
|
2716
|
+
return in;
|
2717
|
+
}
|
2718
|
+
|
2719
|
+
/// \}
|
2720
|
+
/// \anchor basic
|
2721
|
+
/// \name Basic mathematical operations
|
2722
|
+
/// \{
|
2723
|
+
|
2724
|
+
/// Absolute value.
|
2725
|
+
/// **See also:** Documentation for [std::fabs](https://en.cppreference.com/w/cpp/numeric/math/fabs).
|
2726
|
+
/// \param arg operand
|
2727
|
+
/// \return absolute value of \a arg
|
2728
|
+
inline HALF_CONSTEXPR half fabs(half arg) { return half(detail::binary, arg.data_&0x7FFF); }
|
2729
|
+
|
2730
|
+
/// Absolute value.
|
2731
|
+
/// **See also:** Documentation for [std::abs](https://en.cppreference.com/w/cpp/numeric/math/fabs).
|
2732
|
+
/// \param arg operand
|
2733
|
+
/// \return absolute value of \a arg
|
2734
|
+
inline HALF_CONSTEXPR half abs(half arg) { return fabs(arg); }
|
2735
|
+
|
2736
|
+
/// Remainder of division.
|
2737
|
+
/// **See also:** Documentation for [std::fmod](https://en.cppreference.com/w/cpp/numeric/math/fmod).
|
2738
|
+
/// \param x first operand
|
2739
|
+
/// \param y second operand
|
2740
|
+
/// \return remainder of floating-point division.
|
2741
|
+
/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
|
2742
|
+
inline half fmod(half x, half y)
|
2743
|
+
{
|
2744
|
+
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000;
|
2745
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
2746
|
+
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
|
2747
|
+
(absx==0x7C00) ? detail::invalid() : x.data_);
|
2748
|
+
if(!absy)
|
2749
|
+
return half(detail::binary, detail::invalid());
|
2750
|
+
if(!absx)
|
2751
|
+
return x;
|
2752
|
+
if(absx == absy)
|
2753
|
+
return half(detail::binary, sign);
|
2754
|
+
return half(detail::binary, sign|detail::mod<false,false>(absx, absy));
|
2755
|
+
}
|
2756
|
+
|
2757
|
+
/// Remainder of division.
|
2758
|
+
/// **See also:** Documentation for [std::remainder](https://en.cppreference.com/w/cpp/numeric/math/remainder).
|
2759
|
+
/// \param x first operand
|
2760
|
+
/// \param y second operand
|
2761
|
+
/// \return remainder of floating-point division.
|
2762
|
+
/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
|
2763
|
+
inline half remainder(half x, half y)
|
2764
|
+
{
|
2765
|
+
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, sign = x.data_ & 0x8000;
|
2766
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
2767
|
+
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
|
2768
|
+
(absx==0x7C00) ? detail::invalid() : x.data_);
|
2769
|
+
if(!absy)
|
2770
|
+
return half(detail::binary, detail::invalid());
|
2771
|
+
if(absx == absy)
|
2772
|
+
return half(detail::binary, sign);
|
2773
|
+
return half(detail::binary, sign^detail::mod<false,true>(absx, absy));
|
2774
|
+
}
|
2775
|
+
|
2776
|
+
/// Remainder of division.
|
2777
|
+
/// **See also:** Documentation for [std::remquo](https://en.cppreference.com/w/cpp/numeric/math/remquo).
|
2778
|
+
/// \param x first operand
|
2779
|
+
/// \param y second operand
|
2780
|
+
/// \param quo address to store some bits of quotient at
|
2781
|
+
/// \return remainder of floating-point division.
|
2782
|
+
/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling NaN
|
2783
|
+
inline half remquo(half x, half y, int *quo)
|
2784
|
+
{
|
2785
|
+
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, value = x.data_ & 0x8000;
|
2786
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
2787
|
+
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
|
2788
|
+
(absx==0x7C00) ? detail::invalid() : (*quo = 0, x.data_));
|
2789
|
+
if(!absy)
|
2790
|
+
return half(detail::binary, detail::invalid());
|
2791
|
+
bool qsign = ((value^y.data_)&0x8000) != 0;
|
2792
|
+
int q = 1;
|
2793
|
+
if(absx != absy)
|
2794
|
+
value ^= detail::mod<true, true>(absx, absy, &q);
|
2795
|
+
return *quo = qsign ? -q : q, half(detail::binary, value);
|
2796
|
+
}
|
2797
|
+
|
2798
|
+
/// Fused multiply add.
|
2799
|
+
/// This function is exact to rounding for all rounding modes.
|
2800
|
+
///
|
2801
|
+
/// **See also:** Documentation for [std::fma](https://en.cppreference.com/w/cpp/numeric/math/fma).
|
2802
|
+
/// \param x first operand
|
2803
|
+
/// \param y second operand
|
2804
|
+
/// \param z third operand
|
2805
|
+
/// \return ( \a x * \a y ) + \a z rounded as one operation.
|
2806
|
+
/// \exception FE_INVALID according to operator*() and operator+() unless any argument is a quiet NaN and no argument is a signaling NaN
|
2807
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding the final addition
|
2808
|
+
inline half fma(half x, half y, half z)
|
2809
|
+
{
|
2810
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2811
|
+
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_);
|
2812
|
+
#if HALF_ENABLE_CPP11_CMATH && FP_FAST_FMA
|
2813
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::fma(fx, fy, fz)));
|
2814
|
+
#else
|
2815
|
+
return half(detail::binary, detail::float2half<half::round_style>(fx*fy+fz));
|
2816
|
+
#endif
|
2817
|
+
#else
|
2818
|
+
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, exp = -15;
|
2819
|
+
unsigned int sign = (x.data_^y.data_) & 0x8000;
|
2820
|
+
bool sub = ((sign^z.data_)&0x8000) != 0;
|
2821
|
+
if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
|
2822
|
+
return (absx>0x7C00 || absy>0x7C00 || absz>0x7C00) ? half(detail::binary, detail::signal(x.data_, y.data_, z.data_)) :
|
2823
|
+
(absx==0x7C00) ? half(detail::binary, (!absy || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) :
|
2824
|
+
(absy==0x7C00) ? half(detail::binary, (!absx || (sub && absz==0x7C00)) ? detail::invalid() : (sign|0x7C00)) : z;
|
2825
|
+
if(!absx || !absy)
|
2826
|
+
return absz ? z : half(detail::binary, (half::round_style==std::round_toward_neg_infinity) ? (z.data_|sign) : (z.data_&sign));
|
2827
|
+
for(; absx<0x400; absx<<=1,--exp) ;
|
2828
|
+
for(; absy<0x400; absy<<=1,--exp) ;
|
2829
|
+
detail::uint32 m = static_cast<detail::uint32>((absx&0x3FF)|0x400) * static_cast<detail::uint32>((absy&0x3FF)|0x400);
|
2830
|
+
int i = m >> 21;
|
2831
|
+
exp += (absx>>10) + (absy>>10) + i;
|
2832
|
+
m <<= 3 - i;
|
2833
|
+
if(absz)
|
2834
|
+
{
|
2835
|
+
int expz = 0;
|
2836
|
+
for(; absz<0x400; absz<<=1,--expz) ;
|
2837
|
+
expz += absz >> 10;
|
2838
|
+
detail::uint32 mz = static_cast<detail::uint32>((absz&0x3FF)|0x400) << 13;
|
2839
|
+
if(expz > exp || (expz == exp && mz > m))
|
2840
|
+
{
|
2841
|
+
std::swap(m, mz);
|
2842
|
+
std::swap(exp, expz);
|
2843
|
+
if(sub)
|
2844
|
+
sign = z.data_ & 0x8000;
|
2845
|
+
}
|
2846
|
+
int d = exp - expz;
|
2847
|
+
mz = (d<23) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
|
2848
|
+
if(sub)
|
2849
|
+
{
|
2850
|
+
m = m - mz;
|
2851
|
+
if(!m)
|
2852
|
+
return half(detail::binary, static_cast<unsigned>(half::round_style==std::round_toward_neg_infinity)<<15);
|
2853
|
+
for(; m<0x800000; m<<=1,--exp) ;
|
2854
|
+
}
|
2855
|
+
else
|
2856
|
+
{
|
2857
|
+
m += mz;
|
2858
|
+
i = m >> 24;
|
2859
|
+
m = (m>>i) | (m&i);
|
2860
|
+
exp += i;
|
2861
|
+
}
|
2862
|
+
}
|
2863
|
+
if(exp > 30)
|
2864
|
+
return half(detail::binary, detail::overflow<half::round_style>(sign));
|
2865
|
+
else if(exp < -10)
|
2866
|
+
return half(detail::binary, detail::underflow<half::round_style>(sign));
|
2867
|
+
return half(detail::binary, detail::fixed2half<half::round_style,23,false,false,false>(m, exp-1, sign));
|
2868
|
+
#endif
|
2869
|
+
}
|
2870
|
+
|
2871
|
+
/// Maximum of half expressions.
|
2872
|
+
/// **See also:** Documentation for [std::fmax](https://en.cppreference.com/w/cpp/numeric/math/fmax).
|
2873
|
+
/// \param x first operand
|
2874
|
+
/// \param y second operand
|
2875
|
+
/// \return maximum of operands, ignoring quiet NaNs
|
2876
|
+
/// \exception FE_INVALID if \a x or \a y is signaling NaN
|
2877
|
+
inline HALF_CONSTEXPR_NOERR half fmax(half x, half y)
|
2878
|
+
{
|
2879
|
+
return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) <
|
2880
|
+
(y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_));
|
2881
|
+
}
|
2882
|
+
|
2883
|
+
/// Minimum of half expressions.
|
2884
|
+
/// **See also:** Documentation for [std::fmin](https://en.cppreference.com/w/cpp/numeric/math/fmin).
|
2885
|
+
/// \param x first operand
|
2886
|
+
/// \param y second operand
|
2887
|
+
/// \return minimum of operands, ignoring quiet NaNs
|
2888
|
+
/// \exception FE_INVALID if \a x or \a y is signaling NaN
|
2889
|
+
inline HALF_CONSTEXPR_NOERR half fmin(half x, half y)
|
2890
|
+
{
|
2891
|
+
return half(detail::binary, (!isnan(y) && (isnan(x) || (x.data_^(0x8000|(0x8000-(x.data_>>15)))) >
|
2892
|
+
(y.data_^(0x8000|(0x8000-(y.data_>>15)))))) ? detail::select(y.data_, x.data_) : detail::select(x.data_, y.data_));
|
2893
|
+
}
|
2894
|
+
|
2895
|
+
/// Positive difference.
|
2896
|
+
/// This function is exact to rounding for all rounding modes.
|
2897
|
+
///
|
2898
|
+
/// **See also:** Documentation for [std::fdim](https://en.cppreference.com/w/cpp/numeric/math/fdim).
|
2899
|
+
/// \param x first operand
|
2900
|
+
/// \param y second operand
|
2901
|
+
/// \return \a x - \a y or 0 if difference negative
|
2902
|
+
/// \exception FE_... according to operator-(half,half)
|
2903
|
+
inline half fdim(half x, half y)
|
2904
|
+
{
|
2905
|
+
if(isnan(x) || isnan(y))
|
2906
|
+
return half(detail::binary, detail::signal(x.data_, y.data_));
|
2907
|
+
return (x.data_^(0x8000|(0x8000-(x.data_>>15)))) <= (y.data_^(0x8000|(0x8000-(y.data_>>15)))) ? half(detail::binary, 0) : (x-y);
|
2908
|
+
}
|
2909
|
+
|
2910
|
+
/// Get NaN value.
|
2911
|
+
/// **See also:** Documentation for [std::nan](https://en.cppreference.com/w/cpp/numeric/math/nan).
|
2912
|
+
/// \param arg string code
|
2913
|
+
/// \return quiet NaN
|
2914
|
+
inline half nanh(const char *arg)
|
2915
|
+
{
|
2916
|
+
unsigned int value = 0x7FFF;
|
2917
|
+
while(*arg)
|
2918
|
+
value ^= static_cast<unsigned>(*arg++) & 0xFF;
|
2919
|
+
return half(detail::binary, value);
|
2920
|
+
}
|
2921
|
+
|
2922
|
+
/// \}
|
2923
|
+
/// \anchor exponential
|
2924
|
+
/// \name Exponential functions
|
2925
|
+
/// \{
|
2926
|
+
|
2927
|
+
/// Exponential function.
|
2928
|
+
/// This function is exact to rounding for all rounding modes.
|
2929
|
+
///
|
2930
|
+
/// **See also:** Documentation for [std::exp](https://en.cppreference.com/w/cpp/numeric/math/exp).
|
2931
|
+
/// \param arg function argument
|
2932
|
+
/// \return e raised to \a arg
|
2933
|
+
/// \exception FE_INVALID for signaling NaN
|
2934
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2935
|
+
inline half exp(half arg)
|
2936
|
+
{
|
2937
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
2938
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::exp(detail::half2float<detail::internal_t>(arg.data_))));
|
2939
|
+
#else
|
2940
|
+
int abs = arg.data_ & 0x7FFF;
|
2941
|
+
if(!abs)
|
2942
|
+
return half(detail::binary, 0x3C00);
|
2943
|
+
if(abs >= 0x7C00)
|
2944
|
+
return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_));
|
2945
|
+
if(abs >= 0x4C80)
|
2946
|
+
return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>());
|
2947
|
+
detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29);
|
2948
|
+
int e = (abs>>10) + (abs<=0x3FF), exp;
|
2949
|
+
if(e < 14)
|
2950
|
+
{
|
2951
|
+
exp = 0;
|
2952
|
+
m >>= 14 - e;
|
2953
|
+
}
|
2954
|
+
else
|
2955
|
+
{
|
2956
|
+
exp = m >> (45-e);
|
2957
|
+
m = (m<<(e-14)) & 0x7FFFFFFF;
|
2958
|
+
}
|
2959
|
+
return half(detail::binary, detail::exp2_post<half::round_style,true>(detail::exp2(m, 26), exp, (arg.data_&0x8000)!=0));
|
2960
|
+
#endif
|
2961
|
+
}
|
2962
|
+
|
2963
|
+
/// Binary exponential.
|
2964
|
+
/// This function is exact to rounding for all rounding modes.
|
2965
|
+
///
|
2966
|
+
/// **See also:** Documentation for [std::exp2](https://en.cppreference.com/w/cpp/numeric/math/exp2).
|
2967
|
+
/// \param arg function argument
|
2968
|
+
/// \return 2 raised to \a arg
|
2969
|
+
/// \exception FE_INVALID for signaling NaN
|
2970
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
2971
|
+
inline half exp2(half arg)
|
2972
|
+
{
|
2973
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
2974
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::exp2(detail::half2float<detail::internal_t>(arg.data_))));
|
2975
|
+
#else
|
2976
|
+
int abs = arg.data_ & 0x7FFF;
|
2977
|
+
if(!abs)
|
2978
|
+
return half(detail::binary, 0x3C00);
|
2979
|
+
if(abs >= 0x7C00)
|
2980
|
+
return half(detail::binary, (abs==0x7C00) ? (0x7C00&((arg.data_>>15)-1U)) : detail::signal(arg.data_));
|
2981
|
+
if(abs >= 0x4E40)
|
2982
|
+
return half(detail::binary, (arg.data_&0x8000) ? detail::underflow<half::round_style>() : detail::overflow<half::round_style>());
|
2983
|
+
int e = (abs>>10) + (abs<=0x3FF), exp = (abs&0x3FF) + ((abs>0x3FF)<<10);
|
2984
|
+
detail::uint32 m = detail::exp2((static_cast<detail::uint32>(exp)<<(6+e))&0x7FFFFFFF, 28);
|
2985
|
+
exp >>= 25 - e;
|
2986
|
+
if(m == 0x80000000)
|
2987
|
+
{
|
2988
|
+
if(arg.data_&0x8000)
|
2989
|
+
exp = -exp;
|
2990
|
+
else if(exp > 15)
|
2991
|
+
return half(detail::binary, detail::overflow<half::round_style>());
|
2992
|
+
return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,false>(m, exp+14));
|
2993
|
+
}
|
2994
|
+
return half(detail::binary, detail::exp2_post<half::round_style,true>(m, exp, (arg.data_&0x8000)!=0));
|
2995
|
+
#endif
|
2996
|
+
}
|
2997
|
+
|
2998
|
+
/// Exponential minus one.
|
2999
|
+
/// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest`
|
3000
|
+
/// and in <1% of inputs for any other rounding mode.
|
3001
|
+
///
|
3002
|
+
/// **See also:** Documentation for [std::expm1](https://en.cppreference.com/w/cpp/numeric/math/expm1).
|
3003
|
+
/// \param arg function argument
|
3004
|
+
/// \return e raised to \a arg and subtracted by 1
|
3005
|
+
/// \exception FE_INVALID for signaling NaN
|
3006
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3007
|
+
inline half expm1(half arg)
|
3008
|
+
{
|
3009
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3010
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::expm1(detail::half2float<detail::internal_t>(arg.data_))));
|
3011
|
+
#else
|
3012
|
+
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
|
3013
|
+
if(!abs)
|
3014
|
+
return arg;
|
3015
|
+
if(abs >= 0x7C00)
|
3016
|
+
return half(detail::binary, (abs==0x7C00) ? (0x7C00+(sign>>1)) : detail::signal(arg.data_));
|
3017
|
+
if(abs >= 0x4A00)
|
3018
|
+
return half(detail::binary, (arg.data_&0x8000) ? detail::rounded<half::round_style,true>(0xBBFF, 1, 1) : detail::overflow<half::round_style>());
|
3019
|
+
detail::uint32 m = detail::multiply64(static_cast<detail::uint32>((abs&0x3FF)+((abs>0x3FF)<<10))<<21, 0xB8AA3B29);
|
3020
|
+
int e = (abs>>10) + (abs<=0x3FF), exp;
|
3021
|
+
if(e < 14)
|
3022
|
+
{
|
3023
|
+
exp = 0;
|
3024
|
+
m >>= 14 - e;
|
3025
|
+
}
|
3026
|
+
else
|
3027
|
+
{
|
3028
|
+
exp = m >> (45-e);
|
3029
|
+
m = (m<<(e-14)) & 0x7FFFFFFF;
|
3030
|
+
}
|
3031
|
+
m = detail::exp2(m);
|
3032
|
+
if(sign)
|
3033
|
+
{
|
3034
|
+
int s = 0;
|
3035
|
+
if(m > 0x80000000)
|
3036
|
+
{
|
3037
|
+
++exp;
|
3038
|
+
m = detail::divide64(0x80000000, m, s);
|
3039
|
+
}
|
3040
|
+
m = 0x80000000 - ((m>>exp)|((m&((static_cast<detail::uint32>(1)<<exp)-1))!=0)|s);
|
3041
|
+
exp = 0;
|
3042
|
+
}
|
3043
|
+
else
|
3044
|
+
m -= (exp<31) ? (0x80000000>>exp) : 1;
|
3045
|
+
for(exp+=14; m<0x80000000 && exp; m<<=1,--exp) ;
|
3046
|
+
if(exp > 29)
|
3047
|
+
return half(detail::binary, detail::overflow<half::round_style>());
|
3048
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(sign+(exp<<10)+(m>>21), (m>>20)&1, (m&0xFFFFF)!=0));
|
3049
|
+
#endif
|
3050
|
+
}
|
3051
|
+
|
3052
|
+
/// Natural logarithm.
|
3053
|
+
/// This function is exact to rounding for all rounding modes.
|
3054
|
+
///
|
3055
|
+
/// **See also:** Documentation for [std::log](https://en.cppreference.com/w/cpp/numeric/math/log).
|
3056
|
+
/// \param arg function argument
|
3057
|
+
/// \return logarithm of \a arg to base e
|
3058
|
+
/// \exception FE_INVALID for signaling NaN or negative argument
|
3059
|
+
/// \exception FE_DIVBYZERO for 0
|
3060
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3061
|
+
inline half log(half arg)
|
3062
|
+
{
|
3063
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3064
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::log(detail::half2float<detail::internal_t>(arg.data_))));
|
3065
|
+
#else
|
3066
|
+
int abs = arg.data_ & 0x7FFF, exp = -15;
|
3067
|
+
if(!abs)
|
3068
|
+
return half(detail::binary, detail::pole(0x8000));
|
3069
|
+
if(arg.data_ & 0x8000)
|
3070
|
+
return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
|
3071
|
+
if(abs >= 0x7C00)
|
3072
|
+
return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
|
3073
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
3074
|
+
exp += abs >> 10;
|
3075
|
+
return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(
|
3076
|
+
detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 17));
|
3077
|
+
#endif
|
3078
|
+
}
|
3079
|
+
|
3080
|
+
/// Common logarithm.
|
3081
|
+
/// This function is exact to rounding for all rounding modes.
|
3082
|
+
///
|
3083
|
+
/// **See also:** Documentation for [std::log10](https://en.cppreference.com/w/cpp/numeric/math/log10).
|
3084
|
+
/// \param arg function argument
|
3085
|
+
/// \return logarithm of \a arg to base 10
|
3086
|
+
/// \exception FE_INVALID for signaling NaN or negative argument
|
3087
|
+
/// \exception FE_DIVBYZERO for 0
|
3088
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3089
|
+
inline half log10(half arg)
|
3090
|
+
{
|
3091
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3092
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::log10(detail::half2float<detail::internal_t>(arg.data_))));
|
3093
|
+
#else
|
3094
|
+
int abs = arg.data_ & 0x7FFF, exp = -15;
|
3095
|
+
if(!abs)
|
3096
|
+
return half(detail::binary, detail::pole(0x8000));
|
3097
|
+
if(arg.data_ & 0x8000)
|
3098
|
+
return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
|
3099
|
+
if(abs >= 0x7C00)
|
3100
|
+
return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
|
3101
|
+
switch(abs)
|
3102
|
+
{
|
3103
|
+
case 0x4900: return half(detail::binary, 0x3C00);
|
3104
|
+
case 0x5640: return half(detail::binary, 0x4000);
|
3105
|
+
case 0x63D0: return half(detail::binary, 0x4200);
|
3106
|
+
case 0x70E2: return half(detail::binary, 0x4400);
|
3107
|
+
}
|
3108
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
3109
|
+
exp += abs >> 10;
|
3110
|
+
return half(detail::binary, detail::log2_post<half::round_style,0xD49A784C>(
|
3111
|
+
detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 27)+8, exp, 16));
|
3112
|
+
#endif
|
3113
|
+
}
|
3114
|
+
|
3115
|
+
/// Binary logarithm.
|
3116
|
+
/// This function is exact to rounding for all rounding modes.
|
3117
|
+
///
|
3118
|
+
/// **See also:** Documentation for [std::log2](https://en.cppreference.com/w/cpp/numeric/math/log2).
|
3119
|
+
/// \param arg function argument
|
3120
|
+
/// \return logarithm of \a arg to base 2
|
3121
|
+
/// \exception FE_INVALID for signaling NaN or negative argument
|
3122
|
+
/// \exception FE_DIVBYZERO for 0
|
3123
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3124
|
+
inline half log2(half arg)
|
3125
|
+
{
|
3126
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3127
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::log2(detail::half2float<detail::internal_t>(arg.data_))));
|
3128
|
+
#else
|
3129
|
+
int abs = arg.data_ & 0x7FFF, exp = -15, s = 0;
|
3130
|
+
if(!abs)
|
3131
|
+
return half(detail::binary, detail::pole(0x8000));
|
3132
|
+
if(arg.data_ & 0x8000)
|
3133
|
+
return half(detail::binary, (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
|
3134
|
+
if(abs >= 0x7C00)
|
3135
|
+
return (abs==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
|
3136
|
+
if(abs == 0x3C00)
|
3137
|
+
return half(detail::binary, 0);
|
3138
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
3139
|
+
exp += (abs>>10);
|
3140
|
+
if(!(abs&0x3FF))
|
3141
|
+
{
|
3142
|
+
unsigned int value = static_cast<unsigned>(exp<0) << 15, m = std::abs(exp) << 6;
|
3143
|
+
for(exp=18; m<0x400; m<<=1,--exp) ;
|
3144
|
+
return half(detail::binary, value+(exp<<10)+m);
|
3145
|
+
}
|
3146
|
+
detail::uint32 ilog = exp, sign = detail::sign_mask(ilog), m =
|
3147
|
+
(((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 28)>>4))^sign) - sign;
|
3148
|
+
if(!m)
|
3149
|
+
return half(detail::binary, 0);
|
3150
|
+
for(exp=14; m<0x8000000 && exp; m<<=1,--exp) ;
|
3151
|
+
for(; m>0xFFFFFFF; m>>=1,++exp)
|
3152
|
+
s |= m & 1;
|
3153
|
+
return half(detail::binary, detail::fixed2half<half::round_style,27,false,false,true>(m, exp, sign&0x8000, s));
|
3154
|
+
#endif
|
3155
|
+
}
|
3156
|
+
|
3157
|
+
/// Natural logarithm plus one.
|
3158
|
+
/// This function may be 1 ULP off the correctly rounded exact result in <0.05% of inputs for `std::round_to_nearest`
|
3159
|
+
/// and in ~1% of inputs for any other rounding mode.
|
3160
|
+
///
|
3161
|
+
/// **See also:** Documentation for [std::log1p](https://en.cppreference.com/w/cpp/numeric/math/log1p).
|
3162
|
+
/// \param arg function argument
|
3163
|
+
/// \return logarithm of \a arg plus 1 to base e
|
3164
|
+
/// \exception FE_INVALID for signaling NaN or argument <-1
|
3165
|
+
/// \exception FE_DIVBYZERO for -1
|
3166
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3167
|
+
inline half log1p(half arg)
|
3168
|
+
{
|
3169
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3170
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::log1p(detail::half2float<detail::internal_t>(arg.data_))));
|
3171
|
+
#else
|
3172
|
+
if(arg.data_ >= 0xBC00)
|
3173
|
+
return half(detail::binary, (arg.data_==0xBC00) ? detail::pole(0x8000) : (arg.data_<=0xFC00) ? detail::invalid() : detail::signal(arg.data_));
|
3174
|
+
int abs = arg.data_ & 0x7FFF, exp = -15;
|
3175
|
+
if(!abs || abs >= 0x7C00)
|
3176
|
+
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
|
3177
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
3178
|
+
exp += abs >> 10;
|
3179
|
+
detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 20;
|
3180
|
+
if(arg.data_ & 0x8000)
|
3181
|
+
{
|
3182
|
+
m = 0x40000000 - (m>>-exp);
|
3183
|
+
for(exp=0; m<0x40000000; m<<=1,--exp) ;
|
3184
|
+
}
|
3185
|
+
else
|
3186
|
+
{
|
3187
|
+
if(exp < 0)
|
3188
|
+
{
|
3189
|
+
m = 0x40000000 + (m>>-exp);
|
3190
|
+
exp = 0;
|
3191
|
+
}
|
3192
|
+
else
|
3193
|
+
{
|
3194
|
+
m += 0x40000000 >> exp;
|
3195
|
+
int i = m >> 31;
|
3196
|
+
m >>= i;
|
3197
|
+
exp += i;
|
3198
|
+
}
|
3199
|
+
}
|
3200
|
+
return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2(m), exp, 17));
|
3201
|
+
#endif
|
3202
|
+
}
|
3203
|
+
|
3204
|
+
/// \}
|
3205
|
+
/// \anchor power
|
3206
|
+
/// \name Power functions
|
3207
|
+
/// \{
|
3208
|
+
|
3209
|
+
/// Square root.
|
3210
|
+
/// This function is exact to rounding for all rounding modes.
|
3211
|
+
///
|
3212
|
+
/// **See also:** Documentation for [std::sqrt](https://en.cppreference.com/w/cpp/numeric/math/sqrt).
|
3213
|
+
/// \param arg function argument
|
3214
|
+
/// \return square root of \a arg
|
3215
|
+
/// \exception FE_INVALID for signaling NaN and negative arguments
|
3216
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3217
|
+
inline half sqrt(half arg)
|
3218
|
+
{
|
3219
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3220
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(detail::half2float<detail::internal_t>(arg.data_))));
|
3221
|
+
#else
|
3222
|
+
int abs = arg.data_ & 0x7FFF, exp = 15;
|
3223
|
+
if(!abs || arg.data_ >= 0x7C00)
|
3224
|
+
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_>0x8000) ? detail::invalid() : arg.data_);
|
3225
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
3226
|
+
detail::uint32 r = static_cast<detail::uint32>((abs&0x3FF)|0x400) << 10, m = detail::sqrt<20>(r, exp+=abs>>10);
|
3227
|
+
return half(detail::binary, detail::rounded<half::round_style,false>((exp<<10)+(m&0x3FF), r>m, r!=0));
|
3228
|
+
#endif
|
3229
|
+
}
|
3230
|
+
|
3231
|
+
/// Cubic root.
|
3232
|
+
/// This function is exact to rounding for all rounding modes.
|
3233
|
+
///
|
3234
|
+
/// **See also:** Documentation for [std::cbrt](https://en.cppreference.com/w/cpp/numeric/math/cbrt).
|
3235
|
+
/// \param arg function argument
|
3236
|
+
/// \return cubic root of \a arg
|
3237
|
+
/// \exception FE_INVALID for signaling NaN
|
3238
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3239
|
+
inline half cbrt(half arg)
|
3240
|
+
{
|
3241
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3242
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::cbrt(detail::half2float<detail::internal_t>(arg.data_))));
|
3243
|
+
#else
|
3244
|
+
int abs = arg.data_ & 0x7FFF, exp = -15;
|
3245
|
+
if(!abs || abs == 0x3C00 || abs >= 0x7C00)
|
3246
|
+
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
|
3247
|
+
for(; abs<0x400; abs<<=1, --exp);
|
3248
|
+
detail::uint32 ilog = exp + (abs>>10), sign = detail::sign_mask(ilog), f, m =
|
3249
|
+
(((ilog<<27)+(detail::log2(static_cast<detail::uint32>((abs&0x3FF)|0x400)<<20, 24)>>4))^sign) - sign;
|
3250
|
+
for(exp=2; m<0x80000000; m<<=1,--exp) ;
|
3251
|
+
m = detail::multiply64(m, 0xAAAAAAAB);
|
3252
|
+
int i = m >> 31, s;
|
3253
|
+
exp += i;
|
3254
|
+
m <<= 1 - i;
|
3255
|
+
if(exp < 0)
|
3256
|
+
{
|
3257
|
+
f = m >> -exp;
|
3258
|
+
exp = 0;
|
3259
|
+
}
|
3260
|
+
else
|
3261
|
+
{
|
3262
|
+
f = (m<<exp) & 0x7FFFFFFF;
|
3263
|
+
exp = m >> (31-exp);
|
3264
|
+
}
|
3265
|
+
m = detail::exp2(f, (half::round_style==std::round_to_nearest) ? 29 : 26);
|
3266
|
+
if(sign)
|
3267
|
+
{
|
3268
|
+
if(m > 0x80000000)
|
3269
|
+
{
|
3270
|
+
m = detail::divide64(0x80000000, m, s);
|
3271
|
+
++exp;
|
3272
|
+
}
|
3273
|
+
exp = -exp;
|
3274
|
+
}
|
3275
|
+
return half(detail::binary, (half::round_style==std::round_to_nearest) ?
|
3276
|
+
detail::fixed2half<half::round_style,31,false,false,false>(m, exp+14, arg.data_&0x8000) :
|
3277
|
+
detail::fixed2half<half::round_style,23,false,false,false>((m+0x80)>>8, exp+14, arg.data_&0x8000));
|
3278
|
+
#endif
|
3279
|
+
}
|
3280
|
+
|
3281
|
+
/// Hypotenuse function.
|
3282
|
+
/// This function is exact to rounding for all rounding modes.
|
3283
|
+
///
|
3284
|
+
/// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot).
|
3285
|
+
/// \param x first argument
|
3286
|
+
/// \param y second argument
|
3287
|
+
/// \return square root of sum of squares without internal over- or underflows
|
3288
|
+
/// \exception FE_INVALID if \a x or \a y is signaling NaN
|
3289
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root
|
3290
|
+
inline half hypot(half x, half y)
|
3291
|
+
{
|
3292
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3293
|
+
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_);
|
3294
|
+
#if HALF_ENABLE_CPP11_CMATH
|
3295
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::hypot(fx, fy)));
|
3296
|
+
#else
|
3297
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy)));
|
3298
|
+
#endif
|
3299
|
+
#else
|
3300
|
+
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, expx = 0, expy = 0;
|
3301
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
3302
|
+
return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, y.data_) :
|
3303
|
+
(absy==0x7C00) ? detail::select(0x7C00, x.data_) : detail::signal(x.data_, y.data_));
|
3304
|
+
if(!absx)
|
3305
|
+
return half(detail::binary, absy ? detail::check_underflow(absy) : 0);
|
3306
|
+
if(!absy)
|
3307
|
+
return half(detail::binary, detail::check_underflow(absx));
|
3308
|
+
if(absy > absx)
|
3309
|
+
std::swap(absx, absy);
|
3310
|
+
for(; absx<0x400; absx<<=1,--expx) ;
|
3311
|
+
for(; absy<0x400; absy<<=1,--expy) ;
|
3312
|
+
detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400;
|
3313
|
+
mx *= mx;
|
3314
|
+
my *= my;
|
3315
|
+
int ix = mx >> 21, iy = my >> 21;
|
3316
|
+
expx = 2*(expx+(absx>>10)) - 15 + ix;
|
3317
|
+
expy = 2*(expy+(absy>>10)) - 15 + iy;
|
3318
|
+
mx <<= 10 - ix;
|
3319
|
+
my <<= 10 - iy;
|
3320
|
+
int d = expx - expy;
|
3321
|
+
my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
|
3322
|
+
return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx));
|
3323
|
+
#endif
|
3324
|
+
}
|
3325
|
+
|
3326
|
+
/// Hypotenuse function.
|
3327
|
+
/// This function is exact to rounding for all rounding modes.
|
3328
|
+
///
|
3329
|
+
/// **See also:** Documentation for [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot).
|
3330
|
+
/// \param x first argument
|
3331
|
+
/// \param y second argument
|
3332
|
+
/// \param z third argument
|
3333
|
+
/// \return square root of sum of squares without internal over- or underflows
|
3334
|
+
/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
|
3335
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of the final square root
|
3336
|
+
inline half hypot(half x, half y, half z)
|
3337
|
+
{
|
3338
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3339
|
+
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_), fy = detail::half2float<detail::internal_t>(y.data_), fz = detail::half2float<detail::internal_t>(z.data_);
|
3340
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::sqrt(fx*fx+fy*fy+fz*fz)));
|
3341
|
+
#else
|
3342
|
+
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF, expx = 0, expy = 0, expz = 0;
|
3343
|
+
if(!absx)
|
3344
|
+
return hypot(y, z);
|
3345
|
+
if(!absy)
|
3346
|
+
return hypot(x, z);
|
3347
|
+
if(!absz)
|
3348
|
+
return hypot(x, y);
|
3349
|
+
if(absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
|
3350
|
+
return half(detail::binary, (absx==0x7C00) ? detail::select(0x7C00, detail::select(y.data_, z.data_)) :
|
3351
|
+
(absy==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, z.data_)) :
|
3352
|
+
(absz==0x7C00) ? detail::select(0x7C00, detail::select(x.data_, y.data_)) :
|
3353
|
+
detail::signal(x.data_, y.data_, z.data_));
|
3354
|
+
if(absz > absy)
|
3355
|
+
std::swap(absy, absz);
|
3356
|
+
if(absy > absx)
|
3357
|
+
std::swap(absx, absy);
|
3358
|
+
if(absz > absy)
|
3359
|
+
std::swap(absy, absz);
|
3360
|
+
for(; absx<0x400; absx<<=1,--expx) ;
|
3361
|
+
for(; absy<0x400; absy<<=1,--expy) ;
|
3362
|
+
for(; absz<0x400; absz<<=1,--expz) ;
|
3363
|
+
detail::uint32 mx = (absx&0x3FF) | 0x400, my = (absy&0x3FF) | 0x400, mz = (absz&0x3FF) | 0x400;
|
3364
|
+
mx *= mx;
|
3365
|
+
my *= my;
|
3366
|
+
mz *= mz;
|
3367
|
+
int ix = mx >> 21, iy = my >> 21, iz = mz >> 21;
|
3368
|
+
expx = 2*(expx+(absx>>10)) - 15 + ix;
|
3369
|
+
expy = 2*(expy+(absy>>10)) - 15 + iy;
|
3370
|
+
expz = 2*(expz+(absz>>10)) - 15 + iz;
|
3371
|
+
mx <<= 10 - ix;
|
3372
|
+
my <<= 10 - iy;
|
3373
|
+
mz <<= 10 - iz;
|
3374
|
+
int d = expy - expz;
|
3375
|
+
mz = (d<30) ? ((mz>>d)|((mz&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
|
3376
|
+
my += mz;
|
3377
|
+
if(my & 0x80000000)
|
3378
|
+
{
|
3379
|
+
my = (my>>1) | (my&1);
|
3380
|
+
if(++expy > expx)
|
3381
|
+
{
|
3382
|
+
std::swap(mx, my);
|
3383
|
+
std::swap(expx, expy);
|
3384
|
+
}
|
3385
|
+
}
|
3386
|
+
d = expx - expy;
|
3387
|
+
my = (d<30) ? ((my>>d)|((my&((static_cast<detail::uint32>(1)<<d)-1))!=0)) : 1;
|
3388
|
+
return half(detail::binary, detail::hypot_post<half::round_style>(mx+my, expx));
|
3389
|
+
#endif
|
3390
|
+
}
|
3391
|
+
|
3392
|
+
/// Power function.
|
3393
|
+
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.00025% of inputs.
|
3394
|
+
///
|
3395
|
+
/// **See also:** Documentation for [std::pow](https://en.cppreference.com/w/cpp/numeric/math/pow).
|
3396
|
+
/// \param x base
|
3397
|
+
/// \param y exponent
|
3398
|
+
/// \return \a x raised to \a y
|
3399
|
+
/// \exception FE_INVALID if \a x or \a y is signaling NaN or if \a x is finite an negative and \a y is finite and not integral
|
3400
|
+
/// \exception FE_DIVBYZERO if \a x is 0 and \a y is negative
|
3401
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3402
|
+
inline half pow(half x, half y)
|
3403
|
+
{
|
3404
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3405
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::pow(detail::half2float<detail::internal_t>(x.data_), detail::half2float<detail::internal_t>(y.data_))));
|
3406
|
+
#else
|
3407
|
+
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -15;
|
3408
|
+
if(!absy || x.data_ == 0x3C00)
|
3409
|
+
return half(detail::binary, detail::select(0x3C00, (x.data_==0x3C00) ? y.data_ : x.data_));
|
3410
|
+
bool is_int = absy >= 0x6400 || (absy>=0x3C00 && !(absy&((1<<(25-(absy>>10)))-1)));
|
3411
|
+
unsigned int sign = x.data_ & (static_cast<unsigned>((absy<0x6800)&&is_int&&((absy>>(25-(absy>>10)))&1))<<15);
|
3412
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
3413
|
+
return half(detail::binary, (absx>0x7C00 || absy>0x7C00) ? detail::signal(x.data_, y.data_) :
|
3414
|
+
(absy==0x7C00) ? ((absx==0x3C00) ? 0x3C00 : (!absx && y.data_==0xFC00) ? detail::pole() :
|
3415
|
+
(0x7C00&-((y.data_>>15)^(absx>0x3C00)))) : (sign|(0x7C00&((y.data_>>15)-1U))));
|
3416
|
+
if(!absx)
|
3417
|
+
return half(detail::binary, (y.data_&0x8000) ? detail::pole(sign) : sign);
|
3418
|
+
if((x.data_&0x8000) && !is_int)
|
3419
|
+
return half(detail::binary, detail::invalid());
|
3420
|
+
if(x.data_ == 0xBC00)
|
3421
|
+
return half(detail::binary, sign|0x3C00);
|
3422
|
+
if(y.data_ == 0x3800)
|
3423
|
+
return sqrt(x);
|
3424
|
+
if(y.data_ == 0x3C00)
|
3425
|
+
return half(detail::binary, detail::check_underflow(x.data_));
|
3426
|
+
if(y.data_ == 0x4000)
|
3427
|
+
return x * x;
|
3428
|
+
for(; absx<0x400; absx<<=1,--exp) ;
|
3429
|
+
detail::uint32 ilog = exp + (absx>>10), msign = detail::sign_mask(ilog), f, m =
|
3430
|
+
(((ilog<<27)+((detail::log2(static_cast<detail::uint32>((absx&0x3FF)|0x400)<<20)+8)>>4))^msign) - msign;
|
3431
|
+
for(exp=-11; m<0x80000000; m<<=1,--exp) ;
|
3432
|
+
for(; absy<0x400; absy<<=1,--exp) ;
|
3433
|
+
m = detail::multiply64(m, static_cast<detail::uint32>((absy&0x3FF)|0x400)<<21);
|
3434
|
+
int i = m >> 31;
|
3435
|
+
exp += (absy>>10) + i;
|
3436
|
+
m <<= 1 - i;
|
3437
|
+
if(exp < 0)
|
3438
|
+
{
|
3439
|
+
f = m >> -exp;
|
3440
|
+
exp = 0;
|
3441
|
+
}
|
3442
|
+
else
|
3443
|
+
{
|
3444
|
+
f = (m<<exp) & 0x7FFFFFFF;
|
3445
|
+
exp = m >> (31-exp);
|
3446
|
+
}
|
3447
|
+
return half(detail::binary, detail::exp2_post<half::round_style,false>(detail::exp2(f), exp, ((msign&1)^(y.data_>>15))!=0, sign));
|
3448
|
+
#endif
|
3449
|
+
}
|
3450
|
+
|
3451
|
+
/// \}
|
3452
|
+
/// \anchor trigonometric
|
3453
|
+
/// \name Trigonometric functions
|
3454
|
+
/// \{
|
3455
|
+
|
3456
|
+
/// Compute sine and cosine simultaneously.
|
3457
|
+
/// This returns the same results as sin() and cos() but is faster than calling each function individually.
|
3458
|
+
///
|
3459
|
+
/// This function is exact to rounding for all rounding modes.
|
3460
|
+
/// \param arg function argument
|
3461
|
+
/// \param sin variable to take sine of \a arg
|
3462
|
+
/// \param cos variable to take cosine of \a arg
|
3463
|
+
/// \exception FE_INVALID for signaling NaN or infinity
|
3464
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3465
|
+
inline void sincos(half arg, half *sin, half *cos)
|
3466
|
+
{
|
3467
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3468
|
+
detail::internal_t f = detail::half2float<detail::internal_t>(arg.data_);
|
3469
|
+
*sin = half(detail::binary, detail::float2half<half::round_style>(std::sin(f)));
|
3470
|
+
*cos = half(detail::binary, detail::float2half<half::round_style>(std::cos(f)));
|
3471
|
+
#else
|
3472
|
+
int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15, k;
|
3473
|
+
if(abs >= 0x7C00)
|
3474
|
+
*sin = *cos = half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
|
3475
|
+
else if(!abs)
|
3476
|
+
{
|
3477
|
+
*sin = arg;
|
3478
|
+
*cos = half(detail::binary, 0x3C00);
|
3479
|
+
}
|
3480
|
+
else if(abs < 0x2500)
|
3481
|
+
{
|
3482
|
+
*sin = half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
|
3483
|
+
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
|
3484
|
+
}
|
3485
|
+
else
|
3486
|
+
{
|
3487
|
+
if(half::round_style != std::round_to_nearest)
|
3488
|
+
{
|
3489
|
+
switch(abs)
|
3490
|
+
{
|
3491
|
+
case 0x48B7:
|
3492
|
+
*sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1));
|
3493
|
+
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0xBBFF, 1, 1));
|
3494
|
+
return;
|
3495
|
+
case 0x598C:
|
3496
|
+
*sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
|
3497
|
+
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1));
|
3498
|
+
return;
|
3499
|
+
case 0x6A64:
|
3500
|
+
*sin = half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1));
|
3501
|
+
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x27FF, 1, 1));
|
3502
|
+
return;
|
3503
|
+
case 0x6D8C:
|
3504
|
+
*sin = half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1));
|
3505
|
+
*cos = half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
|
3506
|
+
return;
|
3507
|
+
}
|
3508
|
+
}
|
3509
|
+
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
|
3510
|
+
switch(k & 3)
|
3511
|
+
{
|
3512
|
+
case 1: sc = std::make_pair(sc.second, -sc.first); break;
|
3513
|
+
case 2: sc = std::make_pair(-sc.first, -sc.second); break;
|
3514
|
+
case 3: sc = std::make_pair(-sc.second, sc.first); break;
|
3515
|
+
}
|
3516
|
+
*sin = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((sc.first^-static_cast<detail::uint32>(sign))+sign));
|
3517
|
+
*cos = half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>(sc.second));
|
3518
|
+
}
|
3519
|
+
#endif
|
3520
|
+
}
|
3521
|
+
|
3522
|
+
/// Sine function.
|
3523
|
+
/// This function is exact to rounding for all rounding modes.
|
3524
|
+
///
|
3525
|
+
/// **See also:** Documentation for [std::sin](https://en.cppreference.com/w/cpp/numeric/math/sin).
|
3526
|
+
/// \param arg function argument
|
3527
|
+
/// \return sine value of \a arg
|
3528
|
+
/// \exception FE_INVALID for signaling NaN or infinity
|
3529
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3530
|
+
inline half sin(half arg)
|
3531
|
+
{
|
3532
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3533
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::sin(detail::half2float<detail::internal_t>(arg.data_))));
|
3534
|
+
#else
|
3535
|
+
int abs = arg.data_ & 0x7FFF, k;
|
3536
|
+
if(!abs)
|
3537
|
+
return arg;
|
3538
|
+
if(abs >= 0x7C00)
|
3539
|
+
return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
|
3540
|
+
if(abs < 0x2900)
|
3541
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
|
3542
|
+
if(half::round_style != std::round_to_nearest)
|
3543
|
+
switch(abs)
|
3544
|
+
{
|
3545
|
+
case 0x48B7: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x1D07, 1, 1));
|
3546
|
+
case 0x6A64: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x3BFE, 1, 1));
|
3547
|
+
case 0x6D8C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x0FE6, 1, 1));
|
3548
|
+
}
|
3549
|
+
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
|
3550
|
+
detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)&1)^(arg.data_>>15));
|
3551
|
+
return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.second : sc.first)^sign) - sign));
|
3552
|
+
#endif
|
3553
|
+
}
|
3554
|
+
|
3555
|
+
/// Cosine function.
|
3556
|
+
/// This function is exact to rounding for all rounding modes.
|
3557
|
+
///
|
3558
|
+
/// **See also:** Documentation for [std::cos](https://en.cppreference.com/w/cpp/numeric/math/cos).
|
3559
|
+
/// \param arg function argument
|
3560
|
+
/// \return cosine value of \a arg
|
3561
|
+
/// \exception FE_INVALID for signaling NaN or infinity
|
3562
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3563
|
+
inline half cos(half arg)
|
3564
|
+
{
|
3565
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3566
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::cos(detail::half2float<detail::internal_t>(arg.data_))));
|
3567
|
+
#else
|
3568
|
+
int abs = arg.data_ & 0x7FFF, k;
|
3569
|
+
if(!abs)
|
3570
|
+
return half(detail::binary, 0x3C00);
|
3571
|
+
if(abs >= 0x7C00)
|
3572
|
+
return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
|
3573
|
+
if(abs < 0x2500)
|
3574
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(0x3BFF, 1, 1));
|
3575
|
+
if(half::round_style != std::round_to_nearest && abs == 0x598C)
|
3576
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(0x80FC, 1, 1));
|
3577
|
+
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 28);
|
3578
|
+
detail::uint32 sign = -static_cast<detail::uint32>(((k>>1)^k)&1);
|
3579
|
+
return half(detail::binary, detail::fixed2half<half::round_style,30,true,true,true>((((k&1) ? sc.first : sc.second)^sign) - sign));
|
3580
|
+
#endif
|
3581
|
+
}
|
3582
|
+
|
3583
|
+
/// Tangent function.
|
3584
|
+
/// This function is exact to rounding for all rounding modes.
|
3585
|
+
///
|
3586
|
+
/// **See also:** Documentation for [std::tan](https://en.cppreference.com/w/cpp/numeric/math/tan).
|
3587
|
+
/// \param arg function argument
|
3588
|
+
/// \return tangent value of \a arg
|
3589
|
+
/// \exception FE_INVALID for signaling NaN or infinity
|
3590
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3591
|
+
inline half tan(half arg)
|
3592
|
+
{
|
3593
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3594
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::tan(detail::half2float<detail::internal_t>(arg.data_))));
|
3595
|
+
#else
|
3596
|
+
int abs = arg.data_ & 0x7FFF, exp = 13, k;
|
3597
|
+
if(!abs)
|
3598
|
+
return arg;
|
3599
|
+
if(abs >= 0x7C00)
|
3600
|
+
return half(detail::binary, (abs==0x7C00) ? detail::invalid() : detail::signal(arg.data_));
|
3601
|
+
if(abs < 0x2700)
|
3602
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
|
3603
|
+
if(half::round_style != std::round_to_nearest)
|
3604
|
+
switch(abs)
|
3605
|
+
{
|
3606
|
+
case 0x658C: return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x07E6, 1, 1));
|
3607
|
+
case 0x7330: return half(detail::binary, detail::rounded<half::round_style,true>((~arg.data_&0x8000)|0x4B62, 1, 1));
|
3608
|
+
}
|
3609
|
+
std::pair<detail::uint32,detail::uint32> sc = detail::sincos(detail::angle_arg(abs, k), 30);
|
3610
|
+
if(k & 1)
|
3611
|
+
sc = std::make_pair(-sc.second, sc.first);
|
3612
|
+
detail::uint32 signy = detail::sign_mask(sc.first), signx = detail::sign_mask(sc.second);
|
3613
|
+
detail::uint32 my = (sc.first^signy) - signy, mx = (sc.second^signx) - signx;
|
3614
|
+
for(; my<0x80000000; my<<=1,--exp) ;
|
3615
|
+
for(; mx<0x80000000; mx<<=1,++exp) ;
|
3616
|
+
return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp, (signy^signx^arg.data_)&0x8000));
|
3617
|
+
#endif
|
3618
|
+
}
|
3619
|
+
|
3620
|
+
/// Arc sine.
|
3621
|
+
/// This function is exact to rounding for all rounding modes.
|
3622
|
+
///
|
3623
|
+
/// **See also:** Documentation for [std::asin](https://en.cppreference.com/w/cpp/numeric/math/asin).
|
3624
|
+
/// \param arg function argument
|
3625
|
+
/// \return arc sine value of \a arg
|
3626
|
+
/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
|
3627
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3628
|
+
inline half asin(half arg)
|
3629
|
+
{
|
3630
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3631
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::asin(detail::half2float<detail::internal_t>(arg.data_))));
|
3632
|
+
#else
|
3633
|
+
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
|
3634
|
+
if(!abs)
|
3635
|
+
return arg;
|
3636
|
+
if(abs >= 0x3C00)
|
3637
|
+
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() :
|
3638
|
+
detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1));
|
3639
|
+
if(abs < 0x2900)
|
3640
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
|
3641
|
+
if(half::round_style != std::round_to_nearest && (abs == 0x2B44 || abs == 0x2DC3))
|
3642
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_+1, 1, 1));
|
3643
|
+
std::pair<detail::uint32,detail::uint32> sc = detail::atan2_args(abs);
|
3644
|
+
detail::uint32 m = detail::atan2(sc.first, sc.second, (half::round_style==std::round_to_nearest) ? 27 : 26);
|
3645
|
+
return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign));
|
3646
|
+
#endif
|
3647
|
+
}
|
3648
|
+
|
3649
|
+
/// Arc cosine function.
|
3650
|
+
/// This function is exact to rounding for all rounding modes.
|
3651
|
+
///
|
3652
|
+
/// **See also:** Documentation for [std::acos](https://en.cppreference.com/w/cpp/numeric/math/acos).
|
3653
|
+
/// \param arg function argument
|
3654
|
+
/// \return arc cosine value of \a arg
|
3655
|
+
/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
|
3656
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3657
|
+
inline half acos(half arg)
|
3658
|
+
{
|
3659
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3660
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::acos(detail::half2float<detail::internal_t>(arg.data_))));
|
3661
|
+
#else
|
3662
|
+
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15;
|
3663
|
+
if(!abs)
|
3664
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(0x3E48, 0, 1));
|
3665
|
+
if(abs >= 0x3C00)
|
3666
|
+
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (abs>0x3C00) ? detail::invalid() :
|
3667
|
+
sign ? detail::rounded<half::round_style,true>(0x4248, 0, 1) : 0);
|
3668
|
+
std::pair<detail::uint32,detail::uint32> cs = detail::atan2_args(abs);
|
3669
|
+
detail::uint32 m = detail::atan2(cs.second, cs.first, 28);
|
3670
|
+
return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(sign ? (0xC90FDAA2-m) : m, 15, 0, sign));
|
3671
|
+
#endif
|
3672
|
+
}
|
3673
|
+
|
3674
|
+
/// Arc tangent function.
|
3675
|
+
/// This function is exact to rounding for all rounding modes.
|
3676
|
+
///
|
3677
|
+
/// **See also:** Documentation for [std::atan](https://en.cppreference.com/w/cpp/numeric/math/atan).
|
3678
|
+
/// \param arg function argument
|
3679
|
+
/// \return arc tangent value of \a arg
|
3680
|
+
/// \exception FE_INVALID for signaling NaN
|
3681
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3682
|
+
inline half atan(half arg)
|
3683
|
+
{
|
3684
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3685
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::atan(detail::half2float<detail::internal_t>(arg.data_))));
|
3686
|
+
#else
|
3687
|
+
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
|
3688
|
+
if(!abs)
|
3689
|
+
return arg;
|
3690
|
+
if(abs >= 0x7C00)
|
3691
|
+
return half(detail::binary, (abs==0x7C00) ? detail::rounded<half::round_style,true>(sign|0x3E48, 0, 1) : detail::signal(arg.data_));
|
3692
|
+
if(abs <= 0x2700)
|
3693
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
|
3694
|
+
int exp = (abs>>10) + (abs<=0x3FF);
|
3695
|
+
detail::uint32 my = (abs&0x3FF) | ((abs>0x3FF)<<10);
|
3696
|
+
detail::uint32 m = (exp>15) ? detail::atan2(my<<19, 0x20000000>>(exp-15), (half::round_style==std::round_to_nearest) ? 26 : 24) :
|
3697
|
+
detail::atan2(my<<(exp+4), 0x20000000, (half::round_style==std::round_to_nearest) ? 30 : 28);
|
3698
|
+
return half(detail::binary, detail::fixed2half<half::round_style,30,false,true,true>(m, 14, sign));
|
3699
|
+
#endif
|
3700
|
+
}
|
3701
|
+
|
3702
|
+
/// Arc tangent function.
|
3703
|
+
/// This function may be 1 ULP off the correctly rounded exact result in ~0.005% of inputs for `std::round_to_nearest`,
|
3704
|
+
/// in ~0.1% of inputs for `std::round_toward_zero` and in ~0.02% of inputs for any other rounding mode.
|
3705
|
+
///
|
3706
|
+
/// **See also:** Documentation for [std::atan2](https://en.cppreference.com/w/cpp/numeric/math/atan2).
|
3707
|
+
/// \param y numerator
|
3708
|
+
/// \param x denominator
|
3709
|
+
/// \return arc tangent value
|
3710
|
+
/// \exception FE_INVALID if \a x or \a y is signaling NaN
|
3711
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3712
|
+
inline half atan2(half y, half x)
|
3713
|
+
{
|
3714
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3715
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::atan2(detail::half2float<detail::internal_t>(y.data_), detail::half2float<detail::internal_t>(x.data_))));
|
3716
|
+
#else
|
3717
|
+
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, signx = x.data_ >> 15, signy = y.data_ & 0x8000;
|
3718
|
+
if(absx >= 0x7C00 || absy >= 0x7C00)
|
3719
|
+
{
|
3720
|
+
if(absx > 0x7C00 || absy > 0x7C00)
|
3721
|
+
return half(detail::binary, detail::signal(x.data_, y.data_));
|
3722
|
+
if(absy == 0x7C00)
|
3723
|
+
return half(detail::binary, (absx<0x7C00) ? detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1) :
|
3724
|
+
signx ? detail::rounded<half::round_style,true>(signy|0x40B6, 0, 1) :
|
3725
|
+
detail::rounded<half::round_style,true>(signy|0x3A48, 0, 1));
|
3726
|
+
return (x.data_==0x7C00) ? half(detail::binary, signy) : half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1));
|
3727
|
+
}
|
3728
|
+
if(!absy)
|
3729
|
+
return signx ? half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1)) : y;
|
3730
|
+
if(!absx)
|
3731
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1));
|
3732
|
+
int d = (absy>>10) + (absy<=0x3FF) - (absx>>10) - (absx<=0x3FF);
|
3733
|
+
if(d > (signx ? 18 : 12))
|
3734
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x3E48, 0, 1));
|
3735
|
+
if(signx && d < -11)
|
3736
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(signy|0x4248, 0, 1));
|
3737
|
+
if(!signx && d < ((half::round_style==std::round_toward_zero) ? -15 : -9))
|
3738
|
+
{
|
3739
|
+
for(; absy<0x400; absy<<=1,--d) ;
|
3740
|
+
detail::uint32 mx = ((absx<<1)&0x7FF) | 0x800, my = ((absy<<1)&0x7FF) | 0x800;
|
3741
|
+
int i = my < mx;
|
3742
|
+
d -= i;
|
3743
|
+
if(d < -25)
|
3744
|
+
return half(detail::binary, detail::underflow<half::round_style>(signy));
|
3745
|
+
my <<= 11 + i;
|
3746
|
+
return half(detail::binary, detail::fixed2half<half::round_style,11,false,false,true>(my/mx, d+14, signy, my%mx!=0));
|
3747
|
+
}
|
3748
|
+
detail::uint32 m = detail::atan2( ((absy&0x3FF)|((absy>0x3FF)<<10))<<(19+((d<0) ? d : (d>0) ? 0 : -1)),
|
3749
|
+
((absx&0x3FF)|((absx>0x3FF)<<10))<<(19-((d>0) ? d : (d<0) ? 0 : 1)));
|
3750
|
+
return half(detail::binary, detail::fixed2half<half::round_style,31,false,true,true>(signx ? (0xC90FDAA2-m) : m, 15, signy, signx));
|
3751
|
+
#endif
|
3752
|
+
}
|
3753
|
+
|
3754
|
+
/// \}
|
3755
|
+
/// \anchor hyperbolic
|
3756
|
+
/// \name Hyperbolic functions
|
3757
|
+
/// \{
|
3758
|
+
|
3759
|
+
/// Hyperbolic sine.
|
3760
|
+
/// This function is exact to rounding for all rounding modes.
|
3761
|
+
///
|
3762
|
+
/// **See also:** Documentation for [std::sinh](https://en.cppreference.com/w/cpp/numeric/math/sinh).
|
3763
|
+
/// \param arg function argument
|
3764
|
+
/// \return hyperbolic sine value of \a arg
|
3765
|
+
/// \exception FE_INVALID for signaling NaN
|
3766
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3767
|
+
inline half sinh(half arg)
|
3768
|
+
{
|
3769
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3770
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::sinh(detail::half2float<detail::internal_t>(arg.data_))));
|
3771
|
+
#else
|
3772
|
+
int abs = arg.data_ & 0x7FFF, exp;
|
3773
|
+
if(!abs || abs >= 0x7C00)
|
3774
|
+
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
|
3775
|
+
if(abs <= 0x2900)
|
3776
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
|
3777
|
+
std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 29 : 27);
|
3778
|
+
detail::uint32 m = mm.first - mm.second;
|
3779
|
+
for(exp+=13; m<0x80000000 && exp; m<<=1,--exp) ;
|
3780
|
+
unsigned int sign = arg.data_ & 0x8000;
|
3781
|
+
if(exp > 29)
|
3782
|
+
return half(detail::binary, detail::overflow<half::round_style>(sign));
|
3783
|
+
return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp, sign));
|
3784
|
+
#endif
|
3785
|
+
}
|
3786
|
+
|
3787
|
+
/// Hyperbolic cosine.
|
3788
|
+
/// This function is exact to rounding for all rounding modes.
|
3789
|
+
///
|
3790
|
+
/// **See also:** Documentation for [std::cosh](https://en.cppreference.com/w/cpp/numeric/math/cosh).
|
3791
|
+
/// \param arg function argument
|
3792
|
+
/// \return hyperbolic cosine value of \a arg
|
3793
|
+
/// \exception FE_INVALID for signaling NaN
|
3794
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3795
|
+
inline half cosh(half arg)
|
3796
|
+
{
|
3797
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3798
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::cosh(detail::half2float<detail::internal_t>(arg.data_))));
|
3799
|
+
#else
|
3800
|
+
int abs = arg.data_ & 0x7FFF, exp;
|
3801
|
+
if(!abs)
|
3802
|
+
return half(detail::binary, 0x3C00);
|
3803
|
+
if(abs >= 0x7C00)
|
3804
|
+
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : 0x7C00);
|
3805
|
+
std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, (half::round_style==std::round_to_nearest) ? 23 : 26);
|
3806
|
+
detail::uint32 m = mm.first + mm.second, i = (~m&0xFFFFFFFF) >> 31;
|
3807
|
+
m = (m>>i) | (m&i) | 0x80000000;
|
3808
|
+
if((exp+=13+i) > 29)
|
3809
|
+
return half(detail::binary, detail::overflow<half::round_style>());
|
3810
|
+
return half(detail::binary, detail::fixed2half<half::round_style,31,false,false,true>(m, exp));
|
3811
|
+
#endif
|
3812
|
+
}
|
3813
|
+
|
3814
|
+
/// Hyperbolic tangent.
|
3815
|
+
/// This function is exact to rounding for all rounding modes.
|
3816
|
+
///
|
3817
|
+
/// **See also:** Documentation for [std::tanh](https://en.cppreference.com/w/cpp/numeric/math/tanh).
|
3818
|
+
/// \param arg function argument
|
3819
|
+
/// \return hyperbolic tangent value of \a arg
|
3820
|
+
/// \exception FE_INVALID for signaling NaN
|
3821
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3822
|
+
inline half tanh(half arg)
|
3823
|
+
{
|
3824
|
+
#ifdef HALF_ARITHMETIC_TYPE
|
3825
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::tanh(detail::half2float<detail::internal_t>(arg.data_))));
|
3826
|
+
#else
|
3827
|
+
int abs = arg.data_ & 0x7FFF, exp;
|
3828
|
+
if(!abs)
|
3829
|
+
return arg;
|
3830
|
+
if(abs >= 0x7C00)
|
3831
|
+
return half(detail::binary, (abs>0x7C00) ? detail::signal(arg.data_) : (arg.data_-0x4000));
|
3832
|
+
if(abs >= 0x4500)
|
3833
|
+
return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
|
3834
|
+
if(abs < 0x2700)
|
3835
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
|
3836
|
+
if(half::round_style != std::round_to_nearest && abs == 0x2D3F)
|
3837
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-3, 0, 1));
|
3838
|
+
std::pair<detail::uint32,detail::uint32> mm = detail::hyperbolic_args(abs, exp, 27);
|
3839
|
+
detail::uint32 my = mm.first - mm.second - (half::round_style!=std::round_to_nearest), mx = mm.first + mm.second, i = (~mx&0xFFFFFFFF) >> 31;
|
3840
|
+
for(exp=13; my<0x80000000; my<<=1,--exp) ;
|
3841
|
+
mx = (mx>>i) | 0x80000000;
|
3842
|
+
return half(detail::binary, detail::tangent_post<half::round_style>(my, mx, exp-i, arg.data_&0x8000));
|
3843
|
+
#endif
|
3844
|
+
}
|
3845
|
+
|
3846
|
+
/// Hyperbolic area sine.
|
3847
|
+
/// This function is exact to rounding for all rounding modes.
|
3848
|
+
///
|
3849
|
+
/// **See also:** Documentation for [std::asinh](https://en.cppreference.com/w/cpp/numeric/math/asinh).
|
3850
|
+
/// \param arg function argument
|
3851
|
+
/// \return area sine value of \a arg
|
3852
|
+
/// \exception FE_INVALID for signaling NaN
|
3853
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3854
|
+
inline half asinh(half arg)
|
3855
|
+
{
|
3856
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3857
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::asinh(detail::half2float<detail::internal_t>(arg.data_))));
|
3858
|
+
#else
|
3859
|
+
int abs = arg.data_ & 0x7FFF;
|
3860
|
+
if(!abs || abs >= 0x7C00)
|
3861
|
+
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
|
3862
|
+
if(abs <= 0x2900)
|
3863
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-1, 1, 1));
|
3864
|
+
if(half::round_style != std::round_to_nearest)
|
3865
|
+
switch(abs)
|
3866
|
+
{
|
3867
|
+
case 0x32D4: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-13, 1, 1));
|
3868
|
+
case 0x3B5B: return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_-197, 1, 1));
|
3869
|
+
}
|
3870
|
+
return half(detail::binary, detail::area<half::round_style,true>(arg.data_));
|
3871
|
+
#endif
|
3872
|
+
}
|
3873
|
+
|
3874
|
+
/// Hyperbolic area cosine.
|
3875
|
+
/// This function is exact to rounding for all rounding modes.
|
3876
|
+
///
|
3877
|
+
/// **See also:** Documentation for [std::acosh](https://en.cppreference.com/w/cpp/numeric/math/acosh).
|
3878
|
+
/// \param arg function argument
|
3879
|
+
/// \return area cosine value of \a arg
|
3880
|
+
/// \exception FE_INVALID for signaling NaN or arguments <1
|
3881
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3882
|
+
inline half acosh(half arg)
|
3883
|
+
{
|
3884
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3885
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::acosh(detail::half2float<detail::internal_t>(arg.data_))));
|
3886
|
+
#else
|
3887
|
+
int abs = arg.data_ & 0x7FFF;
|
3888
|
+
if((arg.data_&0x8000) || abs < 0x3C00)
|
3889
|
+
return half(detail::binary, (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_));
|
3890
|
+
if(abs == 0x3C00)
|
3891
|
+
return half(detail::binary, 0);
|
3892
|
+
if(arg.data_ >= 0x7C00)
|
3893
|
+
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
|
3894
|
+
return half(detail::binary, detail::area<half::round_style,false>(arg.data_));
|
3895
|
+
#endif
|
3896
|
+
}
|
3897
|
+
|
3898
|
+
/// Hyperbolic area tangent.
|
3899
|
+
/// This function is exact to rounding for all rounding modes.
|
3900
|
+
///
|
3901
|
+
/// **See also:** Documentation for [std::atanh](https://en.cppreference.com/w/cpp/numeric/math/atanh).
|
3902
|
+
/// \param arg function argument
|
3903
|
+
/// \return area tangent value of \a arg
|
3904
|
+
/// \exception FE_INVALID for signaling NaN or if abs(\a arg) > 1
|
3905
|
+
/// \exception FE_DIVBYZERO for +/-1
|
3906
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3907
|
+
inline half atanh(half arg)
|
3908
|
+
{
|
3909
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3910
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::atanh(detail::half2float<detail::internal_t>(arg.data_))));
|
3911
|
+
#else
|
3912
|
+
int abs = arg.data_ & 0x7FFF, exp = 0;
|
3913
|
+
if(!abs)
|
3914
|
+
return arg;
|
3915
|
+
if(abs >= 0x3C00)
|
3916
|
+
return half(detail::binary, (abs==0x3C00) ? detail::pole(arg.data_&0x8000) : (abs<=0x7C00) ? detail::invalid() : detail::signal(arg.data_));
|
3917
|
+
if(abs < 0x2700)
|
3918
|
+
return half(detail::binary, detail::rounded<half::round_style,true>(arg.data_, 0, 1));
|
3919
|
+
detail::uint32 m = static_cast<detail::uint32>((abs&0x3FF)|((abs>0x3FF)<<10)) << ((abs>>10)+(abs<=0x3FF)+6), my = 0x80000000 + m, mx = 0x80000000 - m;
|
3920
|
+
for(; mx<0x80000000; mx<<=1,++exp) ;
|
3921
|
+
int i = my >= mx, s;
|
3922
|
+
return half(detail::binary, detail::log2_post<half::round_style,0xB8AA3B2A>(detail::log2(
|
3923
|
+
(detail::divide64(my>>i, mx, s)+1)>>1, 27)+0x10, exp+i-1, 16, arg.data_&0x8000));
|
3924
|
+
#endif
|
3925
|
+
}
|
3926
|
+
|
3927
|
+
/// \}
|
3928
|
+
/// \anchor special
|
3929
|
+
/// \name Error and gamma functions
|
3930
|
+
/// \{
|
3931
|
+
|
3932
|
+
/// Error function.
|
3933
|
+
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs.
|
3934
|
+
///
|
3935
|
+
/// **See also:** Documentation for [std::erf](https://en.cppreference.com/w/cpp/numeric/math/erf).
|
3936
|
+
/// \param arg function argument
|
3937
|
+
/// \return error function value of \a arg
|
3938
|
+
/// \exception FE_INVALID for signaling NaN
|
3939
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3940
|
+
inline half erf(half arg)
|
3941
|
+
{
|
3942
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3943
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::erf(detail::half2float<detail::internal_t>(arg.data_))));
|
3944
|
+
#else
|
3945
|
+
unsigned int abs = arg.data_ & 0x7FFF;
|
3946
|
+
if(!abs || abs >= 0x7C00)
|
3947
|
+
return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (arg.data_-0x4000) : detail::signal(arg.data_)) : arg;
|
3948
|
+
if(abs >= 0x4200)
|
3949
|
+
return half(detail::binary, detail::rounded<half::round_style,true>((arg.data_&0x8000)|0x3BFF, 1, 1));
|
3950
|
+
return half(detail::binary, detail::erf<half::round_style,false>(arg.data_));
|
3951
|
+
#endif
|
3952
|
+
}
|
3953
|
+
|
3954
|
+
/// Complementary error function.
|
3955
|
+
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.5% of inputs.
|
3956
|
+
///
|
3957
|
+
/// **See also:** Documentation for [std::erfc](https://en.cppreference.com/w/cpp/numeric/math/erfc).
|
3958
|
+
/// \param arg function argument
|
3959
|
+
/// \return 1 minus error function value of \a arg
|
3960
|
+
/// \exception FE_INVALID for signaling NaN
|
3961
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3962
|
+
inline half erfc(half arg)
|
3963
|
+
{
|
3964
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3965
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::erfc(detail::half2float<detail::internal_t>(arg.data_))));
|
3966
|
+
#else
|
3967
|
+
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
|
3968
|
+
if(abs >= 0x7C00)
|
3969
|
+
return (abs>=0x7C00) ? half(detail::binary, (abs==0x7C00) ? (sign>>1) : detail::signal(arg.data_)) : arg;
|
3970
|
+
if(!abs)
|
3971
|
+
return half(detail::binary, 0x3C00);
|
3972
|
+
if(abs >= 0x4400)
|
3973
|
+
return half(detail::binary, detail::rounded<half::round_style,true>((sign>>1)-(sign>>15), sign>>15, 1));
|
3974
|
+
return half(detail::binary, detail::erf<half::round_style,true>(arg.data_));
|
3975
|
+
#endif
|
3976
|
+
}
|
3977
|
+
|
3978
|
+
/// Natural logarithm of gamma function.
|
3979
|
+
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in ~0.025% of inputs.
|
3980
|
+
///
|
3981
|
+
/// **See also:** Documentation for [std::lgamma](https://en.cppreference.com/w/cpp/numeric/math/lgamma).
|
3982
|
+
/// \param arg function argument
|
3983
|
+
/// \return natural logarith of gamma function for \a arg
|
3984
|
+
/// \exception FE_INVALID for signaling NaN
|
3985
|
+
/// \exception FE_DIVBYZERO for 0 or negative integer arguments
|
3986
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
3987
|
+
inline half lgamma(half arg)
|
3988
|
+
{
|
3989
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
3990
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::lgamma(detail::half2float<detail::internal_t>(arg.data_))));
|
3991
|
+
#else
|
3992
|
+
int abs = arg.data_ & 0x7FFF;
|
3993
|
+
if(abs >= 0x7C00)
|
3994
|
+
return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_));
|
3995
|
+
if(!abs || arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1))))
|
3996
|
+
return half(detail::binary, detail::pole());
|
3997
|
+
if(arg.data_ == 0x3C00 || arg.data_ == 0x4000)
|
3998
|
+
return half(detail::binary, 0);
|
3999
|
+
return half(detail::binary, detail::gamma<half::round_style,true>(arg.data_));
|
4000
|
+
#endif
|
4001
|
+
}
|
4002
|
+
|
4003
|
+
/// Gamma function.
|
4004
|
+
/// This function may be 1 ULP off the correctly rounded exact result for any rounding mode in <0.25% of inputs.
|
4005
|
+
///
|
4006
|
+
/// **See also:** Documentation for [std::tgamma](https://en.cppreference.com/w/cpp/numeric/math/tgamma).
|
4007
|
+
/// \param arg function argument
|
4008
|
+
/// \return gamma function value of \a arg
|
4009
|
+
/// \exception FE_INVALID for signaling NaN, negative infinity or negative integer arguments
|
4010
|
+
/// \exception FE_DIVBYZERO for 0
|
4011
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
4012
|
+
inline half tgamma(half arg)
|
4013
|
+
{
|
4014
|
+
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
|
4015
|
+
return half(detail::binary, detail::float2half<half::round_style>(std::tgamma(detail::half2float<detail::internal_t>(arg.data_))));
|
4016
|
+
#else
|
4017
|
+
unsigned int abs = arg.data_ & 0x7FFF;
|
4018
|
+
if(!abs)
|
4019
|
+
return half(detail::binary, detail::pole(arg.data_));
|
4020
|
+
if(abs >= 0x7C00)
|
4021
|
+
return (arg.data_==0x7C00) ? arg : half(detail::binary, detail::signal(arg.data_));
|
4022
|
+
if(arg.data_ >= 0xE400 || (arg.data_ >= 0xBC00 && !(abs&((1<<(25-(abs>>10)))-1))))
|
4023
|
+
return half(detail::binary, detail::invalid());
|
4024
|
+
if(arg.data_ >= 0xCA80)
|
4025
|
+
return half(detail::binary, detail::underflow<half::round_style>((1-((abs>>(25-(abs>>10)))&1))<<15));
|
4026
|
+
if(arg.data_ <= 0x100 || (arg.data_ >= 0x4900 && arg.data_ < 0x8000))
|
4027
|
+
return half(detail::binary, detail::overflow<half::round_style>());
|
4028
|
+
if(arg.data_ == 0x3C00)
|
4029
|
+
return arg;
|
4030
|
+
return half(detail::binary, detail::gamma<half::round_style,false>(arg.data_));
|
4031
|
+
#endif
|
4032
|
+
}
|
4033
|
+
|
4034
|
+
/// \}
|
4035
|
+
/// \anchor rounding
|
4036
|
+
/// \name Rounding
|
4037
|
+
/// \{
|
4038
|
+
|
4039
|
+
/// Nearest integer not less than half value.
|
4040
|
+
/// **See also:** Documentation for [std::ceil](https://en.cppreference.com/w/cpp/numeric/math/ceil).
|
4041
|
+
/// \param arg half to round
|
4042
|
+
/// \return nearest integer not less than \a arg
|
4043
|
+
/// \exception FE_INVALID for signaling NaN
|
4044
|
+
/// \exception FE_INEXACT if value had to be rounded
|
4045
|
+
inline half ceil(half arg) { return half(detail::binary, detail::integral<std::round_toward_infinity,true,true>(arg.data_)); }
|
4046
|
+
|
4047
|
+
/// Nearest integer not greater than half value.
|
4048
|
+
/// **See also:** Documentation for [std::floor](https://en.cppreference.com/w/cpp/numeric/math/floor).
|
4049
|
+
/// \param arg half to round
|
4050
|
+
/// \return nearest integer not greater than \a arg
|
4051
|
+
/// \exception FE_INVALID for signaling NaN
|
4052
|
+
/// \exception FE_INEXACT if value had to be rounded
|
4053
|
+
inline half floor(half arg) { return half(detail::binary, detail::integral<std::round_toward_neg_infinity,true,true>(arg.data_)); }
|
4054
|
+
|
4055
|
+
/// Nearest integer not greater in magnitude than half value.
|
4056
|
+
/// **See also:** Documentation for [std::trunc](https://en.cppreference.com/w/cpp/numeric/math/trunc).
|
4057
|
+
/// \param arg half to round
|
4058
|
+
/// \return nearest integer not greater in magnitude than \a arg
|
4059
|
+
/// \exception FE_INVALID for signaling NaN
|
4060
|
+
/// \exception FE_INEXACT if value had to be rounded
|
4061
|
+
inline half trunc(half arg) { return half(detail::binary, detail::integral<std::round_toward_zero,true,true>(arg.data_)); }
|
4062
|
+
|
4063
|
+
/// Nearest integer.
|
4064
|
+
/// **See also:** Documentation for [std::round](https://en.cppreference.com/w/cpp/numeric/math/round).
|
4065
|
+
/// \param arg half to round
|
4066
|
+
/// \return nearest integer, rounded away from zero in half-way cases
|
4067
|
+
/// \exception FE_INVALID for signaling NaN
|
4068
|
+
/// \exception FE_INEXACT if value had to be rounded
|
4069
|
+
inline half round(half arg) { return half(detail::binary, detail::integral<std::round_to_nearest,false,true>(arg.data_)); }
|
4070
|
+
|
4071
|
+
/// Nearest integer.
|
4072
|
+
/// **See also:** Documentation for [std::lround](https://en.cppreference.com/w/cpp/numeric/math/round).
|
4073
|
+
/// \param arg half to round
|
4074
|
+
/// \return nearest integer, rounded away from zero in half-way cases
|
4075
|
+
/// \exception FE_INVALID if value is not representable as `long`
|
4076
|
+
inline long lround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long>(arg.data_); }
|
4077
|
+
|
4078
|
+
/// Nearest integer using half's internal rounding mode.
|
4079
|
+
/// **See also:** Documentation for [std::rint](https://en.cppreference.com/w/cpp/numeric/math/rint).
|
4080
|
+
/// \param arg half expression to round
|
4081
|
+
/// \return nearest integer using default rounding mode
|
4082
|
+
/// \exception FE_INVALID for signaling NaN
|
4083
|
+
/// \exception FE_INEXACT if value had to be rounded
|
4084
|
+
inline half rint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,true>(arg.data_)); }
|
4085
|
+
|
4086
|
+
/// Nearest integer using half's internal rounding mode.
|
4087
|
+
/// **See also:** Documentation for [std::lrint](https://en.cppreference.com/w/cpp/numeric/math/rint).
|
4088
|
+
/// \param arg half expression to round
|
4089
|
+
/// \return nearest integer using default rounding mode
|
4090
|
+
/// \exception FE_INVALID if value is not representable as `long`
|
4091
|
+
/// \exception FE_INEXACT if value had to be rounded
|
4092
|
+
inline long lrint(half arg) { return detail::half2int<half::round_style,true,true,long>(arg.data_); }
|
4093
|
+
|
4094
|
+
/// Nearest integer using half's internal rounding mode.
|
4095
|
+
/// **See also:** Documentation for [std::nearbyint](https://en.cppreference.com/w/cpp/numeric/math/nearbyint).
|
4096
|
+
/// \param arg half expression to round
|
4097
|
+
/// \return nearest integer using default rounding mode
|
4098
|
+
/// \exception FE_INVALID for signaling NaN
|
4099
|
+
inline half nearbyint(half arg) { return half(detail::binary, detail::integral<half::round_style,true,false>(arg.data_)); }
|
4100
|
+
#if HALF_ENABLE_CPP11_LONG_LONG
|
4101
|
+
/// Nearest integer.
|
4102
|
+
/// **See also:** Documentation for [std::llround](https://en.cppreference.com/w/cpp/numeric/math/round).
|
4103
|
+
/// \param arg half to round
|
4104
|
+
/// \return nearest integer, rounded away from zero in half-way cases
|
4105
|
+
/// \exception FE_INVALID if value is not representable as `long long`
|
4106
|
+
inline long long llround(half arg) { return detail::half2int<std::round_to_nearest,false,false,long long>(arg.data_); }
|
4107
|
+
|
4108
|
+
/// Nearest integer using half's internal rounding mode.
|
4109
|
+
/// **See also:** Documentation for [std::llrint](https://en.cppreference.com/w/cpp/numeric/math/rint).
|
4110
|
+
/// \param arg half expression to round
|
4111
|
+
/// \return nearest integer using default rounding mode
|
4112
|
+
/// \exception FE_INVALID if value is not representable as `long long`
|
4113
|
+
/// \exception FE_INEXACT if value had to be rounded
|
4114
|
+
inline long long llrint(half arg) { return detail::half2int<half::round_style,true,true,long long>(arg.data_); }
|
4115
|
+
#endif
|
4116
|
+
|
4117
|
+
/// \}
|
4118
|
+
/// \anchor float
|
4119
|
+
/// \name Floating point manipulation
|
4120
|
+
/// \{
|
4121
|
+
|
4122
|
+
/// Decompress floating-point number.
|
4123
|
+
/// **See also:** Documentation for [std::frexp](https://en.cppreference.com/w/cpp/numeric/math/frexp).
|
4124
|
+
/// \param arg number to decompress
|
4125
|
+
/// \param exp address to store exponent at
|
4126
|
+
/// \return significant in range [0.5, 1)
|
4127
|
+
/// \exception FE_INVALID for signaling NaN
|
4128
|
+
inline half frexp(half arg, int *exp)
|
4129
|
+
{
|
4130
|
+
*exp = 0;
|
4131
|
+
unsigned int abs = arg.data_ & 0x7FFF;
|
4132
|
+
if(abs >= 0x7C00 || !abs)
|
4133
|
+
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
|
4134
|
+
for(; abs<0x400; abs<<=1,--*exp) ;
|
4135
|
+
*exp += (abs>>10) - 14;
|
4136
|
+
return half(detail::binary, (arg.data_&0x8000)|0x3800|(abs&0x3FF));
|
4137
|
+
}
|
4138
|
+
|
4139
|
+
/// Multiply by power of two.
|
4140
|
+
/// This function is exact to rounding for all rounding modes.
|
4141
|
+
///
|
4142
|
+
/// **See also:** Documentation for [std::scalbln](https://en.cppreference.com/w/cpp/numeric/math/scalbn).
|
4143
|
+
/// \param arg number to modify
|
4144
|
+
/// \param exp power of two to multiply with
|
4145
|
+
/// \return \a arg multplied by 2 raised to \a exp
|
4146
|
+
/// \exception FE_INVALID for signaling NaN
|
4147
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
4148
|
+
inline half scalbln(half arg, long exp)
|
4149
|
+
{
|
4150
|
+
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
|
4151
|
+
if(abs >= 0x7C00 || !abs)
|
4152
|
+
return (abs>0x7C00) ? half(detail::binary, detail::signal(arg.data_)) : arg;
|
4153
|
+
for(; abs<0x400; abs<<=1,--exp) ;
|
4154
|
+
exp += abs >> 10;
|
4155
|
+
if(exp > 30)
|
4156
|
+
return half(detail::binary, detail::overflow<half::round_style>(sign));
|
4157
|
+
else if(exp < -10)
|
4158
|
+
return half(detail::binary, detail::underflow<half::round_style>(sign));
|
4159
|
+
else if(exp > 0)
|
4160
|
+
return half(detail::binary, sign|(exp<<10)|(abs&0x3FF));
|
4161
|
+
unsigned int m = (abs&0x3FF) | 0x400;
|
4162
|
+
return half(detail::binary, detail::rounded<half::round_style,false>(sign|(m>>(1-exp)), (m>>-exp)&1, (m&((1<<-exp)-1))!=0));
|
4163
|
+
}
|
4164
|
+
|
4165
|
+
/// Multiply by power of two.
|
4166
|
+
/// This function is exact to rounding for all rounding modes.
|
4167
|
+
///
|
4168
|
+
/// **See also:** Documentation for [std::scalbn](https://en.cppreference.com/w/cpp/numeric/math/scalbn).
|
4169
|
+
/// \param arg number to modify
|
4170
|
+
/// \param exp power of two to multiply with
|
4171
|
+
/// \return \a arg multplied by 2 raised to \a exp
|
4172
|
+
/// \exception FE_INVALID for signaling NaN
|
4173
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
4174
|
+
inline half scalbn(half arg, int exp) { return scalbln(arg, exp); }
|
4175
|
+
|
4176
|
+
/// Multiply by power of two.
|
4177
|
+
/// This function is exact to rounding for all rounding modes.
|
4178
|
+
///
|
4179
|
+
/// **See also:** Documentation for [std::ldexp](https://en.cppreference.com/w/cpp/numeric/math/ldexp).
|
4180
|
+
/// \param arg number to modify
|
4181
|
+
/// \param exp power of two to multiply with
|
4182
|
+
/// \return \a arg multplied by 2 raised to \a exp
|
4183
|
+
/// \exception FE_INVALID for signaling NaN
|
4184
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
4185
|
+
inline half ldexp(half arg, int exp) { return scalbln(arg, exp); }
|
4186
|
+
|
4187
|
+
/// Extract integer and fractional parts.
|
4188
|
+
/// **See also:** Documentation for [std::modf](https://en.cppreference.com/w/cpp/numeric/math/modf).
|
4189
|
+
/// \param arg number to decompress
|
4190
|
+
/// \param iptr address to store integer part at
|
4191
|
+
/// \return fractional part
|
4192
|
+
/// \exception FE_INVALID for signaling NaN
|
4193
|
+
inline half modf(half arg, half *iptr)
|
4194
|
+
{
|
4195
|
+
unsigned int abs = arg.data_ & 0x7FFF;
|
4196
|
+
if(abs > 0x7C00)
|
4197
|
+
{
|
4198
|
+
arg = half(detail::binary, detail::signal(arg.data_));
|
4199
|
+
return *iptr = arg, arg;
|
4200
|
+
}
|
4201
|
+
if(abs >= 0x6400)
|
4202
|
+
return *iptr = arg, half(detail::binary, arg.data_&0x8000);
|
4203
|
+
if(abs < 0x3C00)
|
4204
|
+
return iptr->data_ = arg.data_ & 0x8000, arg;
|
4205
|
+
unsigned int exp = abs >> 10, mask = (1<<(25-exp)) - 1, m = arg.data_ & mask;
|
4206
|
+
iptr->data_ = arg.data_ & ~mask;
|
4207
|
+
if(!m)
|
4208
|
+
return half(detail::binary, arg.data_&0x8000);
|
4209
|
+
for(; m<0x400; m<<=1,--exp) ;
|
4210
|
+
return half(detail::binary, (arg.data_&0x8000)|(exp<<10)|(m&0x3FF));
|
4211
|
+
}
|
4212
|
+
|
4213
|
+
/// Extract exponent.
|
4214
|
+
/// **See also:** Documentation for [std::ilogb](https://en.cppreference.com/w/cpp/numeric/math/ilogb).
|
4215
|
+
/// \param arg number to query
|
4216
|
+
/// \return floating-point exponent
|
4217
|
+
/// \retval FP_ILOGB0 for zero
|
4218
|
+
/// \retval FP_ILOGBNAN for NaN
|
4219
|
+
/// \retval INT_MAX for infinity
|
4220
|
+
/// \exception FE_INVALID for 0 or infinite values
|
4221
|
+
inline int ilogb(half arg)
|
4222
|
+
{
|
4223
|
+
int abs = arg.data_ & 0x7FFF, exp;
|
4224
|
+
if(!abs || abs >= 0x7C00)
|
4225
|
+
{
|
4226
|
+
detail::raise(FE_INVALID);
|
4227
|
+
return !abs ? FP_ILOGB0 : (abs==0x7C00) ? INT_MAX : FP_ILOGBNAN;
|
4228
|
+
}
|
4229
|
+
for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ;
|
4230
|
+
return exp;
|
4231
|
+
}
|
4232
|
+
|
4233
|
+
/// Extract exponent.
|
4234
|
+
/// **See also:** Documentation for [std::logb](https://en.cppreference.com/w/cpp/numeric/math/logb).
|
4235
|
+
/// \param arg number to query
|
4236
|
+
/// \return floating-point exponent
|
4237
|
+
/// \exception FE_INVALID for signaling NaN
|
4238
|
+
/// \exception FE_DIVBYZERO for 0
|
4239
|
+
inline half logb(half arg)
|
4240
|
+
{
|
4241
|
+
int abs = arg.data_ & 0x7FFF, exp;
|
4242
|
+
if(!abs)
|
4243
|
+
return half(detail::binary, detail::pole(0x8000));
|
4244
|
+
if(abs >= 0x7C00)
|
4245
|
+
return half(detail::binary, (abs==0x7C00) ? 0x7C00 : detail::signal(arg.data_));
|
4246
|
+
for(exp=(abs>>10)-15; abs<0x200; abs<<=1,--exp) ;
|
4247
|
+
unsigned int value = static_cast<unsigned>(exp<0) << 15;
|
4248
|
+
if(exp)
|
4249
|
+
{
|
4250
|
+
unsigned int m = std::abs(exp) << 6;
|
4251
|
+
for(exp=18; m<0x400; m<<=1,--exp) ;
|
4252
|
+
value |= (exp<<10) + m;
|
4253
|
+
}
|
4254
|
+
return half(detail::binary, value);
|
4255
|
+
}
|
4256
|
+
|
4257
|
+
/// Next representable value.
|
4258
|
+
/// **See also:** Documentation for [std::nextafter](https://en.cppreference.com/w/cpp/numeric/math/nextafter).
|
4259
|
+
/// \param from value to compute next representable value for
|
4260
|
+
/// \param to direction towards which to compute next value
|
4261
|
+
/// \return next representable value after \a from in direction towards \a to
|
4262
|
+
/// \exception FE_INVALID for signaling NaN
|
4263
|
+
/// \exception FE_OVERFLOW for infinite result from finite argument
|
4264
|
+
/// \exception FE_UNDERFLOW for subnormal result
|
4265
|
+
inline half nextafter(half from, half to)
|
4266
|
+
{
|
4267
|
+
int fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;
|
4268
|
+
if(fabs > 0x7C00 || tabs > 0x7C00)
|
4269
|
+
return half(detail::binary, detail::signal(from.data_, to.data_));
|
4270
|
+
if(from.data_ == to.data_ || !(fabs|tabs))
|
4271
|
+
return to;
|
4272
|
+
if(!fabs)
|
4273
|
+
{
|
4274
|
+
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
|
4275
|
+
return half(detail::binary, (to.data_&0x8000)+1);
|
4276
|
+
}
|
4277
|
+
unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>(
|
4278
|
+
(from.data_^(0x8000|(0x8000-(from.data_>>15))))<(to.data_^(0x8000|(0x8000-(to.data_>>15))))))<<1) - 1;
|
4279
|
+
detail::raise(FE_OVERFLOW, fabs<0x7C00 && (out&0x7C00)==0x7C00);
|
4280
|
+
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7C00)<0x400);
|
4281
|
+
return half(detail::binary, out);
|
4282
|
+
}
|
4283
|
+
|
4284
|
+
/// Next representable value.
|
4285
|
+
/// **See also:** Documentation for [std::nexttoward](https://en.cppreference.com/w/cpp/numeric/math/nexttoward).
|
4286
|
+
/// \param from value to compute next representable value for
|
4287
|
+
/// \param to direction towards which to compute next value
|
4288
|
+
/// \return next representable value after \a from in direction towards \a to
|
4289
|
+
/// \exception FE_INVALID for signaling NaN
|
4290
|
+
/// \exception FE_OVERFLOW for infinite result from finite argument
|
4291
|
+
/// \exception FE_UNDERFLOW for subnormal result
|
4292
|
+
inline half nexttoward(half from, long double to)
|
4293
|
+
{
|
4294
|
+
int fabs = from.data_ & 0x7FFF;
|
4295
|
+
if(fabs > 0x7C00)
|
4296
|
+
return half(detail::binary, detail::signal(from.data_));
|
4297
|
+
long double lfrom = static_cast<long double>(from);
|
4298
|
+
if(detail::builtin_isnan(to) || lfrom == to)
|
4299
|
+
return half(static_cast<float>(to));
|
4300
|
+
if(!fabs)
|
4301
|
+
{
|
4302
|
+
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
|
4303
|
+
return half(detail::binary, (static_cast<unsigned>(detail::builtin_signbit(to))<<15)+1);
|
4304
|
+
}
|
4305
|
+
unsigned int out = from.data_ + (((from.data_>>15)^static_cast<unsigned>(lfrom<to))<<1) - 1;
|
4306
|
+
detail::raise(FE_OVERFLOW, (out&0x7FFF)==0x7C00);
|
4307
|
+
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT && (out&0x7FFF)<0x400);
|
4308
|
+
return half(detail::binary, out);
|
4309
|
+
}
|
4310
|
+
|
4311
|
+
/// Take sign.
|
4312
|
+
/// **See also:** Documentation for [std::copysign](https://en.cppreference.com/w/cpp/numeric/math/copysign).
|
4313
|
+
/// \param x value to change sign for
|
4314
|
+
/// \param y value to take sign from
|
4315
|
+
/// \return value equal to \a x in magnitude and to \a y in sign
|
4316
|
+
inline HALF_CONSTEXPR half copysign(half x, half y) { return half(detail::binary, x.data_^((x.data_^y.data_)&0x8000)); }
|
4317
|
+
|
4318
|
+
/// \}
|
4319
|
+
/// \anchor classification
|
4320
|
+
/// \name Floating point classification
|
4321
|
+
/// \{
|
4322
|
+
|
4323
|
+
/// Classify floating-point value.
|
4324
|
+
/// **See also:** Documentation for [std::fpclassify](https://en.cppreference.com/w/cpp/numeric/math/fpclassify).
|
4325
|
+
/// \param arg number to classify
|
4326
|
+
/// \retval FP_ZERO for positive and negative zero
|
4327
|
+
/// \retval FP_SUBNORMAL for subnormal numbers
|
4328
|
+
/// \retval FP_INFINITY for positive and negative infinity
|
4329
|
+
/// \retval FP_NAN for NaNs
|
4330
|
+
/// \retval FP_NORMAL for all other (normal) values
|
4331
|
+
inline HALF_CONSTEXPR int fpclassify(half arg)
|
4332
|
+
{
|
4333
|
+
return !(arg.data_&0x7FFF) ? FP_ZERO :
|
4334
|
+
((arg.data_&0x7FFF)<0x400) ? FP_SUBNORMAL :
|
4335
|
+
((arg.data_&0x7FFF)<0x7C00) ? FP_NORMAL :
|
4336
|
+
((arg.data_&0x7FFF)==0x7C00) ? FP_INFINITE :
|
4337
|
+
FP_NAN;
|
4338
|
+
}
|
4339
|
+
|
4340
|
+
/// Check if finite number.
|
4341
|
+
/// **See also:** Documentation for [std::isfinite](https://en.cppreference.com/w/cpp/numeric/math/isfinite).
|
4342
|
+
/// \param arg number to check
|
4343
|
+
/// \retval true if neither infinity nor NaN
|
4344
|
+
/// \retval false else
|
4345
|
+
inline HALF_CONSTEXPR bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; }
|
4346
|
+
|
4347
|
+
/// Check for infinity.
|
4348
|
+
/// **See also:** Documentation for [std::isinf](https://en.cppreference.com/w/cpp/numeric/math/isinf).
|
4349
|
+
/// \param arg number to check
|
4350
|
+
/// \retval true for positive or negative infinity
|
4351
|
+
/// \retval false else
|
4352
|
+
inline HALF_CONSTEXPR bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; }
|
4353
|
+
|
4354
|
+
/// Check for NaN.
|
4355
|
+
/// **See also:** Documentation for [std::isnan](https://en.cppreference.com/w/cpp/numeric/math/isnan).
|
4356
|
+
/// \param arg number to check
|
4357
|
+
/// \retval true for NaNs
|
4358
|
+
/// \retval false else
|
4359
|
+
inline HALF_CONSTEXPR bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; }
|
4360
|
+
|
4361
|
+
/// Check if normal number.
|
4362
|
+
/// **See also:** Documentation for [std::isnormal](https://en.cppreference.com/w/cpp/numeric/math/isnormal).
|
4363
|
+
/// \param arg number to check
|
4364
|
+
/// \retval true if normal number
|
4365
|
+
/// \retval false if either subnormal, zero, infinity or NaN
|
4366
|
+
inline HALF_CONSTEXPR bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); }
|
4367
|
+
|
4368
|
+
/// Check sign.
|
4369
|
+
/// **See also:** Documentation for [std::signbit](https://en.cppreference.com/w/cpp/numeric/math/signbit).
|
4370
|
+
/// \param arg number to check
|
4371
|
+
/// \retval true for negative number
|
4372
|
+
/// \retval false for positive number
|
4373
|
+
inline HALF_CONSTEXPR bool signbit(half arg) { return (arg.data_&0x8000) != 0; }
|
4374
|
+
|
4375
|
+
/// \}
|
4376
|
+
/// \anchor compfunc
|
4377
|
+
/// \name Comparison
|
4378
|
+
/// \{
|
4379
|
+
|
4380
|
+
/// Quiet comparison for greater than.
|
4381
|
+
/// **See also:** Documentation for [std::isgreater](https://en.cppreference.com/w/cpp/numeric/math/isgreater).
|
4382
|
+
/// \param x first operand
|
4383
|
+
/// \param y second operand
|
4384
|
+
/// \retval true if \a x greater than \a y
|
4385
|
+
/// \retval false else
|
4386
|
+
inline HALF_CONSTEXPR bool isgreater(half x, half y)
|
4387
|
+
{
|
4388
|
+
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) > ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
|
4389
|
+
}
|
4390
|
+
|
4391
|
+
/// Quiet comparison for greater equal.
|
4392
|
+
/// **See also:** Documentation for [std::isgreaterequal](https://en.cppreference.com/w/cpp/numeric/math/isgreaterequal).
|
4393
|
+
/// \param x first operand
|
4394
|
+
/// \param y second operand
|
4395
|
+
/// \retval true if \a x greater equal \a y
|
4396
|
+
/// \retval false else
|
4397
|
+
inline HALF_CONSTEXPR bool isgreaterequal(half x, half y)
|
4398
|
+
{
|
4399
|
+
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) >= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
|
4400
|
+
}
|
4401
|
+
|
4402
|
+
/// Quiet comparison for less than.
|
4403
|
+
/// **See also:** Documentation for [std::isless](https://en.cppreference.com/w/cpp/numeric/math/isless).
|
4404
|
+
/// \param x first operand
|
4405
|
+
/// \param y second operand
|
4406
|
+
/// \retval true if \a x less than \a y
|
4407
|
+
/// \retval false else
|
4408
|
+
inline HALF_CONSTEXPR bool isless(half x, half y)
|
4409
|
+
{
|
4410
|
+
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) < ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
|
4411
|
+
}
|
4412
|
+
|
4413
|
+
/// Quiet comparison for less equal.
|
4414
|
+
/// **See also:** Documentation for [std::islessequal](https://en.cppreference.com/w/cpp/numeric/math/islessequal).
|
4415
|
+
/// \param x first operand
|
4416
|
+
/// \param y second operand
|
4417
|
+
/// \retval true if \a x less equal \a y
|
4418
|
+
/// \retval false else
|
4419
|
+
inline HALF_CONSTEXPR bool islessequal(half x, half y)
|
4420
|
+
{
|
4421
|
+
return ((x.data_^(0x8000|(0x8000-(x.data_>>15))))+(x.data_>>15)) <= ((y.data_^(0x8000|(0x8000-(y.data_>>15))))+(y.data_>>15)) && !isnan(x) && !isnan(y);
|
4422
|
+
}
|
4423
|
+
|
4424
|
+
/// Quiet comarison for less or greater.
|
4425
|
+
/// **See also:** Documentation for [std::islessgreater](https://en.cppreference.com/w/cpp/numeric/math/islessgreater).
|
4426
|
+
/// \param x first operand
|
4427
|
+
/// \param y second operand
|
4428
|
+
/// \retval true if either less or greater
|
4429
|
+
/// \retval false else
|
4430
|
+
inline HALF_CONSTEXPR bool islessgreater(half x, half y)
|
4431
|
+
{
|
4432
|
+
return x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF) && !isnan(x) && !isnan(y);
|
4433
|
+
}
|
4434
|
+
|
4435
|
+
/// Quiet check if unordered.
|
4436
|
+
/// **See also:** Documentation for [std::isunordered](https://en.cppreference.com/w/cpp/numeric/math/isunordered).
|
4437
|
+
/// \param x first operand
|
4438
|
+
/// \param y second operand
|
4439
|
+
/// \retval true if unordered (one or two NaN operands)
|
4440
|
+
/// \retval false else
|
4441
|
+
inline HALF_CONSTEXPR bool isunordered(half x, half y) { return isnan(x) || isnan(y); }
|
4442
|
+
|
4443
|
+
/// \}
|
4444
|
+
/// \anchor casting
|
4445
|
+
/// \name Casting
|
4446
|
+
/// \{
|
4447
|
+
|
4448
|
+
/// Cast to or from half-precision floating-point number.
|
4449
|
+
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
|
4450
|
+
/// directly using the default rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
|
4451
|
+
///
|
4452
|
+
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
|
4453
|
+
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
|
4454
|
+
/// error and casting between [half](\ref half_float::half)s returns the argument unmodified.
|
4455
|
+
/// \tparam T destination type (half or built-in arithmetic type)
|
4456
|
+
/// \tparam U source type (half or built-in arithmetic type)
|
4457
|
+
/// \param arg value to cast
|
4458
|
+
/// \return \a arg converted to destination type
|
4459
|
+
/// \exception FE_INVALID if \a T is integer type and result is not representable as \a T
|
4460
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
4461
|
+
template<typename T,typename U> T half_cast(U arg) { return detail::half_caster<T,U>::cast(arg); }
|
4462
|
+
|
4463
|
+
/// Cast to or from half-precision floating-point number.
|
4464
|
+
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
|
4465
|
+
/// directly using the specified rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
|
4466
|
+
///
|
4467
|
+
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
|
4468
|
+
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
|
4469
|
+
/// error and casting between [half](\ref half_float::half)s returns the argument unmodified.
|
4470
|
+
/// \tparam T destination type (half or built-in arithmetic type)
|
4471
|
+
/// \tparam R rounding mode to use.
|
4472
|
+
/// \tparam U source type (half or built-in arithmetic type)
|
4473
|
+
/// \param arg value to cast
|
4474
|
+
/// \return \a arg converted to destination type
|
4475
|
+
/// \exception FE_INVALID if \a T is integer type and result is not representable as \a T
|
4476
|
+
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
|
4477
|
+
template<typename T,std::float_round_style R,typename U> T half_cast(U arg) { return detail::half_caster<T,U,R>::cast(arg); }
|
4478
|
+
/// \}
|
4479
|
+
|
4480
|
+
/// \}
|
4481
|
+
/// \anchor errors
|
4482
|
+
/// \name Error handling
|
4483
|
+
/// \{
|
4484
|
+
|
4485
|
+
/// Clear exception flags.
|
4486
|
+
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
|
4487
|
+
/// but in that case manual flag management is the only way to raise flags.
|
4488
|
+
///
|
4489
|
+
/// **See also:** Documentation for [std::feclearexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feclearexcept).
|
4490
|
+
/// \param excepts OR of exceptions to clear
|
4491
|
+
/// \retval 0 all selected flags cleared successfully
|
4492
|
+
inline int feclearexcept(int excepts) { detail::errflags() &= ~excepts; return 0; }
|
4493
|
+
|
4494
|
+
/// Test exception flags.
|
4495
|
+
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
|
4496
|
+
/// but in that case manual flag management is the only way to raise flags.
|
4497
|
+
///
|
4498
|
+
/// **See also:** Documentation for [std::fetestexcept](https://en.cppreference.com/w/cpp/numeric/fenv/fetestexcept).
|
4499
|
+
/// \param excepts OR of exceptions to test
|
4500
|
+
/// \return OR of selected exceptions if raised
|
4501
|
+
inline int fetestexcept(int excepts) { return detail::errflags() & excepts; }
|
4502
|
+
|
4503
|
+
/// Raise exception flags.
|
4504
|
+
/// This raises the specified floating point exceptions and also invokes any additional automatic exception handling as
|
4505
|
+
/// configured with the [HALF_ERRHANDLIG_...](\ref HALF_ERRHANDLING_ERRNO) preprocessor symbols.
|
4506
|
+
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
|
4507
|
+
/// but in that case manual flag management is the only way to raise flags.
|
4508
|
+
///
|
4509
|
+
/// **See also:** Documentation for [std::feraiseexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feraiseexcept).
|
4510
|
+
/// \param excepts OR of exceptions to raise
|
4511
|
+
/// \retval 0 all selected exceptions raised successfully
|
4512
|
+
inline int feraiseexcept(int excepts) { detail::errflags() |= excepts; detail::raise(excepts); return 0; }
|
4513
|
+
|
4514
|
+
/// Save exception flags.
|
4515
|
+
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
|
4516
|
+
/// but in that case manual flag management is the only way to raise flags.
|
4517
|
+
///
|
4518
|
+
/// **See also:** Documentation for [std::fegetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
|
4519
|
+
/// \param flagp adress to store flag state at
|
4520
|
+
/// \param excepts OR of flags to save
|
4521
|
+
/// \retval 0 for success
|
4522
|
+
inline int fegetexceptflag(int *flagp, int excepts) { *flagp = detail::errflags() & excepts; return 0; }
|
4523
|
+
|
4524
|
+
/// Restore exception flags.
|
4525
|
+
/// This only copies the specified exception state (including unset flags) without incurring any additional exception handling.
|
4526
|
+
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
|
4527
|
+
/// but in that case manual flag management is the only way to raise flags.
|
4528
|
+
///
|
4529
|
+
/// **See also:** Documentation for [std::fesetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
|
4530
|
+
/// \param flagp adress to take flag state from
|
4531
|
+
/// \param excepts OR of flags to restore
|
4532
|
+
/// \retval 0 for success
|
4533
|
+
inline int fesetexceptflag(const int *flagp, int excepts) { detail::errflags() = (detail::errflags()|(*flagp&excepts)) & (*flagp|~excepts); return 0; }
|
4534
|
+
|
4535
|
+
/// Throw C++ exceptions based on set exception flags.
|
4536
|
+
/// This function manually throws a corresponding C++ exception if one of the specified flags is set,
|
4537
|
+
/// no matter if automatic throwing (via [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID)) is enabled or not.
|
4538
|
+
/// This function works even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is disabled,
|
4539
|
+
/// but in that case manual flag management is the only way to raise flags.
|
4540
|
+
/// \param excepts OR of exceptions to test
|
4541
|
+
/// \param msg error message to use for exception description
|
4542
|
+
/// \throw std::domain_error if `FE_INVALID` or `FE_DIVBYZERO` is selected and set
|
4543
|
+
/// \throw std::overflow_error if `FE_OVERFLOW` is selected and set
|
4544
|
+
/// \throw std::underflow_error if `FE_UNDERFLOW` is selected and set
|
4545
|
+
/// \throw std::range_error if `FE_INEXACT` is selected and set
|
4546
|
+
inline void fethrowexcept(int excepts, const char *msg = "")
|
4547
|
+
{
|
4548
|
+
excepts &= detail::errflags();
|
4549
|
+
if(excepts & (FE_INVALID|FE_DIVBYZERO))
|
4550
|
+
throw std::domain_error(msg);
|
4551
|
+
if(excepts & FE_OVERFLOW)
|
4552
|
+
throw std::overflow_error(msg);
|
4553
|
+
if(excepts & FE_UNDERFLOW)
|
4554
|
+
throw std::underflow_error(msg);
|
4555
|
+
if(excepts & FE_INEXACT)
|
4556
|
+
throw std::range_error(msg);
|
4557
|
+
}
|
4558
|
+
/// \}
|
4559
|
+
}
|
4560
|
+
|
4561
|
+
|
4562
|
+
#undef HALF_UNUSED_NOERR
|
4563
|
+
#undef HALF_CONSTEXPR
|
4564
|
+
#undef HALF_CONSTEXPR_CONST
|
4565
|
+
#undef HALF_CONSTEXPR_NOERR
|
4566
|
+
#undef HALF_NOEXCEPT
|
4567
|
+
#undef HALF_NOTHROW
|
4568
|
+
#undef HALF_THREAD_LOCAL
|
4569
|
+
#undef HALF_TWOS_COMPLEMENT_INT
|
4570
|
+
#ifdef HALF_POP_WARNINGS
|
4571
|
+
#pragma warning(pop)
|
4572
|
+
#undef HALF_POP_WARNINGS
|
4573
|
+
#endif
|
4574
|
+
|
4575
|
+
#endif
|