social_stream-base 0.7.11 → 0.8.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,825 @@
1
+ (function(){d3.geom = {};
2
+ /**
3
+ * Computes a contour for a given input grid function using the <a
4
+ * href="http://en.wikipedia.org/wiki/Marching_squares">marching
5
+ * squares</a> algorithm. Returns the contour polygon as an array of points.
6
+ *
7
+ * @param grid a two-input function(x, y) that returns true for values
8
+ * inside the contour and false for values outside the contour.
9
+ * @param start an optional starting point [x, y] on the grid.
10
+ * @returns polygon [[x1, y1], [x2, y2], …]
11
+ */
12
+ d3.geom.contour = function(grid, start) {
13
+ var s = start || d3_geom_contourStart(grid), // starting point
14
+ c = [], // contour polygon
15
+ x = s[0], // current x position
16
+ y = s[1], // current y position
17
+ dx = 0, // next x direction
18
+ dy = 0, // next y direction
19
+ pdx = NaN, // previous x direction
20
+ pdy = NaN, // previous y direction
21
+ i = 0;
22
+
23
+ do {
24
+ // determine marching squares index
25
+ i = 0;
26
+ if (grid(x-1, y-1)) i += 1;
27
+ if (grid(x, y-1)) i += 2;
28
+ if (grid(x-1, y )) i += 4;
29
+ if (grid(x, y )) i += 8;
30
+
31
+ // determine next direction
32
+ if (i === 6) {
33
+ dx = pdy === -1 ? -1 : 1;
34
+ dy = 0;
35
+ } else if (i === 9) {
36
+ dx = 0;
37
+ dy = pdx === 1 ? -1 : 1;
38
+ } else {
39
+ dx = d3_geom_contourDx[i];
40
+ dy = d3_geom_contourDy[i];
41
+ }
42
+
43
+ // update contour polygon
44
+ if (dx != pdx && dy != pdy) {
45
+ c.push([x, y]);
46
+ pdx = dx;
47
+ pdy = dy;
48
+ }
49
+
50
+ x += dx;
51
+ y += dy;
52
+ } while (s[0] != x || s[1] != y);
53
+
54
+ return c;
55
+ };
56
+
57
+ // lookup tables for marching directions
58
+ var d3_geom_contourDx = [1, 0, 1, 1,-1, 0,-1, 1,0, 0,0,0,-1, 0,-1,NaN],
59
+ d3_geom_contourDy = [0,-1, 0, 0, 0,-1, 0, 0,1,-1,1,1, 0,-1, 0,NaN];
60
+
61
+ function d3_geom_contourStart(grid) {
62
+ var x = 0,
63
+ y = 0;
64
+
65
+ // search for a starting point; begin at origin
66
+ // and proceed along outward-expanding diagonals
67
+ while (true) {
68
+ if (grid(x,y)) {
69
+ return [x,y];
70
+ }
71
+ if (x === 0) {
72
+ x = y + 1;
73
+ y = 0;
74
+ } else {
75
+ x = x - 1;
76
+ y = y + 1;
77
+ }
78
+ }
79
+ }
80
+ /**
81
+ * Computes the 2D convex hull of a set of points using Graham's scanning
82
+ * algorithm. The algorithm has been implemented as described in Cormen,
83
+ * Leiserson, and Rivest's Introduction to Algorithms. The running time of
84
+ * this algorithm is O(n log n), where n is the number of input points.
85
+ *
86
+ * @param vertices [[x1, y1], [x2, y2], …]
87
+ * @returns polygon [[x1, y1], [x2, y2], …]
88
+ */
89
+ d3.geom.hull = function(vertices) {
90
+ if (vertices.length < 3) return [];
91
+
92
+ var len = vertices.length,
93
+ plen = len - 1,
94
+ points = [],
95
+ stack = [],
96
+ i, j, h = 0, x1, y1, x2, y2, u, v, a, sp;
97
+
98
+ // find the starting ref point: leftmost point with the minimum y coord
99
+ for (i=1; i<len; ++i) {
100
+ if (vertices[i][1] < vertices[h][1]) {
101
+ h = i;
102
+ } else if (vertices[i][1] == vertices[h][1]) {
103
+ h = (vertices[i][0] < vertices[h][0] ? i : h);
104
+ }
105
+ }
106
+
107
+ // calculate polar angles from ref point and sort
108
+ for (i=0; i<len; ++i) {
109
+ if (i === h) continue;
110
+ y1 = vertices[i][1] - vertices[h][1];
111
+ x1 = vertices[i][0] - vertices[h][0];
112
+ points.push({angle: Math.atan2(y1, x1), index: i});
113
+ }
114
+ points.sort(function(a, b) { return a.angle - b.angle; });
115
+
116
+ // toss out duplicate angles
117
+ a = points[0].angle;
118
+ v = points[0].index;
119
+ u = 0;
120
+ for (i=1; i<plen; ++i) {
121
+ j = points[i].index;
122
+ if (a == points[i].angle) {
123
+ // keep angle for point most distant from the reference
124
+ x1 = vertices[v][0] - vertices[h][0];
125
+ y1 = vertices[v][1] - vertices[h][1];
126
+ x2 = vertices[j][0] - vertices[h][0];
127
+ y2 = vertices[j][1] - vertices[h][1];
128
+ if ((x1*x1 + y1*y1) >= (x2*x2 + y2*y2)) {
129
+ points[i].index = -1;
130
+ } else {
131
+ points[u].index = -1;
132
+ a = points[i].angle;
133
+ u = i;
134
+ v = j;
135
+ }
136
+ } else {
137
+ a = points[i].angle;
138
+ u = i;
139
+ v = j;
140
+ }
141
+ }
142
+
143
+ // initialize the stack
144
+ stack.push(h);
145
+ for (i=0, j=0; i<2; ++j) {
146
+ if (points[j].index !== -1) {
147
+ stack.push(points[j].index);
148
+ i++;
149
+ }
150
+ }
151
+ sp = stack.length;
152
+
153
+ // do graham's scan
154
+ for (; j<plen; ++j) {
155
+ if (points[j].index === -1) continue; // skip tossed out points
156
+ while (!d3_geom_hullCCW(stack[sp-2], stack[sp-1], points[j].index, vertices)) {
157
+ --sp;
158
+ }
159
+ stack[sp++] = points[j].index;
160
+ }
161
+
162
+ // construct the hull
163
+ var poly = [];
164
+ for (i=0; i<sp; ++i) {
165
+ poly.push(vertices[stack[i]]);
166
+ }
167
+ return poly;
168
+ }
169
+
170
+ // are three points in counter-clockwise order?
171
+ function d3_geom_hullCCW(i1, i2, i3, v) {
172
+ var t, a, b, c, d, e, f;
173
+ t = v[i1]; a = t[0]; b = t[1];
174
+ t = v[i2]; c = t[0]; d = t[1];
175
+ t = v[i3]; e = t[0]; f = t[1];
176
+ return ((f-b)*(c-a) - (d-b)*(e-a)) > 0;
177
+ }
178
+ // Note: requires coordinates to be counterclockwise and convex!
179
+ d3.geom.polygon = function(coordinates) {
180
+
181
+ coordinates.area = function() {
182
+ var i = 0,
183
+ n = coordinates.length,
184
+ a = coordinates[n - 1][0] * coordinates[0][1],
185
+ b = coordinates[n - 1][1] * coordinates[0][0];
186
+ while (++i < n) {
187
+ a += coordinates[i - 1][0] * coordinates[i][1];
188
+ b += coordinates[i - 1][1] * coordinates[i][0];
189
+ }
190
+ return (b - a) * .5;
191
+ };
192
+
193
+ coordinates.centroid = function(k) {
194
+ var i = -1,
195
+ n = coordinates.length - 1,
196
+ x = 0,
197
+ y = 0,
198
+ a,
199
+ b,
200
+ c;
201
+ if (!arguments.length) k = 1 / (6 * coordinates.area());
202
+ while (++i < n) {
203
+ a = coordinates[i];
204
+ b = coordinates[i + 1];
205
+ c = a[0] * b[1] - b[0] * a[1];
206
+ x += (a[0] + b[0]) * c;
207
+ y += (a[1] + b[1]) * c;
208
+ }
209
+ return [x * k, y * k];
210
+ };
211
+
212
+ // The Sutherland-Hodgman clipping algorithm.
213
+ coordinates.clip = function(subject) {
214
+ var input,
215
+ i = -1,
216
+ n = coordinates.length,
217
+ j,
218
+ m,
219
+ a = coordinates[n - 1],
220
+ b,
221
+ c,
222
+ d;
223
+ while (++i < n) {
224
+ input = subject.slice();
225
+ subject.length = 0;
226
+ b = coordinates[i];
227
+ c = input[(m = input.length) - 1];
228
+ j = -1;
229
+ while (++j < m) {
230
+ d = input[j];
231
+ if (d3_geom_polygonInside(d, a, b)) {
232
+ if (!d3_geom_polygonInside(c, a, b)) {
233
+ subject.push(d3_geom_polygonIntersect(c, d, a, b));
234
+ }
235
+ subject.push(d);
236
+ } else if (d3_geom_polygonInside(c, a, b)) {
237
+ subject.push(d3_geom_polygonIntersect(c, d, a, b));
238
+ }
239
+ c = d;
240
+ }
241
+ a = b;
242
+ }
243
+ return subject;
244
+ };
245
+
246
+ return coordinates;
247
+ };
248
+
249
+ function d3_geom_polygonInside(p, a, b) {
250
+ return (b[0] - a[0]) * (p[1] - a[1]) < (b[1] - a[1]) * (p[0] - a[0]);
251
+ }
252
+
253
+ // Intersect two infinite lines cd and ab.
254
+ function d3_geom_polygonIntersect(c, d, a, b) {
255
+ var x1 = c[0], x2 = d[0], x3 = a[0], x4 = b[0],
256
+ y1 = c[1], y2 = d[1], y3 = a[1], y4 = b[1],
257
+ x13 = x1 - x3,
258
+ x21 = x2 - x1,
259
+ x43 = x4 - x3,
260
+ y13 = y1 - y3,
261
+ y21 = y2 - y1,
262
+ y43 = y4 - y3,
263
+ ua = (x43 * y13 - y43 * x13) / (y43 * x21 - x43 * y21);
264
+ return [x1 + ua * x21, y1 + ua * y21];
265
+ }
266
+ // Adapted from Nicolas Garcia Belmonte's JIT implementation:
267
+ // http://blog.thejit.org/2010/02/12/voronoi-tessellation/
268
+ // http://blog.thejit.org/assets/voronoijs/voronoi.js
269
+ // See lib/jit/LICENSE for details.
270
+
271
+ /**
272
+ * @param vertices [[x1, y1], [x2, y2], …]
273
+ * @returns polygons [[[x1, y1], [x2, y2], …], …]
274
+ */
275
+ d3.geom.voronoi = function(vertices) {
276
+ var polygons = vertices.map(function() { return []; });
277
+
278
+ // Note: we expect the caller to clip the polygons, if needed.
279
+ d3_voronoi_tessellate(vertices, function(e) {
280
+ var s1,
281
+ s2,
282
+ x1,
283
+ x2,
284
+ y1,
285
+ y2;
286
+ if (e.a === 1 && e.b >= 0) {
287
+ s1 = e.ep.r;
288
+ s2 = e.ep.l;
289
+ } else {
290
+ s1 = e.ep.l;
291
+ s2 = e.ep.r;
292
+ }
293
+ if (e.a === 1) {
294
+ y1 = s1 ? s1.y : -1e6;
295
+ x1 = e.c - e.b * y1;
296
+ y2 = s2 ? s2.y : 1e6;
297
+ x2 = e.c - e.b * y2;
298
+ } else {
299
+ x1 = s1 ? s1.x : -1e6;
300
+ y1 = e.c - e.a * x1;
301
+ x2 = s2 ? s2.x : 1e6;
302
+ y2 = e.c - e.a * x2;
303
+ }
304
+ var v1 = [x1, y1],
305
+ v2 = [x2, y2];
306
+ polygons[e.region.l.index].push(v1, v2);
307
+ polygons[e.region.r.index].push(v1, v2);
308
+ });
309
+
310
+ // Reconnect the polygon segments into counterclockwise loops.
311
+ return polygons.map(function(polygon, i) {
312
+ var cx = vertices[i][0],
313
+ cy = vertices[i][1];
314
+ polygon.forEach(function(v) {
315
+ v.angle = Math.atan2(v[0] - cx, v[1] - cy);
316
+ });
317
+ return polygon.sort(function(a, b) {
318
+ return a.angle - b.angle;
319
+ }).filter(function(d, i) {
320
+ return !i || (d.angle - polygon[i - 1].angle > 1e-10);
321
+ });
322
+ });
323
+ };
324
+
325
+ var d3_voronoi_opposite = {"l": "r", "r": "l"};
326
+
327
+ function d3_voronoi_tessellate(vertices, callback) {
328
+
329
+ var Sites = {
330
+ list: vertices
331
+ .map(function(v, i) {
332
+ return {
333
+ index: i,
334
+ x: v[0],
335
+ y: v[1]
336
+ };
337
+ })
338
+ .sort(function(a, b) {
339
+ return a.y < b.y ? -1
340
+ : a.y > b.y ? 1
341
+ : a.x < b.x ? -1
342
+ : a.x > b.x ? 1
343
+ : 0;
344
+ }),
345
+ bottomSite: null
346
+ };
347
+
348
+ var EdgeList = {
349
+ list: [],
350
+ leftEnd: null,
351
+ rightEnd: null,
352
+
353
+ init: function() {
354
+ EdgeList.leftEnd = EdgeList.createHalfEdge(null, "l");
355
+ EdgeList.rightEnd = EdgeList.createHalfEdge(null, "l");
356
+ EdgeList.leftEnd.r = EdgeList.rightEnd;
357
+ EdgeList.rightEnd.l = EdgeList.leftEnd;
358
+ EdgeList.list.unshift(EdgeList.leftEnd, EdgeList.rightEnd);
359
+ },
360
+
361
+ createHalfEdge: function(edge, side) {
362
+ return {
363
+ edge: edge,
364
+ side: side,
365
+ vertex: null,
366
+ "l": null,
367
+ "r": null
368
+ };
369
+ },
370
+
371
+ insert: function(lb, he) {
372
+ he.l = lb;
373
+ he.r = lb.r;
374
+ lb.r.l = he;
375
+ lb.r = he;
376
+ },
377
+
378
+ leftBound: function(p) {
379
+ var he = EdgeList.leftEnd;
380
+ do {
381
+ he = he.r;
382
+ } while (he != EdgeList.rightEnd && Geom.rightOf(he, p));
383
+ he = he.l;
384
+ return he;
385
+ },
386
+
387
+ del: function(he) {
388
+ he.l.r = he.r;
389
+ he.r.l = he.l;
390
+ he.edge = null;
391
+ },
392
+
393
+ right: function(he) {
394
+ return he.r;
395
+ },
396
+
397
+ left: function(he) {
398
+ return he.l;
399
+ },
400
+
401
+ leftRegion: function(he) {
402
+ return he.edge == null
403
+ ? Sites.bottomSite
404
+ : he.edge.region[he.side];
405
+ },
406
+
407
+ rightRegion: function(he) {
408
+ return he.edge == null
409
+ ? Sites.bottomSite
410
+ : he.edge.region[d3_voronoi_opposite[he.side]];
411
+ }
412
+ };
413
+
414
+ var Geom = {
415
+
416
+ bisect: function(s1, s2) {
417
+ var newEdge = {
418
+ region: {"l": s1, "r": s2},
419
+ ep: {"l": null, "r": null}
420
+ };
421
+
422
+ var dx = s2.x - s1.x,
423
+ dy = s2.y - s1.y,
424
+ adx = dx > 0 ? dx : -dx,
425
+ ady = dy > 0 ? dy : -dy;
426
+
427
+ newEdge.c = s1.x * dx + s1.y * dy
428
+ + (dx * dx + dy * dy) * .5;
429
+
430
+ if (adx > ady) {
431
+ newEdge.a = 1;
432
+ newEdge.b = dy / dx;
433
+ newEdge.c /= dx;
434
+ } else {
435
+ newEdge.b = 1;
436
+ newEdge.a = dx / dy;
437
+ newEdge.c /= dy;
438
+ }
439
+
440
+ return newEdge;
441
+ },
442
+
443
+ intersect: function(el1, el2) {
444
+ var e1 = el1.edge,
445
+ e2 = el2.edge;
446
+ if (!e1 || !e2 || (e1.region.r == e2.region.r)) {
447
+ return null;
448
+ }
449
+ var d = (e1.a * e2.b) - (e1.b * e2.a);
450
+ if (Math.abs(d) < 1e-10) {
451
+ return null;
452
+ }
453
+ var xint = (e1.c * e2.b - e2.c * e1.b) / d,
454
+ yint = (e2.c * e1.a - e1.c * e2.a) / d,
455
+ e1r = e1.region.r,
456
+ e2r = e2.region.r,
457
+ el,
458
+ e;
459
+ if ((e1r.y < e2r.y) ||
460
+ (e1r.y == e2r.y && e1r.x < e2r.x)) {
461
+ el = el1;
462
+ e = e1;
463
+ } else {
464
+ el = el2;
465
+ e = e2;
466
+ }
467
+ var rightOfSite = (xint >= e.region.r.x);
468
+ if ((rightOfSite && (el.side === "l")) ||
469
+ (!rightOfSite && (el.side === "r"))) {
470
+ return null;
471
+ }
472
+ return {
473
+ x: xint,
474
+ y: yint
475
+ };
476
+ },
477
+
478
+ rightOf: function(he, p) {
479
+ var e = he.edge,
480
+ topsite = e.region.r,
481
+ rightOfSite = (p.x > topsite.x);
482
+
483
+ if (rightOfSite && (he.side === "l")) {
484
+ return 1;
485
+ }
486
+ if (!rightOfSite && (he.side === "r")) {
487
+ return 0;
488
+ }
489
+ if (e.a === 1) {
490
+ var dyp = p.y - topsite.y,
491
+ dxp = p.x - topsite.x,
492
+ fast = 0,
493
+ above = 0;
494
+
495
+ if ((!rightOfSite && (e.b < 0)) ||
496
+ (rightOfSite && (e.b >= 0))) {
497
+ above = fast = (dyp >= e.b * dxp);
498
+ } else {
499
+ above = ((p.x + p.y * e.b) > e.c);
500
+ if (e.b < 0) {
501
+ above = !above;
502
+ }
503
+ if (!above) {
504
+ fast = 1;
505
+ }
506
+ }
507
+ if (!fast) {
508
+ var dxs = topsite.x - e.region.l.x;
509
+ above = (e.b * (dxp * dxp - dyp * dyp)) <
510
+ (dxs * dyp * (1 + 2 * dxp / dxs + e.b * e.b));
511
+
512
+ if (e.b < 0) {
513
+ above = !above;
514
+ }
515
+ }
516
+ } else /* e.b == 1 */ {
517
+ var yl = e.c - e.a * p.x,
518
+ t1 = p.y - yl,
519
+ t2 = p.x - topsite.x,
520
+ t3 = yl - topsite.y;
521
+
522
+ above = (t1 * t1) > (t2 * t2 + t3 * t3);
523
+ }
524
+ return he.side === "l" ? above : !above;
525
+ },
526
+
527
+ endPoint: function(edge, side, site) {
528
+ edge.ep[side] = site;
529
+ if (!edge.ep[d3_voronoi_opposite[side]]) return;
530
+ callback(edge);
531
+ },
532
+
533
+ distance: function(s, t) {
534
+ var dx = s.x - t.x,
535
+ dy = s.y - t.y;
536
+ return Math.sqrt(dx * dx + dy * dy);
537
+ }
538
+ };
539
+
540
+ var EventQueue = {
541
+ list: [],
542
+
543
+ insert: function(he, site, offset) {
544
+ he.vertex = site;
545
+ he.ystar = site.y + offset;
546
+ for (var i=0, list=EventQueue.list, l=list.length; i<l; i++) {
547
+ var next = list[i];
548
+ if (he.ystar > next.ystar ||
549
+ (he.ystar == next.ystar &&
550
+ site.x > next.vertex.x)) {
551
+ continue;
552
+ } else {
553
+ break;
554
+ }
555
+ }
556
+ list.splice(i, 0, he);
557
+ },
558
+
559
+ del: function(he) {
560
+ for (var i=0, ls=EventQueue.list, l=ls.length; i<l && (ls[i] != he); ++i) {}
561
+ ls.splice(i, 1);
562
+ },
563
+
564
+ empty: function() { return EventQueue.list.length === 0; },
565
+
566
+ nextEvent: function(he) {
567
+ for (var i=0, ls=EventQueue.list, l=ls.length; i<l; ++i) {
568
+ if (ls[i] == he) return ls[i+1];
569
+ }
570
+ return null;
571
+ },
572
+
573
+ min: function() {
574
+ var elem = EventQueue.list[0];
575
+ return {
576
+ x: elem.vertex.x,
577
+ y: elem.ystar
578
+ };
579
+ },
580
+
581
+ extractMin: function() {
582
+ return EventQueue.list.shift();
583
+ }
584
+ };
585
+
586
+ EdgeList.init();
587
+ Sites.bottomSite = Sites.list.shift();
588
+
589
+ var newSite = Sites.list.shift(), newIntStar;
590
+ var lbnd, rbnd, llbnd, rrbnd, bisector;
591
+ var bot, top, temp, p, v;
592
+ var e, pm;
593
+
594
+ while (true) {
595
+ if (!EventQueue.empty()) {
596
+ newIntStar = EventQueue.min();
597
+ }
598
+ if (newSite && (EventQueue.empty()
599
+ || newSite.y < newIntStar.y
600
+ || (newSite.y == newIntStar.y
601
+ && newSite.x < newIntStar.x))) { //new site is smallest
602
+ lbnd = EdgeList.leftBound(newSite);
603
+ rbnd = EdgeList.right(lbnd);
604
+ bot = EdgeList.rightRegion(lbnd);
605
+ e = Geom.bisect(bot, newSite);
606
+ bisector = EdgeList.createHalfEdge(e, "l");
607
+ EdgeList.insert(lbnd, bisector);
608
+ p = Geom.intersect(lbnd, bisector);
609
+ if (p) {
610
+ EventQueue.del(lbnd);
611
+ EventQueue.insert(lbnd, p, Geom.distance(p, newSite));
612
+ }
613
+ lbnd = bisector;
614
+ bisector = EdgeList.createHalfEdge(e, "r");
615
+ EdgeList.insert(lbnd, bisector);
616
+ p = Geom.intersect(bisector, rbnd);
617
+ if (p) {
618
+ EventQueue.insert(bisector, p, Geom.distance(p, newSite));
619
+ }
620
+ newSite = Sites.list.shift();
621
+ } else if (!EventQueue.empty()) { //intersection is smallest
622
+ lbnd = EventQueue.extractMin();
623
+ llbnd = EdgeList.left(lbnd);
624
+ rbnd = EdgeList.right(lbnd);
625
+ rrbnd = EdgeList.right(rbnd);
626
+ bot = EdgeList.leftRegion(lbnd);
627
+ top = EdgeList.rightRegion(rbnd);
628
+ v = lbnd.vertex;
629
+ Geom.endPoint(lbnd.edge, lbnd.side, v);
630
+ Geom.endPoint(rbnd.edge, rbnd.side, v);
631
+ EdgeList.del(lbnd);
632
+ EventQueue.del(rbnd);
633
+ EdgeList.del(rbnd);
634
+ pm = "l";
635
+ if (bot.y > top.y) {
636
+ temp = bot;
637
+ bot = top;
638
+ top = temp;
639
+ pm = "r";
640
+ }
641
+ e = Geom.bisect(bot, top);
642
+ bisector = EdgeList.createHalfEdge(e, pm);
643
+ EdgeList.insert(llbnd, bisector);
644
+ Geom.endPoint(e, d3_voronoi_opposite[pm], v);
645
+ p = Geom.intersect(llbnd, bisector);
646
+ if (p) {
647
+ EventQueue.del(llbnd);
648
+ EventQueue.insert(llbnd, p, Geom.distance(p, bot));
649
+ }
650
+ p = Geom.intersect(bisector, rrbnd);
651
+ if (p) {
652
+ EventQueue.insert(bisector, p, Geom.distance(p, bot));
653
+ }
654
+ } else {
655
+ break;
656
+ }
657
+ }//end while
658
+
659
+ for (lbnd = EdgeList.right(EdgeList.leftEnd);
660
+ lbnd != EdgeList.rightEnd;
661
+ lbnd = EdgeList.right(lbnd)) {
662
+ callback(lbnd.edge);
663
+ }
664
+ }
665
+ /**
666
+ * @param vertices [[x1, y1], [x2, y2], …]
667
+ * @returns triangles [[[x1, y1], [x2, y2], [x3, y3]], …]
668
+ */
669
+ d3.geom.delaunay = function(vertices) {
670
+ var edges = vertices.map(function() { return []; }),
671
+ triangles = [];
672
+
673
+ // Use the Voronoi tessellation to determine Delaunay edges.
674
+ d3_voronoi_tessellate(vertices, function(e) {
675
+ edges[e.region.l.index].push(vertices[e.region.r.index]);
676
+ });
677
+
678
+ // Reconnect the edges into counterclockwise triangles.
679
+ edges.forEach(function(edge, i) {
680
+ var v = vertices[i],
681
+ cx = v[0],
682
+ cy = v[1];
683
+ edge.forEach(function(v) {
684
+ v.angle = Math.atan2(v[0] - cx, v[1] - cy);
685
+ });
686
+ edge.sort(function(a, b) {
687
+ return a.angle - b.angle;
688
+ });
689
+ for (var j = 0, m = edge.length - 1; j < m; j++) {
690
+ triangles.push([v, edge[j], edge[j + 1]]);
691
+ }
692
+ });
693
+
694
+ return triangles;
695
+ };
696
+ // Constructs a new quadtree for the specified array of points. A quadtree is a
697
+ // two-dimensional recursive spatial subdivision. This implementation uses
698
+ // square partitions, dividing each square into four equally-sized squares. Each
699
+ // point exists in a unique node; if multiple points are in the same position,
700
+ // some points may be stored on internal nodes rather than leaf nodes. Quadtrees
701
+ // can be used to accelerate various spatial operations, such as the Barnes-Hut
702
+ // approximation for computing n-body forces, or collision detection.
703
+ d3.geom.quadtree = function(points, x1, y1, x2, y2) {
704
+ var p,
705
+ i = -1,
706
+ n = points.length;
707
+
708
+ // Type conversion for deprecated API.
709
+ if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint);
710
+
711
+ // Allow bounds to be specified explicitly.
712
+ if (arguments.length < 5) {
713
+ if (arguments.length === 3) {
714
+ y2 = x2 = y1;
715
+ y1 = x1;
716
+ } else {
717
+ x1 = y1 = Infinity;
718
+ x2 = y2 = -Infinity;
719
+
720
+ // Compute bounds.
721
+ while (++i < n) {
722
+ p = points[i];
723
+ if (p.x < x1) x1 = p.x;
724
+ if (p.y < y1) y1 = p.y;
725
+ if (p.x > x2) x2 = p.x;
726
+ if (p.y > y2) y2 = p.y;
727
+ }
728
+
729
+ // Squarify the bounds.
730
+ var dx = x2 - x1,
731
+ dy = y2 - y1;
732
+ if (dx > dy) y2 = y1 + dx;
733
+ else x2 = x1 + dy;
734
+ }
735
+ }
736
+
737
+ // Recursively inserts the specified point p at the node n or one of its
738
+ // descendants. The bounds are defined by [x1, x2] and [y1, y2].
739
+ function insert(n, p, x1, y1, x2, y2) {
740
+ if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points
741
+ if (n.leaf) {
742
+ var v = n.point;
743
+ if (v) {
744
+ // If the point at this leaf node is at the same position as the new
745
+ // point we are adding, we leave the point associated with the
746
+ // internal node while adding the new point to a child node. This
747
+ // avoids infinite recursion.
748
+ if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) {
749
+ insertChild(n, p, x1, y1, x2, y2);
750
+ } else {
751
+ n.point = null;
752
+ insertChild(n, v, x1, y1, x2, y2);
753
+ insertChild(n, p, x1, y1, x2, y2);
754
+ }
755
+ } else {
756
+ n.point = p;
757
+ }
758
+ } else {
759
+ insertChild(n, p, x1, y1, x2, y2);
760
+ }
761
+ }
762
+
763
+ // Recursively inserts the specified point p into a descendant of node n. The
764
+ // bounds are defined by [x1, x2] and [y1, y2].
765
+ function insertChild(n, p, x1, y1, x2, y2) {
766
+ // Compute the split point, and the quadrant in which to insert p.
767
+ var sx = (x1 + x2) * .5,
768
+ sy = (y1 + y2) * .5,
769
+ right = p.x >= sx,
770
+ bottom = p.y >= sy,
771
+ i = (bottom << 1) + right;
772
+
773
+ // Recursively insert into the child node.
774
+ n.leaf = false;
775
+ n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());
776
+
777
+ // Update the bounds as we recurse.
778
+ if (right) x1 = sx; else x2 = sx;
779
+ if (bottom) y1 = sy; else y2 = sy;
780
+ insert(n, p, x1, y1, x2, y2);
781
+ }
782
+
783
+ // Create the root node.
784
+ var root = d3_geom_quadtreeNode();
785
+
786
+ root.add = function(p) {
787
+ insert(root, p, x1, y1, x2, y2);
788
+ };
789
+
790
+ root.visit = function(f) {
791
+ d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2);
792
+ };
793
+
794
+ // Insert all points.
795
+ points.forEach(root.add);
796
+ return root;
797
+ };
798
+
799
+ function d3_geom_quadtreeNode() {
800
+ return {
801
+ leaf: true,
802
+ nodes: [],
803
+ point: null
804
+ };
805
+ }
806
+
807
+ function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
808
+ if (!f(node, x1, y1, x2, y2)) {
809
+ var sx = (x1 + x2) * .5,
810
+ sy = (y1 + y2) * .5,
811
+ children = node.nodes;
812
+ if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
813
+ if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
814
+ if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
815
+ if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
816
+ }
817
+ }
818
+
819
+ function d3_geom_quadtreePoint(p) {
820
+ return {
821
+ x: p[0],
822
+ y: p[1]
823
+ };
824
+ }
825
+ })();