social_stream-base 0.7.11 → 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +1 -0
- data/app/assets/javascripts/ties.js +67 -0
- data/app/assets/stylesheets/activities.css +1 -1
- data/app/assets/stylesheets/base.css +3 -2
- data/app/assets/stylesheets/ties.css +10 -0
- data/app/controllers/ties_controller.rb +8 -0
- data/app/helpers/subjects_helper.rb +5 -5
- data/app/models/actor.rb +21 -0
- data/app/views/ties/index.html.erb +8 -0
- data/config/locales/en.yml +1 -1
- data/config/routes.rb +1 -0
- data/lib/mailboxer/notification_decoder.rb +8 -8
- data/lib/social_stream/base/version.rb +1 -1
- data/lib/social_stream/controllers/helpers.rb +4 -6
- data/lib/social_stream/d3.rb +53 -0
- data/lib/social_stream/toolbar_config.rb +1 -0
- data/lib/social_stream-base.rb +9 -3
- data/lib/tasks/db/populate.rake +60 -54
- data/social_stream-base.gemspec +10 -11
- data/spec/dummy/app/assets/javascripts/application.js +8 -0
- data/spec/dummy/app/assets/stylesheets/application.css +8 -0
- data/spec/dummy/db/schema.rb +2 -9
- data/vendor/assets/javascripts/d3.geom.js +825 -0
- data/vendor/assets/javascripts/d3.js +4013 -0
- data/vendor/assets/javascripts/d3.layout.js +1865 -0
- data/vendor/assets/stylesheets/jquery-ui.css +1 -1
- metadata +84 -90
@@ -0,0 +1,825 @@
|
|
1
|
+
(function(){d3.geom = {};
|
2
|
+
/**
|
3
|
+
* Computes a contour for a given input grid function using the <a
|
4
|
+
* href="http://en.wikipedia.org/wiki/Marching_squares">marching
|
5
|
+
* squares</a> algorithm. Returns the contour polygon as an array of points.
|
6
|
+
*
|
7
|
+
* @param grid a two-input function(x, y) that returns true for values
|
8
|
+
* inside the contour and false for values outside the contour.
|
9
|
+
* @param start an optional starting point [x, y] on the grid.
|
10
|
+
* @returns polygon [[x1, y1], [x2, y2], …]
|
11
|
+
*/
|
12
|
+
d3.geom.contour = function(grid, start) {
|
13
|
+
var s = start || d3_geom_contourStart(grid), // starting point
|
14
|
+
c = [], // contour polygon
|
15
|
+
x = s[0], // current x position
|
16
|
+
y = s[1], // current y position
|
17
|
+
dx = 0, // next x direction
|
18
|
+
dy = 0, // next y direction
|
19
|
+
pdx = NaN, // previous x direction
|
20
|
+
pdy = NaN, // previous y direction
|
21
|
+
i = 0;
|
22
|
+
|
23
|
+
do {
|
24
|
+
// determine marching squares index
|
25
|
+
i = 0;
|
26
|
+
if (grid(x-1, y-1)) i += 1;
|
27
|
+
if (grid(x, y-1)) i += 2;
|
28
|
+
if (grid(x-1, y )) i += 4;
|
29
|
+
if (grid(x, y )) i += 8;
|
30
|
+
|
31
|
+
// determine next direction
|
32
|
+
if (i === 6) {
|
33
|
+
dx = pdy === -1 ? -1 : 1;
|
34
|
+
dy = 0;
|
35
|
+
} else if (i === 9) {
|
36
|
+
dx = 0;
|
37
|
+
dy = pdx === 1 ? -1 : 1;
|
38
|
+
} else {
|
39
|
+
dx = d3_geom_contourDx[i];
|
40
|
+
dy = d3_geom_contourDy[i];
|
41
|
+
}
|
42
|
+
|
43
|
+
// update contour polygon
|
44
|
+
if (dx != pdx && dy != pdy) {
|
45
|
+
c.push([x, y]);
|
46
|
+
pdx = dx;
|
47
|
+
pdy = dy;
|
48
|
+
}
|
49
|
+
|
50
|
+
x += dx;
|
51
|
+
y += dy;
|
52
|
+
} while (s[0] != x || s[1] != y);
|
53
|
+
|
54
|
+
return c;
|
55
|
+
};
|
56
|
+
|
57
|
+
// lookup tables for marching directions
|
58
|
+
var d3_geom_contourDx = [1, 0, 1, 1,-1, 0,-1, 1,0, 0,0,0,-1, 0,-1,NaN],
|
59
|
+
d3_geom_contourDy = [0,-1, 0, 0, 0,-1, 0, 0,1,-1,1,1, 0,-1, 0,NaN];
|
60
|
+
|
61
|
+
function d3_geom_contourStart(grid) {
|
62
|
+
var x = 0,
|
63
|
+
y = 0;
|
64
|
+
|
65
|
+
// search for a starting point; begin at origin
|
66
|
+
// and proceed along outward-expanding diagonals
|
67
|
+
while (true) {
|
68
|
+
if (grid(x,y)) {
|
69
|
+
return [x,y];
|
70
|
+
}
|
71
|
+
if (x === 0) {
|
72
|
+
x = y + 1;
|
73
|
+
y = 0;
|
74
|
+
} else {
|
75
|
+
x = x - 1;
|
76
|
+
y = y + 1;
|
77
|
+
}
|
78
|
+
}
|
79
|
+
}
|
80
|
+
/**
|
81
|
+
* Computes the 2D convex hull of a set of points using Graham's scanning
|
82
|
+
* algorithm. The algorithm has been implemented as described in Cormen,
|
83
|
+
* Leiserson, and Rivest's Introduction to Algorithms. The running time of
|
84
|
+
* this algorithm is O(n log n), where n is the number of input points.
|
85
|
+
*
|
86
|
+
* @param vertices [[x1, y1], [x2, y2], …]
|
87
|
+
* @returns polygon [[x1, y1], [x2, y2], …]
|
88
|
+
*/
|
89
|
+
d3.geom.hull = function(vertices) {
|
90
|
+
if (vertices.length < 3) return [];
|
91
|
+
|
92
|
+
var len = vertices.length,
|
93
|
+
plen = len - 1,
|
94
|
+
points = [],
|
95
|
+
stack = [],
|
96
|
+
i, j, h = 0, x1, y1, x2, y2, u, v, a, sp;
|
97
|
+
|
98
|
+
// find the starting ref point: leftmost point with the minimum y coord
|
99
|
+
for (i=1; i<len; ++i) {
|
100
|
+
if (vertices[i][1] < vertices[h][1]) {
|
101
|
+
h = i;
|
102
|
+
} else if (vertices[i][1] == vertices[h][1]) {
|
103
|
+
h = (vertices[i][0] < vertices[h][0] ? i : h);
|
104
|
+
}
|
105
|
+
}
|
106
|
+
|
107
|
+
// calculate polar angles from ref point and sort
|
108
|
+
for (i=0; i<len; ++i) {
|
109
|
+
if (i === h) continue;
|
110
|
+
y1 = vertices[i][1] - vertices[h][1];
|
111
|
+
x1 = vertices[i][0] - vertices[h][0];
|
112
|
+
points.push({angle: Math.atan2(y1, x1), index: i});
|
113
|
+
}
|
114
|
+
points.sort(function(a, b) { return a.angle - b.angle; });
|
115
|
+
|
116
|
+
// toss out duplicate angles
|
117
|
+
a = points[0].angle;
|
118
|
+
v = points[0].index;
|
119
|
+
u = 0;
|
120
|
+
for (i=1; i<plen; ++i) {
|
121
|
+
j = points[i].index;
|
122
|
+
if (a == points[i].angle) {
|
123
|
+
// keep angle for point most distant from the reference
|
124
|
+
x1 = vertices[v][0] - vertices[h][0];
|
125
|
+
y1 = vertices[v][1] - vertices[h][1];
|
126
|
+
x2 = vertices[j][0] - vertices[h][0];
|
127
|
+
y2 = vertices[j][1] - vertices[h][1];
|
128
|
+
if ((x1*x1 + y1*y1) >= (x2*x2 + y2*y2)) {
|
129
|
+
points[i].index = -1;
|
130
|
+
} else {
|
131
|
+
points[u].index = -1;
|
132
|
+
a = points[i].angle;
|
133
|
+
u = i;
|
134
|
+
v = j;
|
135
|
+
}
|
136
|
+
} else {
|
137
|
+
a = points[i].angle;
|
138
|
+
u = i;
|
139
|
+
v = j;
|
140
|
+
}
|
141
|
+
}
|
142
|
+
|
143
|
+
// initialize the stack
|
144
|
+
stack.push(h);
|
145
|
+
for (i=0, j=0; i<2; ++j) {
|
146
|
+
if (points[j].index !== -1) {
|
147
|
+
stack.push(points[j].index);
|
148
|
+
i++;
|
149
|
+
}
|
150
|
+
}
|
151
|
+
sp = stack.length;
|
152
|
+
|
153
|
+
// do graham's scan
|
154
|
+
for (; j<plen; ++j) {
|
155
|
+
if (points[j].index === -1) continue; // skip tossed out points
|
156
|
+
while (!d3_geom_hullCCW(stack[sp-2], stack[sp-1], points[j].index, vertices)) {
|
157
|
+
--sp;
|
158
|
+
}
|
159
|
+
stack[sp++] = points[j].index;
|
160
|
+
}
|
161
|
+
|
162
|
+
// construct the hull
|
163
|
+
var poly = [];
|
164
|
+
for (i=0; i<sp; ++i) {
|
165
|
+
poly.push(vertices[stack[i]]);
|
166
|
+
}
|
167
|
+
return poly;
|
168
|
+
}
|
169
|
+
|
170
|
+
// are three points in counter-clockwise order?
|
171
|
+
function d3_geom_hullCCW(i1, i2, i3, v) {
|
172
|
+
var t, a, b, c, d, e, f;
|
173
|
+
t = v[i1]; a = t[0]; b = t[1];
|
174
|
+
t = v[i2]; c = t[0]; d = t[1];
|
175
|
+
t = v[i3]; e = t[0]; f = t[1];
|
176
|
+
return ((f-b)*(c-a) - (d-b)*(e-a)) > 0;
|
177
|
+
}
|
178
|
+
// Note: requires coordinates to be counterclockwise and convex!
|
179
|
+
d3.geom.polygon = function(coordinates) {
|
180
|
+
|
181
|
+
coordinates.area = function() {
|
182
|
+
var i = 0,
|
183
|
+
n = coordinates.length,
|
184
|
+
a = coordinates[n - 1][0] * coordinates[0][1],
|
185
|
+
b = coordinates[n - 1][1] * coordinates[0][0];
|
186
|
+
while (++i < n) {
|
187
|
+
a += coordinates[i - 1][0] * coordinates[i][1];
|
188
|
+
b += coordinates[i - 1][1] * coordinates[i][0];
|
189
|
+
}
|
190
|
+
return (b - a) * .5;
|
191
|
+
};
|
192
|
+
|
193
|
+
coordinates.centroid = function(k) {
|
194
|
+
var i = -1,
|
195
|
+
n = coordinates.length - 1,
|
196
|
+
x = 0,
|
197
|
+
y = 0,
|
198
|
+
a,
|
199
|
+
b,
|
200
|
+
c;
|
201
|
+
if (!arguments.length) k = 1 / (6 * coordinates.area());
|
202
|
+
while (++i < n) {
|
203
|
+
a = coordinates[i];
|
204
|
+
b = coordinates[i + 1];
|
205
|
+
c = a[0] * b[1] - b[0] * a[1];
|
206
|
+
x += (a[0] + b[0]) * c;
|
207
|
+
y += (a[1] + b[1]) * c;
|
208
|
+
}
|
209
|
+
return [x * k, y * k];
|
210
|
+
};
|
211
|
+
|
212
|
+
// The Sutherland-Hodgman clipping algorithm.
|
213
|
+
coordinates.clip = function(subject) {
|
214
|
+
var input,
|
215
|
+
i = -1,
|
216
|
+
n = coordinates.length,
|
217
|
+
j,
|
218
|
+
m,
|
219
|
+
a = coordinates[n - 1],
|
220
|
+
b,
|
221
|
+
c,
|
222
|
+
d;
|
223
|
+
while (++i < n) {
|
224
|
+
input = subject.slice();
|
225
|
+
subject.length = 0;
|
226
|
+
b = coordinates[i];
|
227
|
+
c = input[(m = input.length) - 1];
|
228
|
+
j = -1;
|
229
|
+
while (++j < m) {
|
230
|
+
d = input[j];
|
231
|
+
if (d3_geom_polygonInside(d, a, b)) {
|
232
|
+
if (!d3_geom_polygonInside(c, a, b)) {
|
233
|
+
subject.push(d3_geom_polygonIntersect(c, d, a, b));
|
234
|
+
}
|
235
|
+
subject.push(d);
|
236
|
+
} else if (d3_geom_polygonInside(c, a, b)) {
|
237
|
+
subject.push(d3_geom_polygonIntersect(c, d, a, b));
|
238
|
+
}
|
239
|
+
c = d;
|
240
|
+
}
|
241
|
+
a = b;
|
242
|
+
}
|
243
|
+
return subject;
|
244
|
+
};
|
245
|
+
|
246
|
+
return coordinates;
|
247
|
+
};
|
248
|
+
|
249
|
+
function d3_geom_polygonInside(p, a, b) {
|
250
|
+
return (b[0] - a[0]) * (p[1] - a[1]) < (b[1] - a[1]) * (p[0] - a[0]);
|
251
|
+
}
|
252
|
+
|
253
|
+
// Intersect two infinite lines cd and ab.
|
254
|
+
function d3_geom_polygonIntersect(c, d, a, b) {
|
255
|
+
var x1 = c[0], x2 = d[0], x3 = a[0], x4 = b[0],
|
256
|
+
y1 = c[1], y2 = d[1], y3 = a[1], y4 = b[1],
|
257
|
+
x13 = x1 - x3,
|
258
|
+
x21 = x2 - x1,
|
259
|
+
x43 = x4 - x3,
|
260
|
+
y13 = y1 - y3,
|
261
|
+
y21 = y2 - y1,
|
262
|
+
y43 = y4 - y3,
|
263
|
+
ua = (x43 * y13 - y43 * x13) / (y43 * x21 - x43 * y21);
|
264
|
+
return [x1 + ua * x21, y1 + ua * y21];
|
265
|
+
}
|
266
|
+
// Adapted from Nicolas Garcia Belmonte's JIT implementation:
|
267
|
+
// http://blog.thejit.org/2010/02/12/voronoi-tessellation/
|
268
|
+
// http://blog.thejit.org/assets/voronoijs/voronoi.js
|
269
|
+
// See lib/jit/LICENSE for details.
|
270
|
+
|
271
|
+
/**
|
272
|
+
* @param vertices [[x1, y1], [x2, y2], …]
|
273
|
+
* @returns polygons [[[x1, y1], [x2, y2], …], …]
|
274
|
+
*/
|
275
|
+
d3.geom.voronoi = function(vertices) {
|
276
|
+
var polygons = vertices.map(function() { return []; });
|
277
|
+
|
278
|
+
// Note: we expect the caller to clip the polygons, if needed.
|
279
|
+
d3_voronoi_tessellate(vertices, function(e) {
|
280
|
+
var s1,
|
281
|
+
s2,
|
282
|
+
x1,
|
283
|
+
x2,
|
284
|
+
y1,
|
285
|
+
y2;
|
286
|
+
if (e.a === 1 && e.b >= 0) {
|
287
|
+
s1 = e.ep.r;
|
288
|
+
s2 = e.ep.l;
|
289
|
+
} else {
|
290
|
+
s1 = e.ep.l;
|
291
|
+
s2 = e.ep.r;
|
292
|
+
}
|
293
|
+
if (e.a === 1) {
|
294
|
+
y1 = s1 ? s1.y : -1e6;
|
295
|
+
x1 = e.c - e.b * y1;
|
296
|
+
y2 = s2 ? s2.y : 1e6;
|
297
|
+
x2 = e.c - e.b * y2;
|
298
|
+
} else {
|
299
|
+
x1 = s1 ? s1.x : -1e6;
|
300
|
+
y1 = e.c - e.a * x1;
|
301
|
+
x2 = s2 ? s2.x : 1e6;
|
302
|
+
y2 = e.c - e.a * x2;
|
303
|
+
}
|
304
|
+
var v1 = [x1, y1],
|
305
|
+
v2 = [x2, y2];
|
306
|
+
polygons[e.region.l.index].push(v1, v2);
|
307
|
+
polygons[e.region.r.index].push(v1, v2);
|
308
|
+
});
|
309
|
+
|
310
|
+
// Reconnect the polygon segments into counterclockwise loops.
|
311
|
+
return polygons.map(function(polygon, i) {
|
312
|
+
var cx = vertices[i][0],
|
313
|
+
cy = vertices[i][1];
|
314
|
+
polygon.forEach(function(v) {
|
315
|
+
v.angle = Math.atan2(v[0] - cx, v[1] - cy);
|
316
|
+
});
|
317
|
+
return polygon.sort(function(a, b) {
|
318
|
+
return a.angle - b.angle;
|
319
|
+
}).filter(function(d, i) {
|
320
|
+
return !i || (d.angle - polygon[i - 1].angle > 1e-10);
|
321
|
+
});
|
322
|
+
});
|
323
|
+
};
|
324
|
+
|
325
|
+
var d3_voronoi_opposite = {"l": "r", "r": "l"};
|
326
|
+
|
327
|
+
function d3_voronoi_tessellate(vertices, callback) {
|
328
|
+
|
329
|
+
var Sites = {
|
330
|
+
list: vertices
|
331
|
+
.map(function(v, i) {
|
332
|
+
return {
|
333
|
+
index: i,
|
334
|
+
x: v[0],
|
335
|
+
y: v[1]
|
336
|
+
};
|
337
|
+
})
|
338
|
+
.sort(function(a, b) {
|
339
|
+
return a.y < b.y ? -1
|
340
|
+
: a.y > b.y ? 1
|
341
|
+
: a.x < b.x ? -1
|
342
|
+
: a.x > b.x ? 1
|
343
|
+
: 0;
|
344
|
+
}),
|
345
|
+
bottomSite: null
|
346
|
+
};
|
347
|
+
|
348
|
+
var EdgeList = {
|
349
|
+
list: [],
|
350
|
+
leftEnd: null,
|
351
|
+
rightEnd: null,
|
352
|
+
|
353
|
+
init: function() {
|
354
|
+
EdgeList.leftEnd = EdgeList.createHalfEdge(null, "l");
|
355
|
+
EdgeList.rightEnd = EdgeList.createHalfEdge(null, "l");
|
356
|
+
EdgeList.leftEnd.r = EdgeList.rightEnd;
|
357
|
+
EdgeList.rightEnd.l = EdgeList.leftEnd;
|
358
|
+
EdgeList.list.unshift(EdgeList.leftEnd, EdgeList.rightEnd);
|
359
|
+
},
|
360
|
+
|
361
|
+
createHalfEdge: function(edge, side) {
|
362
|
+
return {
|
363
|
+
edge: edge,
|
364
|
+
side: side,
|
365
|
+
vertex: null,
|
366
|
+
"l": null,
|
367
|
+
"r": null
|
368
|
+
};
|
369
|
+
},
|
370
|
+
|
371
|
+
insert: function(lb, he) {
|
372
|
+
he.l = lb;
|
373
|
+
he.r = lb.r;
|
374
|
+
lb.r.l = he;
|
375
|
+
lb.r = he;
|
376
|
+
},
|
377
|
+
|
378
|
+
leftBound: function(p) {
|
379
|
+
var he = EdgeList.leftEnd;
|
380
|
+
do {
|
381
|
+
he = he.r;
|
382
|
+
} while (he != EdgeList.rightEnd && Geom.rightOf(he, p));
|
383
|
+
he = he.l;
|
384
|
+
return he;
|
385
|
+
},
|
386
|
+
|
387
|
+
del: function(he) {
|
388
|
+
he.l.r = he.r;
|
389
|
+
he.r.l = he.l;
|
390
|
+
he.edge = null;
|
391
|
+
},
|
392
|
+
|
393
|
+
right: function(he) {
|
394
|
+
return he.r;
|
395
|
+
},
|
396
|
+
|
397
|
+
left: function(he) {
|
398
|
+
return he.l;
|
399
|
+
},
|
400
|
+
|
401
|
+
leftRegion: function(he) {
|
402
|
+
return he.edge == null
|
403
|
+
? Sites.bottomSite
|
404
|
+
: he.edge.region[he.side];
|
405
|
+
},
|
406
|
+
|
407
|
+
rightRegion: function(he) {
|
408
|
+
return he.edge == null
|
409
|
+
? Sites.bottomSite
|
410
|
+
: he.edge.region[d3_voronoi_opposite[he.side]];
|
411
|
+
}
|
412
|
+
};
|
413
|
+
|
414
|
+
var Geom = {
|
415
|
+
|
416
|
+
bisect: function(s1, s2) {
|
417
|
+
var newEdge = {
|
418
|
+
region: {"l": s1, "r": s2},
|
419
|
+
ep: {"l": null, "r": null}
|
420
|
+
};
|
421
|
+
|
422
|
+
var dx = s2.x - s1.x,
|
423
|
+
dy = s2.y - s1.y,
|
424
|
+
adx = dx > 0 ? dx : -dx,
|
425
|
+
ady = dy > 0 ? dy : -dy;
|
426
|
+
|
427
|
+
newEdge.c = s1.x * dx + s1.y * dy
|
428
|
+
+ (dx * dx + dy * dy) * .5;
|
429
|
+
|
430
|
+
if (adx > ady) {
|
431
|
+
newEdge.a = 1;
|
432
|
+
newEdge.b = dy / dx;
|
433
|
+
newEdge.c /= dx;
|
434
|
+
} else {
|
435
|
+
newEdge.b = 1;
|
436
|
+
newEdge.a = dx / dy;
|
437
|
+
newEdge.c /= dy;
|
438
|
+
}
|
439
|
+
|
440
|
+
return newEdge;
|
441
|
+
},
|
442
|
+
|
443
|
+
intersect: function(el1, el2) {
|
444
|
+
var e1 = el1.edge,
|
445
|
+
e2 = el2.edge;
|
446
|
+
if (!e1 || !e2 || (e1.region.r == e2.region.r)) {
|
447
|
+
return null;
|
448
|
+
}
|
449
|
+
var d = (e1.a * e2.b) - (e1.b * e2.a);
|
450
|
+
if (Math.abs(d) < 1e-10) {
|
451
|
+
return null;
|
452
|
+
}
|
453
|
+
var xint = (e1.c * e2.b - e2.c * e1.b) / d,
|
454
|
+
yint = (e2.c * e1.a - e1.c * e2.a) / d,
|
455
|
+
e1r = e1.region.r,
|
456
|
+
e2r = e2.region.r,
|
457
|
+
el,
|
458
|
+
e;
|
459
|
+
if ((e1r.y < e2r.y) ||
|
460
|
+
(e1r.y == e2r.y && e1r.x < e2r.x)) {
|
461
|
+
el = el1;
|
462
|
+
e = e1;
|
463
|
+
} else {
|
464
|
+
el = el2;
|
465
|
+
e = e2;
|
466
|
+
}
|
467
|
+
var rightOfSite = (xint >= e.region.r.x);
|
468
|
+
if ((rightOfSite && (el.side === "l")) ||
|
469
|
+
(!rightOfSite && (el.side === "r"))) {
|
470
|
+
return null;
|
471
|
+
}
|
472
|
+
return {
|
473
|
+
x: xint,
|
474
|
+
y: yint
|
475
|
+
};
|
476
|
+
},
|
477
|
+
|
478
|
+
rightOf: function(he, p) {
|
479
|
+
var e = he.edge,
|
480
|
+
topsite = e.region.r,
|
481
|
+
rightOfSite = (p.x > topsite.x);
|
482
|
+
|
483
|
+
if (rightOfSite && (he.side === "l")) {
|
484
|
+
return 1;
|
485
|
+
}
|
486
|
+
if (!rightOfSite && (he.side === "r")) {
|
487
|
+
return 0;
|
488
|
+
}
|
489
|
+
if (e.a === 1) {
|
490
|
+
var dyp = p.y - topsite.y,
|
491
|
+
dxp = p.x - topsite.x,
|
492
|
+
fast = 0,
|
493
|
+
above = 0;
|
494
|
+
|
495
|
+
if ((!rightOfSite && (e.b < 0)) ||
|
496
|
+
(rightOfSite && (e.b >= 0))) {
|
497
|
+
above = fast = (dyp >= e.b * dxp);
|
498
|
+
} else {
|
499
|
+
above = ((p.x + p.y * e.b) > e.c);
|
500
|
+
if (e.b < 0) {
|
501
|
+
above = !above;
|
502
|
+
}
|
503
|
+
if (!above) {
|
504
|
+
fast = 1;
|
505
|
+
}
|
506
|
+
}
|
507
|
+
if (!fast) {
|
508
|
+
var dxs = topsite.x - e.region.l.x;
|
509
|
+
above = (e.b * (dxp * dxp - dyp * dyp)) <
|
510
|
+
(dxs * dyp * (1 + 2 * dxp / dxs + e.b * e.b));
|
511
|
+
|
512
|
+
if (e.b < 0) {
|
513
|
+
above = !above;
|
514
|
+
}
|
515
|
+
}
|
516
|
+
} else /* e.b == 1 */ {
|
517
|
+
var yl = e.c - e.a * p.x,
|
518
|
+
t1 = p.y - yl,
|
519
|
+
t2 = p.x - topsite.x,
|
520
|
+
t3 = yl - topsite.y;
|
521
|
+
|
522
|
+
above = (t1 * t1) > (t2 * t2 + t3 * t3);
|
523
|
+
}
|
524
|
+
return he.side === "l" ? above : !above;
|
525
|
+
},
|
526
|
+
|
527
|
+
endPoint: function(edge, side, site) {
|
528
|
+
edge.ep[side] = site;
|
529
|
+
if (!edge.ep[d3_voronoi_opposite[side]]) return;
|
530
|
+
callback(edge);
|
531
|
+
},
|
532
|
+
|
533
|
+
distance: function(s, t) {
|
534
|
+
var dx = s.x - t.x,
|
535
|
+
dy = s.y - t.y;
|
536
|
+
return Math.sqrt(dx * dx + dy * dy);
|
537
|
+
}
|
538
|
+
};
|
539
|
+
|
540
|
+
var EventQueue = {
|
541
|
+
list: [],
|
542
|
+
|
543
|
+
insert: function(he, site, offset) {
|
544
|
+
he.vertex = site;
|
545
|
+
he.ystar = site.y + offset;
|
546
|
+
for (var i=0, list=EventQueue.list, l=list.length; i<l; i++) {
|
547
|
+
var next = list[i];
|
548
|
+
if (he.ystar > next.ystar ||
|
549
|
+
(he.ystar == next.ystar &&
|
550
|
+
site.x > next.vertex.x)) {
|
551
|
+
continue;
|
552
|
+
} else {
|
553
|
+
break;
|
554
|
+
}
|
555
|
+
}
|
556
|
+
list.splice(i, 0, he);
|
557
|
+
},
|
558
|
+
|
559
|
+
del: function(he) {
|
560
|
+
for (var i=0, ls=EventQueue.list, l=ls.length; i<l && (ls[i] != he); ++i) {}
|
561
|
+
ls.splice(i, 1);
|
562
|
+
},
|
563
|
+
|
564
|
+
empty: function() { return EventQueue.list.length === 0; },
|
565
|
+
|
566
|
+
nextEvent: function(he) {
|
567
|
+
for (var i=0, ls=EventQueue.list, l=ls.length; i<l; ++i) {
|
568
|
+
if (ls[i] == he) return ls[i+1];
|
569
|
+
}
|
570
|
+
return null;
|
571
|
+
},
|
572
|
+
|
573
|
+
min: function() {
|
574
|
+
var elem = EventQueue.list[0];
|
575
|
+
return {
|
576
|
+
x: elem.vertex.x,
|
577
|
+
y: elem.ystar
|
578
|
+
};
|
579
|
+
},
|
580
|
+
|
581
|
+
extractMin: function() {
|
582
|
+
return EventQueue.list.shift();
|
583
|
+
}
|
584
|
+
};
|
585
|
+
|
586
|
+
EdgeList.init();
|
587
|
+
Sites.bottomSite = Sites.list.shift();
|
588
|
+
|
589
|
+
var newSite = Sites.list.shift(), newIntStar;
|
590
|
+
var lbnd, rbnd, llbnd, rrbnd, bisector;
|
591
|
+
var bot, top, temp, p, v;
|
592
|
+
var e, pm;
|
593
|
+
|
594
|
+
while (true) {
|
595
|
+
if (!EventQueue.empty()) {
|
596
|
+
newIntStar = EventQueue.min();
|
597
|
+
}
|
598
|
+
if (newSite && (EventQueue.empty()
|
599
|
+
|| newSite.y < newIntStar.y
|
600
|
+
|| (newSite.y == newIntStar.y
|
601
|
+
&& newSite.x < newIntStar.x))) { //new site is smallest
|
602
|
+
lbnd = EdgeList.leftBound(newSite);
|
603
|
+
rbnd = EdgeList.right(lbnd);
|
604
|
+
bot = EdgeList.rightRegion(lbnd);
|
605
|
+
e = Geom.bisect(bot, newSite);
|
606
|
+
bisector = EdgeList.createHalfEdge(e, "l");
|
607
|
+
EdgeList.insert(lbnd, bisector);
|
608
|
+
p = Geom.intersect(lbnd, bisector);
|
609
|
+
if (p) {
|
610
|
+
EventQueue.del(lbnd);
|
611
|
+
EventQueue.insert(lbnd, p, Geom.distance(p, newSite));
|
612
|
+
}
|
613
|
+
lbnd = bisector;
|
614
|
+
bisector = EdgeList.createHalfEdge(e, "r");
|
615
|
+
EdgeList.insert(lbnd, bisector);
|
616
|
+
p = Geom.intersect(bisector, rbnd);
|
617
|
+
if (p) {
|
618
|
+
EventQueue.insert(bisector, p, Geom.distance(p, newSite));
|
619
|
+
}
|
620
|
+
newSite = Sites.list.shift();
|
621
|
+
} else if (!EventQueue.empty()) { //intersection is smallest
|
622
|
+
lbnd = EventQueue.extractMin();
|
623
|
+
llbnd = EdgeList.left(lbnd);
|
624
|
+
rbnd = EdgeList.right(lbnd);
|
625
|
+
rrbnd = EdgeList.right(rbnd);
|
626
|
+
bot = EdgeList.leftRegion(lbnd);
|
627
|
+
top = EdgeList.rightRegion(rbnd);
|
628
|
+
v = lbnd.vertex;
|
629
|
+
Geom.endPoint(lbnd.edge, lbnd.side, v);
|
630
|
+
Geom.endPoint(rbnd.edge, rbnd.side, v);
|
631
|
+
EdgeList.del(lbnd);
|
632
|
+
EventQueue.del(rbnd);
|
633
|
+
EdgeList.del(rbnd);
|
634
|
+
pm = "l";
|
635
|
+
if (bot.y > top.y) {
|
636
|
+
temp = bot;
|
637
|
+
bot = top;
|
638
|
+
top = temp;
|
639
|
+
pm = "r";
|
640
|
+
}
|
641
|
+
e = Geom.bisect(bot, top);
|
642
|
+
bisector = EdgeList.createHalfEdge(e, pm);
|
643
|
+
EdgeList.insert(llbnd, bisector);
|
644
|
+
Geom.endPoint(e, d3_voronoi_opposite[pm], v);
|
645
|
+
p = Geom.intersect(llbnd, bisector);
|
646
|
+
if (p) {
|
647
|
+
EventQueue.del(llbnd);
|
648
|
+
EventQueue.insert(llbnd, p, Geom.distance(p, bot));
|
649
|
+
}
|
650
|
+
p = Geom.intersect(bisector, rrbnd);
|
651
|
+
if (p) {
|
652
|
+
EventQueue.insert(bisector, p, Geom.distance(p, bot));
|
653
|
+
}
|
654
|
+
} else {
|
655
|
+
break;
|
656
|
+
}
|
657
|
+
}//end while
|
658
|
+
|
659
|
+
for (lbnd = EdgeList.right(EdgeList.leftEnd);
|
660
|
+
lbnd != EdgeList.rightEnd;
|
661
|
+
lbnd = EdgeList.right(lbnd)) {
|
662
|
+
callback(lbnd.edge);
|
663
|
+
}
|
664
|
+
}
|
665
|
+
/**
|
666
|
+
* @param vertices [[x1, y1], [x2, y2], …]
|
667
|
+
* @returns triangles [[[x1, y1], [x2, y2], [x3, y3]], …]
|
668
|
+
*/
|
669
|
+
d3.geom.delaunay = function(vertices) {
|
670
|
+
var edges = vertices.map(function() { return []; }),
|
671
|
+
triangles = [];
|
672
|
+
|
673
|
+
// Use the Voronoi tessellation to determine Delaunay edges.
|
674
|
+
d3_voronoi_tessellate(vertices, function(e) {
|
675
|
+
edges[e.region.l.index].push(vertices[e.region.r.index]);
|
676
|
+
});
|
677
|
+
|
678
|
+
// Reconnect the edges into counterclockwise triangles.
|
679
|
+
edges.forEach(function(edge, i) {
|
680
|
+
var v = vertices[i],
|
681
|
+
cx = v[0],
|
682
|
+
cy = v[1];
|
683
|
+
edge.forEach(function(v) {
|
684
|
+
v.angle = Math.atan2(v[0] - cx, v[1] - cy);
|
685
|
+
});
|
686
|
+
edge.sort(function(a, b) {
|
687
|
+
return a.angle - b.angle;
|
688
|
+
});
|
689
|
+
for (var j = 0, m = edge.length - 1; j < m; j++) {
|
690
|
+
triangles.push([v, edge[j], edge[j + 1]]);
|
691
|
+
}
|
692
|
+
});
|
693
|
+
|
694
|
+
return triangles;
|
695
|
+
};
|
696
|
+
// Constructs a new quadtree for the specified array of points. A quadtree is a
|
697
|
+
// two-dimensional recursive spatial subdivision. This implementation uses
|
698
|
+
// square partitions, dividing each square into four equally-sized squares. Each
|
699
|
+
// point exists in a unique node; if multiple points are in the same position,
|
700
|
+
// some points may be stored on internal nodes rather than leaf nodes. Quadtrees
|
701
|
+
// can be used to accelerate various spatial operations, such as the Barnes-Hut
|
702
|
+
// approximation for computing n-body forces, or collision detection.
|
703
|
+
d3.geom.quadtree = function(points, x1, y1, x2, y2) {
|
704
|
+
var p,
|
705
|
+
i = -1,
|
706
|
+
n = points.length;
|
707
|
+
|
708
|
+
// Type conversion for deprecated API.
|
709
|
+
if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint);
|
710
|
+
|
711
|
+
// Allow bounds to be specified explicitly.
|
712
|
+
if (arguments.length < 5) {
|
713
|
+
if (arguments.length === 3) {
|
714
|
+
y2 = x2 = y1;
|
715
|
+
y1 = x1;
|
716
|
+
} else {
|
717
|
+
x1 = y1 = Infinity;
|
718
|
+
x2 = y2 = -Infinity;
|
719
|
+
|
720
|
+
// Compute bounds.
|
721
|
+
while (++i < n) {
|
722
|
+
p = points[i];
|
723
|
+
if (p.x < x1) x1 = p.x;
|
724
|
+
if (p.y < y1) y1 = p.y;
|
725
|
+
if (p.x > x2) x2 = p.x;
|
726
|
+
if (p.y > y2) y2 = p.y;
|
727
|
+
}
|
728
|
+
|
729
|
+
// Squarify the bounds.
|
730
|
+
var dx = x2 - x1,
|
731
|
+
dy = y2 - y1;
|
732
|
+
if (dx > dy) y2 = y1 + dx;
|
733
|
+
else x2 = x1 + dy;
|
734
|
+
}
|
735
|
+
}
|
736
|
+
|
737
|
+
// Recursively inserts the specified point p at the node n or one of its
|
738
|
+
// descendants. The bounds are defined by [x1, x2] and [y1, y2].
|
739
|
+
function insert(n, p, x1, y1, x2, y2) {
|
740
|
+
if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points
|
741
|
+
if (n.leaf) {
|
742
|
+
var v = n.point;
|
743
|
+
if (v) {
|
744
|
+
// If the point at this leaf node is at the same position as the new
|
745
|
+
// point we are adding, we leave the point associated with the
|
746
|
+
// internal node while adding the new point to a child node. This
|
747
|
+
// avoids infinite recursion.
|
748
|
+
if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) {
|
749
|
+
insertChild(n, p, x1, y1, x2, y2);
|
750
|
+
} else {
|
751
|
+
n.point = null;
|
752
|
+
insertChild(n, v, x1, y1, x2, y2);
|
753
|
+
insertChild(n, p, x1, y1, x2, y2);
|
754
|
+
}
|
755
|
+
} else {
|
756
|
+
n.point = p;
|
757
|
+
}
|
758
|
+
} else {
|
759
|
+
insertChild(n, p, x1, y1, x2, y2);
|
760
|
+
}
|
761
|
+
}
|
762
|
+
|
763
|
+
// Recursively inserts the specified point p into a descendant of node n. The
|
764
|
+
// bounds are defined by [x1, x2] and [y1, y2].
|
765
|
+
function insertChild(n, p, x1, y1, x2, y2) {
|
766
|
+
// Compute the split point, and the quadrant in which to insert p.
|
767
|
+
var sx = (x1 + x2) * .5,
|
768
|
+
sy = (y1 + y2) * .5,
|
769
|
+
right = p.x >= sx,
|
770
|
+
bottom = p.y >= sy,
|
771
|
+
i = (bottom << 1) + right;
|
772
|
+
|
773
|
+
// Recursively insert into the child node.
|
774
|
+
n.leaf = false;
|
775
|
+
n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());
|
776
|
+
|
777
|
+
// Update the bounds as we recurse.
|
778
|
+
if (right) x1 = sx; else x2 = sx;
|
779
|
+
if (bottom) y1 = sy; else y2 = sy;
|
780
|
+
insert(n, p, x1, y1, x2, y2);
|
781
|
+
}
|
782
|
+
|
783
|
+
// Create the root node.
|
784
|
+
var root = d3_geom_quadtreeNode();
|
785
|
+
|
786
|
+
root.add = function(p) {
|
787
|
+
insert(root, p, x1, y1, x2, y2);
|
788
|
+
};
|
789
|
+
|
790
|
+
root.visit = function(f) {
|
791
|
+
d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2);
|
792
|
+
};
|
793
|
+
|
794
|
+
// Insert all points.
|
795
|
+
points.forEach(root.add);
|
796
|
+
return root;
|
797
|
+
};
|
798
|
+
|
799
|
+
function d3_geom_quadtreeNode() {
|
800
|
+
return {
|
801
|
+
leaf: true,
|
802
|
+
nodes: [],
|
803
|
+
point: null
|
804
|
+
};
|
805
|
+
}
|
806
|
+
|
807
|
+
function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
|
808
|
+
if (!f(node, x1, y1, x2, y2)) {
|
809
|
+
var sx = (x1 + x2) * .5,
|
810
|
+
sy = (y1 + y2) * .5,
|
811
|
+
children = node.nodes;
|
812
|
+
if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
|
813
|
+
if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
|
814
|
+
if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
|
815
|
+
if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
|
816
|
+
}
|
817
|
+
}
|
818
|
+
|
819
|
+
function d3_geom_quadtreePoint(p) {
|
820
|
+
return {
|
821
|
+
x: p[0],
|
822
|
+
y: p[1]
|
823
|
+
};
|
824
|
+
}
|
825
|
+
})();
|