smother 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.rubocop.yml +20 -0
- data/CHANGELOG.md +5 -0
- data/CODE_OF_CONDUCT.md +132 -0
- data/LICENSE.txt +21 -0
- data/README.md +86 -0
- data/Rakefile +12 -0
- data/icon.svg +59 -0
- data/icon.webp +0 -0
- data/lib/smother/instance.rb +169 -0
- data/lib/smother/mock.rb +27 -0
- data/lib/smother/proxy.rb +29 -0
- data/lib/smother/version.rb +5 -0
- data/lib/smother.rb +15 -0
- metadata +58 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 48139c78f63aa1aee02f299d4423ab8a4f7eaf04a21f9c0253d57cc4f796dc7d
|
4
|
+
data.tar.gz: e877579dfdb4d7f63b3434946b6dcd46c94e2e7d9b3b40009ce7425f74c048b5
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: c2879c3b989bf5d1703eac2d1a45618138356b9282430d472b66ea13e2bd643d09d4527ad1d55a3b895e8b9c6d37f5da8f3b807da4a69a03a8ed43328d376f50
|
7
|
+
data.tar.gz: 1216bed9bf637881b8c64ee532bde286f2651723c8dfdf5f7cfc648721ae453405518d34d07f6852bda6fbdd1c94220ec67d7ebd2f3a9717948636179a38550d
|
data/.rubocop.yml
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
require:
|
2
|
+
- standard
|
3
|
+
plugins:
|
4
|
+
- rubocop-minitest
|
5
|
+
- rubocop-performance
|
6
|
+
|
7
|
+
inherit_gem:
|
8
|
+
standard: config/base.yml
|
9
|
+
|
10
|
+
AllCops:
|
11
|
+
NewCops: enable
|
12
|
+
Exclude:
|
13
|
+
- node_modules/**/*
|
14
|
+
- public/**/*
|
15
|
+
- vendor/**/*
|
16
|
+
|
17
|
+
Minitest:
|
18
|
+
Enabled: true
|
19
|
+
Performance:
|
20
|
+
Enabled: true
|
data/CHANGELOG.md
ADDED
data/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,132 @@
|
|
1
|
+
# Contributor Covenant Code of Conduct
|
2
|
+
|
3
|
+
## Our Pledge
|
4
|
+
|
5
|
+
We as members, contributors, and leaders pledge to make participation in our
|
6
|
+
community a harassment-free experience for everyone, regardless of age, body
|
7
|
+
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
8
|
+
identity and expression, level of experience, education, socio-economic status,
|
9
|
+
nationality, personal appearance, race, caste, color, religion, or sexual
|
10
|
+
identity and orientation.
|
11
|
+
|
12
|
+
We pledge to act and interact in ways that contribute to an open, welcoming,
|
13
|
+
diverse, inclusive, and healthy community.
|
14
|
+
|
15
|
+
## Our Standards
|
16
|
+
|
17
|
+
Examples of behavior that contributes to a positive environment for our
|
18
|
+
community include:
|
19
|
+
|
20
|
+
* Demonstrating empathy and kindness toward other people
|
21
|
+
* Being respectful of differing opinions, viewpoints, and experiences
|
22
|
+
* Giving and gracefully accepting constructive feedback
|
23
|
+
* Accepting responsibility and apologizing to those affected by our mistakes,
|
24
|
+
and learning from the experience
|
25
|
+
* Focusing on what is best not just for us as individuals, but for the overall
|
26
|
+
community
|
27
|
+
|
28
|
+
Examples of unacceptable behavior include:
|
29
|
+
|
30
|
+
* The use of sexualized language or imagery, and sexual attention or advances of
|
31
|
+
any kind
|
32
|
+
* Trolling, insulting or derogatory comments, and personal or political attacks
|
33
|
+
* Public or private harassment
|
34
|
+
* Publishing others' private information, such as a physical or email address,
|
35
|
+
without their explicit permission
|
36
|
+
* Other conduct which could reasonably be considered inappropriate in a
|
37
|
+
professional setting
|
38
|
+
|
39
|
+
## Enforcement Responsibilities
|
40
|
+
|
41
|
+
Community leaders are responsible for clarifying and enforcing our standards of
|
42
|
+
acceptable behavior and will take appropriate and fair corrective action in
|
43
|
+
response to any behavior that they deem inappropriate, threatening, offensive,
|
44
|
+
or harmful.
|
45
|
+
|
46
|
+
Community leaders have the right and responsibility to remove, edit, or reject
|
47
|
+
comments, commits, code, wiki edits, issues, and other contributions that are
|
48
|
+
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
49
|
+
decisions when appropriate.
|
50
|
+
|
51
|
+
## Scope
|
52
|
+
|
53
|
+
This Code of Conduct applies within all community spaces, and also applies when
|
54
|
+
an individual is officially representing the community in public spaces.
|
55
|
+
Examples of representing our community include using an official email address,
|
56
|
+
posting via an official social media account, or acting as an appointed
|
57
|
+
representative at an online or offline event.
|
58
|
+
|
59
|
+
## Enforcement
|
60
|
+
|
61
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
62
|
+
reported to the community leaders responsible for enforcement at
|
63
|
+
[INSERT CONTACT METHOD].
|
64
|
+
All complaints will be reviewed and investigated promptly and fairly.
|
65
|
+
|
66
|
+
All community leaders are obligated to respect the privacy and security of the
|
67
|
+
reporter of any incident.
|
68
|
+
|
69
|
+
## Enforcement Guidelines
|
70
|
+
|
71
|
+
Community leaders will follow these Community Impact Guidelines in determining
|
72
|
+
the consequences for any action they deem in violation of this Code of Conduct:
|
73
|
+
|
74
|
+
### 1. Correction
|
75
|
+
|
76
|
+
**Community Impact**: Use of inappropriate language or other behavior deemed
|
77
|
+
unprofessional or unwelcome in the community.
|
78
|
+
|
79
|
+
**Consequence**: A private, written warning from community leaders, providing
|
80
|
+
clarity around the nature of the violation and an explanation of why the
|
81
|
+
behavior was inappropriate. A public apology may be requested.
|
82
|
+
|
83
|
+
### 2. Warning
|
84
|
+
|
85
|
+
**Community Impact**: A violation through a single incident or series of
|
86
|
+
actions.
|
87
|
+
|
88
|
+
**Consequence**: A warning with consequences for continued behavior. No
|
89
|
+
interaction with the people involved, including unsolicited interaction with
|
90
|
+
those enforcing the Code of Conduct, for a specified period of time. This
|
91
|
+
includes avoiding interactions in community spaces as well as external channels
|
92
|
+
like social media. Violating these terms may lead to a temporary or permanent
|
93
|
+
ban.
|
94
|
+
|
95
|
+
### 3. Temporary Ban
|
96
|
+
|
97
|
+
**Community Impact**: A serious violation of community standards, including
|
98
|
+
sustained inappropriate behavior.
|
99
|
+
|
100
|
+
**Consequence**: A temporary ban from any sort of interaction or public
|
101
|
+
communication with the community for a specified period of time. No public or
|
102
|
+
private interaction with the people involved, including unsolicited interaction
|
103
|
+
with those enforcing the Code of Conduct, is allowed during this period.
|
104
|
+
Violating these terms may lead to a permanent ban.
|
105
|
+
|
106
|
+
### 4. Permanent Ban
|
107
|
+
|
108
|
+
**Community Impact**: Demonstrating a pattern of violation of community
|
109
|
+
standards, including sustained inappropriate behavior, harassment of an
|
110
|
+
individual, or aggression toward or disparagement of classes of individuals.
|
111
|
+
|
112
|
+
**Consequence**: A permanent ban from any sort of public interaction within the
|
113
|
+
community.
|
114
|
+
|
115
|
+
## Attribution
|
116
|
+
|
117
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
118
|
+
version 2.1, available at
|
119
|
+
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
|
120
|
+
|
121
|
+
Community Impact Guidelines were inspired by
|
122
|
+
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
|
123
|
+
|
124
|
+
For answers to common questions about this code of conduct, see the FAQ at
|
125
|
+
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
|
126
|
+
[https://www.contributor-covenant.org/translations][translations].
|
127
|
+
|
128
|
+
[homepage]: https://www.contributor-covenant.org
|
129
|
+
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
130
|
+
[Mozilla CoC]: https://github.com/mozilla/diversity
|
131
|
+
[FAQ]: https://www.contributor-covenant.org/faq
|
132
|
+
[translations]: https://www.contributor-covenant.org/translations
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2025 hschne
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
13
|
+
all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,86 @@
|
|
1
|
+
<div align="center">
|
2
|
+
|
3
|
+
# Smother
|
4
|
+
|
5
|
+

|
6
|
+
|
7
|
+
Smother is a _revolutionary_ tool to ✨ _magically_ ✨ increase your test coverage! Don't just cover your code - smother it! ☁️
|
8
|
+
|
9
|
+
| Without Smother 👎 | With Smother 👍 |
|
10
|
+
| ------------------ | --------------- |
|
11
|
+
|  | |
|
12
|
+
|
13
|
+
</div>
|
14
|
+
|
15
|
+
## Why Smother?
|
16
|
+
|
17
|
+
So you have some Ruby 💎 code and want to improve your test coverage.
|
18
|
+
|
19
|
+
Great Idea. But who has time time write more tests? You certainly don't.
|
20
|
+
|
21
|
+
Enter **Smother**.
|
22
|
+
|
23
|
+
Smother ✨ _magically_ ✨ improves your test coverage within seconds!
|
24
|
+
|
25
|
+
|
26
|
+
## Usage
|
27
|
+
|
28
|
+
Install Smother and call it in your test suite. A single test will do.
|
29
|
+
|
30
|
+
```bash
|
31
|
+
bundle add smother
|
32
|
+
```
|
33
|
+
|
34
|
+
```ruby
|
35
|
+
test 'smother everything' do
|
36
|
+
Smother.my_code
|
37
|
+
end
|
38
|
+
```
|
39
|
+
|
40
|
+
That's it. Now run your tests and enjoy your improved coverage! 🤩
|
41
|
+
|
42
|
+
## How It Works
|
43
|
+
|
44
|
+
It's really simple.
|
45
|
+
|
46
|
+
Smother identifies and calls all public methods in your code base with appropriate arguments. Any errors are ignored, so your code can continue execution.
|
47
|
+
|
48
|
+
This dramatically increases code coverage.
|
49
|
+
|
50
|
+
## FAQ
|
51
|
+
|
52
|
+
#### Wait, where are the assertions? This doesn't actually _test_ anything?!
|
53
|
+
|
54
|
+
Who cares? Smother improves your code coverage. _Brrr_, Number go up! 📈
|
55
|
+
|
56
|
+
#### Why not use AI to generate tests?
|
57
|
+
|
58
|
+
Why waste your precious credits if Smother can magically improve your code coverage in seconds?
|
59
|
+
|
60
|
+
#### Why not fake the coverage results altogether?
|
61
|
+
|
62
|
+
That would be cheating.
|
63
|
+
|
64
|
+
#### Smothering my code feels... violent?
|
65
|
+
|
66
|
+
Smother is efficient, but efficiency comes at a price.
|
67
|
+
|
68
|
+
#### Is this a joke?
|
69
|
+
|
70
|
+
Improving code coverage is no a joke.
|
71
|
+
|
72
|
+
#### No, really.
|
73
|
+
|
74
|
+
Okay, I thought this would be a fun way to play around with introspection and dynamic programming in Ruby.
|
75
|
+
|
76
|
+
I don't actually recommend anyone actually use this in any setting anywhere.
|
77
|
+
|
78
|
+
## Contributing
|
79
|
+
|
80
|
+
Are you sure you want to contribute to this monstrosity?
|
81
|
+
|
82
|
+
Well, don't let me stop you. Bug reports and pull requests are welcome on GitHub at https://github.com/hschne/smother. Contributors are expected to adhere to the [code of conduct](https://github.com/hschne/smother/blob/main/CODE_OF_CONDUCT.md).
|
83
|
+
|
84
|
+
## License
|
85
|
+
|
86
|
+
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|
data/Rakefile
ADDED
data/icon.svg
ADDED
@@ -0,0 +1,59 @@
|
|
1
|
+
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
2
|
+
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
3
|
+
|
4
|
+
<svg
|
5
|
+
width="200mm"
|
6
|
+
height="200mm"
|
7
|
+
viewBox="0 0 200 200"
|
8
|
+
version="1.1"
|
9
|
+
id="svg1"
|
10
|
+
xml:space="preserve"
|
11
|
+
xmlns:xlink="http://www.w3.org/1999/xlink"
|
12
|
+
xmlns="http://www.w3.org/2000/svg"
|
13
|
+
xmlns:svg="http://www.w3.org/2000/svg"><defs
|
14
|
+
id="defs1"><pattern
|
15
|
+
xlink:href="#shading10"
|
16
|
+
preserveAspectRatio="xMidYMid"
|
17
|
+
id="pattern15"
|
18
|
+
patternTransform="matrix(0.5,0,0,0.5,231.9442,203.8797)"
|
19
|
+
x="0"
|
20
|
+
y="0" /><pattern
|
21
|
+
patternUnits="userSpaceOnUse"
|
22
|
+
width="426.6123"
|
23
|
+
height="55.4942"
|
24
|
+
patternTransform="translate(231.9442,203.8797)"
|
25
|
+
preserveAspectRatio="xMidYMid"
|
26
|
+
id="shading10"
|
27
|
+
style="fill:#f7b7b5"><path
|
28
|
+
id="use37"
|
29
|
+
style="stroke-width:0.315146;stroke-linecap:square;paint-order:markers fill stroke;stop-color:#000000"
|
30
|
+
d="m 420.5733,0 h 0.2749 c 0.024,8.9645 5.7641,19.2925 5.7641,27.7471 0,8.4545 -5.7641,15.465 -5.7641,27.7471 h -0.2749 c 0,-12.8073 5.6908,-20.0005 5.6908,-27.7471 1e-4,-7.7466 -5.6292,-16.6995 -5.6908,-27.7471 z m -16.5687,0 h 1.0155 c 0.023,9.4488 5.2737,18.9076 5.2737,27.7471 0,8.8395 -5.2737,15.1536 -5.2737,27.7471 h -1.0155 c 0,-12.8543 5.2089,-19.5988 5.209,-27.7471 0,-8.1483 -5.1498,-16.3841 -5.209,-27.7471 z m -16.5687,0 h 1.7561 c 0.023,9.933 4.7832,18.5227 4.7832,27.7471 0,9.2244 -4.7832,14.8421 -4.7832,27.7471 h -1.7561 c 0,-12.9013 4.7271,-19.1972 4.7271,-27.7471 0,-8.55 -4.6704,-16.0687 -4.7271,-27.7471 z m -16.5687,0 h 2.4967 c 0.022,10.4173 4.2928,18.1377 4.2928,27.7471 0,9.6093 -4.2928,14.5307 -4.2928,27.7471 h -2.4967 c 0,-12.9482 4.2452,-18.7955 4.2452,-27.7471 1e-4,-8.9516 -4.191,-15.7533 -4.2452,-27.7471 z m -16.5687,0 h 3.2373 c 0.02,10.9016 3.8024,17.7528 3.8024,27.7471 0,9.9943 -3.8024,14.2192 -3.8024,27.7471 h -3.2373 c 0,-12.9952 3.7634,-18.3938 3.7634,-27.7471 0,-9.3533 -3.7117,-15.4379 -3.7634,-27.7471 z m -16.5687,0 h 3.9779 c 0.02,11.3858 3.3119,17.3679 3.3119,27.7471 0,10.3792 -3.3119,13.9077 -3.3119,27.7471 h -3.9779 c 0,-13.0422 3.2815,-17.9921 3.2815,-27.7471 0,-9.755 -3.2322,-15.1225 -3.2815,-27.7471 z M 321.161,0 h 4.7186 c 0.019,11.8701 2.8215,16.983 2.8215,27.7471 0,10.7641 -2.8215,13.5963 -2.8215,27.7471 h -4.7186 c 0,-13.0891 2.7997,-17.5905 2.7997,-27.7471 C 323.9608,17.5904 321.2079,12.94 321.161,0 Z m -16.5687,0 h 5.4592 c 0.018,12.3544 2.3311,16.598 2.3311,27.7471 0,11.149 -2.3311,13.2848 -2.3311,27.7471 h -5.4592 c 0,-13.1361 2.3179,-17.1888 2.3179,-27.7471 0,-10.5583 -2.2735,-14.4917 -2.3179,-27.7471 z m -16.5687,0 h 6.1998 c 0.017,12.8386 1.8406,16.2131 1.8406,27.7471 0,11.534 -1.8406,12.9733 -1.8406,27.7471 h -6.1998 c 0,-13.1831 1.836,-16.7871 1.836,-27.7471 0,-10.96 -1.7941,-14.1763 -1.836,-27.7471 z m -16.5687,0 h 6.9404 c 0.016,13.3229 1.3502,15.8282 1.3502,27.7471 0,11.9189 -1.3502,12.6619 -1.3502,27.7471 h -6.9404 c 0,-13.23 1.3541,-16.3854 1.3541,-27.7471 C 272.8091,16.3854 271.4943,13.8861 271.4549,0 Z m -16.5687,0 h 7.6811 c 0.015,13.8072 0.8597,15.4432 0.8597,27.7471 0,12.3038 -0.8597,12.3504 -0.8597,27.7471 h -7.6811 c 0,-13.277 0.8723,-15.9838 0.8723,-27.7471 0,-11.7634 -0.8353,-13.5456 -0.8723,-27.7471 z m -16.5687,0 h 8.4217 c 0.014,14.2914 0.3692,15.0583 0.3692,27.7471 0,12.6888 -0.3692,12.039 -0.3692,27.7471 h -8.4217 c 0,-13.324 0.3904,-15.5821 0.3904,-27.7471 0,-12.165 -0.3559,-13.2302 -0.3904,-27.7471 z m -16.5687,0 h 9.1623 c 0.013,14.7757 -0.1212,14.6734 -0.1212,27.7471 0,13.0737 0.1212,11.7275 0.1212,27.7471 h -9.1623 c 0,-13.3709 -0.091,-15.1804 -0.091,-27.7471 1e-4,-12.5667 0.1235,-12.9148 0.091,-27.7471 z m -16.5687,0 h 9.9029 c 0.012,15.26 -0.6116,14.2884 -0.6116,27.7471 0,13.4586 0.6116,11.416 0.6116,27.7471 h -9.9029 c 0,-13.4179 -0.5733,-14.7788 -0.5733,-27.7471 0,-12.9684 0.6028,-12.5994 0.5733,-27.7471 z m -16.5687,0 h 10.6435 c 0.011,15.7442 -1.102,13.9035 -1.102,27.7471 0,13.8436 1.102,11.1046 1.102,27.7471 h -10.6435 c 0,-13.4649 -1.0552,-14.3771 -1.0552,-27.7471 0,-13.3701 1.0823,-12.284 1.0552,-27.7471 z m -16.5688,0 h 11.3842 c 0.01,16.2285 -1.5925,13.5186 -1.5925,27.7471 0,14.2285 1.5925,10.7931 1.5925,27.7471 h -11.3842 c 0,-13.5118 -1.537,-13.9754 -1.537,-27.7471 1e-4,-13.7717 1.5617,-11.9686 1.537,-27.7471 z m -16.5687,0 h 12.1248 c 0.01,16.7128 -2.0829,13.1336 -2.0829,27.7471 0,14.6134 2.0829,10.4816 2.0829,27.7471 h -12.1248 c 0,-13.5588 -2.0188,-13.5737 -2.0188,-27.7471 0,-14.1734 2.041,-11.6532 2.0188,-27.7471 z m -16.5687,0 h 12.8654 c 0.01,17.197 -2.5733,12.7487 -2.5733,27.7471 0,14.9984 2.5733,10.1702 2.5733,27.7471 h -12.8654 c 0,-13.6058 -2.5007,-13.1721 -2.5007,-27.7471 0,-14.5751 2.5204,-11.3378 2.5007,-27.7471 z m -16.5687,0 h 13.606 c 0.01,17.6813 -3.0638,12.3638 -3.0638,27.7471 0,15.3833 3.0638,9.8587 3.0638,27.7471 h -13.606 c 0,-13.6527 -2.9826,-12.7704 -2.9826,-27.7471 1e-4,-14.9767 2.9999,-11.0224 2.9826,-27.7471 z m -16.5687,0 h 14.3466 c 0.01,18.1656 -3.5542,11.9788 -3.5542,27.7471 0,15.7682 3.5542,9.5472 3.5542,27.7471 h -14.3466 c 0,-13.6997 -3.4644,-12.3687 -3.4644,-27.7471 0,-15.3784 3.4792,-10.7071 3.4644,-27.7471 z M 89.1991,0 h 15.0872 c 0,18.6498 -4.0446,11.5939 -4.0446,27.7471 0,16.1532 4.0446,9.2358 4.0446,27.7471 H 89.1991 c 0,-13.7467 -3.9463,-11.967 -3.9463,-27.7471 C 85.2528,11.967 89.2114,17.3554 89.1991,0 Z M 72.6304,0 h 15.8278 c 0,19.1341 -4.5351,11.209 -4.5351,27.7471 0,16.5381 4.5351,8.9243 4.5351,27.7471 H 72.6304 c 0,-13.7936 -4.4282,-11.5654 -4.4282,-27.7471 C 68.2023,11.5653 72.6402,17.6708 72.6304,0 Z M 56.0617,0 h 16.5684 c 0,19.6184 -5.0255,10.824 -5.0255,27.7471 0,16.923 5.0255,8.6129 5.0255,27.7471 H 56.0617 c 0,-13.8406 -4.91,-11.1637 -4.91,-27.7471 0,-16.5834 4.9174,-9.7609 4.91,-27.7471 z M 39.493,0 h 17.3091 c 0,20.1026 -5.516,10.4391 -5.516,27.7471 0,17.3079 5.516,8.3014 5.516,27.7471 H 39.493 c 0,-13.8876 -5.3919,-10.762 -5.3919,-27.7471 C 34.1011,10.762 39.4979,18.3016 39.493,0 Z M 22.9242,0 H 40.974 c 9e-4,20.5869 -6.0064,10.0542 -6.0064,27.7471 0,17.6929 6.0064,7.9899 6.0064,27.7471 H 22.9242 c 0,-13.9346 -5.8737,-10.3604 -5.8737,-27.7471 0,-17.3868 5.8762,-9.1301 5.8737,-27.7471 z M 6.3555,0 h 18.7904 c 0,21.0712 -6.4969,9.6693 -6.4969,27.7471 0,18.0778 6.4969,7.6785 6.4969,27.7471 H 6.3555 C 6.3555,41.5127 0,45.5355 0,27.7471 0,9.9586 6.3555,18.9324 6.3555,0 Z" /></pattern></defs><g
|
31
|
+
id="layer1"
|
32
|
+
transform="translate(-18.804123,-53.952065)"><g
|
33
|
+
id="layer2"><g
|
34
|
+
id="g17"
|
35
|
+
transform="translate(13.799628,13.887581)"><ellipse
|
36
|
+
style="opacity:1;fill:#ac0c00;fill-opacity:1;stroke-width:0.259165"
|
37
|
+
id="path1"
|
38
|
+
cx="105.00442"
|
39
|
+
cy="140.06448"
|
40
|
+
rx="86.200294"
|
41
|
+
ry="86.112419" /><path
|
42
|
+
id="rect16"
|
43
|
+
style="opacity:1;fill:#660700;fill-opacity:1;stroke:none;stroke-width:1.47726;stroke-dasharray:none"
|
44
|
+
d="M 26.274347,200.08982 -87.986586,154.27039 -95.463084,263.23752 A 76.207172,101.44571 45.016194 0 0 22.74547,229.65323 76.207172,101.44571 45.016194 0 0 26.352157,225.40579 Z"
|
45
|
+
transform="matrix(0.84561386,-0.53379509,0.74882893,0.66276333,0,0)" /><path
|
46
|
+
style="opacity:1;fill:#fff4f4;fill-opacity:1;stroke:#8a0800;stroke-width:0.79375;stroke-dasharray:none;stroke-opacity:1"
|
47
|
+
d="m 75.057084,108.11202 c 0,0 12.6752,-7.0832 14.787734,-9.319999 2.112534,-2.236801 5.592003,-8.822936 8.325869,-7.828801 2.733863,0.994132 4.153723,3.848317 8.591143,6.001128 4.43743,2.152811 24.25207,6.019082 32.16036,8.743052 7.90828,2.72396 18.10118,9.57781 22.31893,10.36864 4.21775,0.79082 10.01716,-1.05444 10.98373,1.66952 0.96657,2.72397 -3.33905,7.99615 -3.86627,9.92929 -0.52722,1.93314 -4.56923,20.03432 -12.829,28.99704 -8.25976,8.96272 -16.60739,16.16805 -21.08875,18.80414 -4.48136,2.6361 -11.59882,5.97515 -12.30178,7.02959 -0.70296,1.05444 -4.30562,6.94171 -7.5568,6.94171 -3.25119,0 -4.83284,-5.44793 -8.25977,-6.6781 -3.42692,-1.23018 -18.804138,-4.39349 -32.160352,-12.30178 -13.356212,-7.90828 -25.833726,-17.31035 -28.8213,-19.06775 -2.987575,-1.75739 -8.347633,-2.19674 -7.644675,-6.06302 0.702958,-3.86627 5.18432,-4.74496 7.205326,-7.29319 2.021007,-2.54823 10.632247,-13.44408 13.795563,-16.69527 3.163313,-3.25118 16.360042,-13.2362 16.360042,-13.2362 z"
|
48
|
+
id="path2" /><path
|
49
|
+
style="opacity:1;fill:url(#pattern15);fill-opacity:1;stroke:#8a0800;stroke-width:0.79375;stroke-dasharray:none;stroke-opacity:1"
|
50
|
+
d="m 136.02248,147.53343 c 8.07954,-9.0422 27.32752,-18.97988 27.32752,-18.97988 0,0 -5.71856,20.81512 -14.41065,29.9636 -8.8166,9.27953 -30.66657,19.59498 -30.66657,19.59498 0,0 7.82611,-19.47272 17.7497,-30.5787 z"
|
51
|
+
id="path3" /></g></g><image
|
52
|
+
width="205.64601"
|
53
|
+
height="222.09769"
|
54
|
+
preserveAspectRatio="none"
|
55
|
+
xlink:href=" YWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBt ZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2 MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYt c3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmRjPSJodHRw Oi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyI+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJk ZjpsaT5WZWN0b3JTdG9jay5jb20vMTI4NjY5NDc8L3JkZjpsaT4gPC9yZGY6U2VxPiA8L2RjOmNy ZWF0b3I+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDw/eHBhY2tldCBl bmQ9InciPz7/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsL EBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQU FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAQ4A+gDAREAAhEBAxEB/8QAHgAB AAICAwEBAQAAAAAAAAAAAAEGBwgCBAUDCQr/xABWEAEAAQMDAQQHAQ4CCAQDBAsAAQIDBAUGEQcS ITFBCBMiUWFxgRQVFiMyQlJicoKRobHB0ZKiCRczQ0RTY7IkNMLwc4PhJSc5sxgZJjVkdXe0tdLx /8QAHQEBAAEFAQEBAAAAAAAAAAAAAAcBBAUGCAMCCf/EAEIRAQABAgMEBggEBQQBBAMBAAABAgME BREGITFBEiJRYXGBBxMykaGxwdEUQlLhFSNDYvAzcoKSJLLC0vE0U6JE/9oADAMBAAIRAxEAPwD9 UwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARyAByB2oA5iQOfn+4Dn4SDjNymnxqiPnKmsK 6Sj19v8APp/xQawaT2Ji5TV4VRPyk1g0ly5+EqqHa+E/uA5iAO1AHIHIAJAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAABEzwCO0DztV3PpGhUzVqWp4en0xHPOTkUW/5y8a71u17dUR4yu7GExGJ3WLc1eETPyU bWPSN6faRFUVbgtZdyn8jCtV3pn60xx/Fjbmb4K3xua+G9s2H2RzvEb4w8xH92kfOdVM1X0xNsY3 MYGkapnVeU1xRZpn99Uz/Bja9ocNT7FMz8Gx2PR5mVf+tcop85n5R9VT1L0zdRuTP3P2xi2Y8pys uqv+FNMfzWFe0df5Lcecs/Z9G9qP9fEzPhTEfOZVjUPSz31mTPqI0vBifD1WLNcx9aqpWVef4ur2 YiPJm7Xo/wAot+3NdXnEfKHgZ3pFdRM/ntbjuWInyx8e1b/lStKs4x1X9TTyhlrWxuR2v6GvjNU/ V4uV1c3vmRMXd2avMT5U5VVEf5eFtOY4yrjdn3slRs5k9v2cLR7tfm8m/vLcOVz67XtUu8/nZ12f /U8JxV+rjcn3yv6crwFv2bFEf8afs6NzVM69MzczsquZ86siuf6vKbtyeNU++VzGEw9Ps26Y/wCM fZ8asi9X+NeuVfOuZ/q+OlV2vaLVuOFMe6HHt1fn1f4pNZ7X10KOyPc5U5F6j8W9cp+Vcx/U6VUc 3zNq3PGmPdD7W9UzrMxNvOyrc++nIrj+r7i7cjhVPvl41YTD1e1bpn/jH2d6xvLcOLMTZ17VLUx+ ZnXY/wDU9YxV+nhcn3yt68rwFftWKJ/4x9nq4vVze+HERa3Zq8RHhFWVVX/3cvenMcZTwuz72Pr2 cye57WFo92nye3g+kV1DwO6ncdy9EeWRj2rn86VzTnGOp/qa+MQxt3Y3I7vGxp4VVR9Xv6f6We+s OY9fGl50R4+txZomfrTVC7oz/F0+1ET5MTe9H+U3PYmunzifnCz6b6Zuo25j7obYxb0ec4uXVRP7 qqZ/mvaNo6/z248pYS96N7U/6GJmPGmJ+Uwtml+mJtjI4jP0jVcGrzm3Fu9TH7qon+C/t7Q4ar26 Zj4sBf8AR5mVH+jcoq85j5wuekekb0+1eKYp3BaxLlX5GbarszH1qjj+LJW83wVzhc08dzXMRshn eH44eZj+3SflOq8aTubSdeoirTdTw9QpmOeca/Tc/lLJUXrd2NaKonwlrN/CYjDTpftzT4xMfN6X aey0TyCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAARyB2oBWdy9Str7QifuvruDhVx/uq7sVXP8Ec1fwWd7GYfD/6t cR5svg8nx+YTphbNVXfEbvfwYt3F6X21tO7VGk4GfrNyPCqaYx7U/Wr2v8rB3toMNRutxNXwj4t5 wfo+zO9pOIrptx49KfdG74sZa96Xm7dRiqnTMHTtIonwq7FV+5H1q4p/ysLd2hxNf+nTFPxbrhPR 5l1rfiLlVc+VMfDWfix1rnVzem45qjP3LqNduqe+1avepo/w0cQw93McXe9u5Py+TccLs7lGD0m1 hqdY5zHSn46qlcqm9XNdyZuXJ8a657Uz9ZY+ZmqdZbDTTTRHRojSO48VFQAAAAAAAAAAAAAAAAAC 3VNmuK7czbuR4V0T2Zj6wrEzTOsKVU01xpVGsd+9bdC6ubz23NP2Dcuo0UU+Fq9e9dR/hr5hkLWY 4uz7Fyfn82vYrZ3KcZr63DU69sR0Z98aMi6D6Xm7dO7NOp4Onavbjxq7FWPcn60zNP8AlZi1tDia N1ymKvg0/F+jzLrus4e5VRPlVHx0n4smbe9L/a2odmjVcDP0e5PjVFMZFuPrT7X+VmrO0GGr3XIm n4x/nk0nF+j7M7O/D103I8ejPund8WU9tdStr7vin7ka7g5tc/7qi7FNz60TxV/BnLOMw+I/0q4l o2MyfMMvnTFWaqe+Y3e+N3xWaJXjEHIJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxmrgFE3d1x2Xsua7edrdi7lU/8Jh/h 7vPumKeYj6zDGYjMsLht1de/sjfLZ8v2azXMtJsWZ6PbPVj3zx8tWF91emPkXO3a25oVFqnvinJ1 K52p+fq6J4/fU1u/tFPCxR5z9o+6R8B6OYjSrHX/ACpj6z9mH90dZd6bvmunUNwZUWKu6cfEq9Ra 493Zo45+sy16/mWLxHt1zp2Ru+SQ8DszlOX6TZsRM9tXWn4/SFL/ACpq/KnxnzljOO9s8bo0gBIA AAAAAAAAAAAAAAAAAAAAAAAI4A/Kir8qPCfOFSY1jSV02v1l3ns/sU6dr+VNinujGyqvX2uPdxXz x9JhkrGZYvD+xcnTsnf82sY7ZnKcw1m9YiJ7aerPw+rMG1PTHyLc0Wtx6FRdp7onJ0yvs1fObdc8 fuqbDh9op4X6POPtP3R7j/R1TOtWAv8AlXH1j7Mz7Q65bL3pNFvA1uzZyqv+EzfwF3n3RFXET9Jl smHzLC4ndRXv7J3SjfMNms1y3Wb9mej2x1o98cPPRfIqiYZNrDkAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJngHh7o3voWy8T7R req42m25j2YvV8VV/q0+NX0iVtfxNnD09K7VEMjgsuxeY1+rwlqa57o+c8I82Ct6emFhY/bsbX0m vNr8IzNQ5t2/nFuPan6zS1jE7Q0U9XD06987o93FKGW+jy/c0rzC70I7Kd8+/hHxYL3h1h3fvnt0 aprV/wCy1f8ACYs+ps8e6aafxv2plq+IzHFYndcr3dkboSll2zeV5ZpNizE1fqq60/Hh5RCmREU9 0RxHwYxsqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMRVHExEx7pFVy2h1g3fseaKdL1u/9mp/4 TJn11nj3dmrnj9mYZLD5lisLut17uyd8NZzDZvK8z1m/ZiKv1R1Z98cfPVnXZnph4eR2LG6NJrwq 57py9Pmblv5zbn2o+k1Npw20NFW7EU6d8b493FFuZejy/b1ry+7FcdlW6ffwn4M67X3toW9MT7To mqY2o2oj2os1+1R+tT40/WGz2cTZxFPStVRKL8bl2Ly6v1eLtTRPfHynhPk9yJiVyxyQAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMgoe /Otm0+nsV2tR1Km9n0x/5DD/AAt/6xHdT+1MMZisyw2E3XKt/ZG+WzZXs5mWbzE4e3pR+qd1Pv5+ WrXTfXpX7l3BNzH0K1b29hz3Rcji7k1R+tMdmn6Rz8Wn4rPr93q2Y6Me+Uw5XsDgcLpXjavW1dnC n7z5z5MLZ+oZWq5lzLzcm9mZVyea7+Rcmuur5zPe1quuq5V0q51nvSXZsWsNbi1ZoimmOURpHwfB 8PYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAOxgahlaVl0ZeFk3sPKtzzRfx7k0V0/KqO99 0V1W6ulROk9zxvWLWJom1epiqmeUxrHxZp2L6V25dverx9ds0bhw47vW1TFrJpj9aI7NX1jn4tlw ufX7XVvR0o90/ujXNNgcDita8FV6qrs40+7jHlPk2L2F1s2p1Dii1p2o02M+qO/AzOLV/wCkTPFX 7My2/C5lhsZut1b+yd0oezXZvMsomZxFvWj9Ub6ffy89F85ZRrCQAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARM8Ax51D667V6cxcs5eZ9u1Om O7T8Liu7E/pT4UftT9JYnF5nhsHurq1q7I4/s2vKNmcxziYqs0dGj9VW6PLnPk1j6gekruzevrcf Dvfe/plXMeowq59bXH6d3x+lPZhpWLzrE4nq0T0Ke7j7/smzKNisty7S5ej1tcc6uEeFP31YnmZq qmZnmZnmZnxmffLAcUgxERGkCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMxVExPE 0zzEx4xPvVjdvJiJjSWWOn3pKbr2TNrHzL33waZTxHqM2ufW0R+hd75+lXMM/hM6xOG0pr69Pfx9 /wB0f5vsVl2Za3LMeqr7aeE+NPD3aNm+nfXXavUX1djDzPsOqVR36fm8UXZn9GfCv9mefhDdcJme Gxm6idKuyeP7oTzfZjMcn1qvUdKj9VO+PPnHmyJEss1NIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAImQVDf8A1V2503xPW6xn00ZFUc2sKz7d+78q Pd8Z4j4rDFY6xg6dbtW/s5s9lWR47Oa+hhaNY51Tupjxn6cWrPUj0m9ybz9biaVNW3tKq5p7OPXz kXI/SueXyp4+ctGxud38RrTa6lPx9/2Tnk2xGBy7S7iv5tzv9mPCOfn7mHZmZmZmZmZnmZnxmfe1 3ikeIiI0gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJmmYmJmJieYmPGJ95w3 qTETGksw9OPSb3LsybWJqtVW4dKp4p7GRXxkW4/Ruefyq5+cNjwed38PpTd69Px9/wB0c5zsRgMx 1u4X+Vc7vZnxjl4x7m0+wOqu3OpGJ6zR8+mvIpjm7hXvYv2vnR5x8Y5j4t4wuOsYynW1Vv7OaDM1 yPH5PX0cXb0jlVG+mfCfpO9b4nlkGBSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAACAdDW9e0/bmm3tQ1PMs4GFZjmu/frimmP/AK/DxeVy7RZpmu5OkQuc Phr2LuxZsUTVVPCI3y1l6oellkZnrtP2ZbqxbHfTVquRR+Eq/wDh0T+L+tV3/CGl47Ppq1owm7vn 6QmnI9gaaNL+azrP6Ind/wAp5+Ee9rvnZ2TqeZdy8zIu5WVeq7Vy9ermuuuffMz3y1Cuuq5VNVc6 zKYbNm3h6ItWaYppjhEboh8Xw9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA H2wc7J0zLtZeHkXcXKs1dq3es1zRXRPviY74fdFdVuqKqJ0mHles28Rbm1epiqmeMTGsS2H6Yell k4U2dP3lanLsd1Marj0fhKfjcoj8b509/wAJbhgc+mnSjFb++PrH2Q9nmwNNet/Kp0n9E8P+M8vC fe2b0TXdP3Hp1nUNMzLOfhXY5ov2K4qpn/6/DxbnbuUXaYrtzrEoWxGGvYS7Nm/RNNUcYndL0Hqt gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETPAMT9WPSF 0Lpx63BxuzrGvRHH2OzX7Fmf+rX+T+rHNXy8WCx+bWcH1I61fZ929ZDsljM5mLtX8u1+qef+2Ofj wai766ja91G1L7ZrebVfimZmzjW/Zs2Y91FHl855mfej/FY29jKuldny5Q6CyrJcFk1r1eFo0meM zvqnxn6cFaWLOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALJsbqLr3T rUvtmiZ1ViKpibuNX7Vm9Huro8J+ccTHlK+wuNvYOrpWp8uUsJmuS4LObXq8XRrPKY9qPCfpwbd9 KPSG0LqNFrByZp0fXqo4+x3q/YvT/wBKv8r9WeKvn4pAwObWcZpRV1a+zt8HPmfbJY3Jpm7R/Mtf qjl/ujl48GWInlnWipAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAB0dZ1rB2/pt/P1LLtYWFYp7Vy/eqimmmPn/TzeVy5Rapmu5OkQuMPh72Ku02bFM1VTwiOLVL q76UWfuKb+l7Tqu6Zpk8016hMdnIvx+h/wAun/NPwaNmGeV3dbeG3U9vOfDs+adtn9hrWF6OJzOI rr5U/ljx/VPdw8WApmaqpqmZmZnmZnvmZ97U+PFLURERpAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAETNMxMTMTE8xMeMSrropMRMaSz50j9KLP256jS92Td1TTI4oo z49rIsR+l/zKf83zbXl+eV2tLeJ309vOPHt+aJtoNhrWK6WJyzSivnT+WfD9M/DwbXaNreDuDTbG oabl2s3Cv09q3fs1RVTVH/vy8m927lF2mK6J1iUE4jD3cLdqs36ZpqjjE8Xeei3AAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARyCk9TermhdLtNi9qV2b2ddpmcfT7M xN29Pv8A0affVPd857mNxuPs4GjpXJ38o5y2PJchxmeXehh40pjjVPCPvPdG9pf1J6ra71Q1P7Rq l71WHbqmcfT7MzFmz8ePyqv0p7/dxHcjjG4+9jqtbk6RyjlDpHJdn8Hkdro2I1rnjVPGftHdHxU5 jWyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALh036ra90w1L7 Rpd/1mJcqicjT70zNm98ePyav0o7/fzHcyWCx97A1a253c45S1vOtn8Hnlro4iNK44VRxj7x3T8G 6PTLq3oXVHTfXadd9TnWqYnI0+9Mets/H9Kn3VR3fKe5I+Cx9nHUdK3O/nHOHN2dZDjMju9DERrT PCqOE/ae6d67eLJNcSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJ kGE+tXpF4WwvX6Poc2tR3Dx2a6pntWcSf0+Pxq/0P38eE65mWb0YTW1a31/CPH7JH2b2QvZtpicV rRZ+NXh2R3+5qBrOtZ+4tTv6jqeXdzc6/V2rl+9VzVV/aI8ojujyR5du13q5uXJ1mXQ+FwtjBWac Ph6IpojhEf58XTeS6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAdzRtaztu6nj6jpmXdws2xV2rd+zVxVTP9Ynzie6fN62rtdmuLludJhbYnC2MbZqsYiiKqJ4xP +e6W3/RX0jMHfnqNH1ybWm7gn2aKons2cuf0Ofxa/wBCfpz4RIWW5xRi9LV3dX8J8Ps542l2PvZT 0sThda7Pxp8e2O/3s2RLZEbpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AABxrrpopmqqYppiOZmfCIUmdCImZ0hrB1y9JiqurI0DZuTxTHNvJ1e1Pj5TTZn+df8Ah97S80zr TWzhZ8avt9/cmvZfYrWKcbmlPfTRPzq/+Pv7GtEzNUzVVMzVM8zMzzMy0nXWU2xEUxpAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzTMTEzExPMTE8TEq66 byYiY0lsv0O9Jibc4+gbxyeaZ4t42sXJ8PKKb0/+v/F7265ZnXCzip8Kvv8AdCW0+xWkVY3K6e+q iPnT/wDH3djZ+iuK6YqpmKqZjmJjviW6IVmJidJclVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAHwzM2xp+Leycm9Rj49mia7l27VFNNFMd8zMz4Q+aqopiaqp0iH3Rbru1RR RGszuiI5tP8Art6Q9/e9d/Q9u3bmLt+J7F7Ijmm5m/1pt/Dxq8+7uR9mmcTiNbNidKOc9v7fN0Hs tsfRl0U4zHxrd4xHGKfvV8uW/ewa1dKSQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAARIM49CvSHyNkV2ND3DdrytvzMUWsiearmF/Wq38PGny7u5tOV5xOG 0s351o5T2ft8kXbU7H0ZjFWMwEaXeMxyq+1Xwnnv3twcLNsahi2snGvUZGPepiu3dtVRVTXTPfEx MeMJApqiqIqpnWHPdy3XaqmiuNJjdMS+76fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAADqapqmJoun5GdnZFvEw8eibl29dq7NNFMeMzL4rrpt0zXXOkQ9rNm5iLlNq1TNVU7oi OMtLeuPXfL6lZdemabVcxNtWq/Ztz7NeVMeFdyPKPOKfrPf4Rxmma1YyfV291Hz8fs6P2X2Vt5NR GJxMRVfn3U90d/bPlHfiRryRAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAZb6Hdd8vppmUabqVVzL21dr9q3HtV4szPfXbj3e+nz8Y7/HYcrzWrBz6u 5von4eH2R5tRsrbzmicRhoim/Huq7p7+yfKe7dLS9UxNZ0/HzsHIt5eHkURctXrVXaprpnwmJSPR XTcpiuidYlzhes3MPcqtXaZpqp3TE8Yl2328QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAHU1TVMTRdPyM7OyLeLh49E3Lt67VxTRTHjMy+K66bdM11zpEPazZuYi5TZtU61VTpERz lpP1x645fU/UZwcGbmJtvHr5tWZ7qsiqPC5cj+VPl4z3+EbZpmlWNq6FG6iPj3y6U2X2Xt5Jb9ff 0qv1Rvn9MdkfWfoxSwDf0igAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAADKvQ7rhl9L9RjBzpuZe28ivm7Yjvqx6p8bluP50+fj4+OfyvNKsFV0K99E/ Dvj6tB2o2Xt53b9fY6t+mN0/q7p+k8vBuxpeqYmtafj52DkW8vDyKIuWr1qrmmumfCYlJNFdNymK 6J1iXNd6zcw9yq1dpmmqmdJieMS7b7eIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD4ZuZY0/EvZOTdosY9mibly7cq7NNFMRzMzPlEQ+aqopiaqp0iHpbt1Xa4oojWZ3RENKuvHXG/1 L1GdN0yuuxtrGr5op/Fqyq48Llce782n6z3+Eb5rmk4yr1dv2I+Pf9nSOyuy9GTW4xOJjW/VH/WO yO/tnyjvxE15IiRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAABlvoP1wv9NNRjTdTrrv7aya+a6Y5qqxa5/3lEe786n6x3+Ow5Vmk4Or1dzfRPw7/ ALo92r2Xozm3+Jw0aX6Y/wC0dk9/ZPlPdurhZtjUMSzlYt6jIx71EXLd23V2qa6ZjmJifOEkU1RV EVUzrEubLluu1XNuuNJjdMTydh9PgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxrr i3TNVUxTTEczMzxEQpKsRMzpDTr0h+u1W98u7t3Q7007fsV8X79E/wDna4n/APLifD86e/w4R7m+ afiJmxZnqRxnt/b5uhdj9loy6iMfjKf5s8In8sf/ACn4cOOrBzV0pAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4ejx11q2Pl29va5fmdv36+ LN+uefsVcz/+XM+P5s9/hy2jKM0/DTFi9PUnhPZ+3yRdthstGY0Tj8HT/OjjH6o/+UfHhx0bjUV0 3KYqpmKqZjmJieYmEhOeJiYnSXJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMg1f9 JjrlNdWTs3QL/FMc29Ty7VXj77FMx/mn9n3tKzrM+OFsz/un6ff3Jr2K2X16OaY2nvopn/1T/wC3 39jWdpKbUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA2X9GfrlNqrG2br9/mieLemZdyrw91iqf+2f2fc3bJc04YW9P+2fp9kJ7a7L6dLNMF T310x/6o/wDd7+1tBHe3VCaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARIMJ+kZ1r+8L S/uHo9+PvhzbfNVyie/EtT3dv9ee+KfrPlHOt5vmX4Sj1VqevPwjt+yR9j9mv4te/FYmP5NE/wDa ezwjn7mmkzNUzNUzVMzzMzPMzPvRzx3y6QiIiNIFFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJmmYmJmJieYmJ4mJV4ExFUaS3L9HPrX9 /mmRoesX4++HCt803K578u1Hd2/147u19J854kbJ8y/F0equz14+Mdvj2ub9sNmv4Te/FYaP5Nc/ 9Z7PCeXuZs8WyI3SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkdXOp2H0u2pd1K9FN/Nu 82sLEmeJvXePP9GPGZ93xmGNx+NowNmblXHlHbLY8hyW7nmMjD0bqY31T2R954Q0K1rWc3cWrZep 6jfqys7KuTdu3avGqqf5RHhEeUREIru3a71c3Lk6zLqvC4WzgrFGHsU6UUxpEf58XTeS6AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdzR dZzdu6tianp1+rFzsW5F2zdp8aao/nE+Ex5xMw9bV2uzXFy3OkwtcVhbONsVYe/TrRVGkw306R9T sPqjtW1qVmKbOda4tZuLE8+pu8eX6M+MT7vjEpUwGNox1mLkcecdkuVM/wAlu5HjJw9e+md9M9sf eOErvE8sk1xIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjretYe3tJy9Sz79ONhYtubt27X PdTTEf8Avu83ncuU2qJrrnSIXGHw93FXqbFmNaqp0iO9oN1W6k5vVDdl/VMiKrOJRzaw8WZ7rNrn u5/Snxqn393hEIqx+Nqx16bk8I4R2Q6s2fyW1keDixTvrnfVPbP2jhH7qcxrZAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFx6VdSMzp fuyxqmPFV7Er4tZmLE9161z3xH6UeNM+/u8JlksBjasDei5HDnHbDW8/yW1nmDnD1bq430z2T9p4 T+zfjRNZw9w6TialgX6cnCyrcXbV2jwqpn+vw8pSrbuU3aIuUTrEuU8Rh7uFvVWL1OlVM6THe770 W4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJngGonpRdXZ3Fq1W09Lv8AOmYFznMuUT3X78fk fGmj+NX6sNBzzMPW1/hrc9WOPfPZ5fNP2w2z/wCFtfxPE09euOrHZT2+M8u7xYDakloAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABHIPZ03aGq6pRFy3jTbtT4XL09iJ+XPfP7mxYPIMxxsRVRb0p7a t37o6zj0gbPZLXNq/iOnXHGmiOlMeOm6Pe793p1q1FEzTVjXZ/NpuTE/xhlbmyGYU060zTPdr94a pY9L+z1250LlNyiO2aYmPhMyr+bg5GnX5s5Vmuxdj8muOPrHvalicLfwdz1V+iaZ70uZbmmCzixG JwF2LlE84n4THGJ7pfBasoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiRVn30Xurs7 c1anaeqXuNMz7nOHcrnusX5/I+FNf8KvnLbcjzD1Vf4a5PVnh3T2efzRJtzs9+KtfxPDR16I60dt Pb40/LwbdxPLfkApAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABib0hurH+rjak42DdinXtSiq1 jcT32aPCu7Py54j4zHulgs2x/wCDs6Ue3Vw7u9vWyWQ/xnGdK7H8q3vq7+ynz59zSCZmqZmZmZme ZmZ5mUZcXT0RERpAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJooquV00U0zVVVPEUxHMzPufV NM11RTTGsy+LlyizRVcuTEUxGszPCIjjMskbV2Va0yijKzaKb2ZPfFE99Nr+8/FMeR7OW8HTF/FR 0rnZyp+89/ucbbc+kjE5zcrwGVVzRho3TMbqrn1insjnz7Fr4+LeUFnAOjrGj42t4k4+TRzH5Fcf jUT74ljMwy6xmVmbN+PCecT3Nm2e2ix+zWMjF4GrT9VM+zVHZMfKeMcmKNa0XI0HNnHvxzE99FyI 9mun3x/byQVmWW3ssvzZux4TymP849ju/ZraTBbUYGMZhJ0nhVTPGmeyfpPOHQYltYAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzTMTEzEx3xMTxMEbiYiY0lu/6PPViOo21Ps2ddirXt Nim3k8z33qPCi79eOJ+MT74SdlOP/GWdK/bp49/e5h2tyGcmxnStR/Kub6e7tp8uXcyyzrRQAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAHn69reHtzR8zU8+9FjCxLVV67cnypiP4z5RHveV25TZom5X OkQucNh7uLvUYezGtVU6RHfL8/Oo2+szqNu7N1vM5oi7PYsWJnmLNmPxKI+nfPvmZRPjcVVjL03a vLuh1nkuVWsmwVGEt75jfM9tU8Z+3crSxZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfdg7a9 VRTqmTR7dUfgKZj8WPz/AK+SVdlsm6FMY+/G+fZjsjt+zlP0q7Z+vrnIMBX1af8AVmOc/o8I/N37 uS7xHCSXNaQAJgHR1fSMbWsOrHyaOafGmuPxqJ98Mbj8vsZlZmzfjwnnE9sNkyDaDHbN42nG4GrS ecT7NUdkx/kxxhivXtvZWgZHYvU9uzVP4O/THs1f2n4IPzTKMRlVzo3Y1pnhVyn7T3O5Nltr8v2q w3rMNPRuR7VE+1T96eyY89HlsG3hIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALJ053 1m9Ot3YWt4fNcWp7F+xE8Resz+PRP07490xEr7BYqrB3ou0+ffDCZ1lVrOcFXhbnGd8T2VRwn79z 9BNB1vD3Ho+Hqmn3ov4WXapvWrkedMx/CfKY9/KWLdym9RFyidYlyXicPdwl6vD3o0qpnSY74eg9 VsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAie4Gq3pZdUPtubb2Zp938BjzTe1Gqie6q540Wvp3VT 8Zp9zR8/x3Sn8LRPDfP0hOWwOR9Cmc1vxvnWKPDnV58I82uLTEzAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAPf2ftudczvWXqZ+xWZibk/nz5Ux/X4fNtmz+Tzmd/p3I/l08e+ez79yJvSFtjTszgf UYar/wAm7GlP9sc65/8Ab2z4MqUxFMcRHERHERHknGIimNIcNVVVV1TVVOszxclXyAAATHIPjlYt rMsV2b9um9arjiqiuOYl4XrFrE25tXqYqpnlK9wWNxOXYinFYO5NFynhMTpP+d3CVB1/p9expqva bzkWvGbFU+3T8vzv5/NFea7KXbOt3A9an9POPDt+bqvZP0sYbGRThM90t3OEVx7E/wC6Pyz38PBT 6qardVVNdM01RPE0zHExKPqqZomaao0mHQtu5Reoi5bqiaZ4TG+J8Jhx5fL7SAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAADY70TuqE4Wbc2ZqF38BkTVf06qufxbnjXa/aj2o+MVe9uWQY7o z+FrndO+PrH1Qzt9kfTpjNbEb40ivw5VeXCfJtTE8t5QakAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AFP6q7/sdN9l52s3ezXkUx6rFs1f729V+JHy85+ESsMdiqcHYquzx5d8s9keVXM4x1GFo4Tvqnsp jjP0jvfn7nZ2RqebkZmXdqv5WRcqu3btc99ddU8zM/OZRNXXVcqmuqdZl1rZs0Ye3TZtRpTTEREd 0Pi+HqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Tb23r+4Mv1dvm3Yonm7e47qY90e+fgz2UZT ezW90KN1EcZ7P3aJtdtdg9lMH6271rtXsUc5ntnspjnPlG9ljT8CxpuJbxsejsWrccRHnPxn3zKd cLhbWCs02LMaUx/ms97g/Nc0xec4y5jsbX0rlc7/AKRHZEcIh2V2xQAAAAACJgHmaxtzA1umftNm PW8cReo9muPr5/VhcwyfB5lH8+jrdsbp9/3bps/thnGzVX/g3epzoq30T5cvGNFI1Xp5nYfarw64 zbf5v4tyPp4T9EbY/ZLF4fWrDT6yns4Ve7hLpXIfS3lOP0tZnTOHr7fao9/GPOPNWL9i7jXJt3rd dq5HjRXTNM/ulpN21cs1dC7TNM9kxom3DYvD423F7C3IrpnnTMTHvhweS6AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAfbBzcjTM3HzMS9VYyse5TdtXaJ4miumeYmPlMPuiuq3VFdM6TDyvWr eItVWbsa01RMTHbEv0C6Vb/x+pGysHWbXZoyKo9VlWaf91ep/Hj5T4x8JhLOBxVOMsU3Y48/FyVn mVV5Njq8JXwjfTPbTPCfpPeuC/YEAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzwDSr0m+pH3573nSs O729K0aarNM0z7Ny/wD7yv48cdmPlPvRvneM/EX/AFVM9Wj58/s6R2Iyb+HYH8Vdj+Zd3+FPKPPj 7mHWuJHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCwbb2hk67VTdudrHwue+5Md9fwp/v4NsyfZ +/mcxcudW32858PvwRNtl6QcDszTOGsaXcTP5dd1PfXP/t4z3Mm4GBY07Fox8a3Fq1RHdTH8598/ FNGGwtnB2os2KdKY/wA97izM80xmc4qvG465NdyrnPyiOURyiHZXTFgAAAAAAAAI4B8MzAx9Qter ybFvIo91ynn/AP4tcRhbGLp6F+iKo74ZTL80x2U3PXYC9Vbq/tmY98cJ81az+nOn5HNWLdu4dXu5 7dP7p7/4tOxeyGDvb8PVNE++Pjv+KZMp9L+c4PSjH26b9Pb7NXvjdPuVzO6farizM2YtZdP/AE6u zV+6WoYnZPMLO+1pXHdOk+6Uv5Z6WtnsbpTipqsVf3RrH/anX4xDwcvT8rAqmMnGu2J/6lExH72r 38HicLOl+3NPjEpRwGc5bmlPSwWIouf7aomfdxdeJ5j3rNmZSKI5BIAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAMw+jJ1I+8ve8aVl3expWszTYqmqfZt3/C3X8OeezPzj3NjyTGfh7/qqp6tfz5fZ HG2+TfxHA/irUfzLW/xp5x5cfe3WpSQ5uSAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHfXTqHHTnYOZ mWbkU6nlf+Fwo574uVR31/sxzV9I97E5ni/weGqrj2p3R4/s2vZnKJzjMaLNUdSnrVeEcvOdzQuZ mZmZmapnvmZ75n4ordWxERGkCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+2HhZGo36bONZqvXZ8 KaI5+s+5dYfDXsXci1YpmqruY3MczwWUYecVjrsW6I5zPwjnM90L5t/p9axZpv6lNN+7HfFin8Sn 5z+V/L5pRynZS3Y0vY7rVfp5R49vycs7WeljEY6KsJkcTbt8Jrn25/2x+WO/j4LjTTFMRERxEd0R HkkKIiI0hzzVVVXVNVU6zPNy44VfIAAAAAAAAAAACOAOIBFURMcTHNM+U98KTEVRpO99U1VW6ulR Ok9sbnmZm2dKzuZvYFmap/Kop7E/vjhhsRk2X4n/AFLMa926fho3LL9tNocs0jDYyvTsmelHuq1e PldONOvczZvZGPPu7UVx/Fr1/Y/A3N9qqqn4/NIeB9MWeWNIxVq3djwmmfhOnweRldM8qjn7Pm2b vwuUzRP9WBvbGYin/RuxPjEx92/YL00Zfc0jG4SujvpmKo906S8rJ2TrOL/wc3ojzs1xV/DxYG9s 3mln+l0vCYlvuC9JWy+N0j8V0J7K6Zp+Okx8Xk5GFk4c8X8e7Zn/AKlE0sFdwuIsTpdtzT4xLe8J muAx8a4S/RX/ALaon6vhExPhMT8lqyiRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiZiYmJmmY74 mJ4mFeHAmImNJb6dCuokdRtg4eXfuRVqmJ/4XNjnvm5TEcV/tRxV9Z9yVMsxf4zDxXPtRunx/dyl tPlE5PmNdmmOpV1qfCeXlO5kRlmqAAAAAAAAAAAAAAAAAAAAAAAAAAAAImQaQekr1A+/XqFew8e7 29M0fnEs9mfZruc/ha/8URT8qUaZ1i/xOJmimerRu8+bpfYnKf4dlsXrkaV3etPdH5Y+vmxO19II AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaKKrtdNFFNVddU8RTTHMzPyfdFFVyqKaI1meUPK7et4e3 N27VFNMcZmdIjxmVu0Tp5kZXZu6jVOLa8fVU99yfn5U/zb9lmyV6/pcxs9Cns/N+3zQDtN6W8Fge lh8lp9dc/XPsR4c6vhHevenaXi6Vj+pxLNNmjz48avjM+MpPwmCw+Bt+rw9EUx8/Gebl7N87zHPb 84nMb011cteEd0RwiPB24hfMGAAAAAAAAAAAAAAAAAAAAjgCY7UcT3x7pUmImNJVpmaJ6VM6T3bn Qytv6dm8+uwce5M+fYiJ/fDF38qwOI/1bNM+WnybRgtqs9y7/wDFxlymOzpTMe6dYeRldPNJv8zb pvY1X/Tucx+6eWBv7J5dd9iJo8J++rfsD6Wto8LpF+aLsf3U6T76dHjZfTK7TEzi51Ff6N6iaf4x y16/sXcjfh70T4xp8YSJgPTTh6tIzDBzT30VRPwnSfi8TN2brGDzNWHVepj8qxMV/wAPH+DWsRs7 meG3za6UdtO/90mZb6Rtmsy0poxUUVTyriafjO74vGrors1zRcpqt1x401RxP7pa7XRVbno1xMT3 7kiWb9rE0ess1xVTPOJiY98OL4eqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAZY9GvqB95PUKziZF3sa ZrHZxL3M+zRc5/BV/wCKZp+VTYMlxf4bExRVPVq3efJH22uU/wARy2b1uOva60d8fmj6+Td+PBJb mhIAAAAAAAAAAAAAAAAAAAAAAAAAAAKF1s37/q96e6lqNquKc+7T9lw48/XV8xE/sxzV+yxmZYr8 JhqrkceEeMtm2cyuc3zK3h5jqxvq/wBscffw82gkzMzMzM1TPfMz4zPvRRrrvdZRERGkCgAAAAAA AAAAAAAAAAAAAAAAAAAAAAAjkVWHQdl5us9m7cj7Jiz3+srj2qo/Rjz+c9zbcr2cxWY6XK+pb7Z4 z4R9eCJNqfSRlWz3Sw9mfXX4/LTO6J/uq4R4RrPgyDo+3cHQ6OMa1+EmPavV99dX18vlCWMuyjCZ ZT/Ip63bO+f88HJm0O1+b7TXNcdd6nKindTHlznvnWXpxDMtMSAAAAAAAAAAAAAAAAAAAAAAAAAC OIA4B8MvBx86jsZNi3fp91ymKltfwtjE09G/RFUd8asngczx2WV+swV6q3P9szH7K7qHTzTMrmce buHXP5k9qn90/wB2pYvZLAX9Zs6257t8e6fulvKvS3n2B0oxkU36e+OjV/2p+sK1qHT3U8XmqxNv Mo/Qns1fun+7TcXslj7G+zpcju3T7p+6Zcp9LeQ47SnGRVYq/ujpU/8Aan6xCu5OLfwrnq8izXYr /NuUzTLUb2HvYaroXqJpnvjRL2CzDCZjbi7g7tNyntpmJ+T5LdfpAAAAAAAAAAAAAAAAAAAAAAAA AAiZiYmJmmY74mPGPkcOBMRMaS376Jb8/wBYXT3TdRu1xVn2qfsuZHn66jiJn9qOKv2ksZbivxeG puTx4T4w5N2kyv8AhGZXMPEdSd9P+2eHu4eS+sm1kAAAAAAAAAAAAAAAAAAAAAAAAABEzxANN/Sv 31O4N8WtBx7naw9Go4riJ7qsiuImr/DT2afnNSPM+xXrb8WaeFPzl0PsDlf4XA1Y2uOtd4f7Y+86 z7mEGrpRAAAAAAAAAAAAAAAAAAAAAAAAAAAARyDt6bpeVq+TFjEszdr85juimPfM+S/weBxGYXPV YenWfhHjPJgc5z3Ltn8NOKzG7FFPKOcz2Uxxmf8AJZD2/sbE0rs3srs5mV4xMx7FE/CPP5ylvKtm MPgdLuI69z4R4Rz8ZcjbV+k7Mc86WGwGtixPZPXqjvmOEd0ecys/DdELJAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAABHAPnkY1rKtzbvW6L1ufyblMVR/F43bNu/T0LtMVR3xqu8LjMTgbkXsLcmiqOdMz E/BW9R6faZmc1Y/bwrn/AE57VP8Ahn+jUcZspgMRvs6257t8e6fol/J/Sxn2X6UYzTEUf3bqv+0f WJVbUtg6pg81Waac23HnZnir/DP9OWjYzZXH4bWq3EXI7uPulOeTelXIMz0oxNU2K5/X7P8A2jd7 9Feu2q7FyaLlFVuuPGmuOJj6S1K5brtVdC5ExPZO5LljEWcVbi7h64rpnnExMe+HB5vdIAAAAAAA AAAAAAAAAAAAAAAIBnD0UN8/e/vi9oWRc7OHrNHFETPdTkURM0/4qe1H0pbRkOK9VfmxVO6r5wi/ b7K/xWBpxtEda1O//bPH3TpPvbkRPKQ3O6QAAAAAAAAAAAAAAAAAAAAAAAAAeFvfdFjZe1NV1vJ4 m3hWKrsUz+XV4U0/WqYj6rbE36cPZqu1coZHLsFXmOLtYS3xrmI+8+Ub3516hn5Gq5+Tm5dybuVk 3ar12ufyq6pmap/fKIa66rlU11cZ3uwbFmjDWqbNqNKaYiI8IfB5vYAAAAAAAAAAAAAAAAAAAAAA AAAABHILRtzY+Rq3ZyMvtYuJPfEce3cj4R5R8Zbtk+zN7HaXsT1Lfxnw7I70JbYek3BZF0sHlul7 ERun9FE98xxnujzlkTA07H0zHpsYtmmzbjyp8598z5yl3C4SxgrcWsPTFNP+ce1yHmub47OsTOLx 92a657eXdEcIjuh2YhdsQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgEcQDrZ2mYup2+xlY9v Ip8u3HMx8p8YWeJweHxlPRxFEVR3/fizOWZzmOTXPW5ffqtz3TunxjhPnCqan03x7vaqwciqxV/y 73tU/v8AGP4tGxux1m5rVg6+jPZO+Pfx+ac8l9MeMsaW83sRcj9VHVq849mfgqOqbb1HR+ZyMar1 Uf7237VH748Pq0HG5Njsv33rc6dsb49/3T9km2eR7QRFODxEdP8ARV1avdPHymXmcsI3ZIAAAAAA AAAAAAAAAAAAAAAPvgZ+RpWfjZuJcm1lY12m9arj8mumYmJ/fD7orqt1RXTxje8b9mjE2qrN2Naa omJ8J3P0U2RuixvTaela3j8RbzbFN2aY/Jq44qp+lUTH0S/hr0YizTdp5w4+zHBV5di7uEucaJmP tPnG97q5Y4AAAAAAAAAAAAAAAAAAAAAAABANbvTD3p9m0zSdr2K+LmVV9tyYj/l0zxbifnVzP7DT 9ocT0aKcPHPfPhHD4/JMPo8y31l+7mFcbqI6NPjPH3R82rLRE7gAAAAAAAAAAAAAAAAAAAAAAAAA APri4t7OyKLGPaqvXa54iimOZlcWLF3E3ItWaZqqnlCwx2PwuWYerF4y5FFunjM/5vnsiN7Ie29i 2dN7ORndnIyo74o8aLf95+KXMm2ZtYPS9i9KrnZyj7y5F2y9J+KzjpYLKZm1Y4TVwrr/APjT3Rvn nPJbOOe/xb0ghIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHiCOPH4qcSJmJ1h4WqbM0zV O1VNn7Pen/e2PZ/fHhLWsds7gMbrVNHQq7ad3w4JNyP0i5/keluL3rbcflr63un2o96natsDUcDt V43ZzrUf8vurj9nz+iPMfspjcLrVY/mU93H3fZ0RkPpXyXNNLWO1w9yf1b6PKqOHnEeKs1U1W65o rpmmuO6aao4mPo0yqmqiZpqjSYTPbu271EXLVUVUzwmJ1ifCYHy9AAAAAAAAAAAAAAAAAAAAG03o eb0+0abq2179fNeLV9txYmfyKp4uRHyq4n9tvez2J6VFWHnlvjwnj8UEekPLfV37WYURur6tXjHD 3x8myLcEPJAAAAAAAAAAAAAAAAAAAAAAABxq7o9wPz76w7w+/nqPrWqUV9vF9d6jG93qbfs0zHz4 mr9pE+ZYj8Viq7kcOEeEOstm8u/heV2bEx1pjpT41b5926PJTWMbMAAAAAAAAAAAAAAAAAAAAAAA AAA9PQtvZev3+zYp7FqmfbvVx7NP95+DN5ZlGJzW50bUaUxxqnhH3nuaTtPtfluyuH9Zi6ulcn2a I9qr7R3z5asnaHt/E0HH9Xj0c3Ko9u9X+NX/AGj4Jqy3KsNldvoWY3zxmeM/t3OJ9pdrMy2pxHrs ZVpRHs0R7NP3ntmd71OIZlpoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOIAmPcKPO 1fb+DrVvjKsRVXHhdp7q4+v92Ix+VYTMqdMRRv7Y3THn9235DtXm+zdfSwF6Yp50zvony5eMaSoW ubDzNN7V3F5zceO/2Y/CU/OPP6IuzPZbFYPW5h/5lHxjy5+TqbZj0pZXnPRw+Yf+PentnqTPdVy8 KverPh82lcN0priYqjWOAoqAAAAAAAAAAAAAAAAAAuPR/eP3i9RtF1SuvsYvrox8n3epuezVP05i r9lk8txH4XFUXJ4cJ8Ja1tJl38Uyu9YiOtEdKnxp3/Hh5v0FpnmPelhyY5AAAAAAAAAAAAAAAAAA AAAAAAoXXHd33l9MdbzrdfYyrlr7Lj+/1lz2YmPlEzV9GMzLEfhsLXXHHhHjLZ9msv8A4lmtmxMd XXWfCnfPv4ebQOIiIiI8IhE7rFIAAAAAAAAAAAAAAAAAAAAAAAAI5FVo2xsm9q3YycztWMOe+I8K 7ny90fH9zeMl2buY7S/ierb+NX2jv9yDttvSVhsi6WByyYuYnhM8aaPHtq7uXPsZIxcW1h49Fmxb ptWqI4popjiIS/ZsW8Nbi1Zp6NMcIhx5jcdicyxFeKxdya7lW+Znj/ndwh9oe6yAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARwDxNc2jga32q66PUZP/PtRxM/OPNreZ5Bg8y1qqjo 1/qj6xzSTszt9nGzUxaor9ZZ/RVvj/jPGny3dzHuubVz9Cma7lHrsfnuv2++n6+76onzLIsZlk9K unpUfqjh59jrPZrbvJ9poi3Zr6F7nRVun/jPCry39zx2upFSKAAAAAAAAAAAAAAAAImImJifCe4V b99Dt3/fp0y0TPuV9vKt2vsuT7/WW/ZmZ+cRE/VK+W4j8ThaK548J8Ycm7S5f/DM1vWIjq66x4Vb 493DyX5lGsAAAAAAAAAAAAAAAAAAAAAAIkGrfpkbq9ZmaDty1X7NumrPv0xPnPNFvn6RXP1aRtFf 30WI8Z+UJu9HOA3X8fVHZRHzn6NbGlpqAAAAAAAAAAAAAAAAAAAAAAAAKKarlcUUUzVXM8RTTHMz PufVNNVdUU0xrMvi5cos0TcuVRTTG+ZndER2yv8AtfYlOP2MrU6Iru+NGNPfFPxq98/BKuSbMRa0 xGOjWrlTyjx7Z7nKW3HpQrxfTy7Iqujb4VXOE1d1HZH93GeWi68JHc3zMzvlPHAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOM0xMTHHMT3TEqTETGkq01TRMVUzpMKtrmwMPUJ qu4kxhX57+Ijm3VPy8vp+5pGZbK4XF63MN/Lq/8A5ny5eXuThs16VczymKcPmUfiLUc5nrxHdP5v Cfeomq6BnaJXxlWJpo54i7T30T9f7owx2VYvLqtMRRpHbG+Pe6iyLavKNo6OlgL0TVzpndXH/Gfn GsPPYhtqQAAAAAAAAAAAAAAAbJ+hvur1WZr23Ltfdcppz7FMz5xxRciPp2J+jdNnb++uxPjHyn6I V9IuA1ixj6Y7aZ+cfVtJ4t3QikAAAAAAAAAAAAAAAAAAAAAEVeAPz86zbo++/qduDUKa+3YjInHs THh6u37FPHz4mfqifM7/AOIxddfLXSPLc6x2ZwP8PymxZmN8x0p8at/7KWxjZwAAAAAAAAAAAAAA AAAAAAAAH2wsK/qOTRj41uq7ernupp/nPuj4rrDYa9jLsWbFPSqljMyzPB5PhasZjrkUW6eMz8oj nM8ohk3bG0bGg0U3rnZv50x33PKj4U/3TRkuQWsrpi5c613t5R3R93Fe2u3+M2nrnDWNbeGid1PO rvr+lPCO+ViiOG2ImAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ7wca7 cXKZpqiKqZ7ppqjmJfNVNNcTTVGsS9Ldy5Zri5bqmmqOExOkx4TCtarsDTc+aq7EVYN2f+V30T+z P9OGn47ZXA4rWq1/Lq7uHu+yYsj9Kme5VEW8XMYi3H6t1X/aPrEqtn9PtUxJmbMW8yj326uzV+6W j4rZPMLGs2tK47t0+6U5ZX6Wdn8dEU4qarFX90a0/wDanX4xDw8nS83DmYv4l+1+tblrV7AYuxOl 21VHlKS8Jn2U4+OlhcVbr8Ko+WurqzPE9/d81jMTHFnIqirhOp2o98KKuduxduzxRauV/qUTP8nt RZu3PYpmfCJWl7G4XD/612mnxqiPnL7zpebTT2pw8iI9/qqv7LicDiojWbVX/Wfsx8Z7lVVXRpxd vX/fT93WmJpmYmJiY8YmO+FlMTTOkxpLM0V03KYqonWJ5xvgUfQAAAAAAAC59Gtz/eh1O2/qFVfY sTkRj35nw9Xc9irn5dqJ+jJ5bf8Aw+Lt18tdJ89zWNpsD/EMov2YjWYjpR407/2foJT4JYcnJAAA AAAAAAAAAAAAAAAAAABWOpW5fvP2Hrusdrs14uJXVb/+JMdmj/NMLPGXvw+Hru9kf/TL5Pg5zDML OF/VVET4cZ+D87u/8qe1V5z75RBx4uwdIjdAAAAAAAAAAAAAAAAAAAAAAADvaPouVrmXFjGoieO+ u5V+LRHvn+zKZdl2IzO96qxHjPKI72r7RbSYDZnBzi8dVx9mmPaqnsiPnPCGUtC2/jaBi+rsU9u5 V/tL1Ue1XP8ASPgnDK8pw+VWuhajWqeM85/bucN7UbWZhtVivXYqdKI9miPZpj6z2zPwh6kQzTS0 gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAccgjgE/WRTTTe+ddm3X+ Pboq+dMS8qrVur2qYnyhd0YvEWvYuVR4VTH1cYxrFPhZtx8qIfMYezHCiPdD0qx+Lr9q9XP/ACq+ 76xHEd3dHuh7RERwWVVU176p1TPPvn9761l86R2PN1jQcPW7E0ZNqO3x7N2mOK6flP8ARiMwyvC5 lbmi/Tv5Tzjzbds/tTmmzd+LuCuz0edEzrTVHZMcvGN8MR6jhV6XqWThXZibtiriePOJjmmr5TCB 8fgrmX4irD3eMfGOUu88hzvD7Q5dazHDcK43xziecT4S+DHtgAAAAAAAR3/kz2avKfdITETGkv0T 6abk++/YWg6vNXauZWJRVcn/AKkR2a/80Sl/B3vxGHou9sQ4+zfB/wAPzC9hf01TEeHL4LMvGIAA AAAAAAAAAAAAAAAAAAAYG9L7cX3O2DgaTRVMXNSzImqInxt247U/5poavtBe6GGi3H5p+Eb/ALJQ 9H2D9dmdeInhbpn31bo+GrUBHjogAAAAAAAAAAAAAAAAAAAAAB623tt5G4Mmabf4PHon8JemO6Ph Hvn4M/lGT382uaUbqI41fSO2WgbXbY4HZPDdK7171XsURO+e+eymO3nwhlPS9LxtIxKcfFt9i3Hf M+dU++Z85ThgsDYy+zFmxTpHxme2XDmdZ5jtoMZVjcfX0qp4RypjspjlH+S7i/YEAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABExyDDXW2urStx6VnWJ4uXcaq i5HlXFNfdz/iRdtdZpm/br5zE/CXUnohxlynA4mzrupriY/5Rv8Ak8XTtRtajjxdtT8KqZ8aZ90o 1qpmidJdL2rtN2npUu2+HqAAAAAAgG3/AKIO4p1HYWfpNdU1XNNzJmmJ8rdyO1H+aK0h7P3unhpt z+Wfm539IOD9RmVGIjhcpj307p+GjPMNoRekAAAAAAAAAAAAAAAAAAAETPANOvS8177o9Q8HTKKp mjTsGntU8+Fdyqap/wAsUI92hu9PE02/0x83Qvo9wnqsuuYieNdXwpjT5zLBrVkpgAAAAAAAAAAA AAAAAAAAIFXu7X2re3Be7dfNrConiu7x31T+bT8fj5NoyTI7ua19Orq244z290f5uRbttt1htlbH qreleJqjq08o/uq7uyOM+DKWHhWcDGox8e3FqzRHFNNKbsPh7WFtRZs06UxycQ5hmOKzXFV4zG1z XcqnWZn/ADdEco4Q+/C4Y4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAABEyDA/XHVKczdVjEonmMPHimr4VVT2pj93ZRRtTfi7jKbUfkj4zvdYei3AVYbJ68TX H+rXrHhTGnz1ULBz7unZEXbU9/hNM+FUe6Wl1UxVGkpqtXarVXSpXbTtRtalYi5bn4VUz40z7pY+ qmaJ0lsNq7Tdp6VLtvh6gAAAAAM5+iHr/wBzuoedplVXFGpYVXZp58blue1H+Wa207PXehiarf6o +SLPSFhPW5dbxMcaKvhVGnziG4kJCc9JAAAAAAAAAAAAAAAAAAABxq8Afnt1c1z74+pu5c+Kprt1 5ty3bn9CiexT/ClEuY3fXYu5X3/Lc622dwv4PKMNa00noxM+NW+fmqTHNiAAAAAAAAAAAAAAAAAA AQCw7U2nc1676692rWDRPtVR3Tcn82n+stuyLIq8zr9bd3Wo59vdH1lEe3e3ljZizOFwuleKqjdH KiP1VfSnnz3MoY+NbxbNFqzRTatURxTRTHERCa7Vq3Yoi1ajSmOEOJcXi7+Ov14nFVzXXXOszPGZ fV6rUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB52v63 j7e0fK1HJn8FYomrs+dc+VMfGZ4haYvE0YOxVfucKY/+o82XyjLL2c461gcPHWrnTwjnPlG9q3qW oX9W1DJzcmrtX8i5Vcrn4zP/ALhBF+9XiLtV2vjVOrvDA4O1l+Gt4SxGlFEREeX34us8F87GDnXd OyIu2p4nwmmfCqPdL5qpiuNJetq7Vaq6VK7afqNrUceLtufhVTPjTPulj6qZonSWw2rtN2npUu2+ HqAAAAAt3SLXfvb6nbaz5r7FujNot3J/Qr/B1fwqZHLrvqcXbr7/AJ7mubR4X8ZlOItRG/ozMeNO /wCj9CY8EtOSkgAAAAAAAAAAAAAAAAAAA8zc2q06Ft3VNSqmIpw8W7kTz+jRM/0eN6v1VuqvsiZX WEsTicRbsR+aYj3zo/Nqq5Veqm5XPNyue1VPvme+f4obmZmdZdm00xRTFFPCNwoqAAAAAAAAAAAA AAAAAAjkVWLae1K9dvevvxNvAonvqjum5P5sf1lt+Q5FXmdfrbu61Hx7o+sog2828tbMWfwmEmKs VVG6OMUR+qrv/THPjO5lCzYt49qi1aopt26IimmimOIiE127dFmiLduNIjhDiXE4m9jL1WIxFc1V 1TrMzvmZl9HotwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAESDBXWbeP3X1WNHxq+cPCq/CzTPdcvef0p8PnyiraXMvxF78Lbnq0ce+f2dV+jXZv+HYP+K4i n+Zejq91H3q4+GjHDS01CohQdjBzrunZEXbU9/hNM+FUe6XzVTFUaS9bV2q1V0qV207UbWpWIuW5 +FVM+NM+6WPqpmidJbDau03aelS7b4eoAAABFyqzVFyieK6JiqmfjHfCsTpOsKVUxXE0zwnd736S ba1anXdvaZqVMxNOZi2siJj9KiJ/qmSzX6y3TX2xEuMsXYnDYi5Yn8tUx7p0eo9lqAAAAAAAAAAA AAAAAAAAxn6RusRpHR7cFUVdm5k26MSjjz9ZXTTP8OWHze56vBXJ7d3vbjsjh/xGd4eOUTNXuiZ+ bRPzRY6nAAAAAAAAAAAAAAAAAAAe5tTbNe4MvtV9qjCtz+Erjxq/Rj4/ybRkWS15re6Ve63Txnt7 o/zci7brbS1srhOhZ0qxNyOrT2R+qrujlHOe7VlWxj28ezRatURbtUR2aaKY4iITjatUWKIt240p jdEOGcVib2Nv14nE1zVXVOszPGZl9HqtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAACZ4BWt/wC6I2ntnJzKJj7XX+Bx4nzuT4T9I5n6MLm+O/h+Equx7U7o 8Z+3FumyGRTtBm1vDVR/Lp61f+2OXnO5rPVVNdU1VVTVVM8zVPjM++UIzMzOs8Xb9NNNFMU0xpEA +gAEKDsYOdd07Ii7anifCaZ8Ko90vmqmK40l62rtVqrpUrtp+o2tRx4u25+FVM+NM+6WPqpmidJb Dau03aelS7b4eoAAADez0ctX+6/R3b1U1dqvGt14tXw9XXVTH8OEp5Rc9Zgrc9m73OWNr8P+HzvE RHCZir3xE/NkxmGnAAAAAAAAAAAAAAAAAAAMA+mJqv2bYukafE8VZeoRXMe+m3RVP86qWq7Q19HD U0ds/JKno8sdPMrl79NE/GYhqKj50IAAAAAAAAAAAAAAAAAA9DQtFva9qFGPa9mmPauXOO6in3/2 ZfK8tu5piIs290c57I/zg1HajaTC7L5dVjcRvq4UU86quUeHOZ5Qy5gYNnTcW3jY9HYtW44iPP5z 8ZT7hcLawdmmxZjSmP8ANfGXAWaZnis5xlzHYyvpXK51n6RHZEcIh2V0xQAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOQSACJBgHrNuSdX3P9gtV9rG06Jt8R PdN2e+ufp3R9JRLtLjfxGL9TTPVo3efP7OuPRrkv8Oyn8Zcjr39//GPZjz3z5qC1FLoAAACFB2MH Ou6dkRdtT3+E0z4VR7pfNVMVRpL1tXarVXSpXbTtRtalYi5bn4VUz40z7pY+qmaJ0lsNq7Tdp6VL tvh6gAANufQ61b7RsXV8CZ5nE1Ca4j3U3KKZ/nTUkHZ650sNVR2T83PfpDsdDMrd6PzUR8JmPsz+ 2pFYAAAAAAAAAAAAAAAAACJBqr6ZupTc1rbGn891vHv5Ex+tVTTH/bLRto6+vbo7plOfo3s6WsTf 7Zpj3RM/Vrk01MoAAAAAAAAAAAAAAAADnjY93MyLdizRNy7cq7NNMecvazZuYi5TatRrVVuiFnjc ZYy7DV4vFVdG3RGszPKI/wA3dssubc0K1oGn02KeKr1XtXbn51X9o8k+5RldGVYaLVO+qd9U9s/a OTgPa/ai/tVmVWKr3W6d1FPZT954z7uT1ojhm2jgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAHIPY2/s/WN0VxGnYNy9b54m9V7Nqn51T3fu5eFy/bte3K+w+Bx GKn+VTrHby97IeP0Tx9H0jL1DWc6civHsV3fUY3sUcxTM99U98/ThjZx011RTbjTVslGRUWbVV3E Va6RM6RwYjp5mmOfHhmWmpB5m5NZo29oedqVfExjWpriJ86vCmPrMwssbiYweGrvz+WPjy+LNZLl teb5jYwNH56oie6Oc+UatV7t65k3rl27V27tyqa66p86pnmZ/egaqqquqaquMu9rVqixbptW40pp iIjwjdDi+XqAAAAAhQdjBzrunZEXbU8T4TTPhVHul81UxXGkvW1dqtVdKldtP1G1qOPF23Pwqpnx pn3Sx9VM0TpLYbV2m7T0qXbfD1ARINjvQy1Obes7n07nuu49jIiP1aqqZ/7obls5XpXco8JQ16SL GtrDX+yao9+k/RtW3lBgAAAAAAAAAAAAAAAAACJ8AaXelnqE5nVaLHPMYmn2bfHumqa6p/nCOc/r 6WLinsiPq6O9H9mLeUTX+qufhEQwy1pJQAAAAAAAAAAAAAAACJngVhkbYe2/sGPGoZFH/ib1P4Om rxoonz+c/wAkwbL5N+Ft/jL8derh3R95+Tjz0o7ZfxTEzk2Bq/k2568x+auOXhT8Z8FviOG/IBSA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOf3As+2OnOubr7F zGxvUYk/8Vkc0UfTzq+kLS7irdndM6yyuEyzE4vfTTpT2z/m9lzbHRnRdE7F3NpnVsqO/m/HFumf hR4fv5Ye7jblzdTuhuOFyTD4frXOvV38Pcv1u1RZopoopiiimOKaaY4iI+TH8WwRERGkKr1UzvsG w9WqieKrluLMfOqqKf5TK7wtPSvUsVm1z1eCuT2xp72tMNoRcT4AxX131v1Gl4GlW6uKsi5N+5Ef mU91P76p/g0PavFdCzRho/NOs+EcPinn0UZX63F38yrjdbjo0+NXH3R82FkZOnBUAAAAAAQoOxg5 13TsiLtqe/wmmfCqPdL5qpiqNJetq7Vaq6VK7adqNrUrEXLc/CqmfGmfdLH1UzROkthtXabtPSpd t8PUBmf0TNQ+x9VqrHPEZen3rfHvmJor/pLZcgr6OLmntiUaekCz6zKIr/TXHxiYboRPKRnOSQAA AAAAAAAAAAAAAAARPgDQ/wBIrO+39Zdx1c8xartWI/ZtUR/PlF2cVdLHXO7SPg6k2NteqyOx39Kf fVLHDCt0AAAAAAAAAAAAAAAAWXZO2/uvmfasinnDsVeE+Fyvyj5R4z+5uuzeTfj734i9H8uj4z2e Ec0K+krbL+AYP+H4Or/yLscY/JTzq8Z4U+csnx4ppcUpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAABHIPe2tsfV93XuMDHmLETxXlXfZtU/Xzn4Ryt71+3ZjrTvZH CYC/jJ/lxu7Z4Mz7T6PaPt/sX8yPurm09/bvU/g6Z/Ro/rPLB3sbcubqd0N2wmTYfDaVV9arv4e5 faaYiIiI4iPJYNgjc5CoDGPXrP8AUbYw8WJ9rIyon6U0zM/xmGUy+nW5NXZDVtoLnRw1NHbPyYKj wZ9oCJn3eINbuqes/dre+fNNXas40xi2/dxR4/5pqQvn2J/E4+uY4U9WPL93aeweW/w3ILEVRpVc 68/8uHw0VRr6QgAAAAAAAEKDsYOdd07Ii7anifCaZ8Ko90vmqmK40l62rtVqrpUrtp+o2tRx4u25 +FVM+NM+6WPqpmidJbDau03aelS7b4erI/o65v2HrLturniLty7Zn9q1XH8+Gayaro4635/Jpe2V v1mR3+7oz7qob30+CUXLbkAAAAAAAAAAAAAAAAACJjmAfnr1cyozOqW7LsTzE6lepj5U1dn+iJcx npYy7PfLrbZyj1eT4Wn+yPjvVJjmxAAAAAAAAAAAAAAAO9omkXtc1C3i2e6J766/KinzllMty+7m WJpsW/OeyO1q20u0GG2Zy2vH4jfMbqaedVU8Ij69kMvYGFZ07EtY1ijsWrccUx/Wfi6AwuGtYOzT YsxpTS/PzM8yxOcYy5jsZV0rlc6z9o7ojdEOyumLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAPAH3wNOydVyacfFsV37tX5NEeHxn3R8ZUmYiN71tWq71XQtxrLIu3 emePidi/qk05V7xixT/s6fn+d/L5raq7M8G04XKaLfWv757OX7sj6FmU6bkU2+Iox6oimaaY4in3 TEMfiLfrKdY4w2ezVFuejyW+PBhmTSAADBfXzUfXa9p2FFXMY+PNyY9011f2pZ3L6dKKqu1oW0N3 pXqLcco19/8A9MYR4Ms1R0Nb1SjRdGzs+v8AFxrNV35zEd0fv4WuKvxhrFd6fyxMsplWBqzPH2MF RxuVRHvnf8NWqVy5XeuV3Lk9q5XM1VTPnMzzP8UBVVTXM1Txl37bt02qIt0RuiIiPCNyFHoAAAAA AAAAhQdjBzrunZEXbU9/hNM+FUe6XzVTFUaS9bV2q1V0qV207UbWpWIuW5+FVM+NM+6WPqpmidJb Dau03aelSvHSPK+x9Utp3eeONSsUzPwqq7P9V9l1XRxdqe+GD2jo6eT4qn+yfhvfoVT3JackJAAA AAAAAAAAAAAAAABE/wBQfm/vK/8Aat469e557eoZFXP/AM2pDuKnpX7k98/N2LldPQwFinsop/8A TDyFsyYAAAAAAAAAAAAADlZs3Mm9RatUTcuVzFNNNPjMy9bduu9XFu3GtU7ohbYnE2cFYrxOIqim iiJmZnhEQyztfb1GgYHYnirJucVXrkec+6PhCeMkymjKsP0Z311e1P08IcF7bbWXtq8wm7GsWKNY op7v1T/dV8I3PajubCjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AABEzwC1bZ2Dl632MjK7WHhT3xVMe3cj9GPKPjP8XjVciN0MzhMsuYjr19Wn4z4Mn6Vo2JouLFjD s02aPyp8aqp98z5ytpmZnWW32bFvD09G3Gju8KLhEii1aDn/AGvEiiqeblrunnzjylhsRb6FescJ ZKzX0qdJ5PVWr3ARINYepWp/dffGrXonmii76iiY91Edn+cS2nC0dCzTCK80u+uxlyqOU6e5W/Bd MWx11v1j7DtS3hU1cXM6/FMx+hT7U/x7MNO2oxPqsHFqONc/CN8/RMfouy38VnFWMqjq2aZn/lVu j4asDQih1kkAAAAAAAAAAEKDsYOdd07Ii7anifCaZ8Ko90vmqmK40l62rtVqrpUsndPNZtXt06Bl 2p4m1qGNVVTPjTMXae6XhYibWItzPbHzXuPqpxOXX4p50Vf+mX6VR5pfcgJAAAAAAAAAAAAAAAAA BE+QPzR1S5N7Vc65M8zVkXap+tcoZuzrcqnvn5uzsJHRw9unspp+UOs8l0AAAAAAAAAAAAAK8SZi I1lkjZW1fuXajNy6P/GXI9iir/dUz/Wf4Ji2byP8FRGLxEfzJ4R+mPvPwcb+knbn+NXpynLqv/Ho nrTH56o/9scu2d/YtkN7QOkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAACZB9cPEv6hkUY+NaqvXq54poojmZUmYiNZfdu3VdqiiiNZZN2t08x9M7GTqEU5WXHfFvxt25 /wDVPx8FrXcmrdDbsHldFnSu9vq+Efdc4h5M8CoADtaZmTgZlFz8ifZqj4PC9b9ZRMPS3X0KtVzp mJiJieYYNlEg6OualRo+j5udXxFOPZru9/nxEzw+6KenVFMc3hfuxZtVXJ5RMtS67lV65Xcrnm5X M1VT75nvlt8RpGkIfmZqmap4y4zKqjAXWvWPuhu+MOmrm3g2Yt8fp1e1V/OmPoiXafE+uxvqo4UR p5zvl1t6MMt/B5LOKqjrXqpn/jG6PrLH7UUvpAAAAAAAAAAABCg9PbWo3dL17T8i1V2ZpybUzE+E x26fF9UxE1U69sPi5VVTariOdMx8JfrZT5pUcquQAAAAAAAAAAAAAAAAAOFyezRVPuiVJ4Kxxfmb kVdvJvVfnV1T/GUL1b6pdp2o0t0x3R8nB8vQAAAAAAAAAAABAL7svZ82vV6jn0cV/jWbNUeH6VUe /wB0fVKezmz/AEOjjcZTv400zy75+kOV/SP6QovxXkuUV9Xhcrjn20Uz2fqnnwheI7+9JbmdIAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHIPV29tjO3JfmnGtzTYomI u5FUT2LfPvn3/B51XKaN08V7hcHdxVWlEbuc8oZa2/trC27jerxqO1cqj8Jfr/Hr/tHwWtVU1Tvb thsJbwtOlEb+cvWiOHyvQAAAETAotO38z7Th+rqnmu17P08mHxNvoV6xwlkbNXSp07HrLRcMddb9 a+5+0acOmri5nXYt8foU+1V/KI+rI4GjpXel2Nbz2/6rC+rjjVOnlxYAiGxI7fPJyLeJYu371XZt WqJuVzPlTEcz/CHxXXTbomurhG97WLNeJu02Lca1VTER4zOkNUdV1G5rGqZeddnm5k3ars/WeeEA 4i9OIvV3quNUzLv/AC7B0Zdg7WDt8LdMU+6Pu6rwZAAAAAAAAAAAAAB9MarsZVmr3XKZ/wA0K08Y fFyNaKvCfk/XmzPat0z74if4JThytPFzVUAAAAAAAAAAAAAAAAAfO/8A7Gv9Wf5KTwVjjD8zK/8A aV/rT/NC88Zdq0exHhCHy+gAAAAAAAAAACmma6oppiaqqp4iIjmZl9U0zXMU0xrMvi5cotUTcuTE UxvmZ3REdsyyBtPZEYk0Zuo0RVf/ABrdie+KPjV75+HklfIdmosaYrGxrVyp7O+e/u5OTtvPSXOO ivK8kq0tcKrkbpq7Yp7Ke2eM8ty6R396RXOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAARMguvT7pnl7xvU5OR2sXSaZ9q9x7V3300f1q8I+KxxOKpsx0Y31M7l2V14 2enXuo7e3w+7P2BoeDpel0afiY1FjEpp4i3TH8Znzn4tem5XNfTmd6RLVi3ZtxaojSFa1DCq0/Jq t1czT401e+GZtXIuU6wsa6OhOjrvZ8AAAAAO7o2X9jzqJmeKK/Yq+U//AFW9+jp0T3PW1V0alw57 mEZNr51r137qbu+yUVc2cC3Frunu7c+1V/6Y+jYsDb6FrpTzR1nuI9bivVxwpjTznioEzwyLXFE6 x659ydnXcemrs38+uMemI8ez41z+6OPq1baPFfh8DNETvr3eXNKfo3yr+IZ5TfrjWizHTnx4U/Hf 5NfEPuwkqgAAAAAAAAAAAACbf+1t/rR/NWOMPmv2Z8Jfr1jf+Xt/qx/JKccHKs8X1VUAAAAAAAAA AAAAAAAAcLkdqiqPfEqSrHF+ZuRT2Mm7T7q6o/jKF6t1Uu07U626Z7o+Tg+XoAAAAAAAAAA7Gn6d karl0Y+Lbm5dq8vKI98z5QvcJg7+OuxZsU61T/ms9kMNm+cYHIsJVjcfc6FEe+Z7IjnM9jJu29o4 2g003auMjNmO+7Md1Pwpjy+fimjJ8gsZXTFyrrXO3s8PvxcWbY7f47aiubFvW3ho4URO+rvrnn4c I73v8NpRWkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETPAMl9NO lVevTb1PV7dVvTfxrVie6rI+M+6n+fyYvFYv1fUt8fk2nK8om/pexEdXlHb+3zZ1sWbePZotWqKb dqiIppoojiKYjwiIYCZmZ1lvtNMUx0aY0hzkfTo6tp8Z+LNMRHrae+ifj7vq97N31VWvJ5XKOnGn NUJiaapiY4mO6Ylm2MFQAAAAkFjvbgtadtm/qeRPs41qqquPfMR3R9e797C1WZ9d6uOa8rxFNqxN 6rlDVzMy7ufl3sm/V2r16uq5XV76pnmf5toppimIpjkia5XVdrmurjO98ZnufT4a/wDWXcH3X3ZO Hbq7VjT6PUxx4Tcnvrn+UfREW0mM/EYz1VM7qN3nz+zrv0a5P/DsmjFXI0rvz0v+MbqfrPmobVEt AAAAAAAAAAAAAAPpi0dvLsU/nXKY/wA0K08YedydKKvCfk/Xm1HZt0x7oiEpw5Xni5qqAAAAAAAA AAAAAAAAAInyB+aOqW5s6pnW57poyLtM/SuUM3Y0uVR3z83Z2Fq6WHt1dtNPyh1nkugAAAAAAAAH PHx7mXkW7Fmma7tyqKaaY85l7WbNeIuU2rca1VTpCzxmLs5fhrmLxNXRooiZmeyIZd29oFjQMGmz biKr1XE3bvHfXP8AaPKE+5TlVrKrEW6N9U+1PbP2jk4C2t2qxW1WPnEXp0t06xRRypj/AOU858uD 1eOGbaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATPAMr9L+lP2 71Wsa3Z/8P3V4+JXH+091dce73R5+fcw+LxfR/l258ZbflWUdPS/iI3co+s/ZmqmnsxEREREeUMI 3hyFQESCs7iwfUX4yKI9i5+N8Kv/AKsrhbnSjoTyWF+jSelDyIXy2AAAAAUjqhuKvH0u1o1qviMi uL96In8mn8WPrPf+y+7duKq/WTya7nGJmm3GHjnvnyYwjwXrUXk7r16jbO383Uq+Jqs0fg6Z/Krn upj9/H8WPx+LjBYau/PKN3jybBs/lNed5nZwFHCqd/dTG+qfc1bu3a796u7dqmu5XVNVVU+MzM8z P70EVVVV1TVVO+XeFq3RZt02rcaU0xERHdG6HFR6gAAAAAAAAAAAAAO5otqb+tadajvmvKs0/vuU w+7ca10x3w8MRPRs11dkT8pfrnT5pScspAAAAAAAAAAAAAAAAABFXl8wfm/vKx9l3jr1nw9XqGTT x/8ANqQ9io6N+5HfPzdi5XV6zAWKu2in/wBMPIWrJgAAAAAAAALX04wqcjWbt+qOfs9rmn9aqeOf 3ct72Qw1N3G1XqvyRu8Z3fdA/pgzKvC5LawdE6eur0nwpjXT36Mkx4JjcbpAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzwDLPSrpb9r9TrWs2fwPdXjYtyPx/dXXHu 90efjLD4vF6a27fnLcMoynpaYjERu5R9Z+jNUQwjeEgAAA6+di05mNctVflR3T7p8pfduubdUVQ+ K6elTMSpVVE266qao4qpniY90s/ExMawxUxpuQqAAAPnkX7eNYuXrtUUWrdM111T5RHfI+Kqooia quEMGa7qteuark5tfMesq9mmfyaY7qY/cvqaejGiO8TenEXark8/k6E90PpbMKdctzfatQx9Es1/ g8X8Nf487kx7MfSmef2kZbU471l2nCUTup3z48vdDpz0WZH+Hw1zN70da51aP9scZ853eEMWtDTy lUAAAAAAAAAAAAAAe7sHGnN35trHiOZu6pi0cfO9Q97Ea3qI74+awzCroYS9V2U1fKX6w0+fzSc5 hcgAAAAAAAAAAAAAAAAARM8QD89ermLGF1S3ZaiOIjUr1UR8Kqu1/VEuY09HGXY75dbbOV+syfC1 f2R8NypMc2IAAAAAAAABaunOfRi6zdx657P2i32aZn86J5iP3ct72QxVNnG1Wap9uN3jG9BPpfyu 7jcmt4y1GvqKtZ/21RpM+U6aslRKY3GqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAJngF42FsqM2aNTz7fOPHfZs1R/tJ/On4e73/Jb3K/yw2LLcv6el67G7lHb3+DO2 g6h9rxvV1z+FtRxPxjylr2ItdCrWOEt+s19KnTseqtVwAAAAie8FX3Hiepy4vRHFN2O/5x4stha+ lR0Z5Mffp0q17XlQvVuAAAofU7cHqMajSrNX4S9EV3uJ8KPKn6z3/KPi9rVOs9Jreb4ro0xYpnfP HwY18I5XTUnmbl16ztrRMvUr/E0WKOaaJ/Lrnupp+s8fxWONxVGCw9d+vl8Z5QzuSZVdzvMLWAs8 a53z2Rznyhq5m5t7Uc2/l5Fc3Mi/XNy5VPnVM8ygq7dqv3Krtc6zM6y7vwmFtYKxRhrEaUURERHd D4vJdAAAAAAAAAAAAAAALv0NxPt3WXZNmY5idXx6p+VNXa/9K8wUa4m3HfDCZ3V0MsxE/wBs/Hc/ UimeYSS5tSAAAAAAAAAAAAAAAAACKvAGh/pFYP2DrLuOnjuu12r8ftWqJ/nyi7OKejjrnfpPwdSb G3fW5HYns6Ue6qWOGFboAAAAAAAAAmiuq1cproqmiumYmmqJ4mJjzh90VVW6oronSYeV21bv26rV 2mKqao0mJ4TE8YlkXbm/LGbbpsajXTj5Md0Xp7qK/nPlP8EvZNtPaxNMWcZPRr7eU/afg5A2y9F+ LyyuvG5NTNyxxmmN9VHhH5qY5ab45xzW2mqJiJieYnviY84b5rrvhAkxNM6TG9y5VUAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBbNi7PnW78ZuZRP2C1PdTP++qjy+Uef 7njcr03RxZvLsD+Iq9Zc9mPj+zLFNMRTEREREd0RHhC1bpEdjsYWXVg5NF2nv4nvj3x5w8rlEXKZ pl90VdCrVdLV2m9bprpnmmqOYn4MFMTTOksrExO+HNRUAAAB52uYv2nT7nEc1Ue3H08f4LjD19C5 He8btPSolUoZtjQAHR1nVrOi6bfzL8+xbp7qfOqrypj5yrETM6Qt796nD25uVcmD9Qzr2p517Kv1 dq7eqmqqf6R8I8F9EaRpCPLtyq9XNyvjLrz4KvJg3rTu77p6rRouPXzjYVXavTE91V7jw/Zju+cy i3abMPX3owluerRx75/b5upvRls9+Bwc5tfjr3d1PdR2/wDKfhEMatJTeAAAAAAAAAAAAAAAAyx6 KunfdLr7tOnjmLNy9kT+xYrn+fDKZZT0sXR5/Jqu1Fz1eU3u/SPfMP0npjiEgufEgAAAAAAAAAAA AAAAAAiQaXelnp84fVeL/HFOVp9m5z75pmumf5QjnP6Oji4q7Yh0d6P70XMomj9Ncx74iWGWtJKA AAAAAAAAAQKvna3Bre1Ob2k5U1Ysd9zBvR27cfGmPL6cNky7O8ZgdKKK93ZO+P28kbbR7D5Pnut6 /Z0r/VT1avhx84la9v8AXPTczs29Wxa9Puz/AL61zctf/wC0fxSFg9qbF3SnE09Ce2N8feHPGcei vH4bW5llyLtP6Z6tX2n4MiadquHq+NGRg5VnLsz+XZriqI+fu+rcLN+1iKenZqiqO5DuMwGLy67N nGWqqKuyqNP/AL8nb5XCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ7ge 5tHbF3cuf2auaMO1MTeuR/2x8Z/g866+jDI4HBzi7mk+zHH7MyY+PbxbFuzZoi3at0xTRRTHdEQs 2+U0RRTFNMaRD6j7OOQWDbed2qKsaue+n2qPl5wxeKt6T04XtivWOjL3lguwAAAHGqO1HE+E+MAp GVYnFyrtqfyapiPl5M/bq6dMVMTVHRqmHyej5RIoxFvzc/3d1GMfHq5wceZimY8LlXnV/SP/AKrq 3RpGstIzLGfiLnQonq0/Ge1WPB7MOrW/t2UbP29eyomJzLnNrGonzrmPH5Ux3z9PewubZhGXYabk e1O6nx/ZumyOz9e0WZ0YeY/l09auf7Y5eNXCGtFdyq7cqrrqmuuqZqqqqnvmZ75mUJTVNUzVVOsy 7doopt0xRRGkRuiOyI4IUegAAAAAAAAAAAAAAAoM/wDoRaX9v61VZPHMYWl5F3n3TVVRRH/dLO5N TrideyJaHtnc6GWxT+qqPhEy/QCO5vKDkgAAAAAAAAAAAAAAAAAiQaq+mbps29a2xqHHddx7+PM/ q1U1R/3S0baOjr26+6YTn6N72trE2OyaZ98TH0a5NNTKAAAAAAAAAAAgVVrX9A7PaysWnu8a7cR4 fGP7Lu1d/LUxGJwunXo84eLp2pZek5NORhZN3Evx4XLNc0z/AA8fqyNm/dw9fTtVTTPc1zGYHDZh amxi7cV0zyqjX/PJlTZvWyqblvE3BTT2Z9mM61Txx+vTH84/c33Ldp51i1jv+0fWPrCBNpfRhTFN WJyOd8b/AFcz/wCmfpPvZds37eRaou2rlN21XTFVNdE801RPnE+aQ6aqa6YqpnWJc73bVdmubV2m aao3TE7pie+H0fTzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdvR9JyNc1C1 iY9PNdc99U+FFPnVPwh81VRTGr3sWK8Rci3RzZs0fSMfRNPt4eNTxRRHfVPjXV51T8ZWUzNU6ykG xYow9uLdHCHeUXAAD6Y2RVi5FF2ifaonnj3/AAfFdMV0zTKtNU0zqu1i9TftUXKJ5pqiJiWAmmaZ mJZaJ1jWH0UVAAAAVfclj1ebTc8rlPf847v7MrhKtaJp7FhfjSrV5MyvlsovUTdn2OzVpWJX/wCI uR+Hrpn8SmfyfnP8vm9rdGu+WuZpjfV0+otzvnj3MZxHC6ak43LlFuiquuqKKKYmqqqqeIiI8ZlS qYpiaqp3Q+6KKrlUUURrM7ojtlrX1D3fVvDcFy/RVMYNjm1jUz+b51fOqe/5cIVznMZzHEzXHsRu p8O3zdr7G7O07O5bTarj+bX1q57+UeFPDx1lWWCb2AAAAAAAAAAAAAAAAA2u9ALSJu7g3hqnHdZx cfFifjXXXXP/AGQ2fI6etXX4Qi/bm7pasWu2Zn3aR9W6TbkRAAAAAAAAAAAAAAAAAAIkGAfTE0r7 TsTSNQiPaxNQiiZ91Ny3VH86aWq7Q0dLDU19k/NKno8v9DMrln9VE/CYlqMj50IAAAAAAAAAAAAg VVrX9A7PaysWnu8bluPL4x/Zd27v5amIxOG/qW1cXTFLdsbqNn7NvRannL0yqrmvFqq/F58Zonyn 4eE/xbFledXstq6PtW+z7dnyR3tTsXgtpKJux/LvxwriOPdVHOO/jDPugbhwNy6fRmaffi/Znuqj wqoq/NqjylLWExlnHW4u2KtY+Md0uSM2yfG5JiZwuOo6NXLsmO2J5x/kvTiV6woAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaKartdNFFM11VTFNNMRzMzPhECsRNU6QzFsza9O3NO /CRE516IqvVR+T7qY+EfzWVdXSlveAwcYW3v9qeP2WJ8MoAAAAsG2c3tW68aqe+n2qfl5wxeLo0m K4XtirWOi95YLsAAAB425rPbw6LnnRX/AAle4SrSuY7Vtfjq6sc7x3TRtvB9js1516JizRPl+lPw j+MszRR0pa5jsZGFt7vanh92HLt2vIu13btc3LlczVVXVPMzM+Mr3huaJVVNczVVOsyifAUYm60b 3+zWZ2/h3Pwt2IqzK6Z/Fo8Yt/OfGfhx72gbS5p0KfwVqd8+14dnnzT/AOjPZf11f8bxdPVp3W4n nPOrwjhHfv5MNI1dLJVAAAAAAAAAAAAAAAABQby+gZov2TpvrmpzHE5uqTRHxpt26Y/nVU3TJKNL FVXbPyQttte6WOt2v00/OZbNtiR2AAAAAAAAAAAAAAAAAAAxn6Ruj/djo9uCmKe1cxrdGXT/APLr pqn+HLD5vb9Zgrkdm/3Nw2RxH4bO8PM8JmaffEx82ifmix1QAAAAAAAAAAAAAgVVrX9A7PaysWnu 8a7cR4fGP7Lu3c16tTEYnC6dejzhXIldMU9Pb+49Q2vqFOZp9+bVyO6qme+i5T+bVHnC+weNvYG5 F2xVpPwnxYPOMlwWeYacLjqOlTynnE9sTyn582fdj9RcDeVmLccYmpU083MSqr8b3zRP5UfxjzS3 lec2Myp6Ps184+3a5H2p2Mxuzdybnt2J4VxHDuqjlPwnktsS2BHyQAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAARIMhdNtr+GsZVHwxqZj99f9I+sra7Xr1YbRlOD/AP8ARXHh9/syJEcP BtAAAAAD7YeTOHlW70fkz3x7483nco9ZTNL6oq6FUSu1uuK6YqpnmJjmJ+DAzGk6Sysb97koqAAA rHUDdGHtjQLt3Knt3rvsWLFM+1cr8f3R5yu8LbqruR0eTGZhi7eEszVXxnhHbLWzU9SyNYzruXlV 9u7cnv8AdEeUR7ohs1MRTGkIwvXq79c3K53y63g+nirO/d42dm6JXkz2bmZd5oxrM/lVe+f0Y8Z+ kebCZtmVOW4ea/zTupjv+0N12T2bu7SY+LHC1Tvrq7I7I754R7+TWzKyr2dlXcnIuVXr92qa67lX jVVPjKFblyq7XNyudZnfLtjD4e1hbNFixT0aKYiIiOUQ+b4XAAAAAAAAAAAAAAAAAAD9I/RS0P7h 9B9r01UTRcyrVzNr58/WXKqo/wAs0pByyjoYSiO3f73PW01712a3pjhE6e6NGXWUauAAAAAAAAAA AAAAAAAAA8zc2lU67t3U9NqiJpzMW7jzz+lRMf1eN6j1tuqjtiYXeEvzhsRbvx+WYn3Tq/Nqq3VZ qm3XHFyiexVHumO6f4obmJidJdmU1RXEV08J3+8UVAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy3Hl8 Y/su7d38tTEYnDf1LauLpinOxeuY16i7ZuVWrtExVRXRPFVMx5xPk+6K6rdUVUTpMPK7at37dVq7 TFVM7pid8THezJsPrJbyot4O4K6bN/8AFozuOKK/14/Jn4+Hv4SRlO0lNzSzjZ0nlVynx7PFzZtZ 6NrmHmrG5JHSo4zb5x/t7Y7uMctWVYriqmJiYmJjmJie6Yb7ExMawgOqJpmaao0mHJVQAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnuB7W0du1bk1Wm1VExi2vbv1x7vKmPjP8Ad511dGGQ wOFnFXdJ9mOLNFq3TaopoopiiiiIppppjiIiPCFm36mIpjSODmPoAAAAAkFn27l+vw/VVTzVanj6 eTD4qjo16xzZCxVrTp2PXWi4ARM8A8nc25cPauk3c/Nr7NFPdRRH41yryppj3y9bVqq9V0aVpisV bwlqbtyd3za07p3Pm7u1a5nZlXfPs27UT7Nqjypj+s+ctos2abNPRpRfjMXcxl2blzyjsh5L2WTp 6vq2LomnX87MuRaxrFParqnx+ERHnM+EQt8RiLeFtVXrs6UwyOX5fiM0xVvB4WnpV1zpH3nujjMt aN4bqyd4a1dzr/sW/wASzZ55i1R5R8/OZ85QlmWPuZjfm9Xw5R2R/nF23s5kGH2dwFODs76uNVX6 quc+HKI5Q8VjG0gAAAAAAAAAAAAAAAAAFNuu/XTatxzcuTFFER51T3R/GTTXdCk1RTE1Twh+tG0d Ep23tbR9JoiIpwcOzjREfoURT/RKFqj1dFNHZEOXMTdm/fruz+aZn3y9h6rYAAAAAAAAAAAAAAAA AABxq94Pz36uaH97nU7c2BFPYoozbly3T+hX+Ep/hUiXMbXqcXco7/nvda7OYr8ZlGGu66z0YifG ndPyVFjmxgAAAAAAAAAAAAAIFVa1/QOz2srFp7vGu3EeHxj+y7t3NerUxGJwunXo84VyJXTFALns jqfqO0ZoxrvOfpnP/l66vatx+hPl8p7vk2bK89v5fpbq61vs7PD7Iz2o2FwG0MTft/yr/wCqI3Vf 7o5+PHxZ127ujTd04UZOnZMXqY/Htz3XLc+6qny/klTB47D4+36yxVr3c48Ycq5zkWYZDf8AUY63 0eyeNNXfE8/m9XmF+wCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc7Fi5lX7dmzRVcu3 KoooopjmaqpniIhSZiI1l9U0zXVFNMazLNe2NAt7d0q3jRxN6fbvV/nV+f0jwhZVVdKdUgYPDRhb UUc+fi9d8r4AAAAAAB6GhZP2bUaImeKbnsT/AE/itcTR0revY9rNXRrW2GGZIkHm6/r+FtrS7ufn 3fVWLflH41dXlTTHnMvS3bqu1dGnitsRiLeFtzduzpENbd57yzN6arOVkfg7FHNNjHieabVP9Znz n+jZrFimxTpHFGOOx1zHXOnVuiOEdjwfBcsc4XK6bdFVddUUUUxNVVVU8RER4zKkzFMTVPCH1RRV cqiiiNZndERzlr51O3/Vu7UIxcSqY0nGq/B+Xrqv+ZPw90e7v80QZ5m05hd9Xan+XTw757fs7B2G 2Rp2ewv4nEx/5FyN/wDbH6Y7/wBU9u7kpDVkpCoAAAAAAAAAAAAAAAAAAvHQ3bn319YNo6bVR6y1 XqFu7dp/Qt/hKv4UL3BW/W4minv+TB53iPwuW37nPozHnO76v1Hp8EkObkgAAAAAAAAAAAAAAAAA AAiY5Bp16Xmgfc7qHg6nRTxRqOFT2quPGu3VNM/5ZoR7tDa6GIpuR+aPk6F9HuL9bl1zDzO+ir4V Rr84lg1qyUwAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5fGP7Lu3d/LUxGJw39S2ri6YpIOzpup 5ejZlGXg5FzFyKPC5bnifl8Y+Erixfu4auLlmqaZjsWGOwGFzKxOGxluK6J5T/m6e+GYtmdacbUI t4muxRhZE90ZdEcWq5/Sj8if4fJI+WbS272lrGdWrt5T49nyc3bTejPEYTpYnJtblHHoT7UeE/mj 4+LKFFym5RTVRMVUVRzFVM8xMe+JbzExVGsTuQZVRVbqmiuNJjjE8XJV8gAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAEzwDLPRDZvr71e4Mu37FuZt4lNUeNXhVX9PCPjyw+Pv6R6qnzbjkOB6U/ iq47o+ssm63o0XYqyLFPFfjXRH5Xxj4rPD3+j1KuDbL1rXrUq9DKLIAAAAAAA5mmYmO6Y74lTjuO ErxiX4yca3djwrpiWv109CqaWWpnpREujuHcODtnTLmdn3YtWaO6Ijvqrq8qaY85l927dV2ro0rf EYm3hbc3Ls6Q1w3pvTN3rqf2jI5tY1vmLGNE8024/rVPnP8ARstixTYp0jijPHY65jrnSq3RHCOz 91fXLGon3Awp1Z6jxqVV3Q9Lu84lM9nKv0T3XZj8iJ/NifGfOfhHfGW0GdeumcHh56se1Pb3eHb2 unPR9sX+CppzjMaf5k76KZ/LH6p/unl2R3sXNDTyKgAAAAAAAAAAAAAAAAAADY30GNs/dXqnqOsV 0zNvStPq7NXHhcu1RRH+Wm42DJbfSv1V9kfNHu2mJ9XgaLEfnq+Efvo3yjwbqhRIAAAAAAAAAAAA AAAAAAAAMDel9t37o7BwNWop5uabmR2pjyt3I7M/5ooavtBZ6eGi5H5Z+e5KHo+xnqczrw8zuuUz 76d8fDVp+jx0QkAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvVqYjE4XTr0ecK5Er pikqiOAWjaHUTVdn1027Nf2rA55qw70z2f2Z8aZ+Xd8Gdy7OcTl09GmelR2T9Oxoe0exuW7RUzXd p6F7lXTx/wCUcKo8d/ezltLfulbwtRGJem1lxHNeJeni5T8Y/Oj4x/BKWX5thsxj+XOlXOmeP7+T lnaDZLM9nK//ACaOlb5V0+zPj2T3SscT3My0xPPIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA PU2vt+/urXcXTbHNM3aua6/zKI/Gq+kfxmHjduRZomuV5hMNVi71Nqnn8I5tpdN0+xpWBj4eNRFr HsURbopjyiGqVVTXVNU8ZSvbt02qIt0RpEOzw+Xqrev6X6mqcm1HsTPt0x5T72Tw17XqVLG9b060 PGZBagAAAAAEg713eOBtXb1zIz7nHq65ptWqe+u7M98RTH/uIY67h6rt3Snm+7mMtYSzNd2fCOcs D7u3fn7y1OcrMq7NunmLOPTPsWqfdHvn3z5szZs02KdKUd43G3cbc6dfDlHY8RcLA/mDEvVbqX9m i9oekXvw080ZWTRP4kedumff758vDxR/n+d9DXCYWd/5p7O6Pq6C2A2I9dNGcZnR1eNFE8/7pjs7 I58WG4jiEbuk0gAAAAAAAAAAAAAAAAAAAiVBvZ6C21fuV0z1PW7lM03dXz6oomY8bVmOxH+abjds ltdCxNf6p+SE9tMT63HU2I4UU/Gd/wAtGyjYEfJAAAAAAAAAAAAAAAAAAAABWOpW2o3hsPXdH47V eViV024/6kR2qP8ANELPGWfxGHrtdsMvlGMnL8ws4qPy1RM+HP4Pzt74/Gjirzj3T7kQ8OLsHdMa wlQAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy3Hl8Y/su7d38tTEYnDf1LauLpikqgDlau3Me7Rd tV1WrlE9qmuiZiqmffEx4K01VUVRVTOkw87tqi9RNu7TFVM8YnfE+MMpbN613sbsYmv01ZFrwjNt 0/hKf16fyvnHf82+ZbtPVb0t43fH6o4+cc0C7S+jG1f6WJySehV/+ufZn/bPLwnd4Mv6fqONquJb ysPIt5WPc76blqrmJ/8Ar8Ei2b1vEURctVRMTzhzpjMFicvvVYfFW5orjjExpP8Ane7T2WYAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAACJkUZ86L7Q+42hzquRR2cvPiJoiY76LP5MfXx/c17G3unX0I 4R80iZHg/UWfXVx1qvly9/FkhjWygOFyim5RVTVEVU1RxMT5wrEzE6wpMa7pU3U8GrAyqrfjRPfR Pvhm7Nz1lOvNjLlHQq0dZ7vMAAAAmeAeNuTc+JtvF7d6fWX64/B2KZ9qv4/CPi+qaZqncsMVjLeE p1q3zyhiDWdaytezasnLr7VXhTRH4tEe6I9y8ppimNIaPiMRcxNfTuT+zpPpbEyDFvVHqhGmRe0f SLvObPNORk0T/sffTTP53vny+fhome57FiJwuFnrc57O6O/5J32E2FnHTRmuaU/yuNFE/m75/t7I 5+DCfn3ox4unYjTdCVVQAAAAAAAAAAAAAAAAAAAEcTP4sdqrypjzn3BM6cX6pdI9oxsXpptvQpp7 NzDwbdN2P+rMdq5P+KqpJeFteps0W+yHMuZ4r8bjbuI/VM+7l8FvXTGAAAAAAAAAAAAAAAAAAAAA InwB+ffWba/3odTtwafTR2LE5E5FiPL1dz26ePlzMfRE+ZWPw+LuUctdY8J3ustmcd/EMpsXpnfE dGfGnd+6mMY2YAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd4124jw+Mf2Xdu5r1amIxOF069HnCuRK 6YpKoAhQett3dOp7Vy/X6dk1Wefx7c+1bufrU+E/z+LIYPH4jAV9OxVp2xynxhr2c5Dl+fWfU4+3 FXZPCqPCf8hmrZ3VzTNx+rxs2adM1Ce6Ka6vwVyf0ap8PlP75Sdlu0OHxulu91K/hPhP0lzHtJ6P MwybpYjCfzrMc4jrUx3xz8Y90L7Hd4trROkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFj6f7Wnd2 5sfEqpmcW3+Gyao8rceX1niPqtcTd9TbmrnyZTLcJ+MxEUT7Mb58P3bPW6KbdFNNNMU0xHEREcRE NW4pTiNI0hyFQAHna1gfbMOezHNy37VPx98Lixc9XXv4S8btHTp71Rhm2NSAABIKvuze+Pt+irHs dnI1CY/E/Jt/Gr+z0oomrwYfG5hRho6FO+r5eLE+Zm39SyrmRk3ar16ueaq6v/fdHwXcRERpDS7l yu7VNdc6zL5eCrzRz7vEGKupnVWMD12k6LdirK76L+ZRPMWvfTRPnV758vLv8NCzzPota4XCT1ud XZ3R39/JPmw+wM4roZnm1OlvjTRP5uyav7eyOfPcwv49898z3o0ne6YiIiNISKgAAAAAAAAAAAAA AAAAAAAMgdAtnff11g2xpdVHrMaMqMrIifD1Vr8JVz8+zEfVf4G167E0U8tdfcwGfYv8Fl167E79 NI8Z3P0+p8EjOcXIAAAAAAAAAAAAAAAAAAAAAESDVv0x9q+rzNB3Hao9m5TVgX6ojzjmu3z9Jrj6 NI2isb6L8eE/OPqm70c4/WL+Aqnsrj5T9GtjS01AAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vG5b jy+Mf2Xdu7+WpiMThv6ltXF0xSVQABHCgu2z+q2q7Y9Xj35nUtOp7vU3avboj9Cry+U8x8mz5dn+ JwOlFfXo7J4x4Si/aPYHLc96V+zHqb0/miN0z/dT9Y0nxZr2xvLSt22PWafkRVdpjmvHuezdo+dP u+Mcwk7A5lhswp1s1b+cTxjycxZ5s1mWz13oY231Z4VRvpnwn6TpL3InllGrpAAAAAAAAAAAAAAA AAAAAAAAAAAAAABEijYbo9tX7gbZpyr1HZzNQ4vVcx300fkU/u7/AKtbxl31lzSOEJJybCfhsP06 o61W/wAuS/LBsAAACJBUNaxPsedV2Y4t3Pbp/rH72aw9fTo38YY27T0anRXLxARNUREzPdEd/Mim qgbu6iRb7eHpFfar8K8uPCPhR/f9z3ot676ms43NIjW3h58/t92Oaqqrlc1VTNVUzzMzPMzPvXPB q0zMzrKfAHGZ857ojzNdN8kRMzpDD3Unqz62m7pWhXvYnmi/nUT+N76bc+731fu96OM72g6WuGwc 7udX0j7+50fsT6P/AFc0ZnnNG/jTbnl2TX9Kff2MScI9dDJVAAAAAAAAAAAAAAAAAAAAAEKDbf0C dlzdz9ybrvW/ZtUUabjVTH5U8XLsx9Itx9ZbVklnfXenw+6K9t8ZpTawdM/3T8o+rcptiJgAAAAA AAAAAAAAAAAAAAAAAFC647R+/PpjreDbo7eVbtfasePP1lv2oiPnETH1YzMsP+JwtdEcdNY8YbNs 1mH8NzWzfmerrpPhVun3cfJoHE9qImPCe9E7rNIoAAAAAAAAAAAAAAAAAAgVVrX9A7PaysWnu8a7 cR4fGP7Lu3c16tTEYnC6dejzhXIldMUlUAAAfTGyb2FkW7+PdrsX7c80XLdU01Uz8Jh90XK7VUV0 TpMc4eF+xaxVubN+mKqJ4xMaxPkyntHrdds9jG1+3N6jwjNsU+3H69Pn847/AIN8y7aiqnS3jY1j 9UcfOPsgTaL0X27vSxGSVdGf/wBdU7v+NXLwnd3st6bqmJq+JRlYWTbysevwuWquY+Xwn4SkKzft YmiLlmqKonsc9Y3AYrLr04fGW5orjlMaf/cd8O3y91iAAAAAAAAAAAAAAAAAAAAAAAAAAAAsXT3b M7r3Ti4ldPaxaJ9dkT/06fL6zxH1WuJu+ptzMcWTy3C/i8TTRPCN8+DZ+mmKYiIiIiO6IjyaslSN zkKgAAAPJ3Di+vwfWRHtWp7X0813hq+jXp2re/T0qdexV+WYY91dQ1HG0vFrycq9TZs0+NVX8ojz n4ERMzpDxu3aLNM13J0hizde+sjX5qxsbtY2B4dnn2rn63w+H811Rb6O+eLTcbmNeJ6lG6n5+P2V eI4ezDgPhlZVnDx7mRkXaLFi3T2q7lyeKaY98y+K7lFqma650iOMvexh7uKu02bFM1V1TpERvmZY N6i9VLu4vWadpVVdjS/xbl38WvI/tT8PGfP3IsznPqsZrYw06W+c86v2dUbG7A2sn6OOzKIqv8Yj jFH3q7+Ecu1jppqZkgAAAAAAAAAAAAAAAAAAAAAAiZimJmfCO+VB+mvo6bHnp/0f29pt236vNu2f tmVHHf6277cxPyiaaf2UjYCz6jD00Tx4z5ucs+xv4/Mbt2J3ROkeEbv3ZMZBr4AAAAAAAAAAAAAA AAAAAAAADjVHMA/PvrDs/wC8bqPrWl0UdjF9d9oxvd6q57VMfTmaf2UT5lh/wuKrtxw4x4S6y2bz H+KZXZvzPWiOjV407vjunzU1jGzAAAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vG5bjy+Mf2Xdu7+ WpiMThv6ltXF0xSVQAABCg9HQtxajtvL+06dlV41z8qKe+muPdVTPdK9wuMxGCr9ZYq0n4T4wwua 5NgM6s+ox9qK45dseE8YZi2n1q0/VIox9Yop03Knu9fTzNiqfj50fXmPikfL9prN/SjFR0Ku3l+z nDaH0ZY3A9K/lU+ut/p/PH0q8t/cyRbu03rdNduqm5RVHNNdM8xVHvifNudNUVRFVM6xKFrlFdqq aLkTExxid0x5OcTy+nwAAAAAAAAAAAAAAAAAAAAAAAAASDPnRPbMaTturUbtHGTqExXHMd8Wo7qY +vfP1hr2Ou9O50Y4QkTI8L6nD+tq41/Ll92R2NbIAAAAA4XKIuUVU1d9NUcTHwInSdYUmNWJ92bs w9q3LuPXVGTm0zMRYonw901T5R/FsdqJu0xVDVsbjrWDmaZ31dn3Ym1rXs3cGV6/Ludrj8S3T3UU R7oj+vivqaYp4NLxGJuYmrpXJ/Z0Ijh9LUnuB5mv7hwNtafVmahfixajupjxqrn82mPOVli8ZZwN qbt+rSPjPgzWU5Pjc7xMYXA0dKrn2RHbM8o/yGv++OoWdvTI7FXOLptFXNvEpq8fdVXP5VX8I8kR 5rnF7MqtPZojhH1ntl13stsdgtmrXTjr35jfX9KeyPjPNVWvpAFQAAAAAAAAAAAAAAAAAAAAAABf ehGxf9YvVjb2jV2/WYk34ycv3eote3XE/PiKf2l9gbP4jEU0cuM+EMDnmN/AZfdvRPW00jxnd8OL 9QqY4j3JHc4JAAAAAAAAAAAAAAAAAAAAAAABEg1u9MPZf2jTNJ3RYo5uYtf2LJmP+XXPNuZ+VXMf ttP2hw3SopxEct0+E8PimH0eZl6u/dy+ud1cdKPGOPvj5NWWiJ3AAAAAAAAAAAAAAAAAAAAQKq1r +gdntZWLT3eNduI8PjH9l3bua9WpiMThdOvR5wrkSumKSqAAAAI4UFg2vvrV9o3I+xZHaxueasS9 7Vqr6eU/GOGYwOa4rL5/lVdXsnh+3k0/PdlMr2hp/wDLt6V8q6d1UefPwnVmTanVvRtxdizk1/cv Oq7vV36vwdU/o1+H0niUkYDaHC4zSi51K+yeHlP3c2Z/6Pc1ybpXrEeutRzpjrRHfTx841heYltK LeG6U88gAAAAAAAAAAAAAAAAAAAAAAA7uh6XXrms4Wn2+e1k3qbXPuiZ75+kcy87lfq6Jq7Fxh7M 4i9TajnLbHGx7eLYt2bVPYtW6YoopjyiI4iGozOs6yl6mmKaYpjhD6qPoAAAB09U1fD0XDrys7It 4uPR43Lk8R8o98/CH1TRVXPRpjWXjdvW7FM13J0hhnevWvJ1CLmJoUVYePPdOXXHF2v9WPyfn4/J m7GBinrXd/c0nHZ7Xc1ow26O3n5djF1VVVyqa66pqqqnmaqp5mZ98yy0REboapMzM6yCiJkFR3x1 G0/ZtqbUzGXqcxzRiUVfi+6a5/Jj+M/xa9mmc2Mtp6PtV9n37EhbL7F47aSuLn+nYjjXPPupjnPf wjmwFuDcWobo1CrM1C/N65PdTTHdRbj82mPKP/colxeNv46562/VrPwjwdb5RkuCyPDRhcDR0aec 85ntmec/5DzlizgqAAAAAAAAAAAAAAAAAAAAAAAImeFBub6B+wPsuka5vHItcXMyv7n4dU/8uie1 cqj519mP2G35LY0oqvTz3QiDbbHdO7bwVM7qetPjPD3R822jZ0YgAAAAAAAAAAAAAAAAAAAAAAAA PC3vtexvTamq6Jk8RazrFVqKp/Iq8aavpVET9FtibMYizVaq5wyOXY2vLsXaxdvjRMT94843Pzr1 DAyNK1DJwcu3NrKxrtVm7RP5NdMzEx++EQV0VW6poq4xudg2L1vE2qb1qdaaoiY8JfB8PYAAAAAA AAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAI45UFr2r1L1 ravYtW732zCj/hcmZqpiP0Z8afp3fBsGAzvF4DSmJ6VPZP07Ef5/sRlOfa3K6PV3Z/PTunzjhPz7 2YtrdUtE3NNFr132DNq7vs+TMR2p/Rq8Kv4T8EjYDPcJjtKdejV2T9J4S5wz7YPN8j1uRR621H5q d+njTxj4x3rhz3+DY0cpAAAAAAAAAAAAAAAAAAAAABknoXon23cuTqNdPNvCtcUz/wBSvuj/ACxV +9i8fc6NuKI5toyCx079V6eFMfGf2Z5hgEgJAAB8r2RbxrVd27cptWqI5qrrqiKYj4zKsRM7ofNV UUxrVOkMabu634GmxXY0WiNSyfD19XMWaf61fTu+LJ2cDXXvubo+LWMZntq1rTh+tPby/dh3Xdx6 luXM+0allV5NyPxaZ7qaI91NMd0M1btUWo0ohpWIxV7FVdK9Vq87h6rUBwu3aLVuuu5VTRbpiZqr qniKY98z5Pmaopiaqp0iH3RRXdqiiiNZndERvmWJN99Zop9Zg7eqiZ/Fr1CY7o/+HE/90/T3o+zX aTTWzgZ8avt93Quyno1mejjM8jdxi3/85/8AbHn2MRXbtd+7Xcu11XLlczVVXXPM1TPjMzPijuqq quZqqnWZdE27dFqiLdumIpjdERuiI7nFR6AAAAAAAAAAAAAAAAAAAAAAAAAOxpmm5Os6liafhW5v ZmXeosWLceNVdVUU0x++YfVNM11RTTxl5XbtFm3VduTpTTEzPhD9Venmzsbp/snRtvYnE2dPxqbM 1R+XX411/tVTVP1SZYtRYt0245OZcdi68dibmJr41Tr9o8oWN7rEAAAAAAAAAAAAAAAAAAAAAAAA BE+ANOPSv2L97++LOvY9vs4Ws0c3JiO6nIoiIq/xU9mfpUjzP8L6q/F6nhV84dD7A5p+KwNWCrnr Wp3f7Z+06x7mD2rpRAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNduI8PjH9l3bua9WpiMThd OvR5wrkSumKSqAAAAAAImIlQW7bHVDW9sRRai/8AbsOnu+zZUzVER+jV40/y+DYsDnuMwOlPS6VP ZP0njCO892EyjPNbk0equz+ajd744T8+9lvbHVfQ9xdi1cvTpuZV3epypiImf0a/CfrxKQsDtBg8 ZpTVPQq7J+k8HPOeej/OMm1uUUeutx+ajfMeNPGPLWF0if3NlRpMTE6SnkAAAAAAAAAAAAAAAAAA ESKNi+juhfcfZmPdrp7N7NqnJq5jv4nupj/DET9WtYy507sxHCNyTMmw/qMJTM8at/2+C8rFnUcg 6+fqWLpmPVfy8i1jWafG5erimP3y+qaZqnSmHlcuUWqelcnSO9jbc3XTT8HtWdHsTqN6O711zmi1 H9av4fNkrWArq33NzWsVn1q31bEdKe3l+7E+4t46xuu52tRzKrluJ5psUezap+VMfznmWYtWLdn2 YaficdiMXOt2rd2cvc8bh7rEA5B4G6N6aXtDH9Zn3/w1Uc28a333a/lHlHxnuYrH5nhsup1vVb+U RxltWQ7M5ltFd6GDo6sca53Ux5857o1lgvefUbU9411Wq5+yadE804lqrun3TXP5U/w+CK8yznEZ jPRnq0dkfXtdV7NbF5fs5TFymPWXudcx8KY/LHxnnKqNfSAlUAAAAAAAAAAAAAAAAAAAAAAAAAQD Yv0J+nH30dRb+5Mq12sHQKO1b7UcxVlXImKP8NPaq+c0s/k+H9Zem7PCn5o/2xzD8Ng4wtE9a5x/ 2x953e9vrEcQ3ZCSQAAAAAAAAAAAAAAAAAAAAAAAAAAULrZsL/WF091LTbVEV59qn7Thz5+uo5mI /ajmn9pjMywv4vDVW448Y8YbNs5mn8IzK3iJnqTuq/2zx93HyaCTE0zMTE0zHdMT4xPuRRw4usom JjWBQAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy3Hl8Y/su7d38tTEYnDf1LauLpikqgAAA AAACOFBZdtdQ9c2t2aMbKm9ix/wuT7dv6edP0lnMFnGMwO63VrT2Tvj9vJpGd7G5PnutWItdG5+u ndV58p84ZV251p0fVuxa1GmrScie7tVz2rM/KqPD6x9W+4LabC4jSm/1KvfHv+6As69Gea5frcwE xfo7t1fu5+U+S/2Mi3k2abtm5RetVRzTct1RVTPymG20103KelROsdyI7tm5Yrm1dpmmqOMTGk+6 X1fbyAAAAAAAAAAAAAAAAejtrRLm5NewdOtxPORcimqY/Jo8ap+kRLyu1xaomueS7wticTfptRzn 4c21dum1hY1NFPZtWbVMUx5RTTEcQ1LfVKWoiminSN0Qq+udVNuaH2qa8+nLvU/7rEj1k/vjuj6y ureEu3OEaeLFYjNsJh9016z2RvY517rvqWX2relYlvAt+V29+Eufu/Fj+LJ28vojfXOrWsRtBdr3 WKej3zvn7Md6prGdreT6/Py72Xd/OvVc8fKPCPoyVFFNuNKY0a1ev3b9XSu1TM97q8Pt4gEzwDqa nqmJo+JXlZ2TbxMejxuXauI+Ue+fhDwvX7WGom5eqimI7V/gsBisyvRh8HbmuueURr/9R3yxLu/r dcvRXjaBbmzR4Tm3qfbn9Sny+c9/wR9mO1FVWtvBRp/dPHyj7ug9nfRfRbmMRndXSn/9dM7v+VXP wjd3sV5OTezciu/kXa79+uea7lyqaqqp+My0Ku5XdqmuudZnnKe7GHtYW3FmxRFNMcIiNIjyfN8L gAAAAAAAAAAAAAAAAAAAAAAAAAAAiJqmIppmqqe6KaY5mZ90fEJnSNZfpr6PXTSOlvS/StKvW4o1 O9T9sz5475v1xEzT+zHZo/ZSLgcP+GsU0c+M+LnHPcw/ieOrvRPVjdT4R9+PmyWyDAAAAAAAAAAA AAAAAAAAAAAAAAAAAIkGkPpK9P8A7yuoV7MxrXY0zWO1l2eI9mi5z+Fo/fMVfKr4I0zrCfhsTNdM dWvf583S+xWbfxHLYs3J1rtdWe+Pyz9PJiZr6QQAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093 jXbiPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAAACAenoe5dU23e9ZpubdxefxqKZ5oq+dM90 r7C47E4KrpWK5j5e7gwWaZHl2c0dDH2Yr7+ceFUb2S9vdd/xbWt4PwnJw/5zRP8ASfo3bB7V8KcX R50/b7IRzj0UcbmUXv8AjX9Ko+sebJWh7q0nclvtadn2smfO3E8V0/Ome9uuFx+Fxsa2K4nu5+5C maZBmeTVdHHWKqO/TWmfCqNz1YnvX7AJ55AAAAAAAAAAAAAnwB6u3Nz5m1r97I0+LNGVco9XF+5R 26rdPn2Ynujnu7+HjdtU3oiKuC8w2LuYSZqtaazz7PB89X3Jq2vTzqGoZGVH5ldc9iP2Y7v4K0Wr dv2Y0fN7FX8R/q1zLzeP3PVapAAB871+3j2q7t25TatURzVXXVFNNMe+ZnwfNVVNFM1VTpEPW1au X64t2qZqqnhERrM+TGe7etuFp/bx9Et06hkeH2m5zFmn5R41fwj5tIzDae1Z1t4SOlPby/dN2z3o wxeL0v5vV6qj9Me3Pjyp+MsQ63r+objy5ydRy7mVd/J7U+zRHuppjuiPkjvFYu/jK/WX6pmf84Q6 KyvJ8Dk1n1GAtRRTz04z4zxnzeetGYSAAAAAAAAAAAAAAAAAAAAAAAAAAAADNvok9L/9YfVCxnZd n1mj6F2c2/2o5pru8/gbf+KJqn4UfFmcqw3r7/SnhTv8+TTNqsy/A4GbVE9e5ujw5z9PN+iUQ3xA qQAAAAAAAAAAAAAAAAAAAAAAAAAAAAY766dPI6jbAzMOzbirU8X/AMVhTx3zcpieaP2qeafrHuYn M8J+Mw00R7Ub48f3bXszm85PmNF6qepV1avCeflO9oXMTTMxMTTMeMT3THzRXwdWxMTGsCgAAAAA AAAAAAAAAAAAAAAAAgVVrX9A7PaysWnu8bluPL4x/Zd27v5amIxOG/qW1cXTFJVAAAAAAAAAEA5W 66rVymuiqqiunvprpniY+UqxVNM9KmdJfFdFFymaK4iYnlO+PcuWg9XNxaL2aLmRTqViP93mR2qu PhXHf+/lsuE2hx2G0iqrpx2T9+KNc29HmR5nrXbtzZrnnRujzpnd8mRNE636JnxTTn2r2l3fzqo9 Zb/xR3x9YbhhdqMJe3XomiffHw+yG809F+b4TWrBVU3qf+tXund7pXjTNc0/WaIrwc7HzKZ/5N2K p/d4tos4qxiY1s1xV4Si/G5Xj8uq6OMsVUT3xMfHg7szMeMcT8V0xSeRUAAAAAAAAAA4AAABHPf3 QCl7x6p6Vtaa8e3MajqMd32ezV7NE/p1eXyjmWtZln2GwGtFPXr7I5eM/wCSkvZzYPMs+0v3I9VZ /VVG+f8AbTz8Z0hhTdG9tW3de5zsj/w8TzRi2vZtUfTzn4zzKMcdmmJzCrW9Vu7I4Onci2XyzZ6j TB2+vzrnfVPnyjujR4LFNtSAAAAAAAAAAAAAAAAAAAAAAAAAAAAABETVVEUxNVU90U0xzMz7oFJm I3y/Sz0cOlcdKemWDg5FqKNYzf8AxuoT5xdqiOKPlRTxT84mfNIeAw34WxFM8Z3y52z/ADP+KY6q 5TPUp3U+Ec/PiyoyTXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETANKvSb6b/eZvedVxLXY0rWZqvUx THs27/8AvKPhzz2o+c+5G+d4P8Pf9bTHVr+fP7ukdiM5/iGB/C3Z/mWt3jTyny4e5h1riRwAAAAA AAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAAA AAACFBNFVVuuK6KporjwqpniY+r6iZpnWJfFdFNyno1xrHZO97+m9QNx6TERj6xk9iPyLtXraf3V cstZzfH4fdRdnTv3/NqWN2QyHMNZv4SnXtiOjP8A/Oi06b111nHmIzMPEzafOaYm1V/DmP4M9Y2q xdG67RFXwaHjfRTlN7WcJdrtz36VR8dJ+K2aZ100XK4jMxcvBq86oiLtP747/wCDP2NqsJXuu0zT 8YR/jvRVm9jWcJdoux50z8d3xXHSN26Nr8RGBqePkVz/ALuK+zX/AIZ4lsmHzDCYv/RuRPdz9yN8 x2dzbKv/AMzDVUx26ax741h7HPv7pZBrxyAAAAAAAAADp6rq2HouFczM7Ioxsa3411z5+6PfPwhb 4jEWsLbm7eq0phkMBl+KzTEU4XB25rrnlHznsjvlhHe3V/N131mHpXb0/T59mbnPF67HxmPxY+Ed /vlGGabRXsVraw3Vo7ec/Z1Bsv6OsJlXRxWZaXb3HT8lM+H5p753dkMd8NOTLokAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAGePRB6T/f/ANQ6dazrPb0XQKqciuKo5pu5Hjao+PHHbn5U+9m8pwvr73rK o3U/Pk0bazNPwOD/AA9uevc3eFPOfPh736Dw3pBaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU/qps Cx1J2VnaNd7NGRVHrcW9Mf7K9T+JV8vKfhMrDHYWnGWKrU8eXiz2R5rcybHUYujhG6qO2meMfWO9 +fudg5GmZuRh5dqqxlY9yq1dtV+NFdM8TE/KYRNXRVbqmiqNJh1rZvW8RapvWp1pqjWJ7pfF8PUA AAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAAAA AAAAAIUADzifOPCfcrz1UmNY0ngte3+pu4NuzTTbzJzManu+z5fNynj4T4x9JZ7B55jcHupr6VPZ O/8AdoOcbD5JnETVXZ9XXP5qOrPnHCfOGXNn9VtK3RVRjXf/ALN1Cruizeq5puT+hV5/KeJ+aQ8u z/DY6Yt19SvsnhPhLnjaPYDMsiib9r+dZj81Mb4j+6n6xrC7R3dzZ0YJAAAAAAB4O7t44GztO+05 lXau18xZx6J9u7Pw90e+fJiswzKzltr1l2d88I5z/na2rZ7ZzG7SYr1GFjSmPaqnhTH1nsjjLXnd O7tR3fn/AGnOu+xTz6rHo7rdqPhHv+M98ofx+Y38xudO9O7lHKHYeQbO4DZ3D+owdO+faqn2qp75 7OyOEPFYttCVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2NO07K1fUMXAwrFWTmZV2mzZs0RzVXXV PFNMfOZVppmuqKaY3y8rt2izRVcuTpTEazPdD9Pei3TLG6TdP9N0Cz2bmVTT67Nv0x/tsirvrq+U d1MfCmEj4TDRhbMW48/Fzfm+Y15pjK8RVw4RHZEcP3717XrDgAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAImOQarell0v8AsWZb3np9r8BkTTZ1GmiO6m54UXfr+LPxin3tHz/A6T+Kojjun6SnLYHPOnTO VX53xrNHhzp+sebXFpiZgAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvV qYjE4XTr0ecK5ErpikqgAAAAAAAAAAAAAAACOFOBoy70v6pVzds6NrV+a4qmKMbMuT3xPlRXP8qv pKQ8iz6dYwuLnwqn5T9Jc77dbB0RRXmuU0aTG+uiPjVTHzjzhmCPdKRnOSQAAAAeHu/dmJs/R683 Jnt3J9mxYieKrtfuj4ecz5QxeY5hay6xN25x5R2z/nFtGzmz+J2jxtOEsbqY31Vcqae3x7I5y1u1 7Xs3cuqXc7Pu+tvV90RHdTRT5U0x5RCFsXi7uNuzevTrM/DujudqZTlOEyTCU4PB06Ux75nnMzzm XnLNmUqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFBth6EnRyc/ULu/8AVLPOPi1VY+l0Vx3V3eOL l75UxM0xPvmr3NoyfCaz+Irjw+6Ltsc26FMZdanfO+rw5R9Z8m6ENuRGkAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAHn67omHuPR8zTNQsxfwsu1VZu2586Zj+fun3vK5bpu0TbrjWJ3LnDYi5hL1F+zO lVM6xPfD8/Oo2xczpzu7N0TM5ri1PbsX5jiL1mfxK4+ndPumJRPjcLVg702qvLvh1nkua2s5wVGL t7pndMdlUcY+sdytLFnAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5fGP7Lu3d/LUx GJw39S2ri6YpKoAAAAAAAAAAAAAAAAiYUGcukvUL7tY9Gjajd51CzT+Au1z336I8p/SiP3x8pSns /nH4mmMJfnrxwntj7x8XK/pC2P8A4ZdnNcDT/JqnrRH5Kp5/7Z+EslxLdkJJAAB1dT1LG0jAv5uZ dizjWKZrrrnyj+s+UQ8L963hrdV27OlMcV9gcFfzLE0YTC09KuudIj/OUc55Nad67tyN463czLsT bsU+xj2Jn/Z0f3nxmff8kJ5nmFeZYibtW6OER2R9+121sxs9Y2bwFOFt765311fqq+0cI7nhMS20 VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFu6U9OM/qtvjTtvYPatxeq7eTkRHMY9in8e5Pyjuj31 TELrC4erFXYt0+fdDE5pmNvK8LVia+XCO2eUffufp/tvb2BtTQcDR9MsU42n4NmmxYtU/k00xx3+ +fOZ85mUj26KbdMUUxuhzffv3MTdqvXZ1qqnWXpvR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI kGJ/SF6Uf6x9qfacG1FWvabFV3F4jvvUfl2ufjxzHxiPfLBZtgPxtnWj26eHf3N62Sz7+DYzo3Z/ lXN1Xd2VeXPuaQTE0zMTE0zE8TExxMIy4bpdOxMTGsCioAAAAAAAAAAAAAAAAAAAAAAACBVWtf0D s9rKxae7xrtxHh8Y/su7dzXq1MRicLp16POFciV0xSVQAAAAAAAAAAAAAAABzsX7mLft3rNyq1et 1RVRXRPE0zHhMS+qK6rdUV0TpMPG9Zt37dVq7TFVNUaTE8JiWeOnvVPG3HatYOp3KMXVY9mKp9mj I+Me6r9H93uSvk+fW8ZTFnET0bnwq/fu9zk/bDYLEZNXVjMvpmvDzv04zR49tPZPvZB54nie6W3o gOYB0dY1vC0HArzNQyKMbHp/Kqnvqn3Ux4zPwha4nE2cJbm7eq0j/OHaymW5ZjM3xEYXBW5rrns5 d8zwiO+Wv/UDqFk70yotW4qxtLtVc2rEz31T+fX8fdHkiPN84uZlX0ad1uOEdvfP+bnXeyGx+H2a s+suaV4iqOtVyj+2nu7Z4z4Ki1xIwqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAERNVUU0xNUzPER THMzPuiDipM6b5fon6LXROOlGyozNRsxTuTVqab2Z2o9rHo8aLET8Oeav0pn3Q33LcH+Fta1e1PH 7IC2lzj+KYro25/l0bo7+2fPl3M2RDMNQSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJjkGovp RdIp29q1W7dLs8aZnXOMy3RHdYvz+X8Ka/4VfrNBzzL/AFVf4m3HVnj3T2+fzT9sNtB+KtfwzE1d eiOrPbT2eMcu7wYCakloAAAAAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1 MRicN/Utq4umKSqAAAAAAAAAAAAAAAAI4UNFs0PqjuPQrVNq3m/arFPdFvLp9ZER7onxj97YMLnu PwsdGmvpR2Tv/dH2abCZDmtc3blnoVzzono6+McPg9XK64biv25pt0YWNVP5duzNU/5pmF/c2ox9 caUxTHl95YCx6LshtVdK5NyuOyatI+ERKl6trWfruV9o1DLu5d7wiq7Vz2fhEeER8mtYjFXsXX07 9c1T3pMy/K8FlVr1GBtRbp7o4+M8Z83SWrKJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKDZr0O Ohv3163TvbWcftaRpt3jAs3I7sjJp/L486bc/vq/VlsmU4L1lXr643Rw8f2RvtbnX4a3+AsT16va 7o7PGfl4t5ohuSGkgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6OtaNh7g0rL03PsU5OFlW5t XbVcd1VMx/77/J53LdN2ibdcaxK4w+Iu4W7Tfs1aVUzrE97Qbqt02zOl+7L+l5E1XsOvm7h5Ux3X rXPdz+lHhVHv7/CYRVj8FVgb0254cp7YdWbP53azzBxfp3Vxuqjsn7Txj9lOY1sgAAAAAAAAAAAA AAAAAAAAAAAACBVWtf0Ds9rKxae7xrtxHh8Y/su7dzXq1MRicLp16POFciV0xSVQAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfOivSbP6xb3xtGxprsYNvi9n5kR3WLMT3zH 6VX4tMe/v8IlfYPC1Yu7FEcOc9zBZzmtvKcLN6rfVO6mO2ftHN+mW3tAwNraJg6RpmNRiafhWqbN izRHdTTEd3zn3z5zzKQ6LdNumKKY0iHO1+/cxNyq9dnWqqdZl6T0eAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAACkdW+mWH1R2pd029NNjNtTN3CypjmbN3jz/RnwmPd8YhjcfgqMdZm3Vx5T2S2 PIc6u5HjIxFG+md1UdsfeOMd7QrWtFzduatl6ZqNirFzsW5Nq7aq8aao/nE+MT5xMSiu7ars1zbu RpMOq8LirONsUYixVrRVGsT/AJz7XTeS6AAAAAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy 3Hl8Y/su7d38tTEYnDf1LauLpikqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAADv7f0DUN063haRpWNXmajmXYs2LNHjVVPx8ojvmZ8oiZfdu3VdriiiNZlb4jEW8Laqv3p0ppj WX6W9D+j+B0b2XZ0nHmjI1G9xe1DNinib97jy8+zT4Ux7u/xmUiYPC04S1FEcecud85zW5m2Jm9X upjdTHZH3nmyIvmCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMcgwp6RfRX7/AHS/u5o9 iPvhwrfE26I4nLtR39j9aO/s/WPOONczfLfxdHrbUdePjHZ9kj7IbSfwi9+FxM/ya5/6z2+E8/e0 zmmaappqiaZieJiY4mJ9yOJ3OkYmKo1gUAAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jX biPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAABETVVEUxNUzPEREczMnFSZ03y369FP0fI6a6NG49exojdGoWvZtXI5nBsz3+r+FdXdNU+X dT5TzvGWYH8NT6y5HWn4QgzabPf4jd/DYef5VM/9p7fCOXvbCs60ZIAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAImAawekx0NmirJ3loFjmmebmp4lunw99+mP+6P2ve0rOss44qzH+6Pr901 7FbUadHK8bV3UVT/AOmf/b7uxrO0lNoAAAAAAAAAAAAAAAAAAAAAAAAACBVWtf0Ds9rKxae7xuW4 8vjH9l3bu/lqYjE4b+pbVxdMUlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARy oNu/RD9HSbtWJv3c2NxRHFzSMG9T4+7Jrif8kftfmtryrL+GIux4R9fsijarP+OX4Wf98x/6Y+vu 7W4sRw2tFKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcLlFNdM01RFVMxxMT4SorEz E6w079IfoVVsnLu7i0KzNW379fN+xRH/AJKuZ/8Ay5nw/Nnu8OEfZvlf4eZv2Y6k8Y7P2+ToXY/a mMxojAYyr+dHCf1R/wDKPjx4sHNWSkAAAAAAAAAAAAAAAAAAAAAAAAAAgVVrX9A7PaysWnu8a7cR 4fGP7Lu3c16tTEYnC6dejzhXIldMUlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA QoNjPRY9G+vqJnWd07jxpp2vjV84+Pcjj7oXIn3f8qmfGfypjjw5bBlmX+vn112OrHDv/ZH2020M YGmcHhZ/mzxn9Mfefg3yt26bVEU0xFNMRxERHERDdkJ6675cwAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQD45uHYz8S9jZNqi/j3qJt3LVyntU10zHExMecTD5qpiqJpqjWJfduuq1XFd E6TG+Jjk0q68dDr/AE01CrU9Morv7aya+KKvxqsSqf8Ad1z7vzavpPf4xvmuVzg6vWW99E/Du+zp LZXaijOLcYbEzpfpj/tHbHf2x5x3Yja8kMAAAAAAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd4 3LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIUG cfRs9HTJ6uarRq+r27mNtHEucXK++mrNrjxtUT+b+dVHh4R3+Gay7L5xVXTr9iPi0raLaCnK6JsW J1uz/wDzHbPf2R5v0IwMDH0vCsYmJYt42LYopt2rNqmKaKKYjiKYiPCIhvVNMUxERwQVXXVcqmuu dZnjLsPp8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpqml4ms6fkYOdj28rDyK Jt3bN2ntU10z4xMPiuim5TNFcaxL2s3rmHuU3bVXRqpnWJjlLSjrj0Oy+mGoTnYMXMvbeRXxavT3 1Y9U+Fu5P8qvPwnv8Y2zTK6sFV07e+ifh3T9HSey+1FvOrcWL+lN+njHKqO2PrHnG5ilgG/gAAAA AAAAAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vGu3EeHxj+y7t3NerUxGJwunXo84VyJXTFJVAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKDNXo6ejpndYtUp1HUabuFtPFucXsiPZryqo8b Vqf+6ry8I7/DM5fl9WKq6de6iPj3Q03aDaC3lNHqrW+7PCOzvn6R9H6FaPo+FoGl4unadi2sLBxb cWrOPZp7NFumPCIhvVNFNFMU0xpEIJu3a79c3Lk61TvmZd19vIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAB1NU0vE1nT8jBzse3l4eRRNu7Zu09qmumfGJh8V0U3KZorjWJe1m9cw 9ym7aqmmqN8THGGl3XLoPl9NcuvU9MpuZe2rtfs3J9qvFmZ7qLnvjyir6T3+McZplVWDn1lvfRPw 8fu6P2X2rt5xRGGxMxTfj3Vd8d/bHnHdiNryQwAAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi 093jctx5fGP7Lu3d/LUxGJw39S2ri6YpKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDO Ho6ejZndXM63q+r03cHaVmv2rsezXm1RPfbtT5U+VVfl4R3+Gay/LqsVPTr3UfNpW0G0VvK6ZsWN 92fdT3z39ke9+gejaNhbf0vF07TsW1hYONbi1Zx7NPZoopjwiIbzRTTRTFNMaRCDLt2u/XN27OtU 75mXdfbyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfDMw7Gfi3sbJs0ZGPe pmi5au0xVTXTPdMTE+MPmqmK4mmqNYl90XK7VUV0TpMb4mGn/Xb0eL+ya7+ubdtXMnb8zNV7Hjmq 5hf1qt/Hxp8+7vR/mmTzh9b1iNaOcdn7fJ0HstthRmMU4PHzpd5Twir7VfPlv3MGtWSkkAAAAAAA AAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJUGxno3+izk9RLmPuPdVm7h7YiYrsYs80XdQ/rTa+PjV5 d3e2DL8sm/pdvRpT2dv7I+2h2mpwMThcHOtznPKn7z8m9uBp+NpeHYxMSxbxcWxRFu1Zs0xTRRTE cRTER3RER5N0ppimNIjchauuq5VNdc6zPGXYfT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAca6IuUzTVEVRMcTEx3SpoROk6w1h65ejPVRVka/s3G5pnm5k6Rajw85qsx/Oj /D7ml5pkvG9hY8aft9vcmvZfbXTo4LNKu6muflV/8vf2tZ5iaappqiYqieJiY4mJ9zStNOKbYmKo 1gUAAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5fGP7Lu3d/LUxGJw39S2ri6YpKoA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU0zXVFNMTVVM8RERzMz7jipM6RrLbr0c/RDquVYu5t +4nFEcXcTQrsd8+cV5Efyt/4vzW1ZflXC7iI8I+/2RTtBtV7WFy+rumr6U/f3drcO3bpt0U00xFN MRxERHERDa0VTOu+XMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMc gwp1r9HPB376/WNE9Vp24eO1XTPs2cuf0+Pxav0/38+Ma5mWUUYvW7a3V/CfH7pH2a2vvZRMYbFa 12fjT4d3d7moGtaLn7c1TI07U8S7g5tirs3LF6niqn+8T5THdPkjy7arsVzbuRpMOh8Li7GNs038 PXFVE8Jj/OPc6TyXQAAAAAAAAAAAAAAAAAAAAAAAACBVWtf0Ds9rKxae7xrtxHh8Y/su7dzXq1MR icLp16POFciV0xSVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB39A2/qW6dXxtK0jCvahqOTV2bW PYp7VVU/0iPOZ7o833bt13aooojWZW+IxFrC25vXqoppjjMt6/R99FPTumkY2vbi9Tqu6Ijt26Yj tWMGf0Ofxq/058PyePGd1wOWU4bS5c31fCEKZ7tNdzLXD4bq2vjV493d72wsQzrRUgAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiY5BSepvSTQ+qOm+p1K1NnNtUzGPqF mIi7Z+H6VPvpnu+U97G43AWcdR0bkb+U84bHkufYzI7vTw860zxpnhP2nvje0v6k9Kdd6X6n6jVL HrcO5VMY+oWYmbN74c/k1foz3+7mO9HGNy+9gatLkbuU8pdIZLtBg88tdKxOlccaZ4x947489FOY 1swKAAAAAAAAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vG5bjy+Mf2Xdu7+WpiMThv6ltXF0xSVQA AAAAAAAAAAAAAAAAAAAAAAAAAAAABCgvvSboruXrFq/2bRsb1WDaqiMrU8iJixYj3c/lVfoR3+/i O9fYXB3cXVpRG7nPJgs1znC5Tb6V6dap4Uxxn7R3v0A6QdD9udG9I+z6TY+0ajdpiMrVMiIm/fn3 c/k08+FEd3znvbzhcHawlOlEb+c80F5rnGKza50706UxwpjhH3nvZDX7BpAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEg6Ws6Lg7g02/galiWs3Cv09m5YvUxVTVHy /r5PO5bou0zRXGsSuMPiL2Fu03rFU01RwmN0tUurvou5+3ZvartKm7qemRzVXp8z2sixH6H/ADKf h+NHxaLmGR12tbmG309nOPDt+addn9ubWK0w2ZzFFfKr8s+PZPfw8GApiaZmKomJieJiY74n3NT0 03SlqJiY1gUVAAAAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNduI8PjH9l3bua9WpiMThdOv R5wrkSumKSqAAAAAAAAAAAAAAAAAAAAAAAAAAAAERNVURETMzPERHfzPlCikzERrLZnob6G+pbq+ z6zvam9o+kTxXb0yn2MrIj9P/lUz7vxp/R8WyYLKarmld/dHZzn7I4zra23h9bGA61X6uUeHbPw8 W62gbf03a+k42maThWNP0/Gp7FrHx6Ipopj5fznxnzbfRRTbpiiiNIhEF6/cxNybt6qaqp4zL0X2 8QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETAMUdWPR60Lq PF3Oxuzo+vTHP2yzRzRen/q0flfrRxV8/BgsflNnGa1x1a+3t8W9ZDtbjMlmLVX8y1+meX+2eXhw aib66c6/051L7HreFVZiqZizk2/as3499Ff9J4mPOEf4vBXsHV0bseE8pdBZVnWCzm16zCV6zzif ajxj68FZWLOJAAAAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq 4umKSqAAAAAAAAAAAAAAAAAAAAAAAAACgtvTjpTubqtq32Hb2nVZMUTEX8u57GPjx766/CPlHNU+ ULvD4W7iqujbjz5MTmOaYXK7fTxNWnZHOfCPrwbzdFPRa230pizqOXFOvblpiJ+336PwdifOLNE8 9n9aeavjHg3TB5bawvWnrVdv2QvnG0mKzSZt09S32Rz8Z5+HBmyI4ZdqCQAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAefrehafuPTb2BqeHZz8K9HFdi/RFV M/v8/j4vK5bou0zRcjWJXGHxN7CXYvWK5pqjhMbpay9UPRNyMP1uobMuVZVjvqq0rIr/AAlPwt1z +N8qu/4y0vHZBNOteE390/SfumrI9vqa9LGaxpP64jd/yj6x7mu+dg5OmZl3EzMe7iZVmrs3LF+i aK6J90xPfDUK6KrdU01xpMJhs3rWItxds1RVTPCYnWJfF8PUAAAAAAAAAAAAAAAAAAAAAABAqrWv 6B2e1lYtPd4124jw+Mf2Xdu5r1amIxOF069HnCuRK6YpKoAAAAAAAAAAAAAAAAAAAAAAA7Gnadl6 vnWMLAxb2bmX6uxax8e3Ndy5PuppjvlWmmquejTGsvK7dos0TcuVRFMcZndDafo76EmVqHqNU39e qwseeK6dGxbketqj3Xbkd1P6tPM/pQ2bCZNM9fEbu77ozzbbGmjW1l0az+qeHlH1n3Nvtvbb0vam k2NM0fAsabp9iOzbx8aiKKKfpHjPvme+W1UW6bVPRojSEVX793E3Ju3qpqqnnL03o8AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEccgqG/wDpVtzqRh+q 1nAprv0xxazbPsX7X6tfu+E8x8FhisDYxlOl2nf28/ez2VZ5jsmudPCV6RzpnfTPjH1497VnqR6M e5NmetzNKircOlU81TVj0cZFuP0rcfjfOnn5Q0fGZJfw+tVrr0/H3fZOeTbcYHMdLWK/lXO/2Z8J 5efvYdnmJmJjiYniYnxifc1zgkeJiY1gUAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5 fGP7Lu3d/LUxGJw39S2ri6YpKoAAAAAAAAAAAAAAAAAAAARzVVEREzMzxER4zPuFNdN8s8dJ/Q/3 bv8A9Tna1FW1tFr4q7eVb5yrtP6FqfxfnXx8pZvC5Tev9a51Y+PuaPmm1mDwWtvD/wAyvu9mPGef l7253TLovtTpNg+p0HTabeTXT2b2ff8AwmTe/Wrnwj9GOI+DbsPhLOFjS3HnzRHmOb4zNK+liK9Y 5RG6I8I/yV54XjDpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAABExyDHnUToXtXqLFy9mYf2LU6o7tQwuKLvP6XlX+1E/OGJxeWYfGb66dKu2OP7try jabMcnmKbNfSo/TVvjy5x5NZOoHo1bs2V63Jw7P3waZTzPr8KmfW0x+la8frT2oaVi8lxOG1qo69 Pdx9ybMp21y3MdLd6fVV9lXCfCr76MTTExVMTExMTxMT4xPulgOG5IMTExrAoAAAAAAAAAAAAAAA AAAAAAIFVa1/QOz2srFp7vGu3EeHxj+y7t3NerUxGJwunXo84VyJXTFJVAAAAAAAAAAAAAAAAACI mqYpiOaqp4iI8Zn3R8VOKkzpGss29MPRI3t1B9TlZ9iNsaRXxP2nUKJ9dXT+hZ7qvrV2Y+bNYbKr 9/rVdWO/j7mmZltVgcDrRan1lfZHDzn7atwOlno4bM6UxayMHA+6OsUx36pqERcvRP6Ecdm3H6sR PxltWGy+xht9Maz2yinMs/x2aa03KujR+mN0efb5spcMk1xIAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4BQ9+dE9p9Q4ru6lptNnPq8M/Dn1 V/6zHdV+1EsXistw2L33Kd/bG6WzZXtJmWUaRh7nV/TO+n3cvLRrpvr0UNy7fm5kaDet7hw474tx xayaY/VmezV9J5+DUMVkN+11rE9KPdKYcr2+wOK0oxtPqqu3jT948482Fs/T8rSsy5iZuNew8q3P FdjItzbrp+dM97Wq6K7dXRrjSe9Jdm/axNEXbNcVUzzidYfB8PYAAAAAAAAAAAAAAAAAAABAqrWv 6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAAAAAAAAAI5UHa0zTMzWs61hafiX87M uzxRj41uq5cq+VNMTL7ppqrno0xrLyu3bdiibl2qKaY5zOkNgenHoT7u3RNrK3JftbXwauJmzVxe y6o/UiezR+1Mz8Gdw+T3rm+7PRj4tDzDbHB4fWjCx6yrt4U/efL3trOmvo9bJ6W0272laTTkalTH fqWdxeyJn4TMcUfsxDZsPgbGG9inf2zxRlmGe47M5mL1elP6Y3R+/nqyTEcMgwCQAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMcg8PdGy NC3pifZtb0rG1K1H4vrqOaqP1ao76fpMLa9h7OIjo3aYlkcFmOLy6v1mEuzRPdPzjhPmwVvT0PcL I9Zf2vq1eFX4xh6hzct/KLke1H1iprGJ2eoq62Hq07p3x7+KUMt9Id+3pRmFrpx+qndPu4T8GC94 dHt37G7deqaLf+y0/wDF4seus8e+aqfD9qIaviMtxWF33KN3bG+Eo5dtJleZ6RYvRFX6aurPx4+U ypkTExzE8x74Yxs5yKJAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd4124jw+Mf2Xdu5r1amIxOF06 9HnCuRK6YpKoAAAAAAAAAKCJmIjmZiI98gv2xOhG+uo0269H2/k/ZKv+OzI+z4/HviurjtfsxK/s 4HEYjfRTu7Z3QwONzzL8BrF67GvZG+fh9WyGwPQQ0/Em1kbx1u5qFcd84OmRNq18puT7VX0ilsFj JKKd96rXuhH2O22u1604K30Y7at8+7h82yOzunu3NgYP2Tb2jYmk2Zjiqce3EV1/rVz7VX1mWwWr FqxHRt0xCP8AFY7E46rp4m5NU9/0jhCwxHD3WKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCJpiQUTd3Q7Ze8+3cz9EsWsqr/isP 8Bd598zTxE/WJYvEZbhcT7dG/tjdLZsv2lzXLdIsXp6PZPWj3T9NGF91ehvkW5ru7c16i7T3zTja lb7M/L1lH9aWuX9nZ42K/KfvH2SRgPSNE6U4+x50z9J+7EG6OjO9NoTXVqG38qqxT3zkYtPr7XHv 5o54+sQ16/luLw/t0Tp2xv8AkkPA7TZTmGkWb8RPZV1Z+P0lSvypp/KjxjzhjGzxMTGscEgAAAAA AAAAAAAAAAAgVVrX9A7PaysWnu8bluPL4x/Zd27v5amIxOG/qW1cXTFJVAAAAAEcqB+VFP5U+FPn PygU10jVkHZ3QLqBvvsV6XtnMpxq++MrNp+zWePf2rnHP0iWQtYDE3vZo3d+5gcXn2XYLddvRr2R vn4M7bK9AnJuzbvbs3JRZp7pqxNIt9qr5TdrjiPpSzVnJJ43q/d92lYzbiI1pwdrzq+0fdn/AGN6 OmwOn027um7ex72bR/xuf/4m9z74mvmKf2YhnLOAw9jfRTv7Z3tFxufZjj9YvXZ07I3R8PqyTFMQ yDAJBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAImOQR2QVvcvTTa+8In7saFg51c/wC9rtRFz/HHFX8VneweHxH+rREsvg83 zDL5/wDFvVU90Tu93BizcXohbW1HtV6Tn5+jXJ74o7UZFuPpV7X+Zg72z+Gr325mn4/NvOD9IOZ2 d2IopuR4dGffG74MZ696Ie7dP7VWmZ2navR5U9qqxcn6Vc0/5mFu7PYijfbqir4N1wnpCy67uxFu qifKqPhpPwY51zpHvTbnanP21qNFFPjds2fXUf4qOYYe7l2Ls+3bn5/JuOF2jynGaeqxNOvZM9Gf dOip3KZs3JouRNuuPGiuOzP7pY+YmmdJbDTVTXHSonWO7ehRVAJAAAAAAAAAAABAqrWv6B2e1lYt Pd4124jw+Mf2Xdu5+WpiMThdOvR7lchdMUkDhUTapqyLkW7VM3bs+FFuO1VP0jvIiZ3QpVMUxrVO kLvtzoZ1A3XNE6btHVbluv8AFvX7H2e3/iudmF7bwOJu+zRPy+bCYjO8tw2vrL9OvdOs/DVlbbPo Mb31Ts16vqWlaHbmfaoiurJux9KYin/MydvJb9Xt1RHxaxidtcDb3WKKq/hH1n4Mu7W9BbZmldmv WtS1PXrsd80duMa1P7NHtf5mVt5LYp9uZq+DVcTtpj7u6xTTRHvn47vgzNtLpJs7YtNP3C23p2nX KfC9bsRVd+tyrmqf3staw1mz/p0RDUsVmeNxs/8AkXZq7td3u4Lb2V0xjkAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ACAOAOzAPM1bbWk67TNOpaXh59Mxxxk2KLn84eNdm3d9umJ8YXdjF4jDTrYuVU+EzHyUfV/Ry6fa xFU1bftYdyr8vCu12f4Uzx/BjbmUYK5xt6eG5s2H2vzrDboxE1R/dEVfONVN1X0OtsZPM4Gr6pg1 T5V1UXqY/fTE/wAWNr2ew1XsVTHxbHY9IeZUf61uirymPlP0VLUvQy1GiZ+5+58W9HlGViVUT++m qf5LCvZyv8lyPOGfs+ki1P8Ar4aY8Kon5xCsah6Jm+sOZ9ROl50R/wArKmiZ+lVMLKvIMXT7MxPm zdn0gZRcjrxXT5RPyl4Gd6O3UPA57W3Ll+Pfj5Fq5/KrlaVZPjqf6evhMMta2yyO7/X08aao+jxc rpHvfDiZu7T1eIjzpxaq4/y8rarLsZTxtT7mSo2jye57OKo9+nzeTf2buHFmfXaDqlrj87Bux/6V vOFv08bc+6V/TmmAr9m/RP8Ayp+7o3NLzrUzFeDlUTHlVYrj+jzm1cjjTPuldRisPVwuUz/yj7vj Vj3qPxrNyn9aiY/o+OjVHJ6xdtzwqj3w49iv8yr/AAyaT2K9Oj9Ue9ypx71c8U2blXyomf6HRq7F Ju2441R74fe3pWfdn2MDLr/Vx65/o+4tXJ4Uz7peM4vDU8btP/aPu72NszcOZ/5fQdUvfqYV2f8A 0vSnC36vZtz7pW1eaYC37d+iP+VP3erjdIt75cRNvaerzE+E1YtVH/dwuIy7GVcLU+5YV7R5PRxx VHv1+T28H0dOoefETTty5Yj35GRat/8Aq5XNOTY6r+np4zDGXds8jtf19fCmqfo9/A9EzfWXNPrq tKwonzuZU1zH0ppld0ZBi6vamI8/2Ym96QMoojqRXV5RHzl2rfoE5mdlety914uFRV310YmFVc7/ AITVVTx+5lbWRXIjS5cjyhquK27sVVa4fDz51R9IWzRfQN2diRE6nrms6lVHjFuq3j0z9Ipmf4r+ jJLEe1VM/Br97bbHV/6Vumn3z9V+0P0Uul+h9iqna9nOuU/7zUL1zI5+lVXZ/gvqMtwlH5NfHewd 7aXNb/G9MR3aR8mRtF2jom26Yp0nR8DTKYjjjDxqLX/bEL+i1bt+xTEMDdxN+/Ot2uavGZl63Zh6 rY4ABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAImAR2YA7IJ7Pxn94I7PxBE2qavGmJ+cKaK6yj1Fv8A Mp/wwaQaz2pi1TT4U0x8oNDWU9n4qqJ7PxkEdkDs8AmI4BIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAP5jGYeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAC6dF9haf1S6q7X2hqeu/e1i63m0YH3U+y/aYsXLns2+bfbo5ia5opn2o4irnv4 4n5qnoxMjzOoeyc/prvzcO1NUp41DRc+9gX5iOIqqt1zT2o+E8cx8JhWJ1jUV7xVGSuvvRr/AFE7 w0/a+TrH3U1v7kYedquP9m9T9zsq/ai7OLz26u3NFNVHNfs89r8WOO/4pq6UaksavsAAZA6BdKP9 ePWHbGxfup9xfu3kzj/b/s/2j1PFFVXPq+1R2vxeOO1Hi+aqujTMkKdr+l/cPXdR071vrvseTcx/ W9ns9vsVTTzxzPHPHhy+oHQAAB6W2tt6pvHcGnaHouFd1LV9Rv0YuJiWI5ru3a54ppj5zPyUmdN8 jd7C/wBFzjbY03Dnqj1y2j071jKtxct6Ze9Xenv8u3dv2eZie6ezFUcxPEz4rf12vsxq+tGNOv3+ jy6idEtsZG78DN0vfOyLNv19etaNejm1a54iu5aqnnj40TXEecw+6btNU6cJUmNHgbX9Ej75fRA3 P10++v7N9xc37H9wfud2vXfhrFvtev8AWx2f9vzx6ufxeOe/urNzSvoaGm7Vry9VAAAAGw+f6JH2 L0ONO68ffX2/tmbOH97/ANzuOxxk3LHa+0et7/8AZ9rj1fnxz3cvL1nX6Gium7Vrw9VGaOhfTHSN 2ZODb1PT8vWs/U7Oo38TAxMW7lVU2sTGm7VNNi1es13rlyqJt0UxdoinsVTMV80xHnVMwOh1o6fa RtnI1WrTMeNOydIzcXBzcSmm5RTzkY9V+3+DuXLtdm9b9Vdt3rVVyuKblPFNUxzEVpmZ4ksTPsAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAfXEy72BlWcnGu12MizXTct3aJ4qoqieYmJ8piYBs/6dOLZ3zm9O+ten 2qKcPqJoNq9neqjiijVMWIsZdEcd0RE02/nPal42t2tPYrPaovod9PMLqH1+27RrPFO2dD9ZuHWr tcc0W8LEpm9c7f6NU000T+u+rk6U7iF60/b2gdU6t/ekZ1hvahRtPM127Y07QtNu028zWM6vm5Tj UXKon1dm1b7MVV8TPEcU98PnWadKKTvl99iYPQn0ldctbD0nYWX0f3dqXNnQdYs7gv6nh5GXxPq7 GVRfjmmK5jsxXb7+1VT3cd00np0b5nWDdLEvR/0ftd6rdXb2xbly3t+5pk5F3XdQzY/BaVjY0z9p vXO/8jjjjmOappjmOeY9KqopjVTRkDO6k+jbtDLuaRo/RrV9/YFir1f3xa7unI0/Jy+O6a6LGPR2 LcT4xFXaniY5jnl8aVzv10V3Pb9FXUdmar6dnTXK2Ho+qaBoFzMiY0/VsynKu2rv2e524puU0080 c+HMc+/3RSvX1c6kcVG60antbrB1MwNtdN+ldGz9wX9Zv4NybGt5OoVarfu3qaLfs3p4tcVRVPs9 3t9/dTD7p1pjWqSV23lpnQX0adYvbN1jaGb1p3pp8+p1vPr1y9pel4mVH+0sY1NiPWXOxPNM1VzH tRPd5R8R0698TpBuh0NU6U9NevfTjc27OkOnantDdO1sSdS1jY2pZv263dwKZ4uZOHkTEV1er5ia 6a454mOPKKq9KqmYirmceD0Ok3Q3pZuD0Taeo2/NYu7ar0/ed/T8vMwZrvZ+o4tOFauW8LFszV6r 1k3K6qvWVR7NMVTVMxHBVVVFfRjsOT7ejV1b6UbW9NXp/uXSdt3ti7JxYuYNydW1Oc6qL9yxetUZ dyuqmmLcTVct9qmPZo4mqJ91K6apomJ3yRxZk9Nz/R+9W979Ydy9Q9oU2t96Prd2Myizay6KMvGo 7MRFuKLkxFdFMREU9iqZmmI9mHnbu0xHRncrMNMtX3B1S6Qbe17prrF7X9r6Pq0UTqG3dStV2bd3 sXKa6a4t3I9n2qKZ7VHHaiOJmY7lxpTVPSh8t/PRG1bY2hf6M3eed1J0XN3FsmzrtydR0zTrk279 +JvYkW4pqi5bmOLk0VT7dPdE+PhNtc1m7HR4vqODVKOleyfSx9JfRtqdBduahsvbGXiUTlU61XXf qxItzVN/Iq5v3ZmOzNEU09uOauI7ueXt0pop1rU4zuZ93jtv0HfR63Dd2FuXRdz7/wBw4NX2bUtY xMm9NGNej8emr1d+zRzTPjFFFfZ47MzMxMPOJu1743K7oYs9L/0O9r9Pen2hdX+kWt3tx9Ltaqpo mL9Xbu4NdczFM9riJmiaqaqJiuIqoriKauZnu+7dyZno1cVJjnD2PRj9DXYdfRi71u68a7kaFsSa 5p07TMWqaLubEVTRFVU0xNcxVVFUU0URFU8TVzFPjSu5PS6FHFWI5y+fU7XfQl3H083NGzNubr2v uzFwrk6TN29kVW8zJ44txM13b9MU8zEz2oo7omImJ4KYuxMam5ftSxL+f/oe9r42NZuZGTe16bdq zapmqu5XOqX4immI75mZmIiIfH9aTk8ra/ok9L/Rc6HXeoHpJYFzW9y6vb7Oi7Hxs67jXqauImKa qrVdNU198duZnsW6Z4mKq5iFZuVV1dGg004tT9G6p6Xau6pi1aTVt3TcivN+wTo8zk1abayrPqb9 mKciuar1uq3ERHauU1U1RNUVd9UT79F8ul1J6mU7xtVY2NTfvTkXrWTqOq5tFFGTqd+1am1bu3KK PZomKaq5nvrqrruXK666pqjs1iNBj99AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAD1Nv7W1rdmRk4+h6Rn6zfxsevLv2tPxq79VqxRHNd2qKImaaKYnvqnujzlSZ iOI6+jaLqG49VxNL0nAydU1PLuU2cfCw7NV69euTPEUUUUxM1VTPhERyrwHyz8DJ0vOyMLNx7uJm Y1yqzex79E0XLVdM8VU1Uz3xMTExMT3xMA+AAAAALTtXpTvbfWn5GftvZ+v7hwceezeydK0y/k2r U+PFVVFMxH1fM1RHGRWb9i5i37lm9brtXrdU0V266ZpqpqieJiYnwmJfQ4AAA9Lce2dY2frWTo+v aVnaJq+LMRfwNRxq8e/amaYqiK7dcRVTzTMTHMeExKkTE74HmqgAAAAD0s3bWrabomm6xl6blY2k 6nVdpws27Zqps5M2piLsW6pjirszVTE8eEzHKmscBz3FtPXNoZGLY13RtQ0S/l41GZj2tRxa8eq9 Yr57F2iK4iaqKuJ4qjunieJImJ4D1M/pVvXS9r2ty5uz9fxNuXYpqt6vf0y/RiVxPhMXpp7E88xx 3qdKNdNR09pbD3Nv7MvYm2Nu6tuPKs0esu2NJwbuVXRR+dVTbpmYj4yrMxHEeVqGn5Wk51/Czsa9 h5liubd7HyLc0XLdUTxNNVM98THulUWPD6Tb41Ha93cuJs3cGVty1RVcuaxZ0u/Xh0U099VU3oo7 ERHE8zz3cPnpRrpqPP2nsfce/dRq0/bOgapuLPpp7c4uk4VzKuxT7+zbpmePirMxHEfaOne66t2T taNsazO54q7P3FjAu/beez2uPU9nt89mefDw7zWNNR0dybX1nZ2rXdK1/SM/Q9Ts8TcwtSxq8e9R z4c0VxFUfWCJid8D6aHtDXtz4mqZWj6JqOrY2l485efewcS5eow7EeN27VTExbojifaq4j4kzEcR 7u0uiXUTf+k/dTa+wtz7k0z1lVr7bpGjZGVZ7ccc09u3RMcxzHMc898KTVTHGR529Omu7um9/Fsb t2rre1r2VTVXj29a069h1XqYniZoi5TT2oiZjmY96sTE8JFcVAAAAAAG1HSX/wC+b0Lepmwq/wAN rmwsu3vXR6fGucSY9VnUR7qKKZ9ZMedVUPGrq1xPbuV4w87p1/8AdF6Ge/8AeFX4HXOoOoW9oaXV 4V04Nri/nXKffRXMW7U/GCetXEdhyZI3Da6Sz6Fvo809QcreuNi1Tr1dj70MbEu0VZH22Iu/aPX3 KeKop9X2OOfZmp8x0unV0Vd2jHO1NY9FzaG6NH17C1PrF9s0vMs51jtadpXHrLdcV088ZHPjTD6m LkxpuU3MhbP37pPU6r0yt37SxsrDr1zQ6s/EsZVFNGTTh3MumrL7cUVVRHdPNXFUx3+L5mNOhEq9 rSRcPln/ANAeYp9MHphzPH/2lVHf/wDBuPK77EqxxWj0M6cKP9IHtaNQimLMa9qHZivw9b6rI9V4 +frOxx8eFLn+nJHFrXuec+rcurTqvb+6c5d77V6z8b13bnt8/HtcvWOG5RsR/o5e1PpRaVTf/wD3 LVpGrRq3P4n2T7De7Xb/AEe36vx+Dyu+wrHF18z/APDl03/+qV//APxVs/qeRya2PZRmfpD6Y3WD odYsYe1d651rSbPdRpWf2cvEpp/Npt3Yqi3H6nZn4vOq3TVxhXWW/vSfrDp/+kj9HrqRtzqHtXTs Hc218KMnG1jComLVu7ct3ZtXrfamarVUVWZ7dPamKqZ48OYi1qp9TVE0y+uLFHS7/wDCB6nf/wA7 j/8Au8F6Vf60KcnU/wBDZ9i/12b49Z2fuj970ep5/G9V9ptes4+HPqv4GI9mClohuj7o/fNq/wB2 PWfdb7Ze+2et/H9d259Z2ufPtc8rmOG58v0C6L+s/wD1RvVT7u8/c/7rXfud638Xj1uH2Ozz/wDx Hb+vK1q/1o0fUcE+nvTe/wD0GfRqnSeY239gw/Xer/E9f9z6PVdr9Lj7R9e0Wv8AUqJ4PzpXb5fr 96KHV/avQj/RzbK3pu/T7upabp2pZPqrOPYpvXab9Wo36aK6IqmIiaeZntcxMcTx38LCumarkxD7 jdDXb/SkdKdY1Xc+h9a9I1zI3X0+3JiWLeLkRX27WmzNHNFFEeFNq5HNdM/nzXE98xz7Wao06PNS e1oUuXyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyr6LnV Sjoz162fujJmPuVZzIxtTorjmmvCvRNrIiqPCeLddU8T50w+K6elTMEM/wDS/pXT6MnpB9bd3Z1q KtO6UYOVkaRXe9qm9l5n4LS4q58e1Re7fPfxNPLyqq6dMR2q8HhdFPQ5+/7pFp/Uzcujb53jTuHO yLWDpmyLVib9FFquaLuTk3r8VRHNyK6aaIp5q7MzzHlWq5pPRgiHW3B6Ddei+kTf2Tk6/kaRtDH2 3O88zWNTxOzl4Gk00dq5F6xTPHrqK4m3NMTxM8T3R3Qi5rTrz4GjHW7sP0er2Ph17X1LqNiXLOo2 LeZb1fFwb85OFNX4a7Z9XVRFu5TTEzTRXNUTM0x2o75j7jp89Dcy/wCkd6Nm0Nz+mxY6SdLLeXou o5mXbx87Gy8a3Rp+BT9ltXpuY803Kq7lMW4u3K4rime1HEcxPLzormKOlUTG9XtE6C9FusOq61sv pbund17fmDiZOTp2Rr+PjRpuu1Y9FVdy3Zpt/hLE1U0VVUTXNXdHfxL6mqqnfVG40h513oN0v2l6 M2wep+7dwbijVd14+q2cXQ9KpsVTdy8fJuWbdztV0xFuxRTTRNzmaqqpu09ns950qpqmmORpuZU0 Pc+tdd+l/S/Q+jHVj/V/u3a2jWtMyNg3dTuaPOpZtNVU1ZeNepmLd+5emrmaK5iY4n3zz8TEUzM1 RrrzV48Fc2Nsbam5ukXpFbm642dzf6xdE1nTaNRzbOFYuZeHVev10x6qK7tETVXcpuU3Inimm3Tb miauZiKzMxNMUcFPFjjZPRjp9tjo3onUnq1qu4qMHcuZk4mgaHtWixGVk0Y9UU38m5dvxNFFFNcx R2YpmqZ+Hh9zVVNXRpHq6t6H0bl6n9LtJ6d69Xq+0upVm5laLqmqWItX8WizNUZdvIopmYmuxFFU z2J4q47uFPWaRPS5GiudQ9E9HnT9H1vT9pbg37m7j0+macTVM/ExJ03U7lNUUz2bdM03bNFUc1U1 VVVTxHfHPdP1E18zc2V9N/0ecTTusvWDq11J+6WmbQu14mHtvH027boyda1GrDtxTTTVVTXFuzb9 VcmuqqnmYp4p5l426+rFNPFWY5tDNq7az957o0fb+l24vanq2ZZwMW3VPEV3btcUURz5c1VQuZnS NXy2B6j9MfR+6X6vrmx9R3TvnUt66NTexcvXNNw8SdJjPtxMVWabFcxeqoi5E25r7cd8c8cd7yiq urfpuV3OFnor0n6VbG2VqfV7Wd23dwbw06jWsLSto2saI0/T7lVVNm/frv8APrKrnZqqiijjiInm fDl0qqpno8jxWranoS7fyOsO9tra7vK5a2thbDub40PdONbi3bvYk1WPVX79qqmqqaIouXe1bpmK pm33VRCk3J0iYjnoaOvtzoD0H6idM90b42/u7euj6PsbIxp3HGt4mLcvZuPf9ZRZ+xUWpiKLly7R FEU3Kqop7XMzPHEpqriYiY4mkMc9f+jW1dobd6b7w6e5utZ+1t8YeTcxMTXaLU52PkY+RNi9bqm1 EUVRNXHZmIh90VTMzFXImFx6+73t9GOs3T/auLpWl7gxelmkYun3NN1O3N3CyNSqpnIzLldFNUc8 ZF6Y4545sxzzHPPzRHSpme0nc73p2711fW+oXRrd2dft5Wu5nTrQNVv371iiui5kV+tu1VVW5iaJ ia5mZpmOz38ccdylqIiJjvJZL6B9S+qOLTuPrX1r3bqP+qrUdOzcWdD1nJn1W5Lt2zXRbxcLDmez FMVVRPbppimmKZjnjt8fFUU+xRG9WO2Xi+jrp2oUehhq2nY+/cfo3rO4N4039G3Dm51WFRrlNnG7 FzEqvW/bt2rdfFXrJjsduuKfGZ4rX7fDXcRwe31D6b2esn+kS6cbC3VjXMy5Y0rTMbXNTu0diNfr xcKq/fyYq7u1Rdi3Nvt+cU9ykT0bczBzdTqxib46/azvWdl9fdL13Px8TKq/1bbey83FxKNMt0zF WLi80UY+T2bUcVRRz2+zM81d3NadKNNafM4vZz9Aw+k3o5dJdpaV1j0no3XurR7W6NXzbcZdWpat fye+xTcqxqJqtY9qj2YmqqmmZ57pmmqVNelVM6a6HJ4/TPQN5dOdxdc9k6xvjExete5dD025tfeO XrPFOp4kXIru04+fcmJib1iLdNEzMT+D47uzzFapiYpmI3DyPSW2Tuy/6IPTvO6g6li7l6jaduzI 0HFyMPULep5X2K5j+tjGvX7dVcXLlF2mOIiqrsxcpjmJmYVomOnPR4E8Fj6L5WB006f9aukGmRYv 6jg9NNZ1fdmoW+KvW6rzj26MSmqPyMW3cuW54nibty9Phw+at8xV3kdjU/of/rA3nvjb2wNl7k1n S72tZ9GPbsYOdetWrc1THbu1U0VRHFNMTVVPupl71dGI1l8wt/pn9WcfqZ1fr0zRs6/n7S2ji29u 6PfyL03a8i3Y9m5k1VzPt1Xbnbr7c98xNPPg+bdOkb+assCvVQAAAAABmb0Q+r2n9Feu+g65rtX/ AOyuXTd0rXbc0VXKa8HIom3dmqmmJqqinmm52YiZnscRE+DzuU9KnSFY3Pb9LfqNszX8jYuxummq 3dZ6f7K0f7Jh513GuY85WXeuTeyr/q7lNNVM1VTRE8x40TxMxxKluJjWauMkuv0Y6z7SnptqfSfq phahlbIy82NT03V9IimrO0LO7PYqu26a+IuWq6eIrt8x4TMe0VUzr0qeI9Ox0f8AR30+/wDbM/0g s3VdPontTp2l7My7Wddp/Miq7VFqir4zVVB0q/0/E3Kj01616f0P645259naXkahsy/Xk4FzQtcr pm5naVe5prxsiqiJp7U0cTzETEVU0zxMRxNZp6VOk8VOC6al0z9G/d+dXq2h9aNS2Fp2RV6z739w 7Wys7Jw+e+aKb+PNVFyI8ImZieOOZmeZfPSrjdMaq7lKvbo2p0K63bV3L0t1/P3hh6Bexs6rN1XB +wxk5FFyZuW6bfaqqptVUxTHM+17VXuiZ+tJqpmKjg9frZvLYun9V9K6m9Htf1PEz87UK9cu6NqG D6q7oWZFym5FFN2Jmi9RNc1zTx4U0xFXPJTE6dGonuXPemd0H9JPWb+9NS3jl9F946jV6/W9MvaH f1TTMnKn/aX8auxM3LcVzzVNFdM+1VPf5z8x06N2msG6XR1Dqn026A9Otz7W6SanqW8d27pxJ0zV t8Z+DOBZx8CqYm5jYePVM1x6ziIrrrmO6I4jn8V0aqpiajhwVTJ6j7duehXg7Dp1Hnddvf13Wq9P 9Rc7sOdPosxd9Z2ex/tImOz2u158cd760np69xyeP6M+7Ommy+p9rUurG28zdW0/sl6zVgYVNNVX ra4imm5NNVdHMUxNc91UTE9mY74VriqY6qkNo7+1PQA3Jd+6FO8t4bVpme19yrdnLuRT+jzONen4 f7T6vDW9HJ9bnT6qemd0s6W9Gtb6V+jjtnM0zE1y3VZ1Xc+oxVTevUVU9mvsdqZuVVVUzNPaq7MU RM9mnmYmK026qqulXJr2Kf6FvpbbP6X7H3b0o6r6Pkax023NXVerrxaZrrxbtVFNFfapiYqmmqKL cxVRPaoqoiYieeY+rlE1TFVPFSJVzK6y7F9GL0oNM3f6P+bqOubUwsaijIo1mqumM6LkT9osR2rV FdNERNERNVMzFdHa5qjhXozXTpWcJ3M87x3Z6DvpCbgu783Pqm59hbjzqvtGpaRiY16KMq9+XVV6 qxeo5qnxqoqo7X40xEzMvOIu0RpG9XdLFfpfemLtnqJ0+0LpD0j0O9trpdotVNc+vp7F3Oro5mj2 eZmKIqqqrma5mquqYqq4mO/7t25ielVxUmeUPY9GT0ydiUdF7/RHrvoeTrmxO1NWnaniUzXeweap rimqKZiuIpqmaqa6JmqOZp4mnwpXbnpdOjirE8pfLqZoHoTbZ6d7mq2ZuXdu6925WFcp0mm/ZyKa MPJ45tzPbs2KZp54irtTX3TMxEzwRN2ZjU3Ovq3pA7Byf9GpovSq1r3a37j6pVkXdJ+x5Edm3Odd u8+t9X6qfYrpniK+e/jx7joz63pclNdz2PQq9LfZGkdK90dFeuOVXPTrPx7lWn5dePdyJxaqqua7 EU2qK64jtT62iqI9iumqee+OKXLc6xVRxVieUtPN/aPomgbz1jT9ta9RufQLGRVTg6tRj3cf7TZ8 aapt3KaaqauJ4mJjxieJmOJm4jWY3vl4CoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA2c63elppvVH0d9obKwdMzcPdn/hfvr1S9TRFvUYwrNVjD7NUVzVX7FX ar7VNPFVMcdrxeNNvo1TKszueDsjrN0/3L0b0jpr1Z0rcNeBtzNyczQNc2tXYnKxaciYqv49y1em KK7dVdMV9qKoqifgrNNUVdKk8Xx2F112b0a6yZ2rbO2vqmd091PR7u39W0bX86irL1HDvURTkTNy 3TFNqqqaaa4inmImnjnie5NM1U6TO8eP1HzuhFnbGba2Bpm+8rX8q7RNnI3NkYlrHwLcVc1xTTYi qb1UxzTzVNERzzxzHE1jp69Y3Mk799Lfbub162n112jpGr6f1Ft3bd3cGl6jVar0u9NGNTj1Rj10 z6yIuW4riqKqfZ7XMcviLc9GaJ4GvNw0Xrz0X6Qapre8+lu1t22N+Z+Jk4unY+vZGNOm6FORRVRc uWarf4S9NNNdVNHbinunv5lXo1Vbqp3GsMadS+rmkby6DdGtkYWPnWtU2Zb1ejPu5FFEWLs5eZ6+ 36mYrmqeKe6rtU08T4cx3vqKZiqZ7VFq2huf0armj7fzNx7W6h6TuPTbNqnMx9v6jjXsLUr1vjm7 VXe7NyzNcxzMUcxTzxT71JivlMK7lmx/S8211C3d1s/1lbe1SxtbqdXg3r33s3bVWbpteFXzizR6 3s0XO7ur57PPfMcc93z6uYiOjyNVY2n1n6cbm6TaX016oaXuW5o+2tQyszbeu7aqx/tuPayKoqvY 961emLdVNVVMV9qKomKvfHj9TTVE9Kkehqnpgxtrqh0u1fp5oNekbS6bWa8XRdL1S/F2/lUXpqnL uZFdMREV34rqiezHFPMccqer1iYq5mrw9+a/6Ombpuualtfbe/bGv6har+x6Rn5mJRpmmXq/yqbt EVXb1FEz7NFVNPMRxM+asRXzNzI+9fS/2X1C6xdY6tb0vXb/AEq6hY1ifsnqLM6jp+dj49ujGzLd ubvq+1TcoqiYi5Haoq75njsvmLcxTGnGDVr1ibk25svF6f7g2hd1u1v7Scy5n6rc1GmzOBRetZFN eFOLFM9ufYp5uRc/K/F7nrpM6xPBRmDf3VL0eepm4tV35q+0d9Ye7tWquZmdt7Tc7Fo0m7m18zXc pyKom9RRVXM1zT2JnmZ4nh5xTXG6J3K7nWsdaulHVTY2y9M6u6Nuy3r+z9Po0bC1XaN3GmM/T7dV VVmxfov8erqt9qqmK6OeYmeYk6NVMz0eZ4vVn0wdJ1nfPU3V9Q0HK0nRtY6dZGw9taTp00340+1+ BjGpu111UzNMRbrmqqOZ5q7qZjwernSI79TVjPp11b0jaPo+9YNi5mNnXNW3hd0WvAvWKKJsWow8 i7du+tqmuKo5iuOz2aauZieePF9TTM1RPYoyPsDrt0+ysH0b9H3PRqGNhdNb+r5+r13MaK7WXcuZ c5mLas9iqqqqKqqLdFU100xHanxjvfM01daY5q6sB5e5LG9upN3X94X8yrF1bVpztYv6dTTVk9i7 e7d+q1TXMUzXxVVNMVTEc8czEPXTSNIUbBdcesnQ7qNuLpJqGmYm+MrE2niaRt/U8LWMPDt0Zek4 na9ZVRNu/VM364njiZpo7574eNNNcRPerMw9frX1e9HrrvvjL3HuHXusERVPq8HTbGmaXGLp2PHd Rj2KPtPFFFMREd3jxzPMzMlNNdMaRorMxKu6V1q6N7r6X6V036haRvSvQNo6pqGRtXXNv1YlOfOH k3vWVWcu1dn1famYpqmqiqeJ7o7ontV6NUT0qeam54u7/SyyqvSA2X1C2bo/3D07ZGDhaPoWm5l6 b9ycHGoqoii/cjjtVXKa7kVTHhFfETPHM1i31ZpnmarlonpB9C+lm4dW6hdONm7wwuoWXiZVrA0v VcvGq0bR7uRbqt3Llqqj8LdimmuuKaa4iOJ7+O6Y+Zorq6tU7jWFd0jrX0o6mdO9pbf6y6JuuNY2 jifczTNf2ddxvW5WBFU1W8bIt5HFMermqqKa6Z54nvjx5r0aqZmaeZu5unvXrN0z63dXPulvnSNz 7f2HpWhY2g7f0/a9zHv5uLZxuzTZ9bVf4priafWzVxxPNVPEzFPfWKaqY3cTXV53V/0jcbV72wdE 6Z6fm7Q2bsGucnQqMy9RezbubN2LtebkVRHZm7NdNPFMc008cR3TwU0cZq4yash9K/8ASJdSNFxt 82t77z3BrkaltnM0/RYsWrFUYmp11W/U5FfPY4ppppuRMx2p9qPZny+arVM6aQasTdBesGj9FdG3 7q9vGzru/tQ0irSNvZdq3R9nwIvz2crIqrmuKqbsWuabfZpnvrq5mH3VTNWkclGIHoAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP//Z "
|
56
|
+
id="image1"
|
57
|
+
x="2.216579"
|
58
|
+
y="37.382408"
|
59
|
+
style="display:none;opacity:0.5" /></g></svg>
|
data/icon.webp
ADDED
Binary file
|
@@ -0,0 +1,169 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Smother
|
4
|
+
class Instance
|
5
|
+
def initialize(paths, logger)
|
6
|
+
@paths = paths.map { |path| File.expand_path(path) }
|
7
|
+
@logger = logger
|
8
|
+
end
|
9
|
+
|
10
|
+
def run
|
11
|
+
@user_defined_methods = user_defined_methods
|
12
|
+
execute_with_nil_overwrite
|
13
|
+
self
|
14
|
+
end
|
15
|
+
|
16
|
+
def and_print
|
17
|
+
print(@user_defined_methods)
|
18
|
+
self
|
19
|
+
end
|
20
|
+
|
21
|
+
private
|
22
|
+
|
23
|
+
def user_defined_methods
|
24
|
+
result = {}
|
25
|
+
|
26
|
+
ObjectSpace.each_object(Class) do |klass|
|
27
|
+
next if klass.name == "Smother"
|
28
|
+
|
29
|
+
next if klass.name.nil?
|
30
|
+
|
31
|
+
instance_methods = klass.public_instance_methods(false).select do |method_name|
|
32
|
+
location = klass.instance_method(method_name).source_location
|
33
|
+
is_user_defined?(location)
|
34
|
+
rescue
|
35
|
+
false
|
36
|
+
end
|
37
|
+
|
38
|
+
class_methods = klass.singleton_class.public_instance_methods(false).select do |method_name|
|
39
|
+
location = klass.method(method_name).source_location
|
40
|
+
is_user_defined?(location)
|
41
|
+
rescue
|
42
|
+
false
|
43
|
+
end
|
44
|
+
|
45
|
+
next unless !instance_methods.empty? || !class_methods.empty?
|
46
|
+
|
47
|
+
result[klass.name] = {
|
48
|
+
instance_methods: instance_methods,
|
49
|
+
class_methods: class_methods
|
50
|
+
}
|
51
|
+
end
|
52
|
+
|
53
|
+
result
|
54
|
+
end
|
55
|
+
|
56
|
+
def execute_with_nil_overwrite
|
57
|
+
# Executing methods randomly causes so many pesky nil errors. Let's fix that.
|
58
|
+
original_methods = Proxy
|
59
|
+
.instance_methods(false)
|
60
|
+
.each_with_object({}) do |method, object|
|
61
|
+
object[method] = NilClass.instance_method(method) if NilClass.method_defined?(method)
|
62
|
+
end
|
63
|
+
|
64
|
+
NilClass.prepend(Proxy)
|
65
|
+
execute
|
66
|
+
Proxy.instance_methods(false).each do |method|
|
67
|
+
NilClass.undef_method(method)
|
68
|
+
rescue
|
69
|
+
nil
|
70
|
+
end
|
71
|
+
|
72
|
+
original_methods.each do |method_name, method|
|
73
|
+
NilClass.define_method(method_name, method)
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
def execute
|
78
|
+
@user_defined_methods.each do |class_name, methods_hash|
|
79
|
+
begin
|
80
|
+
klass = Object.const_get(class_name)
|
81
|
+
rescue => e
|
82
|
+
@logger.debug("[Smother] Failed to load class #{class_name}: #{e.message}")
|
83
|
+
next
|
84
|
+
end
|
85
|
+
|
86
|
+
klass.prepend(Proxy)
|
87
|
+
|
88
|
+
methods_hash[:class_methods].each do |method_name|
|
89
|
+
execute_class_method(klass, method_name)
|
90
|
+
@logger.debug("[Smother] Successfully executed class method #{class_name}.#{method_name}")
|
91
|
+
rescue => e
|
92
|
+
@logger.debug("[Smother] Error executing class method #{class_name}.#{method_name}: #{e.message}")
|
93
|
+
end
|
94
|
+
|
95
|
+
begin
|
96
|
+
instance = klass.new
|
97
|
+
|
98
|
+
methods_hash[:instance_methods].each do |method_name|
|
99
|
+
execute_instance_method(instance, method_name)
|
100
|
+
@logger.debug("[Smother] Successfully executed instance method #{class_name}##{method_name}")
|
101
|
+
rescue => e
|
102
|
+
@logger.debug("[Smother] Error executing instance method #{class_name}##{method_name}: #{e.message}")
|
103
|
+
end
|
104
|
+
rescue => e
|
105
|
+
@logger.debug("[Smother] Could not instantiate #{class_name}: #{e.message}")
|
106
|
+
end
|
107
|
+
end
|
108
|
+
end
|
109
|
+
|
110
|
+
def execute_class_method(klass, method_name)
|
111
|
+
method = klass.method(method_name)
|
112
|
+
args, kwargs = generate_method_args(method)
|
113
|
+
|
114
|
+
if kwargs.empty?
|
115
|
+
klass.public_send(method_name, *args)
|
116
|
+
else
|
117
|
+
klass.public_send(method_name, *args, **kwargs)
|
118
|
+
end
|
119
|
+
end
|
120
|
+
|
121
|
+
def execute_instance_method(instance, method_name)
|
122
|
+
method = instance.method(method_name)
|
123
|
+
args, kwargs = generate_method_args(method)
|
124
|
+
|
125
|
+
if kwargs.empty?
|
126
|
+
instance.public_send(method_name, *args)
|
127
|
+
else
|
128
|
+
instance.public_send(method_name, *args, **kwargs)
|
129
|
+
end
|
130
|
+
end
|
131
|
+
|
132
|
+
def generate_method_args(method)
|
133
|
+
params = method.parameters
|
134
|
+
args = []
|
135
|
+
kwargs = {}
|
136
|
+
|
137
|
+
params.each do |param_type, param_name|
|
138
|
+
param_name ||= :unnamed
|
139
|
+
|
140
|
+
case param_type
|
141
|
+
when :req, :opt
|
142
|
+
args << generate_value_for_param(param_name)
|
143
|
+
when :keyreq, :key
|
144
|
+
kwargs[param_name.to_sym] = generate_value_for_param(param_name)
|
145
|
+
end
|
146
|
+
end
|
147
|
+
|
148
|
+
[args, kwargs]
|
149
|
+
end
|
150
|
+
|
151
|
+
def generate_value_for_param(param_name)
|
152
|
+
Smother::Mock.new(param_name)
|
153
|
+
end
|
154
|
+
|
155
|
+
def is_user_defined?(location)
|
156
|
+
return false unless location
|
157
|
+
|
158
|
+
@paths.any? { |path| location.first.start_with?(path) }
|
159
|
+
end
|
160
|
+
|
161
|
+
def print(methods)
|
162
|
+
methods.each do |class_name, methods_hash|
|
163
|
+
@logger.info("[Smother] Found class: #{class_name}")
|
164
|
+
@logger.info("[Smother] Instance methods: #{methods_hash[:instance_methods].join(", ")}")
|
165
|
+
@logger.info("[Smother] Class methods: #{methods_hash[:class_methods].join(", ")}")
|
166
|
+
end
|
167
|
+
end
|
168
|
+
end
|
169
|
+
end
|
data/lib/smother/mock.rb
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
module Smother
|
2
|
+
class Mock
|
3
|
+
def initialize(name = "anonymous")
|
4
|
+
@name = name
|
5
|
+
end
|
6
|
+
|
7
|
+
def method_missing(m, *_args)
|
8
|
+
Mock.new(m.to_s)
|
9
|
+
end
|
10
|
+
|
11
|
+
def respond_to_missing?(*_args)
|
12
|
+
true
|
13
|
+
end
|
14
|
+
|
15
|
+
def to_str
|
16
|
+
""
|
17
|
+
end
|
18
|
+
|
19
|
+
def to_hash
|
20
|
+
{}
|
21
|
+
end
|
22
|
+
|
23
|
+
def to_ary
|
24
|
+
[]
|
25
|
+
end
|
26
|
+
end
|
27
|
+
end
|
@@ -0,0 +1,29 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Smother
|
4
|
+
module Proxy
|
5
|
+
def method_missing(method, *_args)
|
6
|
+
Smother::Mock.new(method.to_s)
|
7
|
+
end
|
8
|
+
|
9
|
+
def respond_to_missing?(*_args)
|
10
|
+
true
|
11
|
+
end
|
12
|
+
|
13
|
+
def to_s
|
14
|
+
to_str
|
15
|
+
end
|
16
|
+
|
17
|
+
def to_str
|
18
|
+
""
|
19
|
+
end
|
20
|
+
|
21
|
+
def to_hash
|
22
|
+
{}
|
23
|
+
end
|
24
|
+
|
25
|
+
def to_ary
|
26
|
+
[]
|
27
|
+
end
|
28
|
+
end
|
29
|
+
end
|
data/lib/smother.rb
ADDED
@@ -0,0 +1,15 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require_relative "smother/version"
|
4
|
+
require_relative "smother/proxy"
|
5
|
+
require_relative "smother/mock"
|
6
|
+
require_relative "smother/instance"
|
7
|
+
|
8
|
+
module Smother
|
9
|
+
class << self
|
10
|
+
# Der Name ist Programm!
|
11
|
+
def my_code(paths: ["."], logger: Logger.new(nil))
|
12
|
+
Instance.new(paths, logger).run
|
13
|
+
end
|
14
|
+
end
|
15
|
+
end
|
metadata
ADDED
@@ -0,0 +1,58 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: smother
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 1.0.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- hschne
|
8
|
+
bindir: exe
|
9
|
+
cert_chain: []
|
10
|
+
date: 2025-04-26 00:00:00.000000000 Z
|
11
|
+
dependencies: []
|
12
|
+
description: Smother is a revolutionary tool to increase your code's test coverage
|
13
|
+
in seconds.
|
14
|
+
email:
|
15
|
+
- hello@hansschnedlitz.com
|
16
|
+
executables: []
|
17
|
+
extensions: []
|
18
|
+
extra_rdoc_files: []
|
19
|
+
files:
|
20
|
+
- ".rubocop.yml"
|
21
|
+
- CHANGELOG.md
|
22
|
+
- CODE_OF_CONDUCT.md
|
23
|
+
- LICENSE.txt
|
24
|
+
- README.md
|
25
|
+
- Rakefile
|
26
|
+
- icon.svg
|
27
|
+
- icon.webp
|
28
|
+
- lib/smother.rb
|
29
|
+
- lib/smother/instance.rb
|
30
|
+
- lib/smother/mock.rb
|
31
|
+
- lib/smother/proxy.rb
|
32
|
+
- lib/smother/version.rb
|
33
|
+
homepage: https://github.com/hschne/smother
|
34
|
+
licenses:
|
35
|
+
- MIT
|
36
|
+
metadata:
|
37
|
+
allowed_push_host: https://rubygems.org/
|
38
|
+
homepage_uri: https://github.com/hschne/smother
|
39
|
+
source_code_uri: https://github.com/hschne/smother
|
40
|
+
changelog_uri: https://github.com/hschne/smother/CHANGELOG
|
41
|
+
rdoc_options: []
|
42
|
+
require_paths:
|
43
|
+
- lib
|
44
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
45
|
+
requirements:
|
46
|
+
- - ">="
|
47
|
+
- !ruby/object:Gem::Version
|
48
|
+
version: 3.1.0
|
49
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
50
|
+
requirements:
|
51
|
+
- - ">="
|
52
|
+
- !ruby/object:Gem::Version
|
53
|
+
version: '0'
|
54
|
+
requirements: []
|
55
|
+
rubygems_version: 3.6.5
|
56
|
+
specification_version: 4
|
57
|
+
summary: Don't just cover your code. Smother it.
|
58
|
+
test_files: []
|