smother 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: 48139c78f63aa1aee02f299d4423ab8a4f7eaf04a21f9c0253d57cc4f796dc7d
4
+ data.tar.gz: e877579dfdb4d7f63b3434946b6dcd46c94e2e7d9b3b40009ce7425f74c048b5
5
+ SHA512:
6
+ metadata.gz: c2879c3b989bf5d1703eac2d1a45618138356b9282430d472b66ea13e2bd643d09d4527ad1d55a3b895e8b9c6d37f5da8f3b807da4a69a03a8ed43328d376f50
7
+ data.tar.gz: 1216bed9bf637881b8c64ee532bde286f2651723c8dfdf5f7cfc648721ae453405518d34d07f6852bda6fbdd1c94220ec67d7ebd2f3a9717948636179a38550d
data/.rubocop.yml ADDED
@@ -0,0 +1,20 @@
1
+ require:
2
+ - standard
3
+ plugins:
4
+ - rubocop-minitest
5
+ - rubocop-performance
6
+
7
+ inherit_gem:
8
+ standard: config/base.yml
9
+
10
+ AllCops:
11
+ NewCops: enable
12
+ Exclude:
13
+ - node_modules/**/*
14
+ - public/**/*
15
+ - vendor/**/*
16
+
17
+ Minitest:
18
+ Enabled: true
19
+ Performance:
20
+ Enabled: true
data/CHANGELOG.md ADDED
@@ -0,0 +1,5 @@
1
+ ## [Unreleased]
2
+
3
+ ## [0.1.0] - 2025-04-23
4
+
5
+ - Initial release
@@ -0,0 +1,132 @@
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ We as members, contributors, and leaders pledge to make participation in our
6
+ community a harassment-free experience for everyone, regardless of age, body
7
+ size, visible or invisible disability, ethnicity, sex characteristics, gender
8
+ identity and expression, level of experience, education, socio-economic status,
9
+ nationality, personal appearance, race, caste, color, religion, or sexual
10
+ identity and orientation.
11
+
12
+ We pledge to act and interact in ways that contribute to an open, welcoming,
13
+ diverse, inclusive, and healthy community.
14
+
15
+ ## Our Standards
16
+
17
+ Examples of behavior that contributes to a positive environment for our
18
+ community include:
19
+
20
+ * Demonstrating empathy and kindness toward other people
21
+ * Being respectful of differing opinions, viewpoints, and experiences
22
+ * Giving and gracefully accepting constructive feedback
23
+ * Accepting responsibility and apologizing to those affected by our mistakes,
24
+ and learning from the experience
25
+ * Focusing on what is best not just for us as individuals, but for the overall
26
+ community
27
+
28
+ Examples of unacceptable behavior include:
29
+
30
+ * The use of sexualized language or imagery, and sexual attention or advances of
31
+ any kind
32
+ * Trolling, insulting or derogatory comments, and personal or political attacks
33
+ * Public or private harassment
34
+ * Publishing others' private information, such as a physical or email address,
35
+ without their explicit permission
36
+ * Other conduct which could reasonably be considered inappropriate in a
37
+ professional setting
38
+
39
+ ## Enforcement Responsibilities
40
+
41
+ Community leaders are responsible for clarifying and enforcing our standards of
42
+ acceptable behavior and will take appropriate and fair corrective action in
43
+ response to any behavior that they deem inappropriate, threatening, offensive,
44
+ or harmful.
45
+
46
+ Community leaders have the right and responsibility to remove, edit, or reject
47
+ comments, commits, code, wiki edits, issues, and other contributions that are
48
+ not aligned to this Code of Conduct, and will communicate reasons for moderation
49
+ decisions when appropriate.
50
+
51
+ ## Scope
52
+
53
+ This Code of Conduct applies within all community spaces, and also applies when
54
+ an individual is officially representing the community in public spaces.
55
+ Examples of representing our community include using an official email address,
56
+ posting via an official social media account, or acting as an appointed
57
+ representative at an online or offline event.
58
+
59
+ ## Enforcement
60
+
61
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
62
+ reported to the community leaders responsible for enforcement at
63
+ [INSERT CONTACT METHOD].
64
+ All complaints will be reviewed and investigated promptly and fairly.
65
+
66
+ All community leaders are obligated to respect the privacy and security of the
67
+ reporter of any incident.
68
+
69
+ ## Enforcement Guidelines
70
+
71
+ Community leaders will follow these Community Impact Guidelines in determining
72
+ the consequences for any action they deem in violation of this Code of Conduct:
73
+
74
+ ### 1. Correction
75
+
76
+ **Community Impact**: Use of inappropriate language or other behavior deemed
77
+ unprofessional or unwelcome in the community.
78
+
79
+ **Consequence**: A private, written warning from community leaders, providing
80
+ clarity around the nature of the violation and an explanation of why the
81
+ behavior was inappropriate. A public apology may be requested.
82
+
83
+ ### 2. Warning
84
+
85
+ **Community Impact**: A violation through a single incident or series of
86
+ actions.
87
+
88
+ **Consequence**: A warning with consequences for continued behavior. No
89
+ interaction with the people involved, including unsolicited interaction with
90
+ those enforcing the Code of Conduct, for a specified period of time. This
91
+ includes avoiding interactions in community spaces as well as external channels
92
+ like social media. Violating these terms may lead to a temporary or permanent
93
+ ban.
94
+
95
+ ### 3. Temporary Ban
96
+
97
+ **Community Impact**: A serious violation of community standards, including
98
+ sustained inappropriate behavior.
99
+
100
+ **Consequence**: A temporary ban from any sort of interaction or public
101
+ communication with the community for a specified period of time. No public or
102
+ private interaction with the people involved, including unsolicited interaction
103
+ with those enforcing the Code of Conduct, is allowed during this period.
104
+ Violating these terms may lead to a permanent ban.
105
+
106
+ ### 4. Permanent Ban
107
+
108
+ **Community Impact**: Demonstrating a pattern of violation of community
109
+ standards, including sustained inappropriate behavior, harassment of an
110
+ individual, or aggression toward or disparagement of classes of individuals.
111
+
112
+ **Consequence**: A permanent ban from any sort of public interaction within the
113
+ community.
114
+
115
+ ## Attribution
116
+
117
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage],
118
+ version 2.1, available at
119
+ [https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
120
+
121
+ Community Impact Guidelines were inspired by
122
+ [Mozilla's code of conduct enforcement ladder][Mozilla CoC].
123
+
124
+ For answers to common questions about this code of conduct, see the FAQ at
125
+ [https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
126
+ [https://www.contributor-covenant.org/translations][translations].
127
+
128
+ [homepage]: https://www.contributor-covenant.org
129
+ [v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
130
+ [Mozilla CoC]: https://github.com/mozilla/diversity
131
+ [FAQ]: https://www.contributor-covenant.org/faq
132
+ [translations]: https://www.contributor-covenant.org/translations
data/LICENSE.txt ADDED
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2025 hschne
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,86 @@
1
+ <div align="center">
2
+
3
+ # Smother
4
+
5
+ ![Logo](./icon.webp)
6
+
7
+ Smother is a _revolutionary_ tool to ✨ _magically_ ✨ increase your test coverage! Don't just cover your code - smother it! ☁️
8
+
9
+ | Without Smother 👎 | With Smother 👍 |
10
+ | ------------------ | --------------- |
11
+ | ![Screen Shot 2025-04-26 at 20 59 15](https://github.com/user-attachments/assets/33881bcc-1762-4878-9451-7b836e45e60c) | ![Screen Shot 2025-04-26 at 21 08 15](https://github.com/user-attachments/assets/c34aa1bb-296e-4eb1-9012-adc214a7872b)|
12
+
13
+ </div>
14
+
15
+ ## Why Smother?
16
+
17
+ So you have some Ruby 💎 code and want to improve your test coverage.
18
+
19
+ Great Idea. But who has time time write more tests? You certainly don't.
20
+
21
+ Enter **Smother**.
22
+
23
+ Smother ✨ _magically_ ✨ improves your test coverage within seconds!
24
+
25
+
26
+ ## Usage
27
+
28
+ Install Smother and call it in your test suite. A single test will do.
29
+
30
+ ```bash
31
+ bundle add smother
32
+ ```
33
+
34
+ ```ruby
35
+ test 'smother everything' do
36
+ Smother.my_code
37
+ end
38
+ ```
39
+
40
+ That's it. Now run your tests and enjoy your improved coverage! 🤩
41
+
42
+ ## How It Works
43
+
44
+ It's really simple.
45
+
46
+ Smother identifies and calls all public methods in your code base with appropriate arguments. Any errors are ignored, so your code can continue execution.
47
+
48
+ This dramatically increases code coverage.
49
+
50
+ ## FAQ
51
+
52
+ #### Wait, where are the assertions? This doesn't actually _test_ anything?!
53
+
54
+ Who cares? Smother improves your code coverage. _Brrr_, Number go up! 📈
55
+
56
+ #### Why not use AI to generate tests?
57
+
58
+ Why waste your precious credits if Smother can magically improve your code coverage in seconds?
59
+
60
+ #### Why not fake the coverage results altogether?
61
+
62
+ That would be cheating.
63
+
64
+ #### Smothering my code feels... violent?
65
+
66
+ Smother is efficient, but efficiency comes at a price.
67
+
68
+ #### Is this a joke?
69
+
70
+ Improving code coverage is no a joke.
71
+
72
+ #### No, really.
73
+
74
+ Okay, I thought this would be a fun way to play around with introspection and dynamic programming in Ruby.
75
+
76
+ I don't actually recommend anyone actually use this in any setting anywhere.
77
+
78
+ ## Contributing
79
+
80
+ Are you sure you want to contribute to this monstrosity?
81
+
82
+ Well, don't let me stop you. Bug reports and pull requests are welcome on GitHub at https://github.com/hschne/smother. Contributors are expected to adhere to the [code of conduct](https://github.com/hschne/smother/blob/main/CODE_OF_CONDUCT.md).
83
+
84
+ ## License
85
+
86
+ The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
data/Rakefile ADDED
@@ -0,0 +1,12 @@
1
+ # frozen_string_literal: true
2
+
3
+ require "bundler/gem_tasks"
4
+ require "minitest/test_task"
5
+
6
+ Minitest::TestTask.create
7
+
8
+ require "rubocop/rake_task"
9
+
10
+ RuboCop::RakeTask.new
11
+
12
+ task default: %i[test rubocop]
data/icon.svg ADDED
@@ -0,0 +1,59 @@
1
+ <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2
+ <!-- Created with Inkscape (http://www.inkscape.org/) -->
3
+
4
+ <svg
5
+ width="200mm"
6
+ height="200mm"
7
+ viewBox="0 0 200 200"
8
+ version="1.1"
9
+ id="svg1"
10
+ xml:space="preserve"
11
+ xmlns:xlink="http://www.w3.org/1999/xlink"
12
+ xmlns="http://www.w3.org/2000/svg"
13
+ xmlns:svg="http://www.w3.org/2000/svg"><defs
14
+ id="defs1"><pattern
15
+ xlink:href="#shading10"
16
+ preserveAspectRatio="xMidYMid"
17
+ id="pattern15"
18
+ patternTransform="matrix(0.5,0,0,0.5,231.9442,203.8797)"
19
+ x="0"
20
+ y="0" /><pattern
21
+ patternUnits="userSpaceOnUse"
22
+ width="426.6123"
23
+ height="55.4942"
24
+ patternTransform="translate(231.9442,203.8797)"
25
+ preserveAspectRatio="xMidYMid"
26
+ id="shading10"
27
+ style="fill:#f7b7b5"><path
28
+ id="use37"
29
+ style="stroke-width:0.315146;stroke-linecap:square;paint-order:markers fill stroke;stop-color:#000000"
30
+ d="m 420.5733,0 h 0.2749 c 0.024,8.9645 5.7641,19.2925 5.7641,27.7471 0,8.4545 -5.7641,15.465 -5.7641,27.7471 h -0.2749 c 0,-12.8073 5.6908,-20.0005 5.6908,-27.7471 1e-4,-7.7466 -5.6292,-16.6995 -5.6908,-27.7471 z m -16.5687,0 h 1.0155 c 0.023,9.4488 5.2737,18.9076 5.2737,27.7471 0,8.8395 -5.2737,15.1536 -5.2737,27.7471 h -1.0155 c 0,-12.8543 5.2089,-19.5988 5.209,-27.7471 0,-8.1483 -5.1498,-16.3841 -5.209,-27.7471 z m -16.5687,0 h 1.7561 c 0.023,9.933 4.7832,18.5227 4.7832,27.7471 0,9.2244 -4.7832,14.8421 -4.7832,27.7471 h -1.7561 c 0,-12.9013 4.7271,-19.1972 4.7271,-27.7471 0,-8.55 -4.6704,-16.0687 -4.7271,-27.7471 z m -16.5687,0 h 2.4967 c 0.022,10.4173 4.2928,18.1377 4.2928,27.7471 0,9.6093 -4.2928,14.5307 -4.2928,27.7471 h -2.4967 c 0,-12.9482 4.2452,-18.7955 4.2452,-27.7471 1e-4,-8.9516 -4.191,-15.7533 -4.2452,-27.7471 z m -16.5687,0 h 3.2373 c 0.02,10.9016 3.8024,17.7528 3.8024,27.7471 0,9.9943 -3.8024,14.2192 -3.8024,27.7471 h -3.2373 c 0,-12.9952 3.7634,-18.3938 3.7634,-27.7471 0,-9.3533 -3.7117,-15.4379 -3.7634,-27.7471 z m -16.5687,0 h 3.9779 c 0.02,11.3858 3.3119,17.3679 3.3119,27.7471 0,10.3792 -3.3119,13.9077 -3.3119,27.7471 h -3.9779 c 0,-13.0422 3.2815,-17.9921 3.2815,-27.7471 0,-9.755 -3.2322,-15.1225 -3.2815,-27.7471 z M 321.161,0 h 4.7186 c 0.019,11.8701 2.8215,16.983 2.8215,27.7471 0,10.7641 -2.8215,13.5963 -2.8215,27.7471 h -4.7186 c 0,-13.0891 2.7997,-17.5905 2.7997,-27.7471 C 323.9608,17.5904 321.2079,12.94 321.161,0 Z m -16.5687,0 h 5.4592 c 0.018,12.3544 2.3311,16.598 2.3311,27.7471 0,11.149 -2.3311,13.2848 -2.3311,27.7471 h -5.4592 c 0,-13.1361 2.3179,-17.1888 2.3179,-27.7471 0,-10.5583 -2.2735,-14.4917 -2.3179,-27.7471 z m -16.5687,0 h 6.1998 c 0.017,12.8386 1.8406,16.2131 1.8406,27.7471 0,11.534 -1.8406,12.9733 -1.8406,27.7471 h -6.1998 c 0,-13.1831 1.836,-16.7871 1.836,-27.7471 0,-10.96 -1.7941,-14.1763 -1.836,-27.7471 z m -16.5687,0 h 6.9404 c 0.016,13.3229 1.3502,15.8282 1.3502,27.7471 0,11.9189 -1.3502,12.6619 -1.3502,27.7471 h -6.9404 c 0,-13.23 1.3541,-16.3854 1.3541,-27.7471 C 272.8091,16.3854 271.4943,13.8861 271.4549,0 Z m -16.5687,0 h 7.6811 c 0.015,13.8072 0.8597,15.4432 0.8597,27.7471 0,12.3038 -0.8597,12.3504 -0.8597,27.7471 h -7.6811 c 0,-13.277 0.8723,-15.9838 0.8723,-27.7471 0,-11.7634 -0.8353,-13.5456 -0.8723,-27.7471 z m -16.5687,0 h 8.4217 c 0.014,14.2914 0.3692,15.0583 0.3692,27.7471 0,12.6888 -0.3692,12.039 -0.3692,27.7471 h -8.4217 c 0,-13.324 0.3904,-15.5821 0.3904,-27.7471 0,-12.165 -0.3559,-13.2302 -0.3904,-27.7471 z m -16.5687,0 h 9.1623 c 0.013,14.7757 -0.1212,14.6734 -0.1212,27.7471 0,13.0737 0.1212,11.7275 0.1212,27.7471 h -9.1623 c 0,-13.3709 -0.091,-15.1804 -0.091,-27.7471 1e-4,-12.5667 0.1235,-12.9148 0.091,-27.7471 z m -16.5687,0 h 9.9029 c 0.012,15.26 -0.6116,14.2884 -0.6116,27.7471 0,13.4586 0.6116,11.416 0.6116,27.7471 h -9.9029 c 0,-13.4179 -0.5733,-14.7788 -0.5733,-27.7471 0,-12.9684 0.6028,-12.5994 0.5733,-27.7471 z m -16.5687,0 h 10.6435 c 0.011,15.7442 -1.102,13.9035 -1.102,27.7471 0,13.8436 1.102,11.1046 1.102,27.7471 h -10.6435 c 0,-13.4649 -1.0552,-14.3771 -1.0552,-27.7471 0,-13.3701 1.0823,-12.284 1.0552,-27.7471 z m -16.5688,0 h 11.3842 c 0.01,16.2285 -1.5925,13.5186 -1.5925,27.7471 0,14.2285 1.5925,10.7931 1.5925,27.7471 h -11.3842 c 0,-13.5118 -1.537,-13.9754 -1.537,-27.7471 1e-4,-13.7717 1.5617,-11.9686 1.537,-27.7471 z m -16.5687,0 h 12.1248 c 0.01,16.7128 -2.0829,13.1336 -2.0829,27.7471 0,14.6134 2.0829,10.4816 2.0829,27.7471 h -12.1248 c 0,-13.5588 -2.0188,-13.5737 -2.0188,-27.7471 0,-14.1734 2.041,-11.6532 2.0188,-27.7471 z m -16.5687,0 h 12.8654 c 0.01,17.197 -2.5733,12.7487 -2.5733,27.7471 0,14.9984 2.5733,10.1702 2.5733,27.7471 h -12.8654 c 0,-13.6058 -2.5007,-13.1721 -2.5007,-27.7471 0,-14.5751 2.5204,-11.3378 2.5007,-27.7471 z m -16.5687,0 h 13.606 c 0.01,17.6813 -3.0638,12.3638 -3.0638,27.7471 0,15.3833 3.0638,9.8587 3.0638,27.7471 h -13.606 c 0,-13.6527 -2.9826,-12.7704 -2.9826,-27.7471 1e-4,-14.9767 2.9999,-11.0224 2.9826,-27.7471 z m -16.5687,0 h 14.3466 c 0.01,18.1656 -3.5542,11.9788 -3.5542,27.7471 0,15.7682 3.5542,9.5472 3.5542,27.7471 h -14.3466 c 0,-13.6997 -3.4644,-12.3687 -3.4644,-27.7471 0,-15.3784 3.4792,-10.7071 3.4644,-27.7471 z M 89.1991,0 h 15.0872 c 0,18.6498 -4.0446,11.5939 -4.0446,27.7471 0,16.1532 4.0446,9.2358 4.0446,27.7471 H 89.1991 c 0,-13.7467 -3.9463,-11.967 -3.9463,-27.7471 C 85.2528,11.967 89.2114,17.3554 89.1991,0 Z M 72.6304,0 h 15.8278 c 0,19.1341 -4.5351,11.209 -4.5351,27.7471 0,16.5381 4.5351,8.9243 4.5351,27.7471 H 72.6304 c 0,-13.7936 -4.4282,-11.5654 -4.4282,-27.7471 C 68.2023,11.5653 72.6402,17.6708 72.6304,0 Z M 56.0617,0 h 16.5684 c 0,19.6184 -5.0255,10.824 -5.0255,27.7471 0,16.923 5.0255,8.6129 5.0255,27.7471 H 56.0617 c 0,-13.8406 -4.91,-11.1637 -4.91,-27.7471 0,-16.5834 4.9174,-9.7609 4.91,-27.7471 z M 39.493,0 h 17.3091 c 0,20.1026 -5.516,10.4391 -5.516,27.7471 0,17.3079 5.516,8.3014 5.516,27.7471 H 39.493 c 0,-13.8876 -5.3919,-10.762 -5.3919,-27.7471 C 34.1011,10.762 39.4979,18.3016 39.493,0 Z M 22.9242,0 H 40.974 c 9e-4,20.5869 -6.0064,10.0542 -6.0064,27.7471 0,17.6929 6.0064,7.9899 6.0064,27.7471 H 22.9242 c 0,-13.9346 -5.8737,-10.3604 -5.8737,-27.7471 0,-17.3868 5.8762,-9.1301 5.8737,-27.7471 z M 6.3555,0 h 18.7904 c 0,21.0712 -6.4969,9.6693 -6.4969,27.7471 0,18.0778 6.4969,7.6785 6.4969,27.7471 H 6.3555 C 6.3555,41.5127 0,45.5355 0,27.7471 0,9.9586 6.3555,18.9324 6.3555,0 Z" /></pattern></defs><g
31
+ id="layer1"
32
+ transform="translate(-18.804123,-53.952065)"><g
33
+ id="layer2"><g
34
+ id="g17"
35
+ transform="translate(13.799628,13.887581)"><ellipse
36
+ style="opacity:1;fill:#ac0c00;fill-opacity:1;stroke-width:0.259165"
37
+ id="path1"
38
+ cx="105.00442"
39
+ cy="140.06448"
40
+ rx="86.200294"
41
+ ry="86.112419" /><path
42
+ id="rect16"
43
+ style="opacity:1;fill:#660700;fill-opacity:1;stroke:none;stroke-width:1.47726;stroke-dasharray:none"
44
+ d="M 26.274347,200.08982 -87.986586,154.27039 -95.463084,263.23752 A 76.207172,101.44571 45.016194 0 0 22.74547,229.65323 76.207172,101.44571 45.016194 0 0 26.352157,225.40579 Z"
45
+ transform="matrix(0.84561386,-0.53379509,0.74882893,0.66276333,0,0)" /><path
46
+ style="opacity:1;fill:#fff4f4;fill-opacity:1;stroke:#8a0800;stroke-width:0.79375;stroke-dasharray:none;stroke-opacity:1"
47
+ d="m 75.057084,108.11202 c 0,0 12.6752,-7.0832 14.787734,-9.319999 2.112534,-2.236801 5.592003,-8.822936 8.325869,-7.828801 2.733863,0.994132 4.153723,3.848317 8.591143,6.001128 4.43743,2.152811 24.25207,6.019082 32.16036,8.743052 7.90828,2.72396 18.10118,9.57781 22.31893,10.36864 4.21775,0.79082 10.01716,-1.05444 10.98373,1.66952 0.96657,2.72397 -3.33905,7.99615 -3.86627,9.92929 -0.52722,1.93314 -4.56923,20.03432 -12.829,28.99704 -8.25976,8.96272 -16.60739,16.16805 -21.08875,18.80414 -4.48136,2.6361 -11.59882,5.97515 -12.30178,7.02959 -0.70296,1.05444 -4.30562,6.94171 -7.5568,6.94171 -3.25119,0 -4.83284,-5.44793 -8.25977,-6.6781 -3.42692,-1.23018 -18.804138,-4.39349 -32.160352,-12.30178 -13.356212,-7.90828 -25.833726,-17.31035 -28.8213,-19.06775 -2.987575,-1.75739 -8.347633,-2.19674 -7.644675,-6.06302 0.702958,-3.86627 5.18432,-4.74496 7.205326,-7.29319 2.021007,-2.54823 10.632247,-13.44408 13.795563,-16.69527 3.163313,-3.25118 16.360042,-13.2362 16.360042,-13.2362 z"
48
+ id="path2" /><path
49
+ style="opacity:1;fill:url(#pattern15);fill-opacity:1;stroke:#8a0800;stroke-width:0.79375;stroke-dasharray:none;stroke-opacity:1"
50
+ d="m 136.02248,147.53343 c 8.07954,-9.0422 27.32752,-18.97988 27.32752,-18.97988 0,0 -5.71856,20.81512 -14.41065,29.9636 -8.8166,9.27953 -30.66657,19.59498 -30.66657,19.59498 0,0 7.82611,-19.47272 17.7497,-30.5787 z"
51
+ id="path3" /></g></g><image
52
+ width="205.64601"
53
+ height="222.09769"
54
+ preserveAspectRatio="none"
55
+ xlink:href="&#10;YWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBt&#10;ZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2&#10;MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYt&#10;c3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmRjPSJodHRw&#10;Oi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyI+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJk&#10;ZjpsaT5WZWN0b3JTdG9jay5jb20vMTI4NjY5NDc8L3JkZjpsaT4gPC9yZGY6U2VxPiA8L2RjOmNy&#10;ZWF0b3I+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg&#10;ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDw/eHBhY2tldCBl&#10;bmQ9InciPz7/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsL&#10;EBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQU&#10;FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAQ4A+gDAREAAhEBAxEB/8QAHgAB&#10;AAICAwEBAQAAAAAAAAAAAAEGBwgCBAUDCQr/xABWEAEAAQMDAQQHAQ4CCAQDBAsAAQIDBAUGEQcS&#10;ITFBCBMiUWFxgRQVFiMyQlJicoKRobHB0ZKiCRczQ0RTY7IkNMLwc4PhJSc5sxgZJjVkdXe0tdLx&#10;/8QAHQEBAAEFAQEBAAAAAAAAAAAAAAcBBAUGCAMCCf/EAEIRAQABAgMEBggEBQQBBAMBAAABAgME&#10;BREGITFBEiJRYXGBBxMykaGxwdEUQlLhFSNDYvAzcoKSJLLC0vE0U6JE/9oADAMBAAIRAxEAPwD9&#10;UwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARyAByB2oA5iQOfn+4Dn4SDjNymnxqiPnKmsK&#10;6Sj19v8APp/xQawaT2Ji5TV4VRPyk1g0ly5+EqqHa+E/uA5iAO1AHIHIAJAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAABEzwCO0DztV3PpGhUzVqWp4en0xHPOTkUW/5y8a71u17dUR4yu7GExGJ3WLc1eETPyU&#10;bWPSN6faRFUVbgtZdyn8jCtV3pn60xx/Fjbmb4K3xua+G9s2H2RzvEb4w8xH92kfOdVM1X0xNsY3&#10;MYGkapnVeU1xRZpn99Uz/Bja9ocNT7FMz8Gx2PR5mVf+tcop85n5R9VT1L0zdRuTP3P2xi2Y8pys&#10;uqv+FNMfzWFe0df5Lcecs/Z9G9qP9fEzPhTEfOZVjUPSz31mTPqI0vBifD1WLNcx9aqpWVef4ur2&#10;YiPJm7Xo/wAot+3NdXnEfKHgZ3pFdRM/ntbjuWInyx8e1b/lStKs4x1X9TTyhlrWxuR2v6GvjNU/&#10;V4uV1c3vmRMXd2avMT5U5VVEf5eFtOY4yrjdn3slRs5k9v2cLR7tfm8m/vLcOVz67XtUu8/nZ12f&#10;/U8JxV+rjcn3yv6crwFv2bFEf8afs6NzVM69MzczsquZ86siuf6vKbtyeNU++VzGEw9Ps26Y/wCM&#10;fZ8asi9X+NeuVfOuZ/q+OlV2vaLVuOFMe6HHt1fn1f4pNZ7X10KOyPc5U5F6j8W9cp+Vcx/U6VUc&#10;3zNq3PGmPdD7W9UzrMxNvOyrc++nIrj+r7i7cjhVPvl41YTD1e1bpn/jH2d6xvLcOLMTZ17VLUx+&#10;ZnXY/wDU9YxV+nhcn3yt68rwFftWKJ/4x9nq4vVze+HERa3Zq8RHhFWVVX/3cvenMcZTwuz72Pr2&#10;cye57WFo92nye3g+kV1DwO6ncdy9EeWRj2rn86VzTnGOp/qa+MQxt3Y3I7vGxp4VVR9Xv6f6We+s&#10;OY9fGl50R4+txZomfrTVC7oz/F0+1ET5MTe9H+U3PYmunzifnCz6b6Zuo25j7obYxb0ec4uXVRP7&#10;qqZ/mvaNo6/z248pYS96N7U/6GJmPGmJ+Uwtml+mJtjI4jP0jVcGrzm3Fu9TH7qon+C/t7Q4ar26&#10;Zj4sBf8AR5mVH+jcoq85j5wuekekb0+1eKYp3BaxLlX5GbarszH1qjj+LJW83wVzhc08dzXMRshn&#10;eH44eZj+3SflOq8aTubSdeoirTdTw9QpmOeca/Tc/lLJUXrd2NaKonwlrN/CYjDTpftzT4xMfN6X&#10;aey0TyCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAARyB2oBWdy9Str7QifuvruDhVx/uq7sVXP8Ec1fwWd7GYfD/6t&#10;cR5svg8nx+YTphbNVXfEbvfwYt3F6X21tO7VGk4GfrNyPCqaYx7U/Wr2v8rB3toMNRutxNXwj4t5&#10;wfo+zO9pOIrptx49KfdG74sZa96Xm7dRiqnTMHTtIonwq7FV+5H1q4p/ysLd2hxNf+nTFPxbrhPR&#10;5l1rfiLlVc+VMfDWfix1rnVzem45qjP3LqNduqe+1avepo/w0cQw93McXe9u5Py+TccLs7lGD0m1&#10;hqdY5zHSn46qlcqm9XNdyZuXJ8a657Uz9ZY+ZmqdZbDTTTRHRojSO48VFQAAAAAAAAAAAAAAAAAC&#10;3VNmuK7czbuR4V0T2Zj6wrEzTOsKVU01xpVGsd+9bdC6ubz23NP2Dcuo0UU+Fq9e9dR/hr5hkLWY&#10;4uz7Fyfn82vYrZ3KcZr63DU69sR0Z98aMi6D6Xm7dO7NOp4Onavbjxq7FWPcn60zNP8AlZi1tDia&#10;N1ymKvg0/F+jzLrus4e5VRPlVHx0n4smbe9L/a2odmjVcDP0e5PjVFMZFuPrT7X+VmrO0GGr3XIm&#10;n4x/nk0nF+j7M7O/D103I8ejPund8WU9tdStr7vin7ka7g5tc/7qi7FNz60TxV/BnLOMw+I/0q4l&#10;o2MyfMMvnTFWaqe+Y3e+N3xWaJXjEHIJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxmrgFE3d1x2Xsua7edrdi7lU/8Jh/h&#10;7vPumKeYj6zDGYjMsLht1de/sjfLZ8v2azXMtJsWZ6PbPVj3zx8tWF91emPkXO3a25oVFqnvinJ1&#10;K52p+fq6J4/fU1u/tFPCxR5z9o+6R8B6OYjSrHX/ACpj6z9mH90dZd6bvmunUNwZUWKu6cfEq9Ra&#10;493Zo45+sy16/mWLxHt1zp2Ru+SQ8DszlOX6TZsRM9tXWn4/SFL/ACpq/KnxnzljOO9s8bo0gBIA&#10;AAAAAAAAAAAAAAAAAAAAAAAI4A/Kir8qPCfOFSY1jSV02v1l3ns/sU6dr+VNinujGyqvX2uPdxXz&#10;x9JhkrGZYvD+xcnTsnf82sY7ZnKcw1m9YiJ7aerPw+rMG1PTHyLc0Wtx6FRdp7onJ0yvs1fObdc8&#10;fuqbDh9op4X6POPtP3R7j/R1TOtWAv8AlXH1j7Mz7Q65bL3pNFvA1uzZyqv+EzfwF3n3RFXET9Jl&#10;smHzLC4ndRXv7J3SjfMNms1y3Wb9mej2x1o98cPPRfIqiYZNrDkAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJngHh7o3voWy8T7R&#10;req42m25j2YvV8VV/q0+NX0iVtfxNnD09K7VEMjgsuxeY1+rwlqa57o+c8I82Ct6emFhY/bsbX0m&#10;vNr8IzNQ5t2/nFuPan6zS1jE7Q0U9XD06987o93FKGW+jy/c0rzC70I7Kd8+/hHxYL3h1h3fvnt0&#10;aprV/wCy1f8ACYs+ps8e6aafxv2plq+IzHFYndcr3dkboSll2zeV5ZpNizE1fqq60/Hh5RCmREU9&#10;0RxHwYxsqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMRVHExEx7pFVy2h1g3fseaKdL1u/9mp/4&#10;TJn11nj3dmrnj9mYZLD5lisLut17uyd8NZzDZvK8z1m/ZiKv1R1Z98cfPVnXZnph4eR2LG6NJrwq&#10;57py9Pmblv5zbn2o+k1Npw20NFW7EU6d8b493FFuZejy/b1ry+7FcdlW6ffwn4M67X3toW9MT7To&#10;mqY2o2oj2os1+1R+tT40/WGz2cTZxFPStVRKL8bl2Ly6v1eLtTRPfHynhPk9yJiVyxyQAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMgoe&#10;/Otm0+nsV2tR1Km9n0x/5DD/AAt/6xHdT+1MMZisyw2E3XKt/ZG+WzZXs5mWbzE4e3pR+qd1Pv5+&#10;WrXTfXpX7l3BNzH0K1b29hz3Rcji7k1R+tMdmn6Rz8Wn4rPr93q2Y6Me+Uw5XsDgcLpXjavW1dnC&#10;n7z5z5MLZ+oZWq5lzLzcm9mZVyea7+Rcmuur5zPe1quuq5V0q51nvSXZsWsNbi1ZoimmOURpHwfB&#10;8PYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAOxgahlaVl0ZeFk3sPKtzzRfx7k0V0/KqO99&#10;0V1W6ulROk9zxvWLWJom1epiqmeUxrHxZp2L6V25dverx9ds0bhw47vW1TFrJpj9aI7NX1jn4tlw&#10;ufX7XVvR0o90/ujXNNgcDita8FV6qrs40+7jHlPk2L2F1s2p1Dii1p2o02M+qO/AzOLV/wCkTPFX&#10;7My2/C5lhsZut1b+yd0oezXZvMsomZxFvWj9Ub6ffy89F85ZRrCQAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARM8Ax51D667V6cxcs5eZ9u1Om&#10;O7T8Liu7E/pT4UftT9JYnF5nhsHurq1q7I4/s2vKNmcxziYqs0dGj9VW6PLnPk1j6gekruzevrcf&#10;Dvfe/plXMeowq59bXH6d3x+lPZhpWLzrE4nq0T0Ke7j7/smzKNisty7S5ej1tcc6uEeFP31YnmZq&#10;qmZnmZnmZnxmffLAcUgxERGkCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMxVExPE&#10;0zzEx4xPvVjdvJiJjSWWOn3pKbr2TNrHzL33waZTxHqM2ufW0R+hd75+lXMM/hM6xOG0pr69Pfx9&#10;/wB0f5vsVl2Za3LMeqr7aeE+NPD3aNm+nfXXavUX1djDzPsOqVR36fm8UXZn9GfCv9mefhDdcJme&#10;Gxm6idKuyeP7oTzfZjMcn1qvUdKj9VO+PPnHmyJEss1NIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAImQVDf8A1V2503xPW6xn00ZFUc2sKz7d+78q&#10;Pd8Z4j4rDFY6xg6dbtW/s5s9lWR47Oa+hhaNY51Tupjxn6cWrPUj0m9ybz9biaVNW3tKq5p7OPXz&#10;kXI/SueXyp4+ctGxud38RrTa6lPx9/2Tnk2xGBy7S7iv5tzv9mPCOfn7mHZmZmZmZmZnmZnxmfe1&#10;3ikeIiI0gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJmmYmJmJieYmPGJ95w3&#10;qTETGksw9OPSb3LsybWJqtVW4dKp4p7GRXxkW4/Ruefyq5+cNjwed38PpTd69Px9/wB0c5zsRgMx&#10;1u4X+Vc7vZnxjl4x7m0+wOqu3OpGJ6zR8+mvIpjm7hXvYv2vnR5x8Y5j4t4wuOsYynW1Vv7OaDM1&#10;yPH5PX0cXb0jlVG+mfCfpO9b4nlkGBSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAACAdDW9e0/bmm3tQ1PMs4GFZjmu/frimmP/AK/DxeVy7RZpmu5OkQuc&#10;Phr2LuxZsUTVVPCI3y1l6oellkZnrtP2ZbqxbHfTVquRR+Eq/wDh0T+L+tV3/CGl47Ppq1owm7vn&#10;6QmnI9gaaNL+azrP6Ind/wAp5+Ee9rvnZ2TqeZdy8zIu5WVeq7Vy9ermuuuffMz3y1Cuuq5VNVc6&#10;zKYbNm3h6ItWaYppjhEboh8Xw9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;H2wc7J0zLtZeHkXcXKs1dq3es1zRXRPviY74fdFdVuqKqJ0mHles28Rbm1epiqmeMTGsS2H6Yell&#10;k4U2dP3lanLsd1Marj0fhKfjcoj8b509/wAJbhgc+mnSjFb++PrH2Q9nmwNNet/Kp0n9E8P+M8vC&#10;fe2b0TXdP3Hp1nUNMzLOfhXY5ov2K4qpn/6/DxbnbuUXaYrtzrEoWxGGvYS7Nm/RNNUcYndL0Hqt&#10;gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETPAMT9WPSF&#10;0Lpx63BxuzrGvRHH2OzX7Fmf+rX+T+rHNXy8WCx+bWcH1I61fZ929ZDsljM5mLtX8u1+qef+2Ofj&#10;wai766ja91G1L7ZrebVfimZmzjW/Zs2Y91FHl855mfej/FY29jKuldny5Q6CyrJcFk1r1eFo0meM&#10;zvqnxn6cFaWLOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALJsbqLr3T&#10;rUvtmiZ1ViKpibuNX7Vm9Huro8J+ccTHlK+wuNvYOrpWp8uUsJmuS4LObXq8XRrPKY9qPCfpwbd9&#10;KPSG0LqNFrByZp0fXqo4+x3q/YvT/wBKv8r9WeKvn4pAwObWcZpRV1a+zt8HPmfbJY3Jpm7R/Mtf&#10;qjl/ujl48GWInlnWipAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAB0dZ1rB2/pt/P1LLtYWFYp7Vy/eqimmmPn/TzeVy5Rapmu5OkQuMPh72Ku02bFM1VTwiOLVL&#10;q76UWfuKb+l7Tqu6Zpk8016hMdnIvx+h/wAun/NPwaNmGeV3dbeG3U9vOfDs+adtn9hrWF6OJzOI&#10;rr5U/ljx/VPdw8WApmaqpqmZmZnmZnvmZ97U+PFLURERpAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAETNMxMTMTE8xMeMSrropMRMaSz50j9KLP256jS92Td1TTI4oo&#10;z49rIsR+l/zKf83zbXl+eV2tLeJ309vOPHt+aJtoNhrWK6WJyzSivnT+WfD9M/DwbXaNreDuDTbG&#10;oabl2s3Cv09q3fs1RVTVH/vy8m927lF2mK6J1iUE4jD3cLdqs36ZpqjjE8Xeei3AAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARyCk9TermhdLtNi9qV2b2ddpmcfT7M&#10;xN29Pv8A0affVPd857mNxuPs4GjpXJ38o5y2PJchxmeXehh40pjjVPCPvPdG9pf1J6ra71Q1P7Rq&#10;l71WHbqmcfT7MzFmz8ePyqv0p7/dxHcjjG4+9jqtbk6RyjlDpHJdn8Hkdro2I1rnjVPGftHdHxU5&#10;jWyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALh036ra90w1L7&#10;Rpd/1mJcqicjT70zNm98ePyav0o7/fzHcyWCx97A1a253c45S1vOtn8Hnlro4iNK44VRxj7x3T8G&#10;6PTLq3oXVHTfXadd9TnWqYnI0+9Mets/H9Kn3VR3fKe5I+Cx9nHUdK3O/nHOHN2dZDjMju9DERrT&#10;PCqOE/ae6d67eLJNcSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJ&#10;kGE+tXpF4WwvX6Poc2tR3Dx2a6pntWcSf0+Pxq/0P38eE65mWb0YTW1a31/CPH7JH2b2QvZtpicV&#10;rRZ+NXh2R3+5qBrOtZ+4tTv6jqeXdzc6/V2rl+9VzVV/aI8ojujyR5du13q5uXJ1mXQ+FwtjBWac&#10;Ph6IpojhEf58XTeS6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAdzRtaztu6nj6jpmXdws2xV2rd+zVxVTP9Ynzie6fN62rtdmuLludJhbYnC2MbZqsYiiKqJ4xP&#10;+e6W3/RX0jMHfnqNH1ybWm7gn2aKons2cuf0Ofxa/wBCfpz4RIWW5xRi9LV3dX8J8Ps542l2PvZT&#10;0sThda7Pxp8e2O/3s2RLZEbpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AABxrrpopmqqYppiOZmfCIUmdCImZ0hrB1y9JiqurI0DZuTxTHNvJ1e1Pj5TTZn+df8Ah97S80zr&#10;TWzhZ8avt9/cmvZfYrWKcbmlPfTRPzq/+Pv7GtEzNUzVVMzVM8zMzzMy0nXWU2xEUxpAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzTMTEzExPMTE8TEq66&#10;byYiY0lsv0O9Jibc4+gbxyeaZ4t42sXJ8PKKb0/+v/F7265ZnXCzip8Kvv8AdCW0+xWkVY3K6e+q&#10;iPnT/wDH3djZ+iuK6YqpmKqZjmJjviW6IVmJidJclVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAHwzM2xp+Leycm9Rj49mia7l27VFNNFMd8zMz4Q+aqopiaqp0iH3Rbru1RR&#10;RGszuiI5tP8Art6Q9/e9d/Q9u3bmLt+J7F7Ijmm5m/1pt/Dxq8+7uR9mmcTiNbNidKOc9v7fN0Hs&#10;tsfRl0U4zHxrd4xHGKfvV8uW/ewa1dKSQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAARIM49CvSHyNkV2ND3DdrytvzMUWsiearmF/Wq38PGny7u5tOV5xOG&#10;0s351o5T2ft8kXbU7H0ZjFWMwEaXeMxyq+1Xwnnv3twcLNsahi2snGvUZGPepiu3dtVRVTXTPfEx&#10;MeMJApqiqIqpnWHPdy3XaqmiuNJjdMS+76fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAADqapqmJoun5GdnZFvEw8eibl29dq7NNFMeMzL4rrpt0zXXOkQ9rNm5iLlNq1TNVU7oi&#10;OMtLeuPXfL6lZdemabVcxNtWq/Ztz7NeVMeFdyPKPOKfrPf4Rxmma1YyfV291Hz8fs6P2X2Vt5NR&#10;GJxMRVfn3U90d/bPlHfiRryRAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAZb6Hdd8vppmUabqVVzL21dr9q3HtV4szPfXbj3e+nz8Y7/HYcrzWrBz6u&#10;5von4eH2R5tRsrbzmicRhoim/Huq7p7+yfKe7dLS9UxNZ0/HzsHIt5eHkURctXrVXaprpnwmJSPR&#10;XTcpiuidYlzhes3MPcqtXaZpqp3TE8Yl2328QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAHU1TVMTRdPyM7OyLeLh49E3Lt67VxTRTHjMy+K66bdM11zpEPazZuYi5TZtU61VTpERz&#10;lpP1x645fU/UZwcGbmJtvHr5tWZ7qsiqPC5cj+VPl4z3+EbZpmlWNq6FG6iPj3y6U2X2Xt5Jb9ff&#10;0qv1Rvn9MdkfWfoxSwDf0igAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAADKvQ7rhl9L9RjBzpuZe28ivm7Yjvqx6p8bluP50+fj4+OfyvNKsFV0K99E/&#10;Dvj6tB2o2Xt53b9fY6t+mN0/q7p+k8vBuxpeqYmtafj52DkW8vDyKIuWr1qrmmumfCYlJNFdNymK&#10;6J1iXNd6zcw9yq1dpmmqmdJieMS7b7eIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AD4ZuZY0/EvZOTdosY9mibly7cq7NNFMRzMzPlEQ+aqopiaqp0iHpbt1Xa4oojWZ3RENKuvHXG/1&#10;L1GdN0yuuxtrGr5op/Fqyq48Llce782n6z3+Eb5rmk4yr1dv2I+Pf9nSOyuy9GTW4xOJjW/VH/WO&#10;yO/tnyjvxE15IiRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAABlvoP1wv9NNRjTdTrrv7aya+a6Y5qqxa5/3lEe786n6x3+Ow5Vmk4Or1dzfRPw7/&#10;ALo92r2Xozm3+Jw0aX6Y/wC0dk9/ZPlPdurhZtjUMSzlYt6jIx71EXLd23V2qa6ZjmJifOEkU1RV&#10;EVUzrEubLluu1XNuuNJjdMTydh9PgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxrr&#10;i3TNVUxTTEczMzxEQpKsRMzpDTr0h+u1W98u7t3Q7007fsV8X79E/wDna4n/APLifD86e/w4R7m+&#10;afiJmxZnqRxnt/b5uhdj9loy6iMfjKf5s8In8sf/ACn4cOOrBzV0pAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM4ejx11q2Pl29va5fmdv36+&#10;LN+uefsVcz/+XM+P5s9/hy2jKM0/DTFi9PUnhPZ+3yRdthstGY0Tj8HT/OjjH6o/+UfHhx0bjUV0&#10;3KYqpmKqZjmJieYmEhOeJiYnSXJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMg1f9&#10;JjrlNdWTs3QL/FMc29Ty7VXj77FMx/mn9n3tKzrM+OFsz/un6ff3Jr2K2X16OaY2nvopn/1T/wC3&#10;39jWdpKbUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAA2X9GfrlNqrG2br9/mieLemZdyrw91iqf+2f2fc3bJc04YW9P+2fp9kJ7a7L6dLNMF&#10;T310x/6o/wDd7+1tBHe3VCaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARIMJ+kZ1r+8L&#10;S/uHo9+PvhzbfNVyie/EtT3dv9ee+KfrPlHOt5vmX4Sj1VqevPwjt+yR9j9mv4te/FYmP5NE/wDa&#10;ezwjn7mmkzNUzNUzVMzzMzPMzPvRzx3y6QiIiNIFFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJmmYmJmJieYmJ4mJV4ExFUaS3L9HPrX9&#10;/mmRoesX4++HCt803K578u1Hd2/147u19J854kbJ8y/F0equz14+Mdvj2ub9sNmv4Te/FYaP5Nc/&#10;9Z7PCeXuZs8WyI3SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkdXOp2H0u2pd1K9FN/Nu&#10;82sLEmeJvXePP9GPGZ93xmGNx+NowNmblXHlHbLY8hyW7nmMjD0bqY31T2R954Q0K1rWc3cWrZep&#10;6jfqys7KuTdu3avGqqf5RHhEeUREIru3a71c3Lk6zLqvC4WzgrFGHsU6UUxpEf58XTeS6AAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdzR&#10;dZzdu6tianp1+rFzsW5F2zdp8aao/nE+Ex5xMw9bV2uzXFy3OkwtcVhbONsVYe/TrRVGkw306R9T&#10;sPqjtW1qVmKbOda4tZuLE8+pu8eX6M+MT7vjEpUwGNox1mLkcecdkuVM/wAlu5HjJw9e+md9M9sf&#10;eOErvE8sk1xIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjretYe3tJy9Sz79ONhYtubt27X&#10;PdTTEf8Avu83ncuU2qJrrnSIXGHw93FXqbFmNaqp0iO9oN1W6k5vVDdl/VMiKrOJRzaw8WZ7rNrn&#10;u5/Snxqn393hEIqx+Nqx16bk8I4R2Q6s2fyW1keDixTvrnfVPbP2jhH7qcxrZAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFx6VdSMzp&#10;fuyxqmPFV7Er4tZmLE9161z3xH6UeNM+/u8JlksBjasDei5HDnHbDW8/yW1nmDnD1bq430z2T9p4&#10;T+zfjRNZw9w6TialgX6cnCyrcXbV2jwqpn+vw8pSrbuU3aIuUTrEuU8Rh7uFvVWL1OlVM6THe770&#10;W4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJngGonpRdXZ3Fq1W09Lv8AOmYFznMuUT3X78fk&#10;fGmj+NX6sNBzzMPW1/hrc9WOPfPZ5fNP2w2z/wCFtfxPE09euOrHZT2+M8u7xYDakloAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAABHIPZ03aGq6pRFy3jTbtT4XL09iJ+XPfP7mxYPIMxxsRVRb0p7a&#10;t37o6zj0gbPZLXNq/iOnXHGmiOlMeOm6Pe793p1q1FEzTVjXZ/NpuTE/xhlbmyGYU060zTPdr94a&#10;pY9L+z1250LlNyiO2aYmPhMyr+bg5GnX5s5Vmuxdj8muOPrHvalicLfwdz1V+iaZ70uZbmmCzixG&#10;JwF2LlE84n4THGJ7pfBasoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiRVn30Xurs7&#10;c1anaeqXuNMz7nOHcrnusX5/I+FNf8KvnLbcjzD1Vf4a5PVnh3T2efzRJtzs9+KtfxPDR16I60dt&#10;Pb40/LwbdxPLfkApAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABib0hurH+rjak42DdinXtSiq1&#10;jcT32aPCu7Py54j4zHulgs2x/wCDs6Ue3Vw7u9vWyWQ/xnGdK7H8q3vq7+ynz59zSCZmqZmZmZme&#10;ZmZ5mUZcXT0RERpAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJooquV00U0zVVVPEUxHMzPufV&#10;NM11RTTGsy+LlyizRVcuTEUxGszPCIjjMskbV2Va0yijKzaKb2ZPfFE99Nr+8/FMeR7OW8HTF/FR&#10;0rnZyp+89/ucbbc+kjE5zcrwGVVzRho3TMbqrn1insjnz7Fr4+LeUFnAOjrGj42t4k4+TRzH5Fcf&#10;jUT74ljMwy6xmVmbN+PCecT3Nm2e2ix+zWMjF4GrT9VM+zVHZMfKeMcmKNa0XI0HNnHvxzE99FyI&#10;9mun3x/byQVmWW3ssvzZux4TymP849ju/ZraTBbUYGMZhJ0nhVTPGmeyfpPOHQYltYAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzTMTEzEx3xMTxMEbiYiY0lu/6PPViOo21Ps2ddirXt&#10;Nim3k8z33qPCi79eOJ+MT74SdlOP/GWdK/bp49/e5h2tyGcmxnStR/Kub6e7tp8uXcyyzrRQAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAHn69reHtzR8zU8+9FjCxLVV67cnypiP4z5RHveV25TZom5X&#10;OkQucNh7uLvUYezGtVU6RHfL8/Oo2+szqNu7N1vM5oi7PYsWJnmLNmPxKI+nfPvmZRPjcVVjL03a&#10;vLuh1nkuVWsmwVGEt75jfM9tU8Z+3crSxZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfdg7a9&#10;VRTqmTR7dUfgKZj8WPz/AK+SVdlsm6FMY+/G+fZjsjt+zlP0q7Z+vrnIMBX1af8AVmOc/o8I/N37&#10;uS7xHCSXNaQAJgHR1fSMbWsOrHyaOafGmuPxqJ98Mbj8vsZlZmzfjwnnE9sNkyDaDHbN42nG4GrS&#10;ecT7NUdkx/kxxhivXtvZWgZHYvU9uzVP4O/THs1f2n4IPzTKMRlVzo3Y1pnhVyn7T3O5Nltr8v2q&#10;w3rMNPRuR7VE+1T96eyY89HlsG3hIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALJ053&#10;1m9Ot3YWt4fNcWp7F+xE8Resz+PRP07490xEr7BYqrB3ou0+ffDCZ1lVrOcFXhbnGd8T2VRwn79z&#10;9BNB1vD3Ho+Hqmn3ov4WXapvWrkedMx/CfKY9/KWLdym9RFyidYlyXicPdwl6vD3o0qpnSY74eg9&#10;VsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAie4Gq3pZdUPtubb2Zp938BjzTe1Gqie6q540Wvp3VT&#10;8Zp9zR8/x3Sn8LRPDfP0hOWwOR9Cmc1vxvnWKPDnV58I82uLTEzAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAPf2ftudczvWXqZ+xWZibk/nz5Ux/X4fNtmz+Tzmd/p3I/l08e+ez79yJvSFtjTszgf&#10;UYar/wAm7GlP9sc65/8Ab2z4MqUxFMcRHERHERHknGIimNIcNVVVV1TVVOszxclXyAAATHIPjlYt&#10;rMsV2b9um9arjiqiuOYl4XrFrE25tXqYqpnlK9wWNxOXYinFYO5NFynhMTpP+d3CVB1/p9expqva&#10;bzkWvGbFU+3T8vzv5/NFea7KXbOt3A9an9POPDt+bqvZP0sYbGRThM90t3OEVx7E/wC6Pyz38PBT&#10;6qardVVNdM01RPE0zHExKPqqZomaao0mHQtu5Reoi5bqiaZ4TG+J8Jhx5fL7SAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAADY70TuqE4Wbc2ZqF38BkTVf06qufxbnjXa/aj2o+MVe9uWQY7o&#10;z+FrndO+PrH1Qzt9kfTpjNbEb40ivw5VeXCfJtTE8t5QakAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AFP6q7/sdN9l52s3ezXkUx6rFs1f729V+JHy85+ESsMdiqcHYquzx5d8s9keVXM4x1GFo4Tvqnsp&#10;jjP0jvfn7nZ2RqebkZmXdqv5WRcqu3btc99ddU8zM/OZRNXXVcqmuqdZl1rZs0Ye3TZtRpTTEREd&#10;0Pi+HqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Tb23r+4Mv1dvm3Yonm7e47qY90e+fgz2UZT&#10;ezW90KN1EcZ7P3aJtdtdg9lMH6271rtXsUc5ntnspjnPlG9ljT8CxpuJbxsejsWrccRHnPxn3zKd&#10;cLhbWCs02LMaUx/ms97g/Nc0xec4y5jsbX0rlc7/AKRHZEcIh2V2xQAAAAACJgHmaxtzA1umftNm&#10;PW8cReo9muPr5/VhcwyfB5lH8+jrdsbp9/3bps/thnGzVX/g3epzoq30T5cvGNFI1Xp5nYfarw64&#10;zbf5v4tyPp4T9EbY/ZLF4fWrDT6yns4Ve7hLpXIfS3lOP0tZnTOHr7fao9/GPOPNWL9i7jXJt3rd&#10;dq5HjRXTNM/ulpN21cs1dC7TNM9kxom3DYvD423F7C3IrpnnTMTHvhweS6AAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAfbBzcjTM3HzMS9VYyse5TdtXaJ4miumeYmPlMPuiuq3VFdM6TDyvWr&#10;eItVWbsa01RMTHbEv0C6Vb/x+pGysHWbXZoyKo9VlWaf91ep/Hj5T4x8JhLOBxVOMsU3Y48/FyVn&#10;mVV5Njq8JXwjfTPbTPCfpPeuC/YEAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzwDSr0m+pH3573nSs&#10;O729K0aarNM0z7Ny/wD7yv48cdmPlPvRvneM/EX/AFVM9Wj58/s6R2Iyb+HYH8Vdj+Zd3+FPKPPj&#10;7mHWuJHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCwbb2hk67VTdudrHwue+5Md9fwp/v4NsyfZ&#10;+/mcxcudW32858PvwRNtl6QcDszTOGsaXcTP5dd1PfXP/t4z3Mm4GBY07Fox8a3Fq1RHdTH8598/&#10;FNGGwtnB2os2KdKY/wA97izM80xmc4qvG465NdyrnPyiOURyiHZXTFgAAAAAAAAI4B8MzAx9Qter&#10;ybFvIo91ynn/AP4tcRhbGLp6F+iKo74ZTL80x2U3PXYC9Vbq/tmY98cJ81az+nOn5HNWLdu4dXu5&#10;7dP7p7/4tOxeyGDvb8PVNE++Pjv+KZMp9L+c4PSjH26b9Pb7NXvjdPuVzO6farizM2YtZdP/AE6u&#10;zV+6WoYnZPMLO+1pXHdOk+6Uv5Z6WtnsbpTipqsVf3RrH/anX4xDwcvT8rAqmMnGu2J/6lExH72r&#10;38HicLOl+3NPjEpRwGc5bmlPSwWIouf7aomfdxdeJ5j3rNmZSKI5BIAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAMw+jJ1I+8ve8aVl3expWszTYqmqfZt3/C3X8OeezPzj3NjyTGfh7/qqp6tfz5fZ&#10;HG2+TfxHA/irUfzLW/xp5x5cfe3WpSQ5uSAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHfXTqHHTnYOZ&#10;mWbkU6nlf+Fwo574uVR31/sxzV9I97E5ni/weGqrj2p3R4/s2vZnKJzjMaLNUdSnrVeEcvOdzQuZ&#10;mZmZmapnvmZ75n4ordWxERGkCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+2HhZGo36bONZqvXZ8&#10;KaI5+s+5dYfDXsXci1YpmqruY3MczwWUYecVjrsW6I5zPwjnM90L5t/p9axZpv6lNN+7HfFin8Sn&#10;5z+V/L5pRynZS3Y0vY7rVfp5R49vycs7WeljEY6KsJkcTbt8Jrn25/2x+WO/j4LjTTFMRERxEd0R&#10;HkkKIiI0hzzVVVXVNVU6zPNy44VfIAAAAAAAAAAACOAOIBFURMcTHNM+U98KTEVRpO99U1VW6ulR&#10;Ok9sbnmZm2dKzuZvYFmap/Kop7E/vjhhsRk2X4n/AFLMa926fho3LL9tNocs0jDYyvTsmelHuq1e&#10;PldONOvczZvZGPPu7UVx/Fr1/Y/A3N9qqqn4/NIeB9MWeWNIxVq3djwmmfhOnweRldM8qjn7Pm2b&#10;vwuUzRP9WBvbGYin/RuxPjEx92/YL00Zfc0jG4SujvpmKo906S8rJ2TrOL/wc3ojzs1xV/DxYG9s&#10;3mln+l0vCYlvuC9JWy+N0j8V0J7K6Zp+Okx8Xk5GFk4c8X8e7Zn/AKlE0sFdwuIsTpdtzT4xLe8J&#10;muAx8a4S/RX/ALaon6vhExPhMT8lqyiRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiZiYmJmmY74&#10;mJ4mFeHAmImNJb6dCuokdRtg4eXfuRVqmJ/4XNjnvm5TEcV/tRxV9Z9yVMsxf4zDxXPtRunx/dyl&#10;tPlE5PmNdmmOpV1qfCeXlO5kRlmqAAAAAAAAAAAAAAAAAAAAAAAAAAAAImQaQekr1A+/XqFew8e7&#10;29M0fnEs9mfZruc/ha/8URT8qUaZ1i/xOJmimerRu8+bpfYnKf4dlsXrkaV3etPdH5Y+vmxO19II&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaKKrtdNFFNVddU8RTTHMzPyfdFFVyqKaI1meUPK7et4e3&#10;N27VFNMcZmdIjxmVu0Tp5kZXZu6jVOLa8fVU99yfn5U/zb9lmyV6/pcxs9Cns/N+3zQDtN6W8Fge&#10;lh8lp9dc/XPsR4c6vhHevenaXi6Vj+pxLNNmjz48avjM+MpPwmCw+Bt+rw9EUx8/Gebl7N87zHPb&#10;84nMb011cteEd0RwiPB24hfMGAAAAAAAAAAAAAAAAAAAAjgCY7UcT3x7pUmImNJVpmaJ6VM6T3bn&#10;Qytv6dm8+uwce5M+fYiJ/fDF38qwOI/1bNM+WnybRgtqs9y7/wDFxlymOzpTMe6dYeRldPNJv8zb&#10;pvY1X/Tucx+6eWBv7J5dd9iJo8J++rfsD6Wto8LpF+aLsf3U6T76dHjZfTK7TEzi51Ff6N6iaf4x&#10;y16/sXcjfh70T4xp8YSJgPTTh6tIzDBzT30VRPwnSfi8TN2brGDzNWHVepj8qxMV/wAPH+DWsRs7&#10;meG3za6UdtO/90mZb6Rtmsy0poxUUVTyriafjO74vGrors1zRcpqt1x401RxP7pa7XRVbno1xMT3&#10;7kiWb9rE0ess1xVTPOJiY98OL4eqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAZY9GvqB95PUKziZF3sa&#10;ZrHZxL3M+zRc5/BV/wCKZp+VTYMlxf4bExRVPVq3efJH22uU/wARy2b1uOva60d8fmj6+Td+PBJb&#10;mhIAAAAAAAAAAAAAAAAAAAAAAAAAAAKF1s37/q96e6lqNquKc+7T9lw48/XV8xE/sxzV+yxmZYr8&#10;JhqrkceEeMtm2cyuc3zK3h5jqxvq/wBscffw82gkzMzMzM1TPfMz4zPvRRrrvdZRERGkCgAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAjkVWHQdl5us9m7cj7Jiz3+srj2qo/Rjz+c9zbcr2cxWY6XK+pb7Z4&#10;z4R9eCJNqfSRlWz3Sw9mfXX4/LTO6J/uq4R4RrPgyDo+3cHQ6OMa1+EmPavV99dX18vlCWMuyjCZ&#10;ZT/Ip63bO+f88HJm0O1+b7TXNcdd6nKindTHlznvnWXpxDMtMSAAAAAAAAAAAAAAAAAAAAAAAAAC&#10;OIA4B8MvBx86jsZNi3fp91ymKltfwtjE09G/RFUd8asngczx2WV+swV6q3P9szH7K7qHTzTMrmce&#10;buHXP5k9qn90/wB2pYvZLAX9Zs6257t8e6fulvKvS3n2B0oxkU36e+OjV/2p+sK1qHT3U8XmqxNv&#10;Mo/Qns1fun+7TcXslj7G+zpcju3T7p+6Zcp9LeQ47SnGRVYq/ujpU/8Aan6xCu5OLfwrnq8izXYr&#10;/NuUzTLUb2HvYaroXqJpnvjRL2CzDCZjbi7g7tNyntpmJ+T5LdfpAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAiZiYmJmmY74mPGPkcOBMRMaS376Jb8/wBYXT3TdRu1xVn2qfsuZHn66jiJn9qOKv2ksZbivxeG&#10;puTx4T4w5N2kyv8AhGZXMPEdSd9P+2eHu4eS+sm1kAAAAAAAAAAAAAAAAAAAAAAAAABEzxANN/Sv&#10;31O4N8WtBx7naw9Go4riJ7qsiuImr/DT2afnNSPM+xXrb8WaeFPzl0PsDlf4XA1Y2uOtd4f7Y+86&#10;z7mEGrpRAAAAAAAAAAAAAAAAAAAAAAAAAAAARyDt6bpeVq+TFjEszdr85juimPfM+S/weBxGYXPV&#10;YenWfhHjPJgc5z3Ltn8NOKzG7FFPKOcz2Uxxmf8AJZD2/sbE0rs3srs5mV4xMx7FE/CPP5ylvKtm&#10;MPgdLuI69z4R4Rz8ZcjbV+k7Mc86WGwGtixPZPXqjvmOEd0ecys/DdELJAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAABHAPnkY1rKtzbvW6L1ufyblMVR/F43bNu/T0LtMVR3xqu8LjMTgbkXsLcmiqOdMz&#10;E/BW9R6faZmc1Y/bwrn/AE57VP8Ahn+jUcZspgMRvs6257t8e6fol/J/Sxn2X6UYzTEUf3bqv+0f&#10;WJVbUtg6pg81Waac23HnZnir/DP9OWjYzZXH4bWq3EXI7uPulOeTelXIMz0oxNU2K5/X7P8A2jd7&#10;9Feu2q7FyaLlFVuuPGmuOJj6S1K5brtVdC5ExPZO5LljEWcVbi7h64rpnnExMe+HB5vdIAAAAAAA&#10;AAAAAAAAAAAAAAAIBnD0UN8/e/vi9oWRc7OHrNHFETPdTkURM0/4qe1H0pbRkOK9VfmxVO6r5wi/&#10;b7K/xWBpxtEda1O//bPH3TpPvbkRPKQ3O6QAAAAAAAAAAAAAAAAAAAAAAAAAeFvfdFjZe1NV1vJ4&#10;m3hWKrsUz+XV4U0/WqYj6rbE36cPZqu1coZHLsFXmOLtYS3xrmI+8+Ub3516hn5Gq5+Tm5dybuVk&#10;3ar12ufyq6pmap/fKIa66rlU11cZ3uwbFmjDWqbNqNKaYiI8IfB5vYAAAAAAAAAAAAAAAAAAAAAA&#10;AAAABHILRtzY+Rq3ZyMvtYuJPfEce3cj4R5R8Zbtk+zN7HaXsT1Lfxnw7I70JbYek3BZF0sHlul7&#10;ERun9FE98xxnujzlkTA07H0zHpsYtmmzbjyp8598z5yl3C4SxgrcWsPTFNP+ce1yHmub47OsTOLx&#10;92a657eXdEcIjuh2YhdsQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgEcQDrZ2mYup2+xlY9v&#10;Ip8u3HMx8p8YWeJweHxlPRxFEVR3/fizOWZzmOTXPW5ffqtz3TunxjhPnCqan03x7vaqwciqxV/y&#10;73tU/v8AGP4tGxux1m5rVg6+jPZO+Pfx+ac8l9MeMsaW83sRcj9VHVq849mfgqOqbb1HR+ZyMar1&#10;Uf7237VH748Pq0HG5Njsv33rc6dsb49/3T9km2eR7QRFODxEdP8ARV1avdPHymXmcsI3ZIAAAAAA&#10;AAAAAAAAAAAAAAAPvgZ+RpWfjZuJcm1lY12m9arj8mumYmJ/fD7orqt1RXTxje8b9mjE2qrN2Naa&#10;omJ8J3P0U2RuixvTaela3j8RbzbFN2aY/Jq44qp+lUTH0S/hr0YizTdp5w4+zHBV5di7uEucaJmP&#10;tPnG97q5Y4AAAAAAAAAAAAAAAAAAAAAAABANbvTD3p9m0zSdr2K+LmVV9tyYj/l0zxbifnVzP7DT&#10;9ocT0aKcPHPfPhHD4/JMPo8y31l+7mFcbqI6NPjPH3R82rLRE7gAAAAAAAAAAAAAAAAAAAAAAAAA&#10;APri4t7OyKLGPaqvXa54iimOZlcWLF3E3ItWaZqqnlCwx2PwuWYerF4y5FFunjM/5vnsiN7Ie29i&#10;2dN7ORndnIyo74o8aLf95+KXMm2ZtYPS9i9KrnZyj7y5F2y9J+KzjpYLKZm1Y4TVwrr/APjT3Rvn&#10;nPJbOOe/xb0ghIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHiCOPH4qcSJmJ1h4WqbM0zV&#10;O1VNn7Pen/e2PZ/fHhLWsds7gMbrVNHQq7ad3w4JNyP0i5/keluL3rbcflr63un2o96natsDUcDt&#10;V43ZzrUf8vurj9nz+iPMfspjcLrVY/mU93H3fZ0RkPpXyXNNLWO1w9yf1b6PKqOHnEeKs1U1W65o&#10;rpmmuO6aao4mPo0yqmqiZpqjSYTPbu271EXLVUVUzwmJ1ifCYHy9AAAAAAAAAAAAAAAAAAAAG03o&#10;eb0+0abq2179fNeLV9txYmfyKp4uRHyq4n9tvez2J6VFWHnlvjwnj8UEekPLfV37WYURur6tXjHD&#10;3x8myLcEPJAAAAAAAAAAAAAAAAAAAAAAABxq7o9wPz76w7w+/nqPrWqUV9vF9d6jG93qbfs0zHz4&#10;mr9pE+ZYj8Viq7kcOEeEOstm8u/heV2bEx1pjpT41b5926PJTWMbMAAAAAAAAAAAAAAAAAAAAAAA&#10;AAA9PQtvZev3+zYp7FqmfbvVx7NP95+DN5ZlGJzW50bUaUxxqnhH3nuaTtPtfluyuH9Zi6ulcn2a&#10;I9qr7R3z5asnaHt/E0HH9Xj0c3Ko9u9X+NX/AGj4Jqy3KsNldvoWY3zxmeM/t3OJ9pdrMy2pxHrs&#10;ZVpRHs0R7NP3ntmd71OIZlpoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOIAmPcKPO&#10;1fb+DrVvjKsRVXHhdp7q4+v92Ix+VYTMqdMRRv7Y3THn9235DtXm+zdfSwF6Yp50zvony5eMaSoW&#10;ubDzNN7V3F5zceO/2Y/CU/OPP6IuzPZbFYPW5h/5lHxjy5+TqbZj0pZXnPRw+Yf+PentnqTPdVy8&#10;KverPh82lcN0priYqjWOAoqAAAAAAAAAAAAAAAAAAuPR/eP3i9RtF1SuvsYvrox8n3epuezVP05i&#10;r9lk8txH4XFUXJ4cJ8Ja1tJl38Uyu9YiOtEdKnxp3/Hh5v0FpnmPelhyY5AAAAAAAAAAAAAAAAAA&#10;AAAAAAoXXHd33l9MdbzrdfYyrlr7Lj+/1lz2YmPlEzV9GMzLEfhsLXXHHhHjLZ9msv8A4lmtmxMd&#10;XXWfCnfPv4ebQOIiIiI8IhE7rFIAAAAAAAAAAAAAAAAAAAAAAAAI5FVo2xsm9q3YycztWMOe+I8K&#10;7ny90fH9zeMl2buY7S/ierb+NX2jv9yDttvSVhsi6WByyYuYnhM8aaPHtq7uXPsZIxcW1h49Fmxb&#10;ptWqI4popjiIS/ZsW8Nbi1Zp6NMcIhx5jcdicyxFeKxdya7lW+Znj/ndwh9oe6yAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARwDxNc2jga32q66PUZP/PtRxM/OPNreZ5Bg8y1qqjo&#10;1/qj6xzSTszt9nGzUxaor9ZZ/RVvj/jPGny3dzHuubVz9Cma7lHrsfnuv2++n6+76onzLIsZlk9K&#10;unpUfqjh59jrPZrbvJ9poi3Zr6F7nRVun/jPCry39zx2upFSKAAAAAAAAAAAAAAAAImImJifCe4V&#10;b99Dt3/fp0y0TPuV9vKt2vsuT7/WW/ZmZ+cRE/VK+W4j8ThaK548J8Ycm7S5f/DM1vWIjq66x4Vb&#10;493DyX5lGsAAAAAAAAAAAAAAAAAAAAAAIkGrfpkbq9ZmaDty1X7NumrPv0xPnPNFvn6RXP1aRtFf&#10;30WI8Z+UJu9HOA3X8fVHZRHzn6NbGlpqAAAAAAAAAAAAAAAAAAAAAAAAKKarlcUUUzVXM8RTTHMz&#10;PufVNNVdUU0xrMvi5cos0TcuVRTTG+ZndER2yv8AtfYlOP2MrU6Iru+NGNPfFPxq98/BKuSbMRa0&#10;xGOjWrlTyjx7Z7nKW3HpQrxfTy7Iqujb4VXOE1d1HZH93GeWi68JHc3zMzvlPHAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOM0xMTHHMT3TEqTETGkq01TRMVUzpMKtrmwMPUJ&#10;qu4kxhX57+Ijm3VPy8vp+5pGZbK4XF63MN/Lq/8A5ny5eXuThs16VczymKcPmUfiLUc5nrxHdP5v&#10;Cfeomq6BnaJXxlWJpo54i7T30T9f7owx2VYvLqtMRRpHbG+Pe6iyLavKNo6OlgL0TVzpndXH/Gfn&#10;GsPPYhtqQAAAAAAAAAAAAAAAbJ+hvur1WZr23Ltfdcppz7FMz5xxRciPp2J+jdNnb++uxPjHyn6I&#10;V9IuA1ixj6Y7aZ+cfVtJ4t3QikAAAAAAAAAAAAAAAAAAAAAEVeAPz86zbo++/qduDUKa+3YjInHs&#10;THh6u37FPHz4mfqifM7/AOIxddfLXSPLc6x2ZwP8PymxZmN8x0p8at/7KWxjZwAAAAAAAAAAAAAA&#10;AAAAAAAAH2wsK/qOTRj41uq7ernupp/nPuj4rrDYa9jLsWbFPSqljMyzPB5PhasZjrkUW6eMz8oj&#10;nM8ohk3bG0bGg0U3rnZv50x33PKj4U/3TRkuQWsrpi5c613t5R3R93Fe2u3+M2nrnDWNbeGid1PO&#10;rvr+lPCO+ViiOG2ImAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ7wca7&#10;cXKZpqiKqZ7ppqjmJfNVNNcTTVGsS9Ldy5Zri5bqmmqOExOkx4TCtarsDTc+aq7EVYN2f+V30T+z&#10;P9OGn47ZXA4rWq1/Lq7uHu+yYsj9Kme5VEW8XMYi3H6t1X/aPrEqtn9PtUxJmbMW8yj326uzV+6W&#10;j4rZPMLGs2tK47t0+6U5ZX6Wdn8dEU4qarFX90a0/wDanX4xDw8nS83DmYv4l+1+tblrV7AYuxOl&#10;21VHlKS8Jn2U4+OlhcVbr8Ko+WurqzPE9/d81jMTHFnIqirhOp2o98KKuduxduzxRauV/qUTP8nt&#10;RZu3PYpmfCJWl7G4XD/612mnxqiPnL7zpebTT2pw8iI9/qqv7LicDiojWbVX/Wfsx8Z7lVVXRpxd&#10;vX/fT93WmJpmYmJiY8YmO+FlMTTOkxpLM0V03KYqonWJ5xvgUfQAAAAAAAC59Gtz/eh1O2/qFVfY&#10;sTkRj35nw9Xc9irn5dqJ+jJ5bf8Aw+Lt18tdJ89zWNpsD/EMov2YjWYjpR407/2foJT4JYcnJAAA&#10;AAAAAAAAAAAAAAAAAABWOpW5fvP2Hrusdrs14uJXVb/+JMdmj/NMLPGXvw+Hru9kf/TL5Pg5zDML&#10;OF/VVET4cZ+D87u/8qe1V5z75RBx4uwdIjdAAAAAAAAAAAAAAAAAAAAAAADvaPouVrmXFjGoieO+&#10;u5V+LRHvn+zKZdl2IzO96qxHjPKI72r7RbSYDZnBzi8dVx9mmPaqnsiPnPCGUtC2/jaBi+rsU9u5&#10;V/tL1Ue1XP8ASPgnDK8pw+VWuhajWqeM85/bucN7UbWZhtVivXYqdKI9miPZpj6z2zPwh6kQzTS0&#10;gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAccgjgE/WRTTTe+ddm3X+&#10;Pboq+dMS8qrVur2qYnyhd0YvEWvYuVR4VTH1cYxrFPhZtx8qIfMYezHCiPdD0qx+Lr9q9XP/ACq+&#10;76xHEd3dHuh7RERwWVVU176p1TPPvn9761l86R2PN1jQcPW7E0ZNqO3x7N2mOK6flP8ARiMwyvC5&#10;lbmi/Tv5Tzjzbds/tTmmzd+LuCuz0edEzrTVHZMcvGN8MR6jhV6XqWThXZibtiriePOJjmmr5TCB&#10;8fgrmX4irD3eMfGOUu88hzvD7Q5dazHDcK43xziecT4S+DHtgAAAAAAAR3/kz2avKfdITETGkv0T&#10;6abk++/YWg6vNXauZWJRVcn/AKkR2a/80Sl/B3vxGHou9sQ4+zfB/wAPzC9hf01TEeHL4LMvGIAA&#10;AAAAAAAAAAAAAAAAAAAYG9L7cX3O2DgaTRVMXNSzImqInxt247U/5poavtBe6GGi3H5p+Eb/ALJQ&#10;9H2D9dmdeInhbpn31bo+GrUBHjogAAAAAAAAAAAAAAAAAAAAAB623tt5G4Mmabf4PHon8JemO6Ph&#10;Hvn4M/lGT382uaUbqI41fSO2WgbXbY4HZPDdK7171XsURO+e+eymO3nwhlPS9LxtIxKcfFt9i3Hf&#10;M+dU++Z85ThgsDYy+zFmxTpHxme2XDmdZ5jtoMZVjcfX0qp4RypjspjlH+S7i/YEAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABExyDDXW2urStx6VnWJ4uXcaq&#10;i5HlXFNfdz/iRdtdZpm/br5zE/CXUnohxlynA4mzrupriY/5Rv8Ak8XTtRtajjxdtT8KqZ8aZ90o&#10;1qpmidJdL2rtN2npUu2+HqAAAAAAgG3/AKIO4p1HYWfpNdU1XNNzJmmJ8rdyO1H+aK0h7P3unhpt&#10;z+Wfm539IOD9RmVGIjhcpj307p+GjPMNoRekAAAAAAAAAAAAAAAAAAAETPANOvS8177o9Q8HTKKp&#10;mjTsGntU8+Fdyqap/wAsUI92hu9PE02/0x83Qvo9wnqsuuYieNdXwpjT5zLBrVkpgAAAAAAAAAAA&#10;AAAAAAAAIFXu7X2re3Be7dfNrConiu7x31T+bT8fj5NoyTI7ua19Orq244z290f5uRbttt1htlbH&#10;qreleJqjq08o/uq7uyOM+DKWHhWcDGox8e3FqzRHFNNKbsPh7WFtRZs06UxycQ5hmOKzXFV4zG1z&#10;XcqnWZn/ADdEco4Q+/C4Y4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAABEyDA/XHVKczdVjEonmMPHimr4VVT2pj93ZRRtTfi7jKbUfkj4zvdYei3AVYbJ68TX&#10;H+rXrHhTGnz1ULBz7unZEXbU9/hNM+FUe6Wl1UxVGkpqtXarVXSpXbTtRtalYi5bn4VUz40z7pY+&#10;qmaJ0lsNq7Tdp6VLtvh6gAAAAAM5+iHr/wBzuoedplVXFGpYVXZp58blue1H+Wa207PXehiarf6o&#10;+SLPSFhPW5dbxMcaKvhVGnziG4kJCc9JAAAAAAAAAAAAAAAAAAABxq8Afnt1c1z74+pu5c+Kprt1&#10;5ty3bn9CiexT/ClEuY3fXYu5X3/Lc622dwv4PKMNa00noxM+NW+fmqTHNiAAAAAAAAAAAAAAAAAA&#10;AQCw7U2nc1676692rWDRPtVR3Tcn82n+stuyLIq8zr9bd3Wo59vdH1lEe3e3ljZizOFwuleKqjdH&#10;KiP1VfSnnz3MoY+NbxbNFqzRTatURxTRTHERCa7Vq3Yoi1ajSmOEOJcXi7+Ov14nFVzXXXOszPGZ&#10;fV6rUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB52v63&#10;j7e0fK1HJn8FYomrs+dc+VMfGZ4haYvE0YOxVfucKY/+o82XyjLL2c461gcPHWrnTwjnPlG9q3qW&#10;oX9W1DJzcmrtX8i5Vcrn4zP/ALhBF+9XiLtV2vjVOrvDA4O1l+Gt4SxGlFEREeX34us8F87GDnXd&#10;OyIu2p4nwmmfCqPdL5qpiuNJetq7Vaq6VK7afqNrUceLtufhVTPjTPulj6qZonSWw2rtN2npUu2+&#10;HqAAAAAt3SLXfvb6nbaz5r7FujNot3J/Qr/B1fwqZHLrvqcXbr7/AJ7mubR4X8ZlOItRG/ozMeNO&#10;/wCj9CY8EtOSkgAAAAAAAAAAAAAAAAAAA8zc2q06Ft3VNSqmIpw8W7kTz+jRM/0eN6v1VuqvsiZX&#10;WEsTicRbsR+aYj3zo/Nqq5Veqm5XPNyue1VPvme+f4obmZmdZdm00xRTFFPCNwoqAAAAAAAAAAAA&#10;AAAAAAjkVWLae1K9dvevvxNvAonvqjum5P5sf1lt+Q5FXmdfrbu61Hx7o+sog2828tbMWfwmEmKs&#10;VVG6OMUR+qrv/THPjO5lCzYt49qi1aopt26IimmimOIiE127dFmiLduNIjhDiXE4m9jL1WIxFc1V&#10;1TrMzvmZl9HotwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAESDBXWbeP3X1WNHxq+cPCq/CzTPdcvef0p8PnyiraXMvxF78Lbnq0ce+f2dV+jXZv+HYP+K4i&#10;n+Zejq91H3q4+GjHDS01CohQdjBzrunZEXbU9/hNM+FUe6XzVTFUaS9bV2q1V0qV207UbWpWIuW5&#10;+FVM+NM+6WPqpmidJbDau03aelS7b4eoAAABFyqzVFyieK6JiqmfjHfCsTpOsKVUxXE0zwnd736S&#10;ba1anXdvaZqVMxNOZi2siJj9KiJ/qmSzX6y3TX2xEuMsXYnDYi5Yn8tUx7p0eo9lqAAAAAAAAAAA&#10;AAAAAAAAxn6RusRpHR7cFUVdm5k26MSjjz9ZXTTP8OWHze56vBXJ7d3vbjsjh/xGd4eOUTNXuiZ+&#10;bRPzRY6nAAAAAAAAAAAAAAAAAAAe5tTbNe4MvtV9qjCtz+Erjxq/Rj4/ybRkWS15re6Ve63Txnt7&#10;o/zci7brbS1srhOhZ0qxNyOrT2R+qrujlHOe7VlWxj28ezRatURbtUR2aaKY4iITjatUWKIt240p&#10;jdEOGcVib2Nv14nE1zVXVOszPGZl9HqtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAACZ4BWt/wC6I2ntnJzKJj7XX+Bx4nzuT4T9I5n6MLm+O/h+Equx7U7o&#10;8Z+3FumyGRTtBm1vDVR/Lp61f+2OXnO5rPVVNdU1VVTVVM8zVPjM++UIzMzOs8Xb9NNNFMU0xpEA&#10;+gAEKDsYOdd07Ii7anifCaZ8Ko90vmqmK40l62rtVqrpUrtp+o2tRx4u25+FVM+NM+6WPqpmidJb&#10;Dau03aelS7b4eoAAADez0ctX+6/R3b1U1dqvGt14tXw9XXVTH8OEp5Rc9Zgrc9m73OWNr8P+HzvE&#10;RHCZir3xE/NkxmGnAAAAAAAAAAAAAAAAAAAMA+mJqv2bYukafE8VZeoRXMe+m3RVP86qWq7Q19HD&#10;U0ds/JKno8sdPMrl79NE/GYhqKj50IAAAAAAAAAAAAAAAAAA9DQtFva9qFGPa9mmPauXOO6in3/2&#10;ZfK8tu5piIs290c57I/zg1HajaTC7L5dVjcRvq4UU86quUeHOZ5Qy5gYNnTcW3jY9HYtW44iPP5z&#10;8ZT7hcLawdmmxZjSmP8ANfGXAWaZnis5xlzHYyvpXK51n6RHZEcIh2V0xQAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOQSACJBgHrNuSdX3P9gtV9rG06Jt8R&#10;PdN2e+ufp3R9JRLtLjfxGL9TTPVo3efP7OuPRrkv8Oyn8Zcjr39//GPZjz3z5qC1FLoAAACFB2MH&#10;Ou6dkRdtT3+E0z4VR7pfNVMVRpL1tXarVXSpXbTtRtalYi5bn4VUz40z7pY+qmaJ0lsNq7Tdp6VL&#10;tvh6gAANufQ61b7RsXV8CZ5nE1Ca4j3U3KKZ/nTUkHZ650sNVR2T83PfpDsdDMrd6PzUR8JmPsz+&#10;2pFYAAAAAAAAAAAAAAAAACJBqr6ZupTc1rbGn891vHv5Ex+tVTTH/bLRto6+vbo7plOfo3s6WsTf&#10;7Zpj3RM/Vrk01MoAAAAAAAAAAAAAAAADnjY93MyLdizRNy7cq7NNMecvazZuYi5TatRrVVuiFnjc&#10;ZYy7DV4vFVdG3RGszPKI/wA3dssubc0K1oGn02KeKr1XtXbn51X9o8k+5RldGVYaLVO+qd9U9s/a&#10;OTgPa/ai/tVmVWKr3W6d1FPZT954z7uT1ojhm2jgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAHIPY2/s/WN0VxGnYNy9b54m9V7Nqn51T3fu5eFy/bte3K+w+Bx&#10;GKn+VTrHby97IeP0Tx9H0jL1DWc6civHsV3fUY3sUcxTM99U98/ThjZx011RTbjTVslGRUWbVV3E&#10;Va6RM6RwYjp5mmOfHhmWmpB5m5NZo29oedqVfExjWpriJ86vCmPrMwssbiYweGrvz+WPjy+LNZLl&#10;teb5jYwNH56oie6Oc+UatV7t65k3rl27V27tyqa66p86pnmZ/egaqqquqaquMu9rVqixbptW40pp&#10;iIjwjdDi+XqAAAAAhQdjBzrunZEXbU8T4TTPhVHul81UxXGkvW1dqtVdKldtP1G1qOPF23Pwqpnx&#10;pn3Sx9VM0TpLYbV2m7T0qXbfD1ARINjvQy1Obes7n07nuu49jIiP1aqqZ/7obls5XpXco8JQ16SL&#10;GtrDX+yao9+k/RtW3lBgAAAAAAAAAAAAAAAAACJ8AaXelnqE5nVaLHPMYmn2bfHumqa6p/nCOc/r&#10;6WLinsiPq6O9H9mLeUTX+qufhEQwy1pJQAAAAAAAAAAAAAAACJngVhkbYe2/sGPGoZFH/ib1P4Om&#10;rxoonz+c/wAkwbL5N+Ft/jL8derh3R95+Tjz0o7ZfxTEzk2Bq/k2568x+auOXhT8Z8FviOG/IBSA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOf3As+2OnOubr7F&#10;zGxvUYk/8Vkc0UfTzq+kLS7irdndM6yyuEyzE4vfTTpT2z/m9lzbHRnRdE7F3NpnVsqO/m/HFumf&#10;hR4fv5Ye7jblzdTuhuOFyTD4frXOvV38Pcv1u1RZopoopiiimOKaaY4iI+TH8WwRERGkKr1UzvsG&#10;w9WqieKrluLMfOqqKf5TK7wtPSvUsVm1z1eCuT2xp72tMNoRcT4AxX131v1Gl4GlW6uKsi5N+5Ef&#10;mU91P76p/g0PavFdCzRho/NOs+EcPinn0UZX63F38yrjdbjo0+NXH3R82FkZOnBUAAAAAAQoOxg5&#10;13TsiLtqe/wmmfCqPdL5qpiqNJetq7Vaq6VK7adqNrUrEXLc/CqmfGmfdLH1UzROkthtXabtPSpd&#10;t8PUBmf0TNQ+x9VqrHPEZen3rfHvmJor/pLZcgr6OLmntiUaekCz6zKIr/TXHxiYboRPKRnOSQAA&#10;AAAAAAAAAAAAAAARPgDQ/wBIrO+39Zdx1c8xartWI/ZtUR/PlF2cVdLHXO7SPg6k2NteqyOx39Kf&#10;fVLHDCt0AAAAAAAAAAAAAAAAWXZO2/uvmfasinnDsVeE+Fyvyj5R4z+5uuzeTfj734i9H8uj4z2e&#10;Ec0K+krbL+AYP+H4Or/yLscY/JTzq8Z4U+csnx4ppcUpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAABHIPe2tsfV93XuMDHmLETxXlXfZtU/Xzn4Ryt71+3ZjrTvZH&#10;CYC/jJ/lxu7Z4Mz7T6PaPt/sX8yPurm09/bvU/g6Z/Ro/rPLB3sbcubqd0N2wmTYfDaVV9arv4e5&#10;faaYiIiI4iPJYNgjc5CoDGPXrP8AUbYw8WJ9rIyon6U0zM/xmGUy+nW5NXZDVtoLnRw1NHbPyYKj&#10;wZ9oCJn3eINbuqes/dre+fNNXas40xi2/dxR4/5pqQvn2J/E4+uY4U9WPL93aeweW/w3ILEVRpVc&#10;68/8uHw0VRr6QgAAAAAAAEKDsYOdd07Ii7anifCaZ8Ko90vmqmK40l62rtVqrpUrtp+o2tRx4u25&#10;+FVM+NM+6WPqpmidJbDau03aelS7b4erI/o65v2HrLturniLty7Zn9q1XH8+Gayaro4635/Jpe2V&#10;v1mR3+7oz7qob30+CUXLbkAAAAAAAAAAAAAAAAACJjmAfnr1cyozOqW7LsTzE6lepj5U1dn+iJcx&#10;npYy7PfLrbZyj1eT4Wn+yPjvVJjmxAAAAAAAAAAAAAAAO9omkXtc1C3i2e6J766/KinzllMty+7m&#10;WJpsW/OeyO1q20u0GG2Zy2vH4jfMbqaedVU8Ij69kMvYGFZ07EtY1ijsWrccUx/Wfi6AwuGtYOzT&#10;YsxpTS/PzM8yxOcYy5jsZV0rlc6z9o7ojdEOyumLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAPAH3wNOydVyacfFsV37tX5NEeHxn3R8ZUmYiN71tWq71XQtxrLIu3&#10;emePidi/qk05V7xixT/s6fn+d/L5raq7M8G04XKaLfWv757OX7sj6FmU6bkU2+Iox6oimaaY4in3&#10;TEMfiLfrKdY4w2ezVFuejyW+PBhmTSAADBfXzUfXa9p2FFXMY+PNyY9011f2pZ3L6dKKqu1oW0N3&#10;pXqLcco19/8A9MYR4Ms1R0Nb1SjRdGzs+v8AFxrNV35zEd0fv4WuKvxhrFd6fyxMsplWBqzPH2MF&#10;RxuVRHvnf8NWqVy5XeuV3Lk9q5XM1VTPnMzzP8UBVVTXM1Txl37bt02qIt0RuiIiPCNyFHoAAAAA&#10;AAAAhQdjBzrunZEXbU9/hNM+FUe6XzVTFUaS9bV2q1V0qV207UbWpWIuW5+FVM+NM+6WPqpmidJb&#10;Dau03aelSvHSPK+x9Utp3eeONSsUzPwqq7P9V9l1XRxdqe+GD2jo6eT4qn+yfhvfoVT3JackJAAA&#10;AAAAAAAAAAAAAABE/wBQfm/vK/8Aat469e557eoZFXP/AM2pDuKnpX7k98/N2LldPQwFinsop/8A&#10;TDyFsyYAAAAAAAAAAAAADlZs3Mm9RatUTcuVzFNNNPjMy9bduu9XFu3GtU7ohbYnE2cFYrxOIqim&#10;iiJmZnhEQyztfb1GgYHYnirJucVXrkec+6PhCeMkymjKsP0Z311e1P08IcF7bbWXtq8wm7GsWKNY&#10;op7v1T/dV8I3PajubCjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AABEzwC1bZ2Dl632MjK7WHhT3xVMe3cj9GPKPjP8XjVciN0MzhMsuYjr19Wn4z4Mn6Vo2JouLFjD&#10;s02aPyp8aqp98z5ytpmZnWW32bFvD09G3Gju8KLhEii1aDn/AGvEiiqeblrunnzjylhsRb6FescJ&#10;ZKzX0qdJ5PVWr3ARINYepWp/dffGrXonmii76iiY91Edn+cS2nC0dCzTCK80u+uxlyqOU6e5W/Bd&#10;MWx11v1j7DtS3hU1cXM6/FMx+hT7U/x7MNO2oxPqsHFqONc/CN8/RMfouy38VnFWMqjq2aZn/lVu&#10;j4asDQih1kkAAAAAAAAAAEKDsYOdd07Ii7anifCaZ8Ko90vmqmK40l62rtVqrpUsndPNZtXt06Bl&#10;2p4m1qGNVVTPjTMXae6XhYibWItzPbHzXuPqpxOXX4p50Vf+mX6VR5pfcgJAAAAAAAAAAAAAAAAA&#10;BE+QPzR1S5N7Vc65M8zVkXap+tcoZuzrcqnvn5uzsJHRw9unspp+UOs8l0AAAAAAAAAAAAAK8SZi&#10;I1lkjZW1fuXajNy6P/GXI9iir/dUz/Wf4Ji2byP8FRGLxEfzJ4R+mPvPwcb+knbn+NXpynLqv/Ho&#10;nrTH56o/9scu2d/YtkN7QOkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAACZB9cPEv6hkUY+NaqvXq54poojmZUmYiNZfdu3VdqiiiNZZN2t08x9M7GTqEU5WXHfFvxt25&#10;/wDVPx8FrXcmrdDbsHldFnSu9vq+Efdc4h5M8CoADtaZmTgZlFz8ifZqj4PC9b9ZRMPS3X0KtVzp&#10;mJiJieYYNlEg6OualRo+j5udXxFOPZru9/nxEzw+6KenVFMc3hfuxZtVXJ5RMtS67lV65Xcrnm5X&#10;M1VT75nvlt8RpGkIfmZqmap4y4zKqjAXWvWPuhu+MOmrm3g2Yt8fp1e1V/OmPoiXafE+uxvqo4UR&#10;p5zvl1t6MMt/B5LOKqjrXqpn/jG6PrLH7UUvpAAAAAAAAAAABCg9PbWo3dL17T8i1V2ZpybUzE+E&#10;x26fF9UxE1U69sPi5VVTariOdMx8JfrZT5pUcquQAAAAAAAAAAAAAAAAAOFyezRVPuiVJ4Kxxfmb&#10;kVdvJvVfnV1T/GUL1b6pdp2o0t0x3R8nB8vQAAAAAAAAAAABAL7svZ82vV6jn0cV/jWbNUeH6VUe&#10;/wB0fVKezmz/AEOjjcZTv400zy75+kOV/SP6QovxXkuUV9Xhcrjn20Uz2fqnnwheI7+9JbmdIAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHIPV29tjO3JfmnGtzTYomI&#10;u5FUT2LfPvn3/B51XKaN08V7hcHdxVWlEbuc8oZa2/trC27jerxqO1cqj8Jfr/Hr/tHwWtVU1Tvb&#10;thsJbwtOlEb+cvWiOHyvQAAAETAotO38z7Th+rqnmu17P08mHxNvoV6xwlkbNXSp07HrLRcMddb9&#10;a+5+0acOmri5nXYt8foU+1V/KI+rI4GjpXel2Nbz2/6rC+rjjVOnlxYAiGxI7fPJyLeJYu371XZt&#10;WqJuVzPlTEcz/CHxXXTbomurhG97WLNeJu02Lca1VTER4zOkNUdV1G5rGqZeddnm5k3ars/WeeEA&#10;4i9OIvV3quNUzLv/AC7B0Zdg7WDt8LdMU+6Pu6rwZAAAAAAAAAAAAAB9MarsZVmr3XKZ/wA0K08Y&#10;fFyNaKvCfk/XmzPat0z74if4JThytPFzVUAAAAAAAAAAAAAAAAAfO/8A7Gv9Wf5KTwVjjD8zK/8A&#10;aV/rT/NC88Zdq0exHhCHy+gAAAAAAAAAACmma6oppiaqqp4iIjmZl9U0zXMU0xrMvi5cotUTcuTE&#10;UxvmZ3REdsyyBtPZEYk0Zuo0RVf/ABrdie+KPjV75+HklfIdmosaYrGxrVyp7O+e/u5OTtvPSXOO&#10;ivK8kq0tcKrkbpq7Yp7Ke2eM8ty6R396RXOaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAARMguvT7pnl7xvU5OR2sXSaZ9q9x7V3300f1q8I+KxxOKpsx0Y31M7l2V14&#10;2enXuo7e3w+7P2BoeDpel0afiY1FjEpp4i3TH8Znzn4tem5XNfTmd6RLVi3ZtxaojSFa1DCq0/Jq&#10;t1czT401e+GZtXIuU6wsa6OhOjrvZ8AAAAAO7o2X9jzqJmeKK/Yq+U//AFW9+jp0T3PW1V0alw57&#10;mEZNr51r137qbu+yUVc2cC3Frunu7c+1V/6Y+jYsDb6FrpTzR1nuI9bivVxwpjTznioEzwyLXFE6&#10;x659ydnXcemrs38+uMemI8ez41z+6OPq1baPFfh8DNETvr3eXNKfo3yr+IZ5TfrjWizHTnx4U/Hf&#10;5NfEPuwkqgAAAAAAAAAAAACbf+1t/rR/NWOMPmv2Z8Jfr1jf+Xt/qx/JKccHKs8X1VUAAAAAAAAA&#10;AAAAAAAAcLkdqiqPfEqSrHF+ZuRT2Mm7T7q6o/jKF6t1Uu07U626Z7o+Tg+XoAAAAAAAAAA7Gn6d&#10;karl0Y+Lbm5dq8vKI98z5QvcJg7+OuxZsU61T/ms9kMNm+cYHIsJVjcfc6FEe+Z7IjnM9jJu29o4&#10;2g003auMjNmO+7Md1Pwpjy+fimjJ8gsZXTFyrrXO3s8PvxcWbY7f47aiubFvW3ho4URO+rvrnn4c&#10;I73v8NpRWkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETPAMl9NO&#10;lVevTb1PV7dVvTfxrVie6rI+M+6n+fyYvFYv1fUt8fk2nK8om/pexEdXlHb+3zZ1sWbePZotWqKb&#10;dqiIppoojiKYjwiIYCZmZ1lvtNMUx0aY0hzkfTo6tp8Z+LNMRHrae+ifj7vq97N31VWvJ5XKOnGn&#10;NUJiaapiY4mO6Ylm2MFQAAAAkFjvbgtadtm/qeRPs41qqquPfMR3R9e797C1WZ9d6uOa8rxFNqxN&#10;6rlDVzMy7ufl3sm/V2r16uq5XV76pnmf5toppimIpjkia5XVdrmurjO98ZnufT4a/wDWXcH3X3ZO&#10;Hbq7VjT6PUxx4Tcnvrn+UfREW0mM/EYz1VM7qN3nz+zrv0a5P/DsmjFXI0rvz0v+MbqfrPmobVEt&#10;AAAAAAAAAAAAAAPpi0dvLsU/nXKY/wA0K08YedydKKvCfk/Xm1HZt0x7oiEpw5Xni5qqAAAAAAAA&#10;AAAAAAAAAInyB+aOqW5s6pnW57poyLtM/SuUM3Y0uVR3z83Z2Fq6WHt1dtNPyh1nkugAAAAAAAAH&#10;PHx7mXkW7Fmma7tyqKaaY85l7WbNeIuU2rca1VTpCzxmLs5fhrmLxNXRooiZmeyIZd29oFjQMGmz&#10;biKr1XE3bvHfXP8AaPKE+5TlVrKrEW6N9U+1PbP2jk4C2t2qxW1WPnEXp0t06xRRypj/AOU858uD&#10;1eOGbaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATPAMr9L+lP2&#10;71Wsa3Z/8P3V4+JXH+091dce73R5+fcw+LxfR/l258ZbflWUdPS/iI3co+s/ZmqmnsxEREREeUMI&#10;3hyFQESCs7iwfUX4yKI9i5+N8Kv/AKsrhbnSjoTyWF+jSelDyIXy2AAAAAUjqhuKvH0u1o1qviMi&#10;uL96In8mn8WPrPf+y+7duKq/WTya7nGJmm3GHjnvnyYwjwXrUXk7r16jbO383Uq+Jqs0fg6Z/Krn&#10;upj9/H8WPx+LjBYau/PKN3jybBs/lNed5nZwFHCqd/dTG+qfc1bu3a796u7dqmu5XVNVVU+MzM8z&#10;P70EVVVV1TVVO+XeFq3RZt02rcaU0xERHdG6HFR6gAAAAAAAAAAAAAO5otqb+tadajvmvKs0/vuU&#10;w+7ca10x3w8MRPRs11dkT8pfrnT5pScspAAAAAAAAAAAAAAAAABFXl8wfm/vKx9l3jr1nw9XqGTT&#10;x/8ANqQ9io6N+5HfPzdi5XV6zAWKu2in/wBMPIWrJgAAAAAAAALX04wqcjWbt+qOfs9rmn9aqeOf&#10;3ct72Qw1N3G1XqvyRu8Z3fdA/pgzKvC5LawdE6eur0nwpjXT36Mkx4JjcbpAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEzwDLPSrpb9r9TrWs2fwPdXjYtyPx/dXXHu&#10;90efjLD4vF6a27fnLcMoynpaYjERu5R9Z+jNUQwjeEgAAA6+di05mNctVflR3T7p8pfduubdUVQ+&#10;K6elTMSpVVE266qao4qpniY90s/ExMawxUxpuQqAAAPnkX7eNYuXrtUUWrdM111T5RHfI+Kqooia&#10;quEMGa7qteuark5tfMesq9mmfyaY7qY/cvqaejGiO8TenEXark8/k6E90PpbMKdctzfatQx9Es1/&#10;g8X8Nf487kx7MfSmef2kZbU471l2nCUTup3z48vdDpz0WZH+Hw1zN70da51aP9scZ853eEMWtDTy&#10;lUAAAAAAAAAAAAAAe7sHGnN35trHiOZu6pi0cfO9Q97Ea3qI74+awzCroYS9V2U1fKX6w0+fzSc5&#10;hcgAAAAAAAAAAAAAAAAARM8QD89ermLGF1S3ZaiOIjUr1UR8Kqu1/VEuY09HGXY75dbbOV+syfC1&#10;f2R8NypMc2IAAAAAAAABaunOfRi6zdx657P2i32aZn86J5iP3ct72QxVNnG1Wap9uN3jG9BPpfyu&#10;7jcmt4y1GvqKtZ/21RpM+U6aslRKY3GqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAJngF42FsqM2aNTz7fOPHfZs1R/tJ/On4e73/Jb3K/yw2LLcv6el67G7lHb3+DO2&#10;g6h9rxvV1z+FtRxPxjylr2ItdCrWOEt+s19KnTseqtVwAAAAie8FX3Hiepy4vRHFN2O/5x4stha+&#10;lR0Z5Mffp0q17XlQvVuAAAofU7cHqMajSrNX4S9EV3uJ8KPKn6z3/KPi9rVOs9Jreb4ro0xYpnfP&#10;HwY18I5XTUnmbl16ztrRMvUr/E0WKOaaJ/Lrnupp+s8fxWONxVGCw9d+vl8Z5QzuSZVdzvMLWAs8&#10;a53z2Rznyhq5m5t7Uc2/l5Fc3Mi/XNy5VPnVM8ygq7dqv3Krtc6zM6y7vwmFtYKxRhrEaUURERHd&#10;D4vJdAAAAAAAAAAAAAAALv0NxPt3WXZNmY5idXx6p+VNXa/9K8wUa4m3HfDCZ3V0MsxE/wBs/Hc/&#10;UimeYSS5tSAAAAAAAAAAAAAAAAACKvAGh/pFYP2DrLuOnjuu12r8ftWqJ/nyi7OKejjrnfpPwdSb&#10;G3fW5HYns6Ue6qWOGFboAAAAAAAAAmiuq1cproqmiumYmmqJ4mJjzh90VVW6oronSYeV21bv26rV&#10;2mKqao0mJ4TE8YlkXbm/LGbbpsajXTj5Md0Xp7qK/nPlP8EvZNtPaxNMWcZPRr7eU/afg5A2y9F+&#10;LyyuvG5NTNyxxmmN9VHhH5qY5ab45xzW2mqJiJieYnviY84b5rrvhAkxNM6TG9y5VUAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBbNi7PnW78ZuZRP2C1PdTP++qjy+Uef&#10;7njcr03RxZvLsD+Iq9Zc9mPj+zLFNMRTEREREd0RHhC1bpEdjsYWXVg5NF2nv4nvj3x5w8rlEXKZ&#10;pl90VdCrVdLV2m9bprpnmmqOYn4MFMTTOksrExO+HNRUAAAB52uYv2nT7nEc1Ue3H08f4LjD19C5&#10;He8btPSolUoZtjQAHR1nVrOi6bfzL8+xbp7qfOqrypj5yrETM6Qt796nD25uVcmD9Qzr2p517Kv1&#10;dq7eqmqqf6R8I8F9EaRpCPLtyq9XNyvjLrz4KvJg3rTu77p6rRouPXzjYVXavTE91V7jw/Zju+cy&#10;i3abMPX3owluerRx75/b5upvRls9+Bwc5tfjr3d1PdR2/wDKfhEMatJTeAAAAAAAAAAAAAAAAyx6&#10;KunfdLr7tOnjmLNy9kT+xYrn+fDKZZT0sXR5/Jqu1Fz1eU3u/SPfMP0npjiEgufEgAAAAAAAAAAA&#10;AAAAAAiQaXelnp84fVeL/HFOVp9m5z75pmumf5QjnP6Oji4q7Yh0d6P70XMomj9Ncx74iWGWtJKA&#10;AAAAAAAAAQKvna3Bre1Ob2k5U1Ysd9zBvR27cfGmPL6cNky7O8ZgdKKK93ZO+P28kbbR7D5Pnut6&#10;/Z0r/VT1avhx84la9v8AXPTczs29Wxa9Puz/AL61zctf/wC0fxSFg9qbF3SnE09Ce2N8feHPGcei&#10;vH4bW5llyLtP6Z6tX2n4MiadquHq+NGRg5VnLsz+XZriqI+fu+rcLN+1iKenZqiqO5DuMwGLy67N&#10;nGWqqKuyqNP/AL8nb5XCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ7ge&#10;5tHbF3cuf2auaMO1MTeuR/2x8Z/g866+jDI4HBzi7mk+zHH7MyY+PbxbFuzZoi3at0xTRRTHdEQs&#10;2+U0RRTFNMaRD6j7OOQWDbed2qKsaue+n2qPl5wxeKt6T04XtivWOjL3lguwAAAHGqO1HE+E+MAp&#10;GVYnFyrtqfyapiPl5M/bq6dMVMTVHRqmHyej5RIoxFvzc/3d1GMfHq5wceZimY8LlXnV/SP/AKrq&#10;3RpGstIzLGfiLnQonq0/Ge1WPB7MOrW/t2UbP29eyomJzLnNrGonzrmPH5Ux3z9PewubZhGXYabk&#10;e1O6nx/ZumyOz9e0WZ0YeY/l09auf7Y5eNXCGtFdyq7cqrrqmuuqZqqqqnvmZ75mUJTVNUzVVOsy&#10;7doopt0xRRGkRuiOyI4IUegAAAAAAAAAAAAAAAoM/wDoRaX9v61VZPHMYWl5F3n3TVVRRH/dLO5N&#10;TrideyJaHtnc6GWxT+qqPhEy/QCO5vKDkgAAAAAAAAAAAAAAAAAiQaq+mbps29a2xqHHddx7+PM/&#10;q1U1R/3S0baOjr26+6YTn6N72trE2OyaZ98TH0a5NNTKAAAAAAAAAAAgVVrX9A7PaysWnu8a7cR4&#10;fGP7Lu1d/LUxGJwunXo84eLp2pZek5NORhZN3Evx4XLNc0z/AA8fqyNm/dw9fTtVTTPc1zGYHDZh&#10;amxi7cV0zyqjX/PJlTZvWyqblvE3BTT2Z9mM61Txx+vTH84/c33Ldp51i1jv+0fWPrCBNpfRhTFN&#10;WJyOd8b/AFcz/wCmfpPvZds37eRaou2rlN21XTFVNdE801RPnE+aQ6aqa6YqpnWJc73bVdmubV2m&#10;aao3TE7pie+H0fTzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdvR9JyNc1C1&#10;iY9PNdc99U+FFPnVPwh81VRTGr3sWK8Rci3RzZs0fSMfRNPt4eNTxRRHfVPjXV51T8ZWUzNU6ykG&#10;xYow9uLdHCHeUXAAD6Y2RVi5FF2ifaonnj3/AAfFdMV0zTKtNU0zqu1i9TftUXKJ5pqiJiWAmmaZ&#10;mJZaJ1jWH0UVAAAAVfclj1ebTc8rlPf847v7MrhKtaJp7FhfjSrV5MyvlsovUTdn2OzVpWJX/wCI&#10;uR+Hrpn8SmfyfnP8vm9rdGu+WuZpjfV0+otzvnj3MZxHC6ak43LlFuiquuqKKKYmqqqqeIiI8ZlS&#10;qYpiaqp3Q+6KKrlUUURrM7ojtlrX1D3fVvDcFy/RVMYNjm1jUz+b51fOqe/5cIVznMZzHEzXHsRu&#10;p8O3zdr7G7O07O5bTarj+bX1q57+UeFPDx1lWWCb2AAAAAAAAAAAAAAAAA2u9ALSJu7g3hqnHdZx&#10;cfFifjXXXXP/AGQ2fI6etXX4Qi/bm7pasWu2Zn3aR9W6TbkRAAAAAAAAAAAAAAAAAAIkGAfTE0r7&#10;TsTSNQiPaxNQiiZ91Ny3VH86aWq7Q0dLDU19k/NKno8v9DMrln9VE/CYlqMj50IAAAAAAAAAAAAg&#10;VVrX9A7PaysWnu8bluPL4x/Zd27v5amIxOG/qW1cXTFLdsbqNn7NvRannL0yqrmvFqq/F58Zonyn&#10;4eE/xbFledXstq6PtW+z7dnyR3tTsXgtpKJux/LvxwriOPdVHOO/jDPugbhwNy6fRmaffi/Znuqj&#10;wqoq/NqjylLWExlnHW4u2KtY+Md0uSM2yfG5JiZwuOo6NXLsmO2J5x/kvTiV6woAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaKartdNFFM11VTFNNMRzMzPhECsRNU6QzFsza9O3NO&#10;/CRE516IqvVR+T7qY+EfzWVdXSlveAwcYW3v9qeP2WJ8MoAAAAsG2c3tW68aqe+n2qfl5wxeLo0m&#10;K4XtirWOi95YLsAAAB425rPbw6LnnRX/AAle4SrSuY7Vtfjq6sc7x3TRtvB9js1516JizRPl+lPw&#10;j+MszRR0pa5jsZGFt7vanh92HLt2vIu13btc3LlczVVXVPMzM+Mr3huaJVVNczVVOsyifAUYm60b&#10;3+zWZ2/h3Pwt2IqzK6Z/Fo8Yt/OfGfhx72gbS5p0KfwVqd8+14dnnzT/AOjPZf11f8bxdPVp3W4n&#10;nPOrwjhHfv5MNI1dLJVAAAAAAAAAAAAAAAABQby+gZov2TpvrmpzHE5uqTRHxpt26Y/nVU3TJKNL&#10;FVXbPyQttte6WOt2v00/OZbNtiR2AAAAAAAAAAAAAAAAAAAxn6Ruj/djo9uCmKe1cxrdGXT/APLr&#10;pqn+HLD5vb9Zgrkdm/3Nw2RxH4bO8PM8JmaffEx82ifmix1QAAAAAAAAAAAAAgVVrX9A7PaysWnu&#10;8a7cR4fGP7Lu3c16tTEYnC6dejzhXIldMU9Pb+49Q2vqFOZp9+bVyO6qme+i5T+bVHnC+weNvYG5&#10;F2xVpPwnxYPOMlwWeYacLjqOlTynnE9sTyn582fdj9RcDeVmLccYmpU083MSqr8b3zRP5UfxjzS3&#10;lec2Myp6Ps184+3a5H2p2Mxuzdybnt2J4VxHDuqjlPwnktsS2BHyQAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAARIMhdNtr+GsZVHwxqZj99f9I+sra7Xr1YbRlOD/AP8ARXHh9/syJEcP&#10;BtAAAAAD7YeTOHlW70fkz3x7483nco9ZTNL6oq6FUSu1uuK6YqpnmJjmJ+DAzGk6Sysb97koqAAA&#10;rHUDdGHtjQLt3Knt3rvsWLFM+1cr8f3R5yu8LbqruR0eTGZhi7eEszVXxnhHbLWzU9SyNYzruXlV&#10;9u7cnv8AdEeUR7ohs1MRTGkIwvXq79c3K53y63g+nirO/d42dm6JXkz2bmZd5oxrM/lVe+f0Y8Z+&#10;kebCZtmVOW4ea/zTupjv+0N12T2bu7SY+LHC1Tvrq7I7I754R7+TWzKyr2dlXcnIuVXr92qa67lX&#10;jVVPjKFblyq7XNyudZnfLtjD4e1hbNFixT0aKYiIiOUQ+b4XAAAAAAAAAAAAAAAAAAD9I/RS0P7h&#10;9B9r01UTRcyrVzNr58/WXKqo/wAs0pByyjoYSiO3f73PW01712a3pjhE6e6NGXWUauAAAAAAAAAA&#10;AAAAAAAAA8zc2lU67t3U9NqiJpzMW7jzz+lRMf1eN6j1tuqjtiYXeEvzhsRbvx+WYn3Tq/Nqq3VZ&#10;qm3XHFyiexVHumO6f4obmJidJdmU1RXEV08J3+8UVAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy3Hl8&#10;Y/su7d38tTEYnDf1LauLpinOxeuY16i7ZuVWrtExVRXRPFVMx5xPk+6K6rdUVUTpMPK7at37dVq7&#10;TFVM7pid8THezJsPrJbyot4O4K6bN/8AFozuOKK/14/Jn4+Hv4SRlO0lNzSzjZ0nlVynx7PFzZtZ&#10;6NrmHmrG5JHSo4zb5x/t7Y7uMctWVYriqmJiYmJjmJie6Yb7ExMawgOqJpmaao0mHJVQAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnuB7W0du1bk1Wm1VExi2vbv1x7vKmPjP8Ad511dGGQ&#10;wOFnFXdJ9mOLNFq3TaopoopiiiiIppppjiIiPCFm36mIpjSODmPoAAAAAkFn27l+vw/VVTzVanj6&#10;eTD4qjo16xzZCxVrTp2PXWi4ARM8A8nc25cPauk3c/Nr7NFPdRRH41yryppj3y9bVqq9V0aVpisV&#10;bwlqbtyd3za07p3Pm7u1a5nZlXfPs27UT7Nqjypj+s+ctos2abNPRpRfjMXcxl2blzyjsh5L2WTp&#10;6vq2LomnX87MuRaxrFParqnx+ERHnM+EQt8RiLeFtVXrs6UwyOX5fiM0xVvB4WnpV1zpH3nujjMt&#10;aN4bqyd4a1dzr/sW/wASzZ55i1R5R8/OZ85QlmWPuZjfm9Xw5R2R/nF23s5kGH2dwFODs76uNVX6&#10;quc+HKI5Q8VjG0gAAAAAAAAAAAAAAAAAFNuu/XTatxzcuTFFER51T3R/GTTXdCk1RTE1Twh+tG0d&#10;Ep23tbR9JoiIpwcOzjREfoURT/RKFqj1dFNHZEOXMTdm/fruz+aZn3y9h6rYAAAAAAAAAAAAAAAA&#10;AABxq94Pz36uaH97nU7c2BFPYoozbly3T+hX+Ep/hUiXMbXqcXco7/nvda7OYr8ZlGGu66z0YifG&#10;ndPyVFjmxgAAAAAAAAAAAAAIFVa1/QOz2srFp7vGu3EeHxj+y7t3NerUxGJwunXo84VyJXTFALns&#10;jqfqO0ZoxrvOfpnP/l66vatx+hPl8p7vk2bK89v5fpbq61vs7PD7Iz2o2FwG0MTft/yr/wCqI3Vf&#10;7o5+PHxZ127ujTd04UZOnZMXqY/Htz3XLc+6qny/klTB47D4+36yxVr3c48Ycq5zkWYZDf8AUY63&#10;0eyeNNXfE8/m9XmF+wCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc7Fi5lX7dmzRVcu3&#10;KoooopjmaqpniIhSZiI1l9U0zXVFNMazLNe2NAt7d0q3jRxN6fbvV/nV+f0jwhZVVdKdUgYPDRhb&#10;UUc+fi9d8r4AAAAAAB6GhZP2bUaImeKbnsT/AE/itcTR0revY9rNXRrW2GGZIkHm6/r+FtrS7ufn&#10;3fVWLflH41dXlTTHnMvS3bqu1dGnitsRiLeFtzduzpENbd57yzN6arOVkfg7FHNNjHieabVP9Znz&#10;n+jZrFimxTpHFGOOx1zHXOnVuiOEdjwfBcsc4XK6bdFVddUUUUxNVVVU8RER4zKkzFMTVPCH1RRV&#10;cqiiiNZndERzlr51O3/Vu7UIxcSqY0nGq/B+Xrqv+ZPw90e7v80QZ5m05hd9Xan+XTw757fs7B2G&#10;2Rp2ewv4nEx/5FyN/wDbH6Y7/wBU9u7kpDVkpCoAAAAAAAAAAAAAAAAAAvHQ3bn319YNo6bVR6y1&#10;XqFu7dp/Qt/hKv4UL3BW/W4minv+TB53iPwuW37nPozHnO76v1Hp8EkObkgAAAAAAAAAAAAAAAAA&#10;AAiY5Bp16Xmgfc7qHg6nRTxRqOFT2quPGu3VNM/5ZoR7tDa6GIpuR+aPk6F9HuL9bl1zDzO+ir4V&#10;Rr84lg1qyUwAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5fGP7Lu3d/LUxGJw39S2ri6YpIOzpup&#10;5ejZlGXg5FzFyKPC5bnifl8Y+Erixfu4auLlmqaZjsWGOwGFzKxOGxluK6J5T/m6e+GYtmdacbUI&#10;t4muxRhZE90ZdEcWq5/Sj8if4fJI+WbS272lrGdWrt5T49nyc3bTejPEYTpYnJtblHHoT7UeE/mj&#10;4+LKFFym5RTVRMVUVRzFVM8xMe+JbzExVGsTuQZVRVbqmiuNJjjE8XJV8gAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAEzwDLPRDZvr71e4Mu37FuZt4lNUeNXhVX9PCPjyw+Pv6R6qnzbjkOB6U/&#10;iq47o+ssm63o0XYqyLFPFfjXRH5Xxj4rPD3+j1KuDbL1rXrUq9DKLIAAAAAAA5mmYmO6Y74lTjuO&#10;ErxiX4yca3djwrpiWv109CqaWWpnpREujuHcODtnTLmdn3YtWaO6Ijvqrq8qaY85l927dV2ro0rf&#10;EYm3hbc3Ls6Q1w3pvTN3rqf2jI5tY1vmLGNE8024/rVPnP8ARstixTYp0jijPHY65jrnSq3RHCOz&#10;91fXLGon3Awp1Z6jxqVV3Q9Lu84lM9nKv0T3XZj8iJ/NifGfOfhHfGW0GdeumcHh56se1Pb3eHb2&#10;unPR9sX+CppzjMaf5k76KZ/LH6p/unl2R3sXNDTyKgAAAAAAAAAAAAAAAAAADY30GNs/dXqnqOsV&#10;0zNvStPq7NXHhcu1RRH+Wm42DJbfSv1V9kfNHu2mJ9XgaLEfnq+Efvo3yjwbqhRIAAAAAAAAAAAA&#10;AAAAAAAAMDel9t37o7BwNWop5uabmR2pjyt3I7M/5ooavtBZ6eGi5H5Z+e5KHo+xnqczrw8zuuUz&#10;76d8fDVp+jx0QkAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvVqYjE4XTr0ecK5Er&#10;pikqiOAWjaHUTVdn1027Nf2rA55qw70z2f2Z8aZ+Xd8Gdy7OcTl09GmelR2T9Oxoe0exuW7RUzXd&#10;p6F7lXTx/wCUcKo8d/ezltLfulbwtRGJem1lxHNeJeni5T8Y/Oj4x/BKWX5thsxj+XOlXOmeP7+T&#10;lnaDZLM9nK//ACaOlb5V0+zPj2T3SscT3My0xPPIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;PU2vt+/urXcXTbHNM3aua6/zKI/Gq+kfxmHjduRZomuV5hMNVi71Nqnn8I5tpdN0+xpWBj4eNRFr&#10;HsURbopjyiGqVVTXVNU8ZSvbt02qIt0RpEOzw+Xqrev6X6mqcm1HsTPt0x5T72Tw17XqVLG9b060&#10;PGZBagAAAAAEg713eOBtXb1zIz7nHq65ptWqe+u7M98RTH/uIY67h6rt3Snm+7mMtYSzNd2fCOcs&#10;D7u3fn7y1OcrMq7NunmLOPTPsWqfdHvn3z5szZs02KdKUd43G3cbc6dfDlHY8RcLA/mDEvVbqX9m&#10;i9oekXvw080ZWTRP4kedumff758vDxR/n+d9DXCYWd/5p7O6Pq6C2A2I9dNGcZnR1eNFE8/7pjs7&#10;I58WG4jiEbuk0gAAAAAAAAAAAAAAAAAAAiVBvZ6C21fuV0z1PW7lM03dXz6oomY8bVmOxH+abjds&#10;ltdCxNf6p+SE9tMT63HU2I4UU/Gd/wAtGyjYEfJAAAAAAAAAAAAAAAAAAAABWOpW2o3hsPXdH47V&#10;eViV024/6kR2qP8ANELPGWfxGHrtdsMvlGMnL8ws4qPy1RM+HP4Pzt74/Gjirzj3T7kQ8OLsHdMa&#10;wlQAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy3Hl8Y/su7d38tTEYnDf1LauLpikqgDlau3Me7Rd&#10;tV1WrlE9qmuiZiqmffEx4K01VUVRVTOkw87tqi9RNu7TFVM8YnfE+MMpbN613sbsYmv01ZFrwjNt&#10;0/hKf16fyvnHf82+ZbtPVb0t43fH6o4+cc0C7S+jG1f6WJySehV/+ufZn/bPLwnd4Mv6fqONquJb&#10;ysPIt5WPc76blqrmJ/8Ar8Ei2b1vEURctVRMTzhzpjMFicvvVYfFW5orjjExpP8Ane7T2WYAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAACJkUZ86L7Q+42hzquRR2cvPiJoiY76LP5MfXx/c17G3unX0I&#10;4R80iZHg/UWfXVx1qvly9/FkhjWygOFyim5RVTVEVU1RxMT5wrEzE6wpMa7pU3U8GrAyqrfjRPfR&#10;Pvhm7Nz1lOvNjLlHQq0dZ7vMAAAAmeAeNuTc+JtvF7d6fWX64/B2KZ9qv4/CPi+qaZqncsMVjLeE&#10;p1q3zyhiDWdaytezasnLr7VXhTRH4tEe6I9y8ppimNIaPiMRcxNfTuT+zpPpbEyDFvVHqhGmRe0f&#10;SLvObPNORk0T/sffTTP53vny+fhome57FiJwuFnrc57O6O/5J32E2FnHTRmuaU/yuNFE/m75/t7I&#10;5+DCfn3ox4unYjTdCVVQAAAAAAAAAAAAAAAAAAAEcTP4sdqrypjzn3BM6cX6pdI9oxsXpptvQpp7&#10;NzDwbdN2P+rMdq5P+KqpJeFteps0W+yHMuZ4r8bjbuI/VM+7l8FvXTGAAAAAAAAAAAAAAAAAAAAA&#10;InwB+ffWba/3odTtwafTR2LE5E5FiPL1dz26ePlzMfRE+ZWPw+LuUctdY8J3ustmcd/EMpsXpnfE&#10;dGfGnd+6mMY2YAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd4124jw+Mf2Xdu5r1amIxOF069HnCuRK&#10;6YpKoAhQett3dOp7Vy/X6dk1Wefx7c+1bufrU+E/z+LIYPH4jAV9OxVp2xynxhr2c5Dl+fWfU4+3&#10;FXZPCqPCf8hmrZ3VzTNx+rxs2adM1Ce6Ka6vwVyf0ap8PlP75Sdlu0OHxulu91K/hPhP0lzHtJ6P&#10;MwybpYjCfzrMc4jrUx3xz8Y90L7Hd4trROkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFj6f7Wnd2&#10;5sfEqpmcW3+Gyao8rceX1niPqtcTd9TbmrnyZTLcJ+MxEUT7Mb58P3bPW6KbdFNNNMU0xHEREcRE&#10;NW4pTiNI0hyFQAHna1gfbMOezHNy37VPx98Lixc9XXv4S8btHTp71Rhm2NSAABIKvuze+Pt+irHs&#10;dnI1CY/E/Jt/Gr+z0oomrwYfG5hRho6FO+r5eLE+Zm39SyrmRk3ar16ueaq6v/fdHwXcRERpDS7l&#10;yu7VNdc6zL5eCrzRz7vEGKupnVWMD12k6LdirK76L+ZRPMWvfTRPnV758vLv8NCzzPota4XCT1ud&#10;XZ3R39/JPmw+wM4roZnm1OlvjTRP5uyav7eyOfPcwv49898z3o0ne6YiIiNISKgAAAAAAAAAAAAA&#10;AAAAAAAMgdAtnff11g2xpdVHrMaMqMrIifD1Vr8JVz8+zEfVf4G167E0U8tdfcwGfYv8Fl167E79&#10;NI8Z3P0+p8EjOcXIAAAAAAAAAAAAAAAAAAAAAESDVv0x9q+rzNB3Hao9m5TVgX6ojzjmu3z9Jrj6&#10;NI2isb6L8eE/OPqm70c4/WL+Aqnsrj5T9GtjS01AAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vG5b&#10;jy+Mf2Xdu7+WpiMThv6ltXF0xSVQABHCgu2z+q2q7Y9Xj35nUtOp7vU3avboj9Cry+U8x8mz5dn+&#10;JwOlFfXo7J4x4Si/aPYHLc96V+zHqb0/miN0z/dT9Y0nxZr2xvLSt22PWafkRVdpjmvHuezdo+dP&#10;u+Mcwk7A5lhswp1s1b+cTxjycxZ5s1mWz13oY231Z4VRvpnwn6TpL3InllGrpAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAABEijYbo9tX7gbZpyr1HZzNQ4vVcx300fkU/u7/AKtbxl31lzSOEJJybCfhsP06&#10;o61W/wAuS/LBsAAACJBUNaxPsedV2Y4t3Pbp/rH72aw9fTo38YY27T0anRXLxARNUREzPdEd/Mim&#10;qgbu6iRb7eHpFfar8K8uPCPhR/f9z3ot676ms43NIjW3h58/t92Oaqqrlc1VTNVUzzMzPMzPvXPB&#10;q0zMzrKfAHGZ857ojzNdN8kRMzpDD3Unqz62m7pWhXvYnmi/nUT+N76bc+731fu96OM72g6WuGwc&#10;7udX0j7+50fsT6P/AFc0ZnnNG/jTbnl2TX9Kff2MScI9dDJVAAAAAAAAAAAAAAAAAAAAAEKDbf0C&#10;dlzdz9ybrvW/ZtUUabjVTH5U8XLsx9Itx9ZbVklnfXenw+6K9t8ZpTawdM/3T8o+rcptiJgAAAAA&#10;AAAAAAAAAAAAAAAAAFC647R+/PpjreDbo7eVbtfasePP1lv2oiPnETH1YzMsP+JwtdEcdNY8YbNs&#10;1mH8NzWzfmerrpPhVun3cfJoHE9qImPCe9E7rNIoAAAAAAAAAAAAAAAAAAgVVrX9A7PaysWnu8a7&#10;cR4fGP7Lu3c16tTEYnC6dejzhXIldMUlUAAAfTGyb2FkW7+PdrsX7c80XLdU01Uz8Jh90XK7VUV0&#10;TpMc4eF+xaxVubN+mKqJ4xMaxPkyntHrdds9jG1+3N6jwjNsU+3H69Pn847/AIN8y7aiqnS3jY1j&#10;9UcfOPsgTaL0X27vSxGSVdGf/wBdU7v+NXLwnd3st6bqmJq+JRlYWTbysevwuWquY+Xwn4SkKzft&#10;YmiLlmqKonsc9Y3AYrLr04fGW5orjlMaf/cd8O3y91iAAAAAAAAAAAAAAAAAAAAAAAAAAAAsXT3b&#10;M7r3Ti4ldPaxaJ9dkT/06fL6zxH1WuJu+ptzMcWTy3C/i8TTRPCN8+DZ+mmKYiIiIiO6IjyaslSN&#10;zkKgAAAPJ3Di+vwfWRHtWp7X0813hq+jXp2re/T0qdexV+WYY91dQ1HG0vFrycq9TZs0+NVX8ojz&#10;n4ERMzpDxu3aLNM13J0hizde+sjX5qxsbtY2B4dnn2rn63w+H811Rb6O+eLTcbmNeJ6lG6n5+P2V&#10;eI4ezDgPhlZVnDx7mRkXaLFi3T2q7lyeKaY98y+K7lFqma650iOMvexh7uKu02bFM1V1TpERvmZY&#10;N6i9VLu4vWadpVVdjS/xbl38WvI/tT8PGfP3IsznPqsZrYw06W+c86v2dUbG7A2sn6OOzKIqv8Yj&#10;jFH3q7+Ecu1jppqZkgAAAAAAAAAAAAAAAAAAAAAAiZimJmfCO+VB+mvo6bHnp/0f29pt236vNu2f&#10;tmVHHf6277cxPyiaaf2UjYCz6jD00Tx4z5ucs+xv4/Mbt2J3ROkeEbv3ZMZBr4AAAAAAAAAAAAAA&#10;AAAAAAAADjVHMA/PvrDs/wC8bqPrWl0UdjF9d9oxvd6q57VMfTmaf2UT5lh/wuKrtxw4x4S6y2bz&#10;H+KZXZvzPWiOjV407vjunzU1jGzAAAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vG5bjy+Mf2Xdu7+&#10;WpiMThv6ltXF0xSVQAABCg9HQtxajtvL+06dlV41z8qKe+muPdVTPdK9wuMxGCr9ZYq0n4T4wwua&#10;5NgM6s+ox9qK45dseE8YZi2n1q0/VIox9Yop03Knu9fTzNiqfj50fXmPikfL9prN/SjFR0Ku3l+z&#10;nDaH0ZY3A9K/lU+ut/p/PH0q8t/cyRbu03rdNduqm5RVHNNdM8xVHvifNudNUVRFVM6xKFrlFdqq&#10;aLkTExxid0x5OcTy+nwAAAAAAAAAAAAAAAAAAAAAAAAASDPnRPbMaTturUbtHGTqExXHMd8Wo7qY&#10;+vfP1hr2Ou9O50Y4QkTI8L6nD+tq41/Ll92R2NbIAAAAA4XKIuUVU1d9NUcTHwInSdYUmNWJ92bs&#10;w9q3LuPXVGTm0zMRYonw901T5R/FsdqJu0xVDVsbjrWDmaZ31dn3Ym1rXs3cGV6/Ludrj8S3T3UU&#10;R7oj+vivqaYp4NLxGJuYmrpXJ/Z0Ijh9LUnuB5mv7hwNtafVmahfixajupjxqrn82mPOVli8ZZwN&#10;qbt+rSPjPgzWU5Pjc7xMYXA0dKrn2RHbM8o/yGv++OoWdvTI7FXOLptFXNvEpq8fdVXP5VX8I8kR&#10;5rnF7MqtPZojhH1ntl13stsdgtmrXTjr35jfX9KeyPjPNVWvpAFQAAAAAAAAAAAAAAAAAAAAAABf&#10;ehGxf9YvVjb2jV2/WYk34ycv3eote3XE/PiKf2l9gbP4jEU0cuM+EMDnmN/AZfdvRPW00jxnd8OL&#10;9QqY4j3JHc4JAAAAAAAAAAAAAAAAAAAAAAABEg1u9MPZf2jTNJ3RYo5uYtf2LJmP+XXPNuZ+VXMf&#10;ttP2hw3SopxEct0+E8PimH0eZl6u/dy+ud1cdKPGOPvj5NWWiJ3AAAAAAAAAAAAAAAAAAAAQKq1r&#10;+gdntZWLT3eNduI8PjH9l3bua9WpiMThdOvR5wrkSumKSqAAAAI4UFg2vvrV9o3I+xZHaxueasS9&#10;7Vqr6eU/GOGYwOa4rL5/lVdXsnh+3k0/PdlMr2hp/wDLt6V8q6d1UefPwnVmTanVvRtxdizk1/cv&#10;Oq7vV36vwdU/o1+H0niUkYDaHC4zSi51K+yeHlP3c2Z/6Pc1ybpXrEeutRzpjrRHfTx841heYltK&#10;LeG6U88gAAAAAAAAAAAAAAAAAAAAAAA7uh6XXrms4Wn2+e1k3qbXPuiZ75+kcy87lfq6Jq7Fxh7M&#10;4i9TajnLbHGx7eLYt2bVPYtW6YoopjyiI4iGozOs6yl6mmKaYpjhD6qPoAAAB09U1fD0XDrys7It&#10;4uPR43Lk8R8o98/CH1TRVXPRpjWXjdvW7FM13J0hhnevWvJ1CLmJoUVYePPdOXXHF2v9WPyfn4/J&#10;m7GBinrXd/c0nHZ7Xc1ow26O3n5djF1VVVyqa66pqqqnmaqp5mZ98yy0REboapMzM6yCiJkFR3x1&#10;G0/ZtqbUzGXqcxzRiUVfi+6a5/Jj+M/xa9mmc2Mtp6PtV9n37EhbL7F47aSuLn+nYjjXPPupjnPf&#10;wjmwFuDcWobo1CrM1C/N65PdTTHdRbj82mPKP/colxeNv46562/VrPwjwdb5RkuCyPDRhcDR0aec&#10;85ntmec/5DzlizgqAAAAAAAAAAAAAAAAAAAAAAAImeFBub6B+wPsuka5vHItcXMyv7n4dU/8uie1&#10;cqj519mP2G35LY0oqvTz3QiDbbHdO7bwVM7qetPjPD3R822jZ0YgAAAAAAAAAAAAAAAAAAAAAAAA&#10;PC3vtexvTamq6Jk8RazrFVqKp/Iq8aavpVET9FtibMYizVaq5wyOXY2vLsXaxdvjRMT94843Pzr1&#10;DAyNK1DJwcu3NrKxrtVm7RP5NdMzEx++EQV0VW6poq4xudg2L1vE2qb1qdaaoiY8JfB8PYAAAAAA&#10;AAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAI45UFr2r1L1&#10;ravYtW732zCj/hcmZqpiP0Z8afp3fBsGAzvF4DSmJ6VPZP07Ef5/sRlOfa3K6PV3Z/PTunzjhPz7&#10;2YtrdUtE3NNFr132DNq7vs+TMR2p/Rq8Kv4T8EjYDPcJjtKdejV2T9J4S5wz7YPN8j1uRR621H5q&#10;d+njTxj4x3rhz3+DY0cpAAAAAAAAAAAAAAAAAAAAABknoXon23cuTqNdPNvCtcUz/wBSvuj/ACxV&#10;+9i8fc6NuKI5toyCx079V6eFMfGf2Z5hgEgJAAB8r2RbxrVd27cptWqI5qrrqiKYj4zKsRM7ofNV&#10;UUxrVOkMabu634GmxXY0WiNSyfD19XMWaf61fTu+LJ2cDXXvubo+LWMZntq1rTh+tPby/dh3Xdx6&#10;luXM+0allV5NyPxaZ7qaI91NMd0M1btUWo0ohpWIxV7FVdK9Vq87h6rUBwu3aLVuuu5VTRbpiZqr&#10;qniKY98z5Pmaopiaqp0iH3RRXdqiiiNZndERvmWJN99Zop9Zg7eqiZ/Fr1CY7o/+HE/90/T3o+zX&#10;aTTWzgZ8avt93Quyno1mejjM8jdxi3/85/8AbHn2MRXbtd+7Xcu11XLlczVVXXPM1TPjMzPijuqq&#10;quZqqnWZdE27dFqiLdumIpjdERuiI7nFR6AAAAAAAAAAAAAAAAAAAAAAAAAOxpmm5Os6liafhW5v&#10;ZmXeosWLceNVdVUU0x++YfVNM11RTTxl5XbtFm3VduTpTTEzPhD9Venmzsbp/snRtvYnE2dPxqbM&#10;1R+XX411/tVTVP1SZYtRYt0245OZcdi68dibmJr41Tr9o8oWN7rEAAAAAAAAAAAAAAAAAAAAAAAA&#10;BE+ANOPSv2L97++LOvY9vs4Ws0c3JiO6nIoiIq/xU9mfpUjzP8L6q/F6nhV84dD7A5p+KwNWCrnr&#10;Wp3f7Z+06x7mD2rpRAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNduI8PjH9l3bua9WpiMThd&#10;OvR5wrkSumKSqAAAAAAImIlQW7bHVDW9sRRai/8AbsOnu+zZUzVER+jV40/y+DYsDnuMwOlPS6VP&#10;ZP0njCO892EyjPNbk0equz+ajd744T8+9lvbHVfQ9xdi1cvTpuZV3epypiImf0a/CfrxKQsDtBg8&#10;ZpTVPQq7J+k8HPOeej/OMm1uUUeutx+ajfMeNPGPLWF0if3NlRpMTE6SnkAAAAAAAAAAAAAAAAAA&#10;ESKNi+juhfcfZmPdrp7N7NqnJq5jv4nupj/DET9WtYy507sxHCNyTMmw/qMJTM8at/2+C8rFnUcg&#10;6+fqWLpmPVfy8i1jWafG5erimP3y+qaZqnSmHlcuUWqelcnSO9jbc3XTT8HtWdHsTqN6O711zmi1&#10;H9av4fNkrWArq33NzWsVn1q31bEdKe3l+7E+4t46xuu52tRzKrluJ5psUezap+VMfznmWYtWLdn2&#10;YaficdiMXOt2rd2cvc8bh7rEA5B4G6N6aXtDH9Zn3/w1Uc28a333a/lHlHxnuYrH5nhsup1vVb+U&#10;RxltWQ7M5ltFd6GDo6sca53Ux5857o1lgvefUbU9411Wq5+yadE804lqrun3TXP5U/w+CK8yznEZ&#10;jPRnq0dkfXtdV7NbF5fs5TFymPWXudcx8KY/LHxnnKqNfSAlUAAAAAAAAAAAAAAAAAAAAAAAAAQD&#10;Yv0J+nH30dRb+5Mq12sHQKO1b7UcxVlXImKP8NPaq+c0s/k+H9Zem7PCn5o/2xzD8Ng4wtE9a5x/&#10;2x953e9vrEcQ3ZCSQAAAAAAAAAAAAAAAAAAAAAAAAAAULrZsL/WF091LTbVEV59qn7Thz5+uo5mI&#10;/ajmn9pjMywv4vDVW448Y8YbNs5mn8IzK3iJnqTuq/2zx93HyaCTE0zMTE0zHdMT4xPuRRw4usom&#10;JjWBQAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy3Hl8Y/su7d38tTEYnDf1LauLpikqgAAA&#10;AAACOFBZdtdQ9c2t2aMbKm9ix/wuT7dv6edP0lnMFnGMwO63VrT2Tvj9vJpGd7G5PnutWItdG5+u&#10;ndV58p84ZV251p0fVuxa1GmrScie7tVz2rM/KqPD6x9W+4LabC4jSm/1KvfHv+6As69Gea5frcwE&#10;xfo7t1fu5+U+S/2Mi3k2abtm5RetVRzTct1RVTPymG20103KelROsdyI7tm5Yrm1dpmmqOMTGk+6&#10;X1fbyAAAAAAAAAAAAAAAAejtrRLm5NewdOtxPORcimqY/Jo8ap+kRLyu1xaomueS7wticTfptRzn&#10;4c21dum1hY1NFPZtWbVMUx5RTTEcQ1LfVKWoiminSN0Qq+udVNuaH2qa8+nLvU/7rEj1k/vjuj6y&#10;ureEu3OEaeLFYjNsJh9016z2RvY517rvqWX2relYlvAt+V29+Eufu/Fj+LJ28vojfXOrWsRtBdr3&#10;WKej3zvn7Md6prGdreT6/Py72Xd/OvVc8fKPCPoyVFFNuNKY0a1ev3b9XSu1TM97q8Pt4gEzwDqa&#10;nqmJo+JXlZ2TbxMejxuXauI+Ue+fhDwvX7WGom5eqimI7V/gsBisyvRh8HbmuueURr/9R3yxLu/r&#10;dcvRXjaBbmzR4Tm3qfbn9Sny+c9/wR9mO1FVWtvBRp/dPHyj7ug9nfRfRbmMRndXSn/9dM7v+VXP&#10;wjd3sV5OTezciu/kXa79+uea7lyqaqqp+My0Ku5XdqmuudZnnKe7GHtYW3FmxRFNMcIiNIjyfN8L&#10;gAAAAAAAAAAAAAAAAAAAAAAAAAAAiJqmIppmqqe6KaY5mZ90fEJnSNZfpr6PXTSOlvS/StKvW4o1&#10;O9T9sz5475v1xEzT+zHZo/ZSLgcP+GsU0c+M+LnHPcw/ieOrvRPVjdT4R9+PmyWyDAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAIkGkPpK9P8A7yuoV7MxrXY0zWO1l2eI9mi5z+Fo/fMVfKr4I0zrCfhsTNdM&#10;dWvf583S+xWbfxHLYs3J1rtdWe+Pyz9PJiZr6QQAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093&#10;jXbiPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAAACAenoe5dU23e9ZpubdxefxqKZ5oq+dM90&#10;r7C47E4KrpWK5j5e7gwWaZHl2c0dDH2Yr7+ceFUb2S9vdd/xbWt4PwnJw/5zRP8ASfo3bB7V8KcX&#10;R50/b7IRzj0UcbmUXv8AjX9Ko+sebJWh7q0nclvtadn2smfO3E8V0/Ome9uuFx+Fxsa2K4nu5+5C&#10;maZBmeTVdHHWKqO/TWmfCqNz1YnvX7AJ55AAAAAAAAAAAAAnwB6u3Nz5m1r97I0+LNGVco9XF+5R&#10;26rdPn2Ynujnu7+HjdtU3oiKuC8w2LuYSZqtaazz7PB89X3Jq2vTzqGoZGVH5ldc9iP2Y7v4K0Wr&#10;dv2Y0fN7FX8R/q1zLzeP3PVapAAB871+3j2q7t25TatURzVXXVFNNMe+ZnwfNVVNFM1VTpEPW1au&#10;X64t2qZqqnhERrM+TGe7etuFp/bx9Et06hkeH2m5zFmn5R41fwj5tIzDae1Z1t4SOlPby/dN2z3o&#10;wxeL0v5vV6qj9Me3Pjyp+MsQ63r+objy5ydRy7mVd/J7U+zRHuppjuiPkjvFYu/jK/WX6pmf84Q6&#10;KyvJ8Dk1n1GAtRRTz04z4zxnzeetGYSAAAAAAAAAAAAAAAAAAAAAAAAAAAADNvok9L/9YfVCxnZd&#10;n1mj6F2c2/2o5pru8/gbf+KJqn4UfFmcqw3r7/SnhTv8+TTNqsy/A4GbVE9e5ujw5z9PN+iUQ3xA&#10;qQAAAAAAAAAAAAAAAAAAAAAAAAAAAAY766dPI6jbAzMOzbirU8X/AMVhTx3zcpieaP2qeafrHuYn&#10;M8J+Mw00R7Ub48f3bXszm85PmNF6qepV1avCeflO9oXMTTMxMTTMeMT3THzRXwdWxMTGsCgAAAAA&#10;AAAAAAAAAAAAAAAAAgVVrX9A7PaysWnu8bluPL4x/Zd27v5amIxOG/qW1cXTFJVAAAAAAAAAEA5W&#10;66rVymuiqqiunvprpniY+UqxVNM9KmdJfFdFFymaK4iYnlO+PcuWg9XNxaL2aLmRTqViP93mR2qu&#10;PhXHf+/lsuE2hx2G0iqrpx2T9+KNc29HmR5nrXbtzZrnnRujzpnd8mRNE636JnxTTn2r2l3fzqo9&#10;Zb/xR3x9YbhhdqMJe3XomiffHw+yG809F+b4TWrBVU3qf+tXund7pXjTNc0/WaIrwc7HzKZ/5N2K&#10;p/d4tos4qxiY1s1xV4Si/G5Xj8uq6OMsVUT3xMfHg7szMeMcT8V0xSeRUAAAAAAAAAA4AAABHPf3&#10;QCl7x6p6Vtaa8e3MajqMd32ezV7NE/p1eXyjmWtZln2GwGtFPXr7I5eM/wCSkvZzYPMs+0v3I9VZ&#10;/VVG+f8AbTz8Z0hhTdG9tW3de5zsj/w8TzRi2vZtUfTzn4zzKMcdmmJzCrW9Vu7I4Onci2XyzZ6j&#10;TB2+vzrnfVPnyjujR4LFNtSAAAAAAAAAAAAAAAAAAAAAAAAAAAAABETVVEUxNVU90U0xzMz7oFJm&#10;I3y/Sz0cOlcdKemWDg5FqKNYzf8AxuoT5xdqiOKPlRTxT84mfNIeAw34WxFM8Z3y52z/ADP+KY6q&#10;5TPUp3U+Ec/PiyoyTXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETANKvSb6b/eZvedVxLXY0rWZqvUx&#10;THs27/8AvKPhzz2o+c+5G+d4P8Pf9bTHVr+fP7ukdiM5/iGB/C3Z/mWt3jTyny4e5h1riRwAAAAA&#10;AAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAAA&#10;AAACFBNFVVuuK6KporjwqpniY+r6iZpnWJfFdFNyno1xrHZO97+m9QNx6TERj6xk9iPyLtXraf3V&#10;cstZzfH4fdRdnTv3/NqWN2QyHMNZv4SnXtiOjP8A/Oi06b111nHmIzMPEzafOaYm1V/DmP4M9Y2q&#10;xdG67RFXwaHjfRTlN7WcJdrtz36VR8dJ+K2aZ100XK4jMxcvBq86oiLtP747/wCDP2NqsJXuu0zT&#10;8YR/jvRVm9jWcJdoux50z8d3xXHSN26Nr8RGBqePkVz/ALuK+zX/AIZ4lsmHzDCYv/RuRPdz9yN8&#10;x2dzbKv/AMzDVUx26ax741h7HPv7pZBrxyAAAAAAAAADp6rq2HouFczM7Ioxsa3411z5+6PfPwhb&#10;4jEWsLbm7eq0phkMBl+KzTEU4XB25rrnlHznsjvlhHe3V/N131mHpXb0/T59mbnPF67HxmPxY+Ed&#10;/vlGGabRXsVraw3Vo7ec/Z1Bsv6OsJlXRxWZaXb3HT8lM+H5p753dkMd8NOTLokAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAGePRB6T/f/ANQ6dazrPb0XQKqciuKo5pu5Hjao+PHHbn5U+9m8pwvr73rK&#10;o3U/Pk0bazNPwOD/AA9uevc3eFPOfPh736Dw3pBaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU/qps&#10;Cx1J2VnaNd7NGRVHrcW9Mf7K9T+JV8vKfhMrDHYWnGWKrU8eXiz2R5rcybHUYujhG6qO2meMfWO9&#10;+fudg5GmZuRh5dqqxlY9yq1dtV+NFdM8TE/KYRNXRVbqmiqNJh1rZvW8RapvWp1pqjWJ7pfF8PUA&#10;AAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAAAA&#10;AAAAAIUADzifOPCfcrz1UmNY0ngte3+pu4NuzTTbzJzManu+z5fNynj4T4x9JZ7B55jcHupr6VPZ&#10;O/8AdoOcbD5JnETVXZ9XXP5qOrPnHCfOGXNn9VtK3RVRjXf/ALN1Cruizeq5puT+hV5/KeJ+aQ8u&#10;z/DY6Yt19SvsnhPhLnjaPYDMsiib9r+dZj81Mb4j+6n6xrC7R3dzZ0YJAAAAAAB4O7t44GztO+05&#10;lXau18xZx6J9u7Pw90e+fJiswzKzltr1l2d88I5z/na2rZ7ZzG7SYr1GFjSmPaqnhTH1nsjjLXnd&#10;O7tR3fn/AGnOu+xTz6rHo7rdqPhHv+M98ofx+Y38xudO9O7lHKHYeQbO4DZ3D+owdO+faqn2qp75&#10;7OyOEPFYttCVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2NO07K1fUMXAwrFWTmZV2mzZs0RzVXXV&#10;PFNMfOZVppmuqKaY3y8rt2izRVcuTpTEazPdD9Pei3TLG6TdP9N0Cz2bmVTT67Nv0x/tsirvrq+U&#10;d1MfCmEj4TDRhbMW48/Fzfm+Y15pjK8RVw4RHZEcP3717XrDgAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAImOQarell0v8AsWZb3np9r8BkTTZ1GmiO6m54UXfr+LPxin3tHz/A6T+Kojjun6SnLYHPOnTO&#10;VX53xrNHhzp+sebXFpiZgAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvV&#10;qYjE4XTr0ecK5ErpikqgAAAAAAAAAAAAAAACOFOBoy70v6pVzds6NrV+a4qmKMbMuT3xPlRXP8qv&#10;pKQ8iz6dYwuLnwqn5T9Jc77dbB0RRXmuU0aTG+uiPjVTHzjzhmCPdKRnOSQAAAAeHu/dmJs/R683&#10;Jnt3J9mxYieKrtfuj4ecz5QxeY5hay6xN25x5R2z/nFtGzmz+J2jxtOEsbqY31Vcqae3x7I5y1u1&#10;7Xs3cuqXc7Pu+tvV90RHdTRT5U0x5RCFsXi7uNuzevTrM/DujudqZTlOEyTCU4PB06Ux75nnMzzm&#10;XnLNmUqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFBth6EnRyc/ULu/8AVLPOPi1VY+l0Vx3V3eOL&#10;l75UxM0xPvmr3NoyfCaz+Irjw+6Ltsc26FMZdanfO+rw5R9Z8m6ENuRGkAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAHn67omHuPR8zTNQsxfwsu1VZu2586Zj+fun3vK5bpu0TbrjWJ3LnDYi5hL1F+zO&#10;lVM6xPfD8/Oo2xczpzu7N0TM5ri1PbsX5jiL1mfxK4+ndPumJRPjcLVg702qvLvh1nkua2s5wVGL&#10;t7pndMdlUcY+sdytLFnAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5fGP7Lu3d/LUx&#10;GJw39S2ri6YpKoAAAAAAAAAAAAAAAAiYUGcukvUL7tY9Gjajd51CzT+Au1z336I8p/SiP3x8pSns&#10;/nH4mmMJfnrxwntj7x8XK/pC2P8A4ZdnNcDT/JqnrRH5Kp5/7Z+EslxLdkJJAAB1dT1LG0jAv5uZ&#10;dizjWKZrrrnyj+s+UQ8L963hrdV27OlMcV9gcFfzLE0YTC09KuudIj/OUc55Nad67tyN463czLsT&#10;bsU+xj2Jn/Z0f3nxmff8kJ5nmFeZYibtW6OER2R9+121sxs9Y2bwFOFt765311fqq+0cI7nhMS20&#10;VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFu6U9OM/qtvjTtvYPatxeq7eTkRHMY9in8e5Pyjuj31&#10;TELrC4erFXYt0+fdDE5pmNvK8LVia+XCO2eUffufp/tvb2BtTQcDR9MsU42n4NmmxYtU/k00xx3+&#10;+fOZ85mUj26KbdMUUxuhzffv3MTdqvXZ1qqnWXpvR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI&#10;kGJ/SF6Uf6x9qfacG1FWvabFV3F4jvvUfl2ufjxzHxiPfLBZtgPxtnWj26eHf3N62Sz7+DYzo3Z/&#10;lXN1Xd2VeXPuaQTE0zMTE0zE8TExxMIy4bpdOxMTGsCioAAAAAAAAAAAAAAAAAAAAAAACBVWtf0D&#10;s9rKxae7xrtxHh8Y/su7dzXq1MRicLp16POFciV0xSVQAAAAAAAAAAAAAAABzsX7mLft3rNyq1et&#10;1RVRXRPE0zHhMS+qK6rdUV0TpMPG9Zt37dVq7TFVNUaTE8JiWeOnvVPG3HatYOp3KMXVY9mKp9mj&#10;I+Me6r9H93uSvk+fW8ZTFnET0bnwq/fu9zk/bDYLEZNXVjMvpmvDzv04zR49tPZPvZB54nie6W3o&#10;gOYB0dY1vC0HArzNQyKMbHp/Kqnvqn3Ux4zPwha4nE2cJbm7eq0j/OHaymW5ZjM3xEYXBW5rrns5&#10;d8zwiO+Wv/UDqFk70yotW4qxtLtVc2rEz31T+fX8fdHkiPN84uZlX0ad1uOEdvfP+bnXeyGx+H2a&#10;s+suaV4iqOtVyj+2nu7Z4z4Ki1xIwqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAERNVUU0xNUzPER&#10;THMzPuiDipM6b5fon6LXROOlGyozNRsxTuTVqab2Z2o9rHo8aLET8Oeav0pn3Q33LcH+Fta1e1PH&#10;7IC2lzj+KYro25/l0bo7+2fPl3M2RDMNQSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJjkGovp&#10;RdIp29q1W7dLs8aZnXOMy3RHdYvz+X8Ka/4VfrNBzzL/AFVf4m3HVnj3T2+fzT9sNtB+KtfwzE1d&#10;eiOrPbT2eMcu7wYCakloAAAAAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1&#10;MRicN/Utq4umKSqAAAAAAAAAAAAAAAAI4UNFs0PqjuPQrVNq3m/arFPdFvLp9ZER7onxj97YMLnu&#10;PwsdGmvpR2Tv/dH2abCZDmtc3blnoVzzono6+McPg9XK64biv25pt0YWNVP5duzNU/5pmF/c2ox9&#10;caUxTHl95YCx6LshtVdK5NyuOyatI+ERKl6trWfruV9o1DLu5d7wiq7Vz2fhEeER8mtYjFXsXX07&#10;9c1T3pMy/K8FlVr1GBtRbp7o4+M8Z83SWrKJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKDZr0O&#10;Ohv3163TvbWcftaRpt3jAs3I7sjJp/L486bc/vq/VlsmU4L1lXr643Rw8f2RvtbnX4a3+AsT16va&#10;7o7PGfl4t5ohuSGkgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6OtaNh7g0rL03PsU5OFlW5t&#10;XbVcd1VMx/77/J53LdN2ibdcaxK4w+Iu4W7Tfs1aVUzrE97Qbqt02zOl+7L+l5E1XsOvm7h5Ux3X&#10;rXPdz+lHhVHv7/CYRVj8FVgb0254cp7YdWbP53azzBxfp3Vxuqjsn7Txj9lOY1sgAAAAAAAAAAAA&#10;AAAAAAAAAAAACBVWtf0Ds9rKxae7xrtxHh8Y/su7dzXq1MRicLp16POFciV0xSVQAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfOivSbP6xb3xtGxprsYNvi9n5kR3WLMT3zH&#10;6VX4tMe/v8IlfYPC1Yu7FEcOc9zBZzmtvKcLN6rfVO6mO2ftHN+mW3tAwNraJg6RpmNRiafhWqbN&#10;izRHdTTEd3zn3z5zzKQ6LdNumKKY0iHO1+/cxNyq9dnWqqdZl6T0eAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAACkdW+mWH1R2pd029NNjNtTN3CypjmbN3jz/RnwmPd8YhjcfgqMdZm3Vx5T2S2&#10;PIc6u5HjIxFG+md1UdsfeOMd7QrWtFzduatl6ZqNirFzsW5Nq7aq8aao/nE+MT5xMSiu7ars1zbu&#10;RpMOq8LirONsUYixVrRVGsT/AJz7XTeS6AAAAAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNy&#10;3Hl8Y/su7d38tTEYnDf1LauLpikqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAADv7f0DUN063haRpWNXmajmXYs2LNHjVVPx8ojvmZ8oiZfdu3VdriiiNZlb4jEW8Laqv3p0ppj&#10;WX6W9D+j+B0b2XZ0nHmjI1G9xe1DNinib97jy8+zT4Ux7u/xmUiYPC04S1FEcecud85zW5m2Jm9X&#10;upjdTHZH3nmyIvmCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMcgwp6RfRX7/AHS/u5o9&#10;iPvhwrfE26I4nLtR39j9aO/s/WPOONczfLfxdHrbUdePjHZ9kj7IbSfwi9+FxM/ya5/6z2+E8/e0&#10;zmmaappqiaZieJiY4mJ9yOJ3OkYmKo1gUAAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jX&#10;biPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAABETVVEUxNUzPEREczMnFSZ03y369FP0fI6a6NG49exojdGoWvZtXI5nBsz3+r+FdXdNU+X&#10;dT5TzvGWYH8NT6y5HWn4QgzabPf4jd/DYef5VM/9p7fCOXvbCs60ZIAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAImAawekx0NmirJ3loFjmmebmp4lunw99+mP+6P2ve0rOss44qzH+6Pr901&#10;7FbUadHK8bV3UVT/AOmf/b7uxrO0lNoAAAAAAAAAAAAAAAAAAAAAAAAACBVWtf0Ds9rKxae7xuW4&#10;8vjH9l3bu/lqYjE4b+pbVxdMUlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARy&#10;oNu/RD9HSbtWJv3c2NxRHFzSMG9T4+7Jrif8kftfmtryrL+GIux4R9fsijarP+OX4Wf98x/6Y+vu&#10;7W4sRw2tFKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcLlFNdM01RFVMxxMT4SorEz&#10;E6w079IfoVVsnLu7i0KzNW379fN+xRH/AJKuZ/8Ay5nw/Nnu8OEfZvlf4eZv2Y6k8Y7P2+ToXY/a&#10;mMxojAYyr+dHCf1R/wDKPjx4sHNWSkAAAAAAAAAAAAAAAAAAAAAAAAAAgVVrX9A7PaysWnu8a7cR&#10;4fGP7Lu3c16tTEYnC6dejzhXIldMUlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;QoNjPRY9G+vqJnWd07jxpp2vjV84+Pcjj7oXIn3f8qmfGfypjjw5bBlmX+vn112OrHDv/ZH2020M&#10;YGmcHhZ/mzxn9Mfefg3yt26bVEU0xFNMRxERHERDdkJ6675cwAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAQD45uHYz8S9jZNqi/j3qJt3LVyntU10zHExMecTD5qpiqJpqjWJfduuq1XFd&#10;E6TG+Jjk0q68dDr/AE01CrU9Morv7aya+KKvxqsSqf8Ad1z7vzavpPf4xvmuVzg6vWW99E/Du+zp&#10;LZXaijOLcYbEzpfpj/tHbHf2x5x3Yja8kMAAAAAAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd4&#10;3LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIUG&#10;cfRs9HTJ6uarRq+r27mNtHEucXK++mrNrjxtUT+b+dVHh4R3+Gay7L5xVXTr9iPi0raLaCnK6JsW&#10;J1uz/wDzHbPf2R5v0IwMDH0vCsYmJYt42LYopt2rNqmKaKKYjiKYiPCIhvVNMUxERwQVXXVcqmuu&#10;dZnjLsPp8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpqml4ms6fkYOdj28rDyK&#10;Jt3bN2ntU10z4xMPiuim5TNFcaxL2s3rmHuU3bVXRqpnWJjlLSjrj0Oy+mGoTnYMXMvbeRXxavT3&#10;1Y9U+Fu5P8qvPwnv8Y2zTK6sFV07e+ifh3T9HSey+1FvOrcWL+lN+njHKqO2PrHnG5ilgG/gAAAA&#10;AAAAAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vGu3EeHxj+y7t3NerUxGJwunXo84VyJXTFJVAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEKDNXo6ejpndYtUp1HUabuFtPFucXsiPZryqo8b&#10;Vqf+6ry8I7/DM5fl9WKq6de6iPj3Q03aDaC3lNHqrW+7PCOzvn6R9H6FaPo+FoGl4unadi2sLBxb&#10;cWrOPZp7NFumPCIhvVNFNFMU0xpEIJu3a79c3Lk61TvmZd19vIAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAB1NU0vE1nT8jBzse3l4eRRNu7Zu09qmumfGJh8V0U3KZorjWJe1m9cw&#10;9ym7aqmmqN8THGGl3XLoPl9NcuvU9MpuZe2rtfs3J9qvFmZ7qLnvjyir6T3+McZplVWDn1lvfRPw&#10;8fu6P2X2rt5xRGGxMxTfj3Vd8d/bHnHdiNryQwAAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi&#10;093jctx5fGP7Lu3d/LUxGJw39S2ri6YpKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDO&#10;Ho6ejZndXM63q+r03cHaVmv2rsezXm1RPfbtT5U+VVfl4R3+Gay/LqsVPTr3UfNpW0G0VvK6ZsWN&#10;92fdT3z39ke9+gejaNhbf0vF07TsW1hYONbi1Zx7NPZoopjwiIbzRTTRTFNMaRCDLt2u/XN27OtU&#10;75mXdfbyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfDMw7Gfi3sbJs0ZGPe&#10;pmi5au0xVTXTPdMTE+MPmqmK4mmqNYl90XK7VUV0TpMb4mGn/Xb0eL+ya7+ubdtXMnb8zNV7Hjmq&#10;5hf1qt/Hxp8+7vR/mmTzh9b1iNaOcdn7fJ0HstthRmMU4PHzpd5Twir7VfPlv3MGtWSkkAAAAAAA&#10;AAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jXbiPD4x/Zd27mvVqYjE4XTr0ecK5ErpikqgAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJUGxno3+izk9RLmPuPdVm7h7YiYrsYs80XdQ/rTa+PjV5&#10;d3e2DL8sm/pdvRpT2dv7I+2h2mpwMThcHOtznPKn7z8m9uBp+NpeHYxMSxbxcWxRFu1Zs0xTRRTE&#10;cRTER3RER5N0ppimNIjchauuq5VNdc6zPGXYfT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAca6IuUzTVEVRMcTEx3SpoROk6w1h65ejPVRVka/s3G5pnm5k6Rajw85qsx/Oj&#10;/D7ml5pkvG9hY8aft9vcmvZfbXTo4LNKu6muflV/8vf2tZ5iaappqiYqieJiY4mJ9zStNOKbYmKo&#10;1gUAAAAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5fGP7Lu3d/LUxGJw39S2ri6YpKoA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU0zXVFNMTVVM8RERzMz7jipM6RrLbr0c/RDquVYu5t&#10;+4nFEcXcTQrsd8+cV5Efyt/4vzW1ZflXC7iI8I+/2RTtBtV7WFy+rumr6U/f3drcO3bpt0U00xFN&#10;MRxERHERDa0VTOu+XMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMc&#10;gwp1r9HPB376/WNE9Vp24eO1XTPs2cuf0+Pxav0/38+Ma5mWUUYvW7a3V/CfH7pH2a2vvZRMYbFa&#10;12fjT4d3d7moGtaLn7c1TI07U8S7g5tirs3LF6niqn+8T5THdPkjy7arsVzbuRpMOh8Li7GNs038&#10;PXFVE8Jj/OPc6TyXQAAAAAAAAAAAAAAAAAAAAAAAACBVWtf0Ds9rKxae7xrtxHh8Y/su7dzXq1MR&#10;icLp16POFciV0xSVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB39A2/qW6dXxtK0jCvahqOTV2bW&#10;PYp7VVU/0iPOZ7o833bt13aooojWZW+IxFrC25vXqoppjjMt6/R99FPTumkY2vbi9Tqu6Ijt26Yj&#10;tWMGf0Ofxq/058PyePGd1wOWU4bS5c31fCEKZ7tNdzLXD4bq2vjV493d72wsQzrRUgAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiY5BSepvSTQ+qOm+p1K1NnNtUzGPqF&#10;mIi7Z+H6VPvpnu+U97G43AWcdR0bkb+U84bHkufYzI7vTw860zxpnhP2nvje0v6k9Kdd6X6n6jVL&#10;HrcO5VMY+oWYmbN74c/k1foz3+7mO9HGNy+9gatLkbuU8pdIZLtBg88tdKxOlccaZ4x947489FOY&#10;1swKAAAAAAAAAAAAAAAAAAAAAAAAIFVa1/QOz2srFp7vG5bjy+Mf2Xdu7+WpiMThv6ltXF0xSVQA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAABCgvvSboruXrFq/2bRsb1WDaqiMrU8iJixYj3c/lVfoR3+/i&#10;O9fYXB3cXVpRG7nPJgs1znC5Tb6V6dap4Uxxn7R3v0A6QdD9udG9I+z6TY+0ajdpiMrVMiIm/fn3&#10;c/k08+FEd3znvbzhcHawlOlEb+c80F5rnGKza50706UxwpjhH3nvZDX7BpAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEg6Ws6Lg7g02/galiWs3Cv09m5YvUxVTVHy&#10;/r5PO5bou0zRXGsSuMPiL2Fu03rFU01RwmN0tUurvou5+3ZvartKm7qemRzVXp8z2sixH6H/ADKf&#10;h+NHxaLmGR12tbmG309nOPDt+addn9ubWK0w2ZzFFfKr8s+PZPfw8GApiaZmKomJieJiY74n3NT0&#10;03SlqJiY1gUVAAAAAAAAAAAAAAAAAAAAAAAAQKq1r+gdntZWLT3eNduI8PjH9l3bua9WpiMThdOv&#10;R5wrkSumKSqAAAAAAAAAAAAAAAAAAAAAAAAAAAAERNVURETMzPERHfzPlCikzERrLZnob6G+pbq+&#10;z6zvam9o+kTxXb0yn2MrIj9P/lUz7vxp/R8WyYLKarmld/dHZzn7I4zra23h9bGA61X6uUeHbPw8&#10;W62gbf03a+k42maThWNP0/Gp7FrHx6Ipopj5fznxnzbfRRTbpiiiNIhEF6/cxNybt6qaqp4zL0X2&#10;8QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETAMUdWPR60Lq&#10;PF3Oxuzo+vTHP2yzRzRen/q0flfrRxV8/BgsflNnGa1x1a+3t8W9ZDtbjMlmLVX8y1+meX+2eXhw&#10;aib66c6/051L7HreFVZiqZizk2/as3499Ff9J4mPOEf4vBXsHV0bseE8pdBZVnWCzm16zCV6zzif&#10;ajxj68FZWLOJAAAAAAAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq&#10;4umKSqAAAAAAAAAAAAAAAAAAAAAAAAACgtvTjpTubqtq32Hb2nVZMUTEX8u57GPjx766/CPlHNU+&#10;ULvD4W7iqujbjz5MTmOaYXK7fTxNWnZHOfCPrwbzdFPRa230pizqOXFOvblpiJ+336PwdifOLNE8&#10;9n9aeavjHg3TB5bawvWnrVdv2QvnG0mKzSZt09S32Rz8Z5+HBmyI4ZdqCQAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAefrehafuPTb2BqeHZz8K9HFdi/RFV&#10;M/v8/j4vK5bou0zRcjWJXGHxN7CXYvWK5pqjhMbpay9UPRNyMP1uobMuVZVjvqq0rIr/AAlPwt1z&#10;+N8qu/4y0vHZBNOteE390/SfumrI9vqa9LGaxpP64jd/yj6x7mu+dg5OmZl3EzMe7iZVmrs3LF+i&#10;aK6J90xPfDUK6KrdU01xpMJhs3rWItxds1RVTPCYnWJfF8PUAAAAAAAAAAAAAAAAAAAAAABAqrWv&#10;6B2e1lYtPd4124jw+Mf2Xdu5r1amIxOF069HnCuRK6YpKoAAAAAAAAAAAAAAAAAAAAAAA7Gnadl6&#10;vnWMLAxb2bmX6uxax8e3Ndy5PuppjvlWmmquejTGsvK7dos0TcuVRFMcZndDafo76EmVqHqNU39e&#10;qwseeK6dGxbketqj3Xbkd1P6tPM/pQ2bCZNM9fEbu77ozzbbGmjW1l0az+qeHlH1n3Nvtvbb0vam&#10;k2NM0fAsabp9iOzbx8aiKKKfpHjPvme+W1UW6bVPRojSEVX793E3Ju3qpqqnnL03o8AAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEccgqG/wDpVtzqRh+q&#10;1nAprv0xxazbPsX7X6tfu+E8x8FhisDYxlOl2nf28/ez2VZ5jsmudPCV6RzpnfTPjH1497VnqR6M&#10;e5NmetzNKircOlU81TVj0cZFuP0rcfjfOnn5Q0fGZJfw+tVrr0/H3fZOeTbcYHMdLWK/lXO/2Z8J&#10;5efvYdnmJmJjiYniYnxifc1zgkeJiY1gUAAAAAAAAAAAAAAAAAAAAAAECqta/oHZ7WVi093jctx5&#10;fGP7Lu3d/LUxGJw39S2ri6YpKoAAAAAAAAAAAAAAAAAAAARzVVEREzMzxER4zPuFNdN8s8dJ/Q/3&#10;bv8A9Tna1FW1tFr4q7eVb5yrtP6FqfxfnXx8pZvC5Tev9a51Y+PuaPmm1mDwWtvD/wAyvu9mPGef&#10;l7253TLovtTpNg+p0HTabeTXT2b2ff8AwmTe/Wrnwj9GOI+DbsPhLOFjS3HnzRHmOb4zNK+liK9Y&#10;5RG6I8I/yV54XjDpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAABExyDHnUToXtXqLFy9mYf2LU6o7tQwuKLvP6XlX+1E/OGJxeWYfGb66dKu2OP7try&#10;jabMcnmKbNfSo/TVvjy5x5NZOoHo1bs2V63Jw7P3waZTzPr8KmfW0x+la8frT2oaVi8lxOG1qo69&#10;Pdx9ybMp21y3MdLd6fVV9lXCfCr76MTTExVMTExMTxMT4xPulgOG5IMTExrAoAAAAAAAAAAAAAAA&#10;AAAAAAIFVa1/QOz2srFp7vGu3EeHxj+y7t3NerUxGJwunXo84VyJXTFJVAAAAAAAAAAAAAAAAACI&#10;mqYpiOaqp4iI8Zn3R8VOKkzpGss29MPRI3t1B9TlZ9iNsaRXxP2nUKJ9dXT+hZ7qvrV2Y+bNYbKr&#10;9/rVdWO/j7mmZltVgcDrRan1lfZHDzn7atwOlno4bM6UxayMHA+6OsUx36pqERcvRP6Ecdm3H6sR&#10;PxltWGy+xht9Maz2yinMs/x2aa03KujR+mN0efb5spcMk1xIAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4BQ9+dE9p9Q4ru6lptNnPq8M/Dn1&#10;V/6zHdV+1EsXistw2L33Kd/bG6WzZXtJmWUaRh7nV/TO+n3cvLRrpvr0UNy7fm5kaDet7hw474tx&#10;xayaY/VmezV9J5+DUMVkN+11rE9KPdKYcr2+wOK0oxtPqqu3jT948482Fs/T8rSsy5iZuNew8q3P&#10;FdjItzbrp+dM97Wq6K7dXRrjSe9Jdm/axNEXbNcVUzzidYfB8PYAAAAAAAAAAAAAAAAAAABAqrWv&#10;6B2e1lYtPd43LceXxj+y7t3fy1MRicN/Utq4umKSqAAAAAAAAAAAAAI5UHa0zTMzWs61hafiX87M&#10;uzxRj41uq5cq+VNMTL7ppqrno0xrLyu3bdiibl2qKaY5zOkNgenHoT7u3RNrK3JftbXwauJmzVxe&#10;y6o/UiezR+1Mz8Gdw+T3rm+7PRj4tDzDbHB4fWjCx6yrt4U/efL3trOmvo9bJ6W0272laTTkalTH&#10;fqWdxeyJn4TMcUfsxDZsPgbGG9inf2zxRlmGe47M5mL1elP6Y3R+/nqyTEcMgwCQAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMcg8PdGy&#10;NC3pifZtb0rG1K1H4vrqOaqP1ao76fpMLa9h7OIjo3aYlkcFmOLy6v1mEuzRPdPzjhPmwVvT0PcL&#10;I9Zf2vq1eFX4xh6hzct/KLke1H1iprGJ2eoq62Hq07p3x7+KUMt9Id+3pRmFrpx+qndPu4T8GC94&#10;dHt37G7deqaLf+y0/wDF4seus8e+aqfD9qIaviMtxWF33KN3bG+Eo5dtJleZ6RYvRFX6aurPx4+U&#10;ypkTExzE8x74Yxs5yKJAAAAAAAAAAAAAAAAABAqrWv6B2e1lYtPd4124jw+Mf2Xdu5r1amIxOF06&#10;9HnCuRK6YpKoAAAAAAAAAKCJmIjmZiI98gv2xOhG+uo0269H2/k/ZKv+OzI+z4/HviurjtfsxK/s&#10;4HEYjfRTu7Z3QwONzzL8BrF67GvZG+fh9WyGwPQQ0/Em1kbx1u5qFcd84OmRNq18puT7VX0ilsFj&#10;JKKd96rXuhH2O22u1604K30Y7at8+7h82yOzunu3NgYP2Tb2jYmk2Zjiqce3EV1/rVz7VX1mWwWr&#10;FqxHRt0xCP8AFY7E46rp4m5NU9/0jhCwxHD3WKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCJpiQUTd3Q7Ze8+3cz9EsWsqr/isP&#10;8Bd598zTxE/WJYvEZbhcT7dG/tjdLZsv2lzXLdIsXp6PZPWj3T9NGF91ehvkW5ru7c16i7T3zTja&#10;lb7M/L1lH9aWuX9nZ42K/KfvH2SRgPSNE6U4+x50z9J+7EG6OjO9NoTXVqG38qqxT3zkYtPr7XHv&#10;5o54+sQ16/luLw/t0Tp2xv8AkkPA7TZTmGkWb8RPZV1Z+P0lSvypp/KjxjzhjGzxMTGscEgAAAAA&#10;AAAAAAAAAAAgVVrX9A7PaysWnu8bluPL4x/Zd27v5amIxOG/qW1cXTFJVAAAAAEcqB+VFP5U+FPn&#10;PygU10jVkHZ3QLqBvvsV6XtnMpxq++MrNp+zWePf2rnHP0iWQtYDE3vZo3d+5gcXn2XYLddvRr2R&#10;vn4M7bK9AnJuzbvbs3JRZp7pqxNIt9qr5TdrjiPpSzVnJJ43q/d92lYzbiI1pwdrzq+0fdn/AGN6&#10;OmwOn027um7ex72bR/xuf/4m9z74mvmKf2YhnLOAw9jfRTv7Z3tFxufZjj9YvXZ07I3R8PqyTFMQ&#10;yDAJBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAImOQR2QVvcvTTa+8In7saFg51c/wC9rtRFz/HHFX8VneweHxH+rREsvg83&#10;zDL5/wDFvVU90Tu93BizcXohbW1HtV6Tn5+jXJ74o7UZFuPpV7X+Zg72z+Gr325mn4/NvOD9IOZ2&#10;d2IopuR4dGffG74MZ696Ie7dP7VWmZ2navR5U9qqxcn6Vc0/5mFu7PYijfbqir4N1wnpCy67uxFu&#10;qifKqPhpPwY51zpHvTbnanP21qNFFPjds2fXUf4qOYYe7l2Ls+3bn5/JuOF2jynGaeqxNOvZM9Gf&#10;dOip3KZs3JouRNuuPGiuOzP7pY+YmmdJbDTVTXHSonWO7ehRVAJAAAAAAAAAAABAqrWv6B2e1lYt&#10;Pd4124jw+Mf2Xdu5+WpiMThdOvR7lchdMUkDhUTapqyLkW7VM3bs+FFuO1VP0jvIiZ3QpVMUxrVO&#10;kLvtzoZ1A3XNE6btHVbluv8AFvX7H2e3/iudmF7bwOJu+zRPy+bCYjO8tw2vrL9OvdOs/DVlbbPo&#10;Mb31Ts16vqWlaHbmfaoiurJux9KYin/MydvJb9Xt1RHxaxidtcDb3WKKq/hH1n4Mu7W9BbZmldmv&#10;WtS1PXrsd80duMa1P7NHtf5mVt5LYp9uZq+DVcTtpj7u6xTTRHvn47vgzNtLpJs7YtNP3C23p2nX&#10;KfC9bsRVd+tyrmqf3staw1mz/p0RDUsVmeNxs/8AkXZq7td3u4Lb2V0xjkAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;ACAOAOzAPM1bbWk67TNOpaXh59Mxxxk2KLn84eNdm3d9umJ8YXdjF4jDTrYuVU+EzHyUfV/Ry6fa&#10;xFU1bftYdyr8vCu12f4Uzx/BjbmUYK5xt6eG5s2H2vzrDboxE1R/dEVfONVN1X0OtsZPM4Gr6pg1&#10;T5V1UXqY/fTE/wAWNr2ew1XsVTHxbHY9IeZUf61uirymPlP0VLUvQy1GiZ+5+58W9HlGViVUT++m&#10;qf5LCvZyv8lyPOGfs+ki1P8Ar4aY8Kon5xCsah6Jm+sOZ9ROl50R/wArKmiZ+lVMLKvIMXT7MxPm&#10;zdn0gZRcjrxXT5RPyl4Gd6O3UPA57W3Ll+Pfj5Fq5/KrlaVZPjqf6evhMMta2yyO7/X08aao+jxc&#10;rpHvfDiZu7T1eIjzpxaq4/y8rarLsZTxtT7mSo2jye57OKo9+nzeTf2buHFmfXaDqlrj87Bux/6V&#10;vOFv08bc+6V/TmmAr9m/RP8Ayp+7o3NLzrUzFeDlUTHlVYrj+jzm1cjjTPuldRisPVwuUz/yj7vj&#10;Vj3qPxrNyn9aiY/o+OjVHJ6xdtzwqj3w49iv8yr/AAyaT2K9Oj9Ue9ypx71c8U2blXyomf6HRq7F&#10;Ju2441R74fe3pWfdn2MDLr/Vx65/o+4tXJ4Uz7peM4vDU8btP/aPu72NszcOZ/5fQdUvfqYV2f8A&#10;0vSnC36vZtz7pW1eaYC37d+iP+VP3erjdIt75cRNvaerzE+E1YtVH/dwuIy7GVcLU+5YV7R5PRxx&#10;VHv1+T28H0dOoefETTty5Yj35GRat/8Aq5XNOTY6r+np4zDGXds8jtf19fCmqfo9/A9EzfWXNPrq&#10;tKwonzuZU1zH0ppld0ZBi6vamI8/2Ym96QMoojqRXV5RHzl2rfoE5mdlety914uFRV310YmFVc7/&#10;AITVVTx+5lbWRXIjS5cjyhquK27sVVa4fDz51R9IWzRfQN2diRE6nrms6lVHjFuq3j0z9Ipmf4r+&#10;jJLEe1VM/Br97bbHV/6Vumn3z9V+0P0Uul+h9iqna9nOuU/7zUL1zI5+lVXZ/gvqMtwlH5NfHewd&#10;7aXNb/G9MR3aR8mRtF2jom26Yp0nR8DTKYjjjDxqLX/bEL+i1bt+xTEMDdxN+/Ot2uavGZl63Zh6&#10;rY4ABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAImAR2YA7IJ7Pxn94I7PxBE2qavGmJ+cKaK6yj1Fv8A&#10;Mp/wwaQaz2pi1TT4U0x8oNDWU9n4qqJ7PxkEdkDs8AmI4BIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAP5jGYeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAC6dF9haf1S6q7X2hqeu/e1i63m0YH3U+y/aYsXLns2+bfbo5ia5opn2o4irnv4&#10;4n5qnoxMjzOoeyc/prvzcO1NUp41DRc+9gX5iOIqqt1zT2o+E8cx8JhWJ1jUV7xVGSuvvRr/AFE7&#10;w0/a+TrH3U1v7kYedquP9m9T9zsq/ai7OLz26u3NFNVHNfs89r8WOO/4pq6UaksavsAAZA6BdKP9&#10;ePWHbGxfup9xfu3kzj/b/s/2j1PFFVXPq+1R2vxeOO1Hi+aqujTMkKdr+l/cPXdR071vrvseTcx/&#10;W9ns9vsVTTzxzPHPHhy+oHQAAB6W2tt6pvHcGnaHouFd1LV9Rv0YuJiWI5ru3a54ppj5zPyUmdN8&#10;jd7C/wBFzjbY03Dnqj1y2j071jKtxct6Ze9Xenv8u3dv2eZie6ezFUcxPEz4rf12vsxq+tGNOv3+&#10;jy6idEtsZG78DN0vfOyLNv19etaNejm1a54iu5aqnnj40TXEecw+6btNU6cJUmNHgbX9Ej75fRA3&#10;P10++v7N9xc37H9wfud2vXfhrFvtev8AWx2f9vzx6ufxeOe/urNzSvoaGm7Vry9VAAAAGw+f6JH2&#10;L0ONO68ffX2/tmbOH97/ANzuOxxk3LHa+0et7/8AZ9rj1fnxz3cvL1nX6Gium7Vrw9VGaOhfTHSN&#10;2ZODb1PT8vWs/U7Oo38TAxMW7lVU2sTGm7VNNi1es13rlyqJt0UxdoinsVTMV80xHnVMwOh1o6fa&#10;RtnI1WrTMeNOydIzcXBzcSmm5RTzkY9V+3+DuXLtdm9b9Vdt3rVVyuKblPFNUxzEVpmZ4ksTPsAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAfXEy72BlWcnGu12MizXTct3aJ4qoqieYmJ8piYBs/6dOLZ3zm9O+ten&#10;2qKcPqJoNq9neqjiijVMWIsZdEcd0RE02/nPal42t2tPYrPaovod9PMLqH1+27RrPFO2dD9ZuHWr&#10;tcc0W8LEpm9c7f6NU000T+u+rk6U7iF60/b2gdU6t/ekZ1hvahRtPM127Y07QtNu028zWM6vm5Tj&#10;UXKon1dm1b7MVV8TPEcU98PnWadKKTvl99iYPQn0ldctbD0nYWX0f3dqXNnQdYs7gv6nh5GXxPq7&#10;GVRfjmmK5jsxXb7+1VT3cd00np0b5nWDdLEvR/0ftd6rdXb2xbly3t+5pk5F3XdQzY/BaVjY0z9p&#10;vXO/8jjjjmOappjmOeY9KqopjVTRkDO6k+jbtDLuaRo/RrV9/YFir1f3xa7unI0/Jy+O6a6LGPR2&#10;LcT4xFXaniY5jnl8aVzv10V3Pb9FXUdmar6dnTXK2Ho+qaBoFzMiY0/VsynKu2rv2e524puU0080&#10;c+HMc+/3RSvX1c6kcVG60antbrB1MwNtdN+ldGz9wX9Zv4NybGt5OoVarfu3qaLfs3p4tcVRVPs9&#10;3t9/dTD7p1pjWqSV23lpnQX0adYvbN1jaGb1p3pp8+p1vPr1y9pel4mVH+0sY1NiPWXOxPNM1VzH&#10;tRPd5R8R0698TpBuh0NU6U9NevfTjc27OkOnantDdO1sSdS1jY2pZv263dwKZ4uZOHkTEV1er5ia&#10;6a454mOPKKq9KqmYirmceD0Ok3Q3pZuD0Taeo2/NYu7ar0/ed/T8vMwZrvZ+o4tOFauW8LFszV6r&#10;1k3K6qvWVR7NMVTVMxHBVVVFfRjsOT7ejV1b6UbW9NXp/uXSdt3ti7JxYuYNydW1Oc6qL9yxetUZ&#10;dyuqmmLcTVct9qmPZo4mqJ91K6apomJ3yRxZk9Nz/R+9W979Ydy9Q9oU2t96Prd2Myizay6KMvGo&#10;7MRFuKLkxFdFMREU9iqZmmI9mHnbu0xHRncrMNMtX3B1S6Qbe17prrF7X9r6Pq0UTqG3dStV2bd3&#10;sXKa6a4t3I9n2qKZ7VHHaiOJmY7lxpTVPSh8t/PRG1bY2hf6M3eed1J0XN3FsmzrtydR0zTrk279&#10;+JvYkW4pqi5bmOLk0VT7dPdE+PhNtc1m7HR4vqODVKOleyfSx9JfRtqdBduahsvbGXiUTlU61XXf&#10;qxItzVN/Iq5v3ZmOzNEU09uOauI7ueXt0pop1rU4zuZ93jtv0HfR63Dd2FuXRdz7/wBw4NX2bUtY&#10;xMm9NGNej8emr1d+zRzTPjFFFfZ47MzMxMPOJu1743K7oYs9L/0O9r9Pen2hdX+kWt3tx9Ltaqpo&#10;mL9Xbu4NdczFM9riJmiaqaqJiuIqoriKauZnu+7dyZno1cVJjnD2PRj9DXYdfRi71u68a7kaFsSa&#10;5p07TMWqaLubEVTRFVU0xNcxVVFUU0URFU8TVzFPjSu5PS6FHFWI5y+fU7XfQl3H083NGzNubr2v&#10;uzFwrk6TN29kVW8zJ44txM13b9MU8zEz2oo7omImJ4KYuxMam5ftSxL+f/oe9r42NZuZGTe16bdq&#10;zapmqu5XOqX4immI75mZmIiIfH9aTk8ra/ok9L/Rc6HXeoHpJYFzW9y6vb7Oi7Hxs67jXqauImKa&#10;qrVdNU198duZnsW6Z4mKq5iFZuVV1dGg004tT9G6p6Xau6pi1aTVt3TcivN+wTo8zk1abayrPqb9&#10;mKciuar1uq3ERHauU1U1RNUVd9UT79F8ul1J6mU7xtVY2NTfvTkXrWTqOq5tFFGTqd+1am1bu3KK&#10;PZomKaq5nvrqrruXK666pqjs1iNBj99AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAD1Nv7W1rdmRk4+h6Rn6zfxsevLv2tPxq79VqxRHNd2qKImaaKYnvqnujzlSZ&#10;iOI6+jaLqG49VxNL0nAydU1PLuU2cfCw7NV69euTPEUUUUxM1VTPhERyrwHyz8DJ0vOyMLNx7uJm&#10;Y1yqzex79E0XLVdM8VU1Uz3xMTExMT3xMA+AAAAALTtXpTvbfWn5GftvZ+v7hwceezeydK0y/k2r&#10;U+PFVVFMxH1fM1RHGRWb9i5i37lm9brtXrdU0V266ZpqpqieJiYnwmJfQ4AAA9Lce2dY2frWTo+v&#10;aVnaJq+LMRfwNRxq8e/amaYqiK7dcRVTzTMTHMeExKkTE74HmqgAAAAD0s3bWrabomm6xl6blY2k&#10;6nVdpws27Zqps5M2piLsW6pjirszVTE8eEzHKmscBz3FtPXNoZGLY13RtQ0S/l41GZj2tRxa8eq9&#10;Yr57F2iK4iaqKuJ4qjunieJImJ4D1M/pVvXS9r2ty5uz9fxNuXYpqt6vf0y/RiVxPhMXpp7E88xx&#10;3qdKNdNR09pbD3Nv7MvYm2Nu6tuPKs0esu2NJwbuVXRR+dVTbpmYj4yrMxHEeVqGn5Wk51/Czsa9&#10;h5liubd7HyLc0XLdUTxNNVM98THulUWPD6Tb41Ha93cuJs3cGVty1RVcuaxZ0u/Xh0U099VU3oo7&#10;ERHE8zz3cPnpRrpqPP2nsfce/dRq0/bOgapuLPpp7c4uk4VzKuxT7+zbpmePirMxHEfaOne66t2T&#10;taNsazO54q7P3FjAu/beez2uPU9nt89mefDw7zWNNR0dybX1nZ2rXdK1/SM/Q9Ts8TcwtSxq8e9R&#10;z4c0VxFUfWCJid8D6aHtDXtz4mqZWj6JqOrY2l485efewcS5eow7EeN27VTExbojifaq4j4kzEcR&#10;7u0uiXUTf+k/dTa+wtz7k0z1lVr7bpGjZGVZ7ccc09u3RMcxzHMc898KTVTHGR529Omu7um9/Fsb&#10;t2rre1r2VTVXj29a069h1XqYniZoi5TT2oiZjmY96sTE8JFcVAAAAAAG1HSX/wC+b0Lepmwq/wAN&#10;rmwsu3vXR6fGucSY9VnUR7qKKZ9ZMedVUPGrq1xPbuV4w87p1/8AdF6Ge/8AeFX4HXOoOoW9oaXV&#10;4V04Nri/nXKffRXMW7U/GCetXEdhyZI3Da6Sz6Fvo809QcreuNi1Tr1dj70MbEu0VZH22Iu/aPX3&#10;KeKop9X2OOfZmp8x0unV0Vd2jHO1NY9FzaG6NH17C1PrF9s0vMs51jtadpXHrLdcV088ZHPjTD6m&#10;LkxpuU3MhbP37pPU6r0yt37SxsrDr1zQ6s/EsZVFNGTTh3MumrL7cUVVRHdPNXFUx3+L5mNOhEq9&#10;rSRcPln/ANAeYp9MHphzPH/2lVHf/wDBuPK77EqxxWj0M6cKP9IHtaNQimLMa9qHZivw9b6rI9V4&#10;+frOxx8eFLn+nJHFrXuec+rcurTqvb+6c5d77V6z8b13bnt8/HtcvWOG5RsR/o5e1PpRaVTf/wD3&#10;LVpGrRq3P4n2T7De7Xb/AEe36vx+Dyu+wrHF18z/APDl03/+qV//APxVs/qeRya2PZRmfpD6Y3WD&#10;odYsYe1d651rSbPdRpWf2cvEpp/Npt3Yqi3H6nZn4vOq3TVxhXWW/vSfrDp/+kj9HrqRtzqHtXTs&#10;Hc218KMnG1jComLVu7ct3ZtXrfamarVUVWZ7dPamKqZ48OYi1qp9TVE0y+uLFHS7/wDCB6nf/wA7&#10;j/8Au8F6Vf60KcnU/wBDZ9i/12b49Z2fuj970ep5/G9V9ptes4+HPqv4GI9mClohuj7o/fNq/wB2&#10;PWfdb7Ze+2et/H9d259Z2ufPtc8rmOG58v0C6L+s/wD1RvVT7u8/c/7rXfud638Xj1uH2Ozz/wDx&#10;Hb+vK1q/1o0fUcE+nvTe/wD0GfRqnSeY239gw/Xer/E9f9z6PVdr9Lj7R9e0Wv8AUqJ4PzpXb5fr&#10;96KHV/avQj/RzbK3pu/T7upabp2pZPqrOPYpvXab9Wo36aK6IqmIiaeZntcxMcTx38LCumarkxD7&#10;jdDXb/SkdKdY1Xc+h9a9I1zI3X0+3JiWLeLkRX27WmzNHNFFEeFNq5HNdM/nzXE98xz7Wao06PNS&#10;e1oUuXyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyr6LnV&#10;Sjoz162fujJmPuVZzIxtTorjmmvCvRNrIiqPCeLddU8T50w+K6elTMEM/wDS/pXT6MnpB9bd3Z1q&#10;KtO6UYOVkaRXe9qm9l5n4LS4q58e1Re7fPfxNPLyqq6dMR2q8HhdFPQ5+/7pFp/Uzcujb53jTuHO&#10;yLWDpmyLVib9FFquaLuTk3r8VRHNyK6aaIp5q7MzzHlWq5pPRgiHW3B6Ddei+kTf2Tk6/kaRtDH2&#10;3O88zWNTxOzl4Gk00dq5F6xTPHrqK4m3NMTxM8T3R3Qi5rTrz4GjHW7sP0er2Ph17X1LqNiXLOo2&#10;LeZb1fFwb85OFNX4a7Z9XVRFu5TTEzTRXNUTM0x2o75j7jp89Dcy/wCkd6Nm0Nz+mxY6SdLLeXou&#10;o5mXbx87Gy8a3Rp+BT9ltXpuY803Kq7lMW4u3K4rime1HEcxPLzormKOlUTG9XtE6C9FusOq61sv&#10;pbund17fmDiZOTp2Rr+PjRpuu1Y9FVdy3Zpt/hLE1U0VVUTXNXdHfxL6mqqnfVG40h513oN0v2l6&#10;M2wep+7dwbijVd14+q2cXQ9KpsVTdy8fJuWbdztV0xFuxRTTRNzmaqqpu09ns950qpqmmORpuZU0&#10;Pc+tdd+l/S/Q+jHVj/V/u3a2jWtMyNg3dTuaPOpZtNVU1ZeNepmLd+5emrmaK5iY4n3zz8TEUzM1&#10;RrrzV48Fc2Nsbam5ukXpFbm642dzf6xdE1nTaNRzbOFYuZeHVev10x6qK7tETVXcpuU3Inimm3Tb&#10;miauZiKzMxNMUcFPFjjZPRjp9tjo3onUnq1qu4qMHcuZk4mgaHtWixGVk0Y9UU38m5dvxNFFFNcx&#10;R2YpmqZ+Hh9zVVNXRpHq6t6H0bl6n9LtJ6d69Xq+0upVm5laLqmqWItX8WizNUZdvIopmYmuxFFU&#10;z2J4q47uFPWaRPS5GiudQ9E9HnT9H1vT9pbg37m7j0+macTVM/ExJ03U7lNUUz2bdM03bNFUc1U1&#10;VVVTxHfHPdP1E18zc2V9N/0ecTTusvWDq11J+6WmbQu14mHtvH027boyda1GrDtxTTTVVTXFuzb9&#10;VcmuqqnmYp4p5l426+rFNPFWY5tDNq7az957o0fb+l24vanq2ZZwMW3VPEV3btcUURz5c1VQuZnS&#10;NXy2B6j9MfR+6X6vrmx9R3TvnUt66NTexcvXNNw8SdJjPtxMVWabFcxeqoi5E25r7cd8c8cd7yiq&#10;urfpuV3OFnor0n6VbG2VqfV7Wd23dwbw06jWsLSto2saI0/T7lVVNm/frv8APrKrnZqqiijjiInm&#10;fDl0qqpno8jxWranoS7fyOsO9tra7vK5a2thbDub40PdONbi3bvYk1WPVX79qqmqqaIouXe1bpmK&#10;pm33VRCk3J0iYjnoaOvtzoD0H6idM90b42/u7euj6PsbIxp3HGt4mLcvZuPf9ZRZ+xUWpiKLly7R&#10;FEU3Kqop7XMzPHEpqriYiY4mkMc9f+jW1dobd6b7w6e5utZ+1t8YeTcxMTXaLU52PkY+RNi9bqm1&#10;EUVRNXHZmIh90VTMzFXImFx6+73t9GOs3T/auLpWl7gxelmkYun3NN1O3N3CyNSqpnIzLldFNUc8&#10;ZF6Y4545sxzzHPPzRHSpme0nc73p2711fW+oXRrd2dft5Wu5nTrQNVv371iiui5kV+tu1VVW5iaJ&#10;ia5mZpmOz38ccdylqIiJjvJZL6B9S+qOLTuPrX1r3bqP+qrUdOzcWdD1nJn1W5Lt2zXRbxcLDmez&#10;FMVVRPbppimmKZjnjt8fFUU+xRG9WO2Xi+jrp2oUehhq2nY+/cfo3rO4N4039G3Dm51WFRrlNnG7&#10;FzEqvW/bt2rdfFXrJjsduuKfGZ4rX7fDXcRwe31D6b2esn+kS6cbC3VjXMy5Y0rTMbXNTu0diNfr&#10;xcKq/fyYq7u1Rdi3Nvt+cU9ykT0bczBzdTqxib46/azvWdl9fdL13Px8TKq/1bbey83FxKNMt0zF&#10;WLi80UY+T2bUcVRRz2+zM81d3NadKNNafM4vZz9Aw+k3o5dJdpaV1j0no3XurR7W6NXzbcZdWpat&#10;fye+xTcqxqJqtY9qj2YmqqmmZ57pmmqVNelVM6a6HJ4/TPQN5dOdxdc9k6xvjExete5dD025tfeO&#10;XrPFOp4kXIru04+fcmJib1iLdNEzMT+D47uzzFapiYpmI3DyPSW2Tuy/6IPTvO6g6li7l6jaduzI&#10;0HFyMPULep5X2K5j+tjGvX7dVcXLlF2mOIiqrsxcpjmJmYVomOnPR4E8Fj6L5WB006f9aukGmRYv&#10;6jg9NNZ1fdmoW+KvW6rzj26MSmqPyMW3cuW54nibty9Phw+at8xV3kdjU/of/rA3nvjb2wNl7k1n&#10;S72tZ9GPbsYOdetWrc1THbu1U0VRHFNMTVVPupl71dGI1l8wt/pn9WcfqZ1fr0zRs6/n7S2ji29u&#10;6PfyL03a8i3Y9m5k1VzPt1Xbnbr7c98xNPPg+bdOkb+assCvVQAAAAABmb0Q+r2n9Feu+g65rtX/&#10;AOyuXTd0rXbc0VXKa8HIom3dmqmmJqqinmm52YiZnscRE+DzuU9KnSFY3Pb9LfqNszX8jYuxummq&#10;3dZ6f7K0f7Jh513GuY85WXeuTeyr/q7lNNVM1VTRE8x40TxMxxKluJjWauMkuv0Y6z7SnptqfSfq&#10;phahlbIy82NT03V9IimrO0LO7PYqu26a+IuWq6eIrt8x4TMe0VUzr0qeI9Ox0f8AR30+/wDbM/0g&#10;s3VdPontTp2l7My7Wddp/Miq7VFqir4zVVB0q/0/E3Kj01616f0P645259naXkahsy/Xk4FzQtcr&#10;pm5naVe5prxsiqiJp7U0cTzETEVU0zxMRxNZp6VOk8VOC6al0z9G/d+dXq2h9aNS2Fp2RV6z739w&#10;7Wys7Jw+e+aKb+PNVFyI8ImZieOOZmeZfPSrjdMaq7lKvbo2p0K63bV3L0t1/P3hh6Bexs6rN1XB&#10;+wxk5FFyZuW6bfaqqptVUxTHM+17VXuiZ+tJqpmKjg9frZvLYun9V9K6m9Htf1PEz87UK9cu6NqG&#10;D6q7oWZFym5FFN2Jmi9RNc1zTx4U0xFXPJTE6dGonuXPemd0H9JPWb+9NS3jl9F946jV6/W9MvaH&#10;f1TTMnKn/aX8auxM3LcVzzVNFdM+1VPf5z8x06N2msG6XR1Dqn026A9Otz7W6SanqW8d27pxJ0zV&#10;t8Z+DOBZx8CqYm5jYePVM1x6ziIrrrmO6I4jn8V0aqpiajhwVTJ6j7duehXg7Dp1Hnddvf13Wq9P&#10;9Rc7sOdPosxd9Z2ex/tImOz2u158cd760np69xyeP6M+7Ommy+p9rUurG28zdW0/sl6zVgYVNNVX&#10;ra4imm5NNVdHMUxNc91UTE9mY74VriqY6qkNo7+1PQA3Jd+6FO8t4bVpme19yrdnLuRT+jzONen4&#10;f7T6vDW9HJ9bnT6qemd0s6W9Gtb6V+jjtnM0zE1y3VZ1Xc+oxVTevUVU9mvsdqZuVVVUzNPaq7MU&#10;RM9mnmYmK026qqulXJr2Kf6FvpbbP6X7H3b0o6r6Pkax023NXVerrxaZrrxbtVFNFfapiYqmmqKL&#10;cxVRPaoqoiYieeY+rlE1TFVPFSJVzK6y7F9GL0oNM3f6P+bqOubUwsaijIo1mqumM6LkT9osR2rV&#10;FdNERNERNVMzFdHa5qjhXozXTpWcJ3M87x3Z6DvpCbgu783Pqm59hbjzqvtGpaRiY16KMq9+XVV6&#10;qxeo5qnxqoqo7X40xEzMvOIu0RpG9XdLFfpfemLtnqJ0+0LpD0j0O9trpdotVNc+vp7F3Oro5mj2&#10;eZmKIqqqrma5mquqYqq4mO/7t25ielVxUmeUPY9GT0ydiUdF7/RHrvoeTrmxO1NWnaniUzXeweap&#10;rimqKZiuIpqmaqa6JmqOZp4mnwpXbnpdOjirE8pfLqZoHoTbZ6d7mq2ZuXdu6925WFcp0mm/ZyKa&#10;MPJ45tzPbs2KZp54irtTX3TMxEzwRN2ZjU3Ovq3pA7Byf9GpovSq1r3a37j6pVkXdJ+x5Edm3Odd&#10;u8+t9X6qfYrpniK+e/jx7joz63pclNdz2PQq9LfZGkdK90dFeuOVXPTrPx7lWn5dePdyJxaqqua7&#10;EU2qK64jtT62iqI9iumqee+OKXLc6xVRxVieUtPN/aPomgbz1jT9ta9RufQLGRVTg6tRj3cf7TZ8&#10;aapt3KaaqauJ4mJjxieJmOJm4jWY3vl4CoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAA2c63elppvVH0d9obKwdMzcPdn/hfvr1S9TRFvUYwrNVjD7NUVzVX7FX&#10;ar7VNPFVMcdrxeNNvo1TKszueDsjrN0/3L0b0jpr1Z0rcNeBtzNyczQNc2tXYnKxaciYqv49y1em&#10;KK7dVdMV9qKoqifgrNNUVdKk8Xx2F112b0a6yZ2rbO2vqmd091PR7u39W0bX86irL1HDvURTkTNy&#10;3TFNqqqaaa4inmImnjnie5NM1U6TO8eP1HzuhFnbGba2Bpm+8rX8q7RNnI3NkYlrHwLcVc1xTTYi&#10;qb1UxzTzVNERzzxzHE1jp69Y3Mk799Lfbub162n112jpGr6f1Ft3bd3cGl6jVar0u9NGNTj1Rj10&#10;z6yIuW4riqKqfZ7XMcviLc9GaJ4GvNw0Xrz0X6Qapre8+lu1t22N+Z+Jk4unY+vZGNOm6FORRVRc&#10;uWarf4S9NNNdVNHbinunv5lXo1Vbqp3GsMadS+rmkby6DdGtkYWPnWtU2Zb1ejPu5FFEWLs5eZ6+&#10;36mYrmqeKe6rtU08T4cx3vqKZiqZ7VFq2huf0armj7fzNx7W6h6TuPTbNqnMx9v6jjXsLUr1vjm7&#10;VXe7NyzNcxzMUcxTzxT71JivlMK7lmx/S8211C3d1s/1lbe1SxtbqdXg3r33s3bVWbpteFXzizR6&#10;3s0XO7ur57PPfMcc93z6uYiOjyNVY2n1n6cbm6TaX016oaXuW5o+2tQyszbeu7aqx/tuPayKoqvY&#10;961emLdVNVVMV9qKomKvfHj9TTVE9Kkehqnpgxtrqh0u1fp5oNekbS6bWa8XRdL1S/F2/lUXpqnL&#10;uZFdMREV34rqiezHFPMccqer1iYq5mrw9+a/6Ombpuualtfbe/bGv6har+x6Rn5mJRpmmXq/yqbt&#10;EVXb1FEz7NFVNPMRxM+asRXzNzI+9fS/2X1C6xdY6tb0vXb/AEq6hY1ifsnqLM6jp+dj49ujGzLd&#10;ubvq+1TcoqiYi5Haoq75njsvmLcxTGnGDVr1ibk25svF6f7g2hd1u1v7Scy5n6rc1GmzOBRetZFN&#10;eFOLFM9ufYp5uRc/K/F7nrpM6xPBRmDf3VL0eepm4tV35q+0d9Ye7tWquZmdt7Tc7Fo0m7m18zXc&#10;pyKom9RRVXM1zT2JnmZ4nh5xTXG6J3K7nWsdaulHVTY2y9M6u6Nuy3r+z9Po0bC1XaN3GmM/T7dV&#10;VVmxfov8erqt9qqmK6OeYmeYk6NVMz0eZ4vVn0wdJ1nfPU3V9Q0HK0nRtY6dZGw9taTp00340+1+&#10;BjGpu111UzNMRbrmqqOZ5q7qZjwernSI79TVjPp11b0jaPo+9YNi5mNnXNW3hd0WvAvWKKJsWow8&#10;i7du+tqmuKo5iuOz2aauZieePF9TTM1RPYoyPsDrt0+ysH0b9H3PRqGNhdNb+r5+r13MaK7WXcuZ&#10;c5mLas9iqqqqKqqLdFU100xHanxjvfM01daY5q6sB5e5LG9upN3X94X8yrF1bVpztYv6dTTVk9i7&#10;e7d+q1TXMUzXxVVNMVTEc8czEPXTSNIUbBdcesnQ7qNuLpJqGmYm+MrE2niaRt/U8LWMPDt0Zek4&#10;na9ZVRNu/VM364njiZpo7574eNNNcRPerMw9frX1e9HrrvvjL3HuHXusERVPq8HTbGmaXGLp2PHd&#10;Rj2KPtPFFFMREd3jxzPMzMlNNdMaRorMxKu6V1q6N7r6X6V036haRvSvQNo6pqGRtXXNv1YlOfOH&#10;k3vWVWcu1dn1famYpqmqiqeJ7o7ontV6NUT0qeam54u7/SyyqvSA2X1C2bo/3D07ZGDhaPoWm5l6&#10;b9ycHGoqoii/cjjtVXKa7kVTHhFfETPHM1i31ZpnmarlonpB9C+lm4dW6hdONm7wwuoWXiZVrA0v&#10;VcvGq0bR7uRbqt3Llqqj8LdimmuuKaa4iOJ7+O6Y+Zorq6tU7jWFd0jrX0o6mdO9pbf6y6JuuNY2&#10;jifczTNf2ddxvW5WBFU1W8bIt5HFMermqqKa6Z54nvjx5r0aqZmaeZu5unvXrN0z63dXPulvnSNz&#10;7f2HpWhY2g7f0/a9zHv5uLZxuzTZ9bVf4priafWzVxxPNVPEzFPfWKaqY3cTXV53V/0jcbV72wdE&#10;6Z6fm7Q2bsGucnQqMy9RezbubN2LtebkVRHZm7NdNPFMc008cR3TwU0cZq4yash9K/8ASJdSNFxt&#10;82t77z3BrkaltnM0/RYsWrFUYmp11W/U5FfPY4ppppuRMx2p9qPZny+arVM6aQasTdBesGj9FdG3&#10;7q9vGzru/tQ0irSNvZdq3R9nwIvz2crIqrmuKqbsWuabfZpnvrq5mH3VTNWkclGIHoAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&#10;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP//Z&#10;"
56
+ id="image1"
57
+ x="2.216579"
58
+ y="37.382408"
59
+ style="display:none;opacity:0.5" /></g></svg>
data/icon.webp ADDED
Binary file
@@ -0,0 +1,169 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Smother
4
+ class Instance
5
+ def initialize(paths, logger)
6
+ @paths = paths.map { |path| File.expand_path(path) }
7
+ @logger = logger
8
+ end
9
+
10
+ def run
11
+ @user_defined_methods = user_defined_methods
12
+ execute_with_nil_overwrite
13
+ self
14
+ end
15
+
16
+ def and_print
17
+ print(@user_defined_methods)
18
+ self
19
+ end
20
+
21
+ private
22
+
23
+ def user_defined_methods
24
+ result = {}
25
+
26
+ ObjectSpace.each_object(Class) do |klass|
27
+ next if klass.name == "Smother"
28
+
29
+ next if klass.name.nil?
30
+
31
+ instance_methods = klass.public_instance_methods(false).select do |method_name|
32
+ location = klass.instance_method(method_name).source_location
33
+ is_user_defined?(location)
34
+ rescue
35
+ false
36
+ end
37
+
38
+ class_methods = klass.singleton_class.public_instance_methods(false).select do |method_name|
39
+ location = klass.method(method_name).source_location
40
+ is_user_defined?(location)
41
+ rescue
42
+ false
43
+ end
44
+
45
+ next unless !instance_methods.empty? || !class_methods.empty?
46
+
47
+ result[klass.name] = {
48
+ instance_methods: instance_methods,
49
+ class_methods: class_methods
50
+ }
51
+ end
52
+
53
+ result
54
+ end
55
+
56
+ def execute_with_nil_overwrite
57
+ # Executing methods randomly causes so many pesky nil errors. Let's fix that.
58
+ original_methods = Proxy
59
+ .instance_methods(false)
60
+ .each_with_object({}) do |method, object|
61
+ object[method] = NilClass.instance_method(method) if NilClass.method_defined?(method)
62
+ end
63
+
64
+ NilClass.prepend(Proxy)
65
+ execute
66
+ Proxy.instance_methods(false).each do |method|
67
+ NilClass.undef_method(method)
68
+ rescue
69
+ nil
70
+ end
71
+
72
+ original_methods.each do |method_name, method|
73
+ NilClass.define_method(method_name, method)
74
+ end
75
+ end
76
+
77
+ def execute
78
+ @user_defined_methods.each do |class_name, methods_hash|
79
+ begin
80
+ klass = Object.const_get(class_name)
81
+ rescue => e
82
+ @logger.debug("[Smother] Failed to load class #{class_name}: #{e.message}")
83
+ next
84
+ end
85
+
86
+ klass.prepend(Proxy)
87
+
88
+ methods_hash[:class_methods].each do |method_name|
89
+ execute_class_method(klass, method_name)
90
+ @logger.debug("[Smother] Successfully executed class method #{class_name}.#{method_name}")
91
+ rescue => e
92
+ @logger.debug("[Smother] Error executing class method #{class_name}.#{method_name}: #{e.message}")
93
+ end
94
+
95
+ begin
96
+ instance = klass.new
97
+
98
+ methods_hash[:instance_methods].each do |method_name|
99
+ execute_instance_method(instance, method_name)
100
+ @logger.debug("[Smother] Successfully executed instance method #{class_name}##{method_name}")
101
+ rescue => e
102
+ @logger.debug("[Smother] Error executing instance method #{class_name}##{method_name}: #{e.message}")
103
+ end
104
+ rescue => e
105
+ @logger.debug("[Smother] Could not instantiate #{class_name}: #{e.message}")
106
+ end
107
+ end
108
+ end
109
+
110
+ def execute_class_method(klass, method_name)
111
+ method = klass.method(method_name)
112
+ args, kwargs = generate_method_args(method)
113
+
114
+ if kwargs.empty?
115
+ klass.public_send(method_name, *args)
116
+ else
117
+ klass.public_send(method_name, *args, **kwargs)
118
+ end
119
+ end
120
+
121
+ def execute_instance_method(instance, method_name)
122
+ method = instance.method(method_name)
123
+ args, kwargs = generate_method_args(method)
124
+
125
+ if kwargs.empty?
126
+ instance.public_send(method_name, *args)
127
+ else
128
+ instance.public_send(method_name, *args, **kwargs)
129
+ end
130
+ end
131
+
132
+ def generate_method_args(method)
133
+ params = method.parameters
134
+ args = []
135
+ kwargs = {}
136
+
137
+ params.each do |param_type, param_name|
138
+ param_name ||= :unnamed
139
+
140
+ case param_type
141
+ when :req, :opt
142
+ args << generate_value_for_param(param_name)
143
+ when :keyreq, :key
144
+ kwargs[param_name.to_sym] = generate_value_for_param(param_name)
145
+ end
146
+ end
147
+
148
+ [args, kwargs]
149
+ end
150
+
151
+ def generate_value_for_param(param_name)
152
+ Smother::Mock.new(param_name)
153
+ end
154
+
155
+ def is_user_defined?(location)
156
+ return false unless location
157
+
158
+ @paths.any? { |path| location.first.start_with?(path) }
159
+ end
160
+
161
+ def print(methods)
162
+ methods.each do |class_name, methods_hash|
163
+ @logger.info("[Smother] Found class: #{class_name}")
164
+ @logger.info("[Smother] Instance methods: #{methods_hash[:instance_methods].join(", ")}")
165
+ @logger.info("[Smother] Class methods: #{methods_hash[:class_methods].join(", ")}")
166
+ end
167
+ end
168
+ end
169
+ end
@@ -0,0 +1,27 @@
1
+ module Smother
2
+ class Mock
3
+ def initialize(name = "anonymous")
4
+ @name = name
5
+ end
6
+
7
+ def method_missing(m, *_args)
8
+ Mock.new(m.to_s)
9
+ end
10
+
11
+ def respond_to_missing?(*_args)
12
+ true
13
+ end
14
+
15
+ def to_str
16
+ ""
17
+ end
18
+
19
+ def to_hash
20
+ {}
21
+ end
22
+
23
+ def to_ary
24
+ []
25
+ end
26
+ end
27
+ end
@@ -0,0 +1,29 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Smother
4
+ module Proxy
5
+ def method_missing(method, *_args)
6
+ Smother::Mock.new(method.to_s)
7
+ end
8
+
9
+ def respond_to_missing?(*_args)
10
+ true
11
+ end
12
+
13
+ def to_s
14
+ to_str
15
+ end
16
+
17
+ def to_str
18
+ ""
19
+ end
20
+
21
+ def to_hash
22
+ {}
23
+ end
24
+
25
+ def to_ary
26
+ []
27
+ end
28
+ end
29
+ end
@@ -0,0 +1,5 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Smother
4
+ VERSION = "1.0.0"
5
+ end
data/lib/smother.rb ADDED
@@ -0,0 +1,15 @@
1
+ # frozen_string_literal: true
2
+
3
+ require_relative "smother/version"
4
+ require_relative "smother/proxy"
5
+ require_relative "smother/mock"
6
+ require_relative "smother/instance"
7
+
8
+ module Smother
9
+ class << self
10
+ # Der Name ist Programm!
11
+ def my_code(paths: ["."], logger: Logger.new(nil))
12
+ Instance.new(paths, logger).run
13
+ end
14
+ end
15
+ end
metadata ADDED
@@ -0,0 +1,58 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: smother
3
+ version: !ruby/object:Gem::Version
4
+ version: 1.0.0
5
+ platform: ruby
6
+ authors:
7
+ - hschne
8
+ bindir: exe
9
+ cert_chain: []
10
+ date: 2025-04-26 00:00:00.000000000 Z
11
+ dependencies: []
12
+ description: Smother is a revolutionary tool to increase your code's test coverage
13
+ in seconds.
14
+ email:
15
+ - hello@hansschnedlitz.com
16
+ executables: []
17
+ extensions: []
18
+ extra_rdoc_files: []
19
+ files:
20
+ - ".rubocop.yml"
21
+ - CHANGELOG.md
22
+ - CODE_OF_CONDUCT.md
23
+ - LICENSE.txt
24
+ - README.md
25
+ - Rakefile
26
+ - icon.svg
27
+ - icon.webp
28
+ - lib/smother.rb
29
+ - lib/smother/instance.rb
30
+ - lib/smother/mock.rb
31
+ - lib/smother/proxy.rb
32
+ - lib/smother/version.rb
33
+ homepage: https://github.com/hschne/smother
34
+ licenses:
35
+ - MIT
36
+ metadata:
37
+ allowed_push_host: https://rubygems.org/
38
+ homepage_uri: https://github.com/hschne/smother
39
+ source_code_uri: https://github.com/hschne/smother
40
+ changelog_uri: https://github.com/hschne/smother/CHANGELOG
41
+ rdoc_options: []
42
+ require_paths:
43
+ - lib
44
+ required_ruby_version: !ruby/object:Gem::Requirement
45
+ requirements:
46
+ - - ">="
47
+ - !ruby/object:Gem::Version
48
+ version: 3.1.0
49
+ required_rubygems_version: !ruby/object:Gem::Requirement
50
+ requirements:
51
+ - - ">="
52
+ - !ruby/object:Gem::Version
53
+ version: '0'
54
+ requirements: []
55
+ rubygems_version: 3.6.5
56
+ specification_version: 4
57
+ summary: Don't just cover your code. Smother it.
58
+ test_files: []