smalltext 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +12 -0
- data/.rspec +3 -0
- data/.travis.yml +7 -0
- data/CHANGELOG.md +0 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +6 -0
- data/Gemfile.lock +45 -0
- data/LICENSE.txt +21 -0
- data/README.md +148 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/intent_class.nn +110 -0
- data/lib/smalltext.rb +348 -0
- data/lib/smalltext/version.rb +3 -0
- data/smalltext.gemspec +48 -0
- metadata +172 -0
checksums.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
---
|
|
2
|
+
SHA256:
|
|
3
|
+
metadata.gz: 4073482150c4b9864de23d5a8c4665c388e94c2b657de026e0bb9d29399110b3
|
|
4
|
+
data.tar.gz: ca5bc424871f2a3fe76b9fc81a8b0538108292c5f6fd41896d31c006ac7e4fda
|
|
5
|
+
SHA512:
|
|
6
|
+
metadata.gz: 6247ce3a178fc8d660ead9e4e92a6e3321f0c78019494a7f47c1d8fe7227c831ed39ec1c30519c4dd32045dd8941202c8048d3dcd83c32a853e444bbf0d24599
|
|
7
|
+
data.tar.gz: 3013217a0bf23d751206bb71acc94f0c0e57d4c3636bb68a55f65fd9e5e114f7e944f4a68103d7b62d56933726902a209d9324b711ed346bfd410bb183be6f55
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/.travis.yml
ADDED
data/CHANGELOG.md
ADDED
|
File without changes
|
data/CODE_OF_CONDUCT.md
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
# Contributor Covenant Code of Conduct
|
|
2
|
+
|
|
3
|
+
## Our Pledge
|
|
4
|
+
|
|
5
|
+
In the interest of fostering an open and welcoming environment, we as
|
|
6
|
+
contributors and maintainers pledge to making participation in our project and
|
|
7
|
+
our community a harassment-free experience for everyone, regardless of age, body
|
|
8
|
+
size, disability, ethnicity, gender identity and expression, level of experience,
|
|
9
|
+
nationality, personal appearance, race, religion, or sexual identity and
|
|
10
|
+
orientation.
|
|
11
|
+
|
|
12
|
+
## Our Standards
|
|
13
|
+
|
|
14
|
+
Examples of behavior that contributes to creating a positive environment
|
|
15
|
+
include:
|
|
16
|
+
|
|
17
|
+
* Using welcoming and inclusive language
|
|
18
|
+
* Being respectful of differing viewpoints and experiences
|
|
19
|
+
* Gracefully accepting constructive criticism
|
|
20
|
+
* Focusing on what is best for the community
|
|
21
|
+
* Showing empathy towards other community members
|
|
22
|
+
|
|
23
|
+
Examples of unacceptable behavior by participants include:
|
|
24
|
+
|
|
25
|
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
|
26
|
+
advances
|
|
27
|
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
|
28
|
+
* Public or private harassment
|
|
29
|
+
* Publishing others' private information, such as a physical or electronic
|
|
30
|
+
address, without explicit permission
|
|
31
|
+
* Other conduct which could reasonably be considered inappropriate in a
|
|
32
|
+
professional setting
|
|
33
|
+
|
|
34
|
+
## Our Responsibilities
|
|
35
|
+
|
|
36
|
+
Project maintainers are responsible for clarifying the standards of acceptable
|
|
37
|
+
behavior and are expected to take appropriate and fair corrective action in
|
|
38
|
+
response to any instances of unacceptable behavior.
|
|
39
|
+
|
|
40
|
+
Project maintainers have the right and responsibility to remove, edit, or
|
|
41
|
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
|
42
|
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
|
43
|
+
permanently any contributor for other behaviors that they deem inappropriate,
|
|
44
|
+
threatening, offensive, or harmful.
|
|
45
|
+
|
|
46
|
+
## Scope
|
|
47
|
+
|
|
48
|
+
This Code of Conduct applies both within project spaces and in public spaces
|
|
49
|
+
when an individual is representing the project or its community. Examples of
|
|
50
|
+
representing a project or community include using an official project e-mail
|
|
51
|
+
address, posting via an official social media account, or acting as an appointed
|
|
52
|
+
representative at an online or offline event. Representation of a project may be
|
|
53
|
+
further defined and clarified by project maintainers.
|
|
54
|
+
|
|
55
|
+
## Enforcement
|
|
56
|
+
|
|
57
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
|
58
|
+
reported by contacting the project team at arjunmenon009@gmail.com. All
|
|
59
|
+
complaints will be reviewed and investigated and will result in a response that
|
|
60
|
+
is deemed necessary and appropriate to the circumstances. The project team is
|
|
61
|
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
|
62
|
+
Further details of specific enforcement policies may be posted separately.
|
|
63
|
+
|
|
64
|
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
|
65
|
+
faith may face temporary or permanent repercussions as determined by other
|
|
66
|
+
members of the project's leadership.
|
|
67
|
+
|
|
68
|
+
## Attribution
|
|
69
|
+
|
|
70
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
|
71
|
+
available at [http://contributor-covenant.org/version/1/4][version]
|
|
72
|
+
|
|
73
|
+
[homepage]: http://contributor-covenant.org
|
|
74
|
+
[version]: http://contributor-covenant.org/version/1/4/
|
data/Gemfile
ADDED
data/Gemfile.lock
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
PATH
|
|
2
|
+
remote: .
|
|
3
|
+
specs:
|
|
4
|
+
smalltext (0.1.0)
|
|
5
|
+
croupier
|
|
6
|
+
numo-narray (~> 0.9.1.3)
|
|
7
|
+
porter2stemmer
|
|
8
|
+
rambling-trie
|
|
9
|
+
tokenizer
|
|
10
|
+
|
|
11
|
+
GEM
|
|
12
|
+
remote: https://rubygems.org/
|
|
13
|
+
specs:
|
|
14
|
+
croupier (1.6.0)
|
|
15
|
+
diff-lcs (1.3)
|
|
16
|
+
numo-narray (0.9.1.3)
|
|
17
|
+
porter2stemmer (1.0.1)
|
|
18
|
+
rake (10.4.2)
|
|
19
|
+
rambling-trie (2.0.0)
|
|
20
|
+
rspec (3.8.0)
|
|
21
|
+
rspec-core (~> 3.8.0)
|
|
22
|
+
rspec-expectations (~> 3.8.0)
|
|
23
|
+
rspec-mocks (~> 3.8.0)
|
|
24
|
+
rspec-core (3.8.0)
|
|
25
|
+
rspec-support (~> 3.8.0)
|
|
26
|
+
rspec-expectations (3.8.2)
|
|
27
|
+
diff-lcs (>= 1.2.0, < 2.0)
|
|
28
|
+
rspec-support (~> 3.8.0)
|
|
29
|
+
rspec-mocks (3.8.0)
|
|
30
|
+
diff-lcs (>= 1.2.0, < 2.0)
|
|
31
|
+
rspec-support (~> 3.8.0)
|
|
32
|
+
rspec-support (3.8.0)
|
|
33
|
+
tokenizer (0.3.0)
|
|
34
|
+
|
|
35
|
+
PLATFORMS
|
|
36
|
+
x86-mingw32
|
|
37
|
+
|
|
38
|
+
DEPENDENCIES
|
|
39
|
+
bundler (~> 1.17)
|
|
40
|
+
rake (~> 10.0)
|
|
41
|
+
rspec (~> 3.0)
|
|
42
|
+
smalltext!
|
|
43
|
+
|
|
44
|
+
BUNDLED WITH
|
|
45
|
+
1.17.1
|
data/LICENSE.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
The MIT License (MIT)
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2018 arjun
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
|
13
|
+
all copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
# Smalltext
|
|
2
|
+
|
|
3
|
+
Welcome to your new gem! In this directory, you'll find the files you need to be able to package up your Ruby library into a gem. Put your Ruby code in the file `lib/smalltext`. To experiment with that code, run `bin/console` for an interactive prompt.
|
|
4
|
+
|
|
5
|
+
Classify short texts with neural network.
|
|
6
|
+
|
|
7
|
+
This gem is specifically created to classify small sentence/datasets using a supervised training algorithm. You can use this in place of Naive Bayes.
|
|
8
|
+
|
|
9
|
+
## Installation
|
|
10
|
+
|
|
11
|
+
Add this line to your application's Gemfile:
|
|
12
|
+
|
|
13
|
+
```ruby
|
|
14
|
+
gem 'smalltext'
|
|
15
|
+
```
|
|
16
|
+
|
|
17
|
+
And then execute:
|
|
18
|
+
|
|
19
|
+
$ bundle
|
|
20
|
+
|
|
21
|
+
Or install it yourself as:
|
|
22
|
+
|
|
23
|
+
$ gem install smalltext
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
## Dependencies
|
|
27
|
+
|
|
28
|
+
Gem depends on Numo/NArray, Porter2Stemmer, Tokenizer, Croupier
|
|
29
|
+
|
|
30
|
+
Gem dependencies should be automatically installed.
|
|
31
|
+
|
|
32
|
+
## Usage
|
|
33
|
+
|
|
34
|
+
Classification is easy to get started.
|
|
35
|
+
|
|
36
|
+
```ruby
|
|
37
|
+
require 'smalltext'
|
|
38
|
+
|
|
39
|
+
s = Smalltext::Classifier.new
|
|
40
|
+
|
|
41
|
+
# Add your sentence using the `add_item` method
|
|
42
|
+
# Classifier#add_item(category, sentence)
|
|
43
|
+
|
|
44
|
+
s.add_item("schedule_list", "What time is my next session?")
|
|
45
|
+
s.add_item("schedule_list", "When is my next session?")
|
|
46
|
+
s.add_item("schedule_list", "What time is my next meeting?")
|
|
47
|
+
s.add_item("schedule_list", "Can you please show me my schedule?")
|
|
48
|
+
s.add_item("schedule_list", "Show me my schedule.")
|
|
49
|
+
|
|
50
|
+
s.add_item("greetings", "Hi")
|
|
51
|
+
s.add_item("greetings", "How are you doing?")
|
|
52
|
+
s.add_item("greetings", "have a nice day")
|
|
53
|
+
s.add_item("greetings", "good morning.")
|
|
54
|
+
s.add_item("greetings", "Whats up")
|
|
55
|
+
s.add_item("greetings", "Yo")
|
|
56
|
+
|
|
57
|
+
s.add_item("where_is", "Where is narkel bagan")
|
|
58
|
+
s.add_item("where_is", "show me the way to sasta sundar")
|
|
59
|
+
s.add_item("where_is", "where is the staircase")
|
|
60
|
+
s.add_item("where_is", "give me the direction to the parking lot")
|
|
61
|
+
|
|
62
|
+
s.add_item("weather", "Whats the weather")
|
|
63
|
+
s.add_item("weather", "Weather in Noida")
|
|
64
|
+
s.add_item("weather", "Is it raining")
|
|
65
|
+
s.add_item("weather", "Will it be hot tomorrow in Mumbai")
|
|
66
|
+
s.add_item("weather", "What is the maximum temperature today")
|
|
67
|
+
|
|
68
|
+
s.add_item("finance", "How many dollars is 17 euros?")
|
|
69
|
+
s.add_item("finance", "How much is 100 ruppees in US dollars")
|
|
70
|
+
s.add_item("finance", "How much is Starbucks stock?")
|
|
71
|
+
s.add_item("finance", "Tell me bitcoin exchange rate")
|
|
72
|
+
s.add_item("finance", "What is the value of ruppee")
|
|
73
|
+
s.add_item("finance", "Share price of Microsoft")
|
|
74
|
+
|
|
75
|
+
# Train a model using the Classifier#train method
|
|
76
|
+
|
|
77
|
+
s.train
|
|
78
|
+
|
|
79
|
+
# Test your trained model using the CLassifier#classify method
|
|
80
|
+
|
|
81
|
+
s.classify("give me the direction to moon")
|
|
82
|
+
|
|
83
|
+
# sentence: give me the direction to moon
|
|
84
|
+
# classification: [["where_is", 1.0]]
|
|
85
|
+
|
|
86
|
+
# => [["where_is", 1.0]]
|
|
87
|
+
```
|
|
88
|
+
|
|
89
|
+
You can also save your model. Use the `Classifier#save_model(file_name)`
|
|
90
|
+
|
|
91
|
+
```ruby
|
|
92
|
+
s.save_model('intents.model')
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
To load a saved model use the `Classifier#load_model(file_name)`
|
|
96
|
+
|
|
97
|
+
```ruby
|
|
98
|
+
s.load_model('intents.model')
|
|
99
|
+
|
|
100
|
+
s.classify("when is the next meeting")
|
|
101
|
+
# sentence: when is the next meeting
|
|
102
|
+
# classification: [["schedule_list", 0.9999189960209529]]
|
|
103
|
+
|
|
104
|
+
# => [["schedule_list", 0.9999189960209529]]
|
|
105
|
+
```
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
## Development
|
|
109
|
+
|
|
110
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
|
|
111
|
+
|
|
112
|
+
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
|
113
|
+
|
|
114
|
+
## Contributing
|
|
115
|
+
|
|
116
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/[USERNAME]/smalltext. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
|
|
117
|
+
|
|
118
|
+
## License
|
|
119
|
+
|
|
120
|
+
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|
|
121
|
+
|
|
122
|
+
## Code of Conduct
|
|
123
|
+
|
|
124
|
+
Everyone interacting in the Smalltext project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/[USERNAME]/smalltext/blob/master/CODE_OF_CONDUCT.md).
|
|
125
|
+
|
|
126
|
+
## Credits
|
|
127
|
+
|
|
128
|
+
This gem is a Ruby port to the [Medium article](https://machinelearnings.co/text-classification-using-neural-networks-f5cd7b8765c6) describing text classification in Python.
|
|
129
|
+
|
|
130
|
+
## Roadmap
|
|
131
|
+
|
|
132
|
+
Goal of this gem is be an efficient tool for short texts classifications, where dataset is a constraint.
|
|
133
|
+
|
|
134
|
+
- Implement word vectors.
|
|
135
|
+
When dataset is sparse, we should leverage word vectors to map in categorizing unseen words.
|
|
136
|
+
|
|
137
|
+
- More algorithm options
|
|
138
|
+
Apart from neural networks, one can also switch and compare with different algorithms which mostly suits their needs.
|
|
139
|
+
|
|
140
|
+
## Todo
|
|
141
|
+
|
|
142
|
+
- Write Tests
|
|
143
|
+
- Add support for batch training
|
|
144
|
+
- Add SVD
|
|
145
|
+
- Add support for word vectors. Need to try this [method](https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/).
|
|
146
|
+
- Add more classification algorithms.
|
|
147
|
+
- Add benchmarking
|
|
148
|
+
- Create model for known text datasets like Reuters, etc.
|
data/Rakefile
ADDED
data/bin/console
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
#!/usr/bin/env ruby
|
|
2
|
+
|
|
3
|
+
require "bundler/setup"
|
|
4
|
+
require "smalltext"
|
|
5
|
+
|
|
6
|
+
# You can add fixtures and/or initialization code here to make experimenting
|
|
7
|
+
# with your gem easier. You can also use a different console, if you like.
|
|
8
|
+
|
|
9
|
+
# (If you use this, don't forget to add pry to your Gemfile!)
|
|
10
|
+
# require "pry"
|
|
11
|
+
# Pry.start
|
|
12
|
+
|
|
13
|
+
require "irb"
|
|
14
|
+
IRB.start(__FILE__)
|
data/bin/setup
ADDED
data/intent_class.nn
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
{
|
|
2
|
+
:
|
|
3
|
+
f0.4596867910248106f-0.687203151043698f-0.36728361439776314f-3.1538590480746134f1.3263269682990184[
|
|
4
|
+
f-1.441564192764147f0.9217975408499933f0.8302022778271181f-0.5180306687561195f-3.004470511797579[
|
|
5
|
+
f0.47236702217871024f-3.2564378413816506f-1.8561125119153883f0.08451786720555526f1.2934286960690824[
|
|
6
|
+
f-2.181737541606334f-0.5389229549371255f-0.6259628967845187f-2.3464055062328377f3.0243446802135683[
|
|
7
|
+
f0.12288687993183259f-2.610821781363835f-0.3973043460305657f-0.4609412036673507f-2.6980255283737637[
|
|
8
|
+
f-1.9219785164280614f1.080137445888194f0.8208612852022767f-1.8451941095656226f-1.7084821950463362[
|
|
9
|
+
f1.8439922120737957f1.7916671770321728f-0.46147175436107324f-3.1115553900921626f-2.767234668912591[
|
|
10
|
+
f-1.4892002889702398f2.384699958844114f-2.7548135828227207f-1.5472458452892048f1.9066930687588495[
|
|
11
|
+
f0.32737881875760283f-2.132579854900912f1.1550193660791115f-2.61473413086656f-0.313751144367379[
|
|
12
|
+
f-2.0188941471699007f2.279793119816791f0.24495796159125974f-0.6772179624131887f-1.3138818100821106[
|
|
13
|
+
f-2.069659302493741f0.025186215541228928f-2.6570410244353795f3.014115443952716f0.23615678357962905[
|
|
14
|
+
f-1.4403177374845622f2.085005560730284f-2.299576301607141f-1.6459620509973663f0.9061646479109549[
|
|
15
|
+
f-0.45376843157965324f0.2907081542069082f-4.062012629404391f0.9896126571308395f-1.8498313928947558[
|
|
16
|
+
f1.9215274233934307f-0.7440102923765316f-1.584239441209481f-2.9332405518587414f0.021206362990984357[
|
|
17
|
+
f1.680950118427406f-1.3097722574120703f-1.8240015891679504f1.4555512139687008f-3.369205350049291[
|
|
18
|
+
f-1.4337178794614471f2.182479903865861f-2.424323888497003f1.105692100894958f-1.3801306140154412[
|
|
19
|
+
f-3.626276034322108f-2.569631015404794f-0.33488709479446555f0.011340989294128523f0.9785159342724172[
|
|
20
|
+
f-1.6593647190509841f-0.20287260615288705f2.1485252597004685f1.755321726875816f-1.6640694086967727[
|
|
21
|
+
f-1.0054052890058038f2.0162347363108766f2.856080333912819f-2.1206250172441647f-1.86218195788549[
|
|
22
|
+
f-2.618412013792327f-2.575294799242185f1.722379713892787f0.3059455320988714f-0.5009685814265834:
|
|
23
|
+
words[MI" what:
|
|
24
|
+
@fI"is;
|
|
25
|
+
@fI"my;
|
|
26
|
+
@fI" next;
|
|
27
|
+
@fI"session;
|
|
28
|
+
@fI" when;
|
|
29
|
+
@fI" meet;
|
|
30
|
+
@fI"can;
|
|
31
|
+
@fI"you;
|
|
32
|
+
@fI"
|
|
33
|
+
pleas;
|
|
34
|
+
@fI" show;
|
|
35
|
+
@fI"me;
|
|
36
|
+
@fI"schedul;
|
|
37
|
+
@fI".;
|
|
38
|
+
@fI"hi;
|
|
39
|
+
@fI"how;
|
|
40
|
+
@fI"are;
|
|
41
|
+
@fI"do;
|
|
42
|
+
@fI" have;
|
|
43
|
+
@fI"a;
|
|
44
|
+
@fI" nice;
|
|
45
|
+
@fI"day;
|
|
46
|
+
@fI" good;
|
|
47
|
+
@fI" morn;
|
|
48
|
+
@fI"up;
|
|
49
|
+
@fI"yo;
|
|
50
|
+
@fI"
|
|
51
|
+
where;
|
|
52
|
+
@fI"narkel;
|
|
53
|
+
@fI"
|
|
54
|
+
bagan;
|
|
55
|
+
@fI"the;
|
|
56
|
+
@fI"way;
|
|
57
|
+
@fI"to;
|
|
58
|
+
@fI"
|
|
59
|
+
sasta;
|
|
60
|
+
@fI"sundar;
|
|
61
|
+
@fI"
|
|
62
|
+
@fI" give;
|
|
63
|
+
@fI"direct;
|
|
64
|
+
@fI" park;
|
|
65
|
+
@fI"lot;
|
|
66
|
+
@fI"weather;
|
|
67
|
+
@fI"in;
|
|
68
|
+
@fI"
|
|
69
|
+
noida;
|
|
70
|
+
@fI"it;
|
|
71
|
+
@fI" rain;
|
|
72
|
+
@fI" will;
|
|
73
|
+
@fI"be;
|
|
74
|
+
@fI"hot;
|
|
75
|
+
@fI"
|
|
76
|
+
@fI"mumbai;
|
|
77
|
+
@fI"maximum;
|
|
78
|
+
@fI"temperatur;
|
|
79
|
+
@fI"
|
|
80
|
+
today;
|
|
81
|
+
@fI" mani;
|
|
82
|
+
@fI"dollar;
|
|
83
|
+
@fI"17;
|
|
84
|
+
@fI" euro;
|
|
85
|
+
@fI" much;
|
|
86
|
+
@fI"100;
|
|
87
|
+
@fI"
|
|
88
|
+
ruppe;
|
|
89
|
+
@fI"us;
|
|
90
|
+
@fI"
|
|
91
|
+
@fI"
|
|
92
|
+
stock;
|
|
93
|
+
@fI" tell;
|
|
94
|
+
@fI"bitcoin;
|
|
95
|
+
@fI"exchang;
|
|
96
|
+
@fI" rate;
|
|
97
|
+
@fI" valu;
|
|
98
|
+
@fI"of;
|
|
99
|
+
@fI"
|
|
100
|
+
share;
|
|
101
|
+
@fI"
|
|
102
|
+
price;
|
|
103
|
+
@fI"microsoft;
|
|
104
|
+
@f:klasses[
|
|
105
|
+
I"schedule_list;
|
|
106
|
+
@fI"greetings;
|
|
107
|
+
@fI"
|
|
108
|
+
@fI"weather;
|
|
109
|
+
@fI"finance;
|
|
110
|
+
@f
|
data/lib/smalltext.rb
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
1
|
+
require 'porter2stemmer'
|
|
2
|
+
require 'tokenizer'
|
|
3
|
+
require 'numo/narray'
|
|
4
|
+
require "croupier"
|
|
5
|
+
require 'rambling-trie'
|
|
6
|
+
|
|
7
|
+
require "smalltext/version"
|
|
8
|
+
|
|
9
|
+
# probability threshold
|
|
10
|
+
ERROR_THRESHOLD = 0.2
|
|
11
|
+
|
|
12
|
+
module Smalltext
|
|
13
|
+
class Error < StandardError; end
|
|
14
|
+
# Your code goes here...
|
|
15
|
+
|
|
16
|
+
class Classifier
|
|
17
|
+
|
|
18
|
+
def initialize
|
|
19
|
+
@training_data = []
|
|
20
|
+
|
|
21
|
+
#organizing our data structures for documents , @categories, words
|
|
22
|
+
@ignore_words = ['?']
|
|
23
|
+
@words=[]
|
|
24
|
+
@categories=[]
|
|
25
|
+
@documents=[]
|
|
26
|
+
@tokenizer = Tokenizer::Tokenizer.new(:en)
|
|
27
|
+
|
|
28
|
+
#create our bow training data
|
|
29
|
+
@training=[]
|
|
30
|
+
@output=[]
|
|
31
|
+
@synapse = {}
|
|
32
|
+
end
|
|
33
|
+
|
|
34
|
+
def add_item(category, sentence)
|
|
35
|
+
@training_data.push({"category":category, "sentence":sentence})
|
|
36
|
+
end
|
|
37
|
+
|
|
38
|
+
def train(hidden_neurons=20, alpha=0.1, epochs=1000, dropout=false, dropout_percent=0.2)
|
|
39
|
+
preprocess
|
|
40
|
+
x_inp = Numo::NArray[training][0,true,true]
|
|
41
|
+
y = Numo::NArray[output][0,true,true]
|
|
42
|
+
|
|
43
|
+
start_time = Time.now
|
|
44
|
+
|
|
45
|
+
neural_network(x_inp, y, hidden_neurons=hidden_neurons, alpha=alpha, epochs=epochs, dropout=dropout, dropout_percent=dropout_percent)
|
|
46
|
+
|
|
47
|
+
elapsed_time = Time.now - start_time
|
|
48
|
+
puts
|
|
49
|
+
puts
|
|
50
|
+
puts "Model training complete."
|
|
51
|
+
puts "Processing time: #{elapsed_time} seconds"
|
|
52
|
+
|
|
53
|
+
end
|
|
54
|
+
|
|
55
|
+
def classify(sentence, show_details=false)
|
|
56
|
+
results = think(sentence, show_details)
|
|
57
|
+
# puts "results is #{results.inspect}"
|
|
58
|
+
|
|
59
|
+
# results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD ]
|
|
60
|
+
results = results.to_a.map.each_with_index {|r,i| [i, r] if r > ERROR_THRESHOLD }.compact
|
|
61
|
+
# # results.sort(key=lambda x: x[1], reverse=True)
|
|
62
|
+
results.sort! {|a,b| b[1] <=> a[1] }
|
|
63
|
+
# return_results =[[classes[r[0]],r[1]] for r in results]
|
|
64
|
+
return_results = results.map {|r| [klasses[r[0]], r[1]] }
|
|
65
|
+
puts "sentence: #{sentence}\nclassification: #{return_results}"
|
|
66
|
+
puts
|
|
67
|
+
return return_results
|
|
68
|
+
end
|
|
69
|
+
|
|
70
|
+
def save_model(synapse_file)
|
|
71
|
+
synapse_file = synapse_file
|
|
72
|
+
|
|
73
|
+
unless @synapse.empty?
|
|
74
|
+
File.open(synapse_file, 'wb') do |file|
|
|
75
|
+
file.write(Marshal.dump(@synapse))
|
|
76
|
+
end
|
|
77
|
+
puts "saved synapses to: #{synapse_file}"
|
|
78
|
+
else
|
|
79
|
+
puts "Model not trained. Use the 'Classifier#train' method to build a model."
|
|
80
|
+
end
|
|
81
|
+
end
|
|
82
|
+
|
|
83
|
+
def load_model(synapse_file)
|
|
84
|
+
@synapse = Marshal.load(File.binread(synapse_file))
|
|
85
|
+
@synapse[:synapse0] = Numo::NArray.cast(@synapse[:synapse0])
|
|
86
|
+
@synapse[:synapse1] = Numo::NArray.cast(@synapse[:synapse1])
|
|
87
|
+
|
|
88
|
+
@words = @synapse[:words]
|
|
89
|
+
@categories = @synapse[:klasses]
|
|
90
|
+
|
|
91
|
+
puts "Model #{synapse_file} loaded. Model was created on #{@synapse[:datetime]}"
|
|
92
|
+
end
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
private
|
|
96
|
+
|
|
97
|
+
def preprocess
|
|
98
|
+
#loop through each sentence in our training data
|
|
99
|
+
@training_data.each do |pattern|
|
|
100
|
+
#tokenize in each word in the sentence
|
|
101
|
+
w = @tokenizer.tokenize(pattern[:sentence])
|
|
102
|
+
|
|
103
|
+
#add to our words list
|
|
104
|
+
@words += w
|
|
105
|
+
|
|
106
|
+
#add to documents in our corpus
|
|
107
|
+
@documents.push([w,pattern[:category]])
|
|
108
|
+
|
|
109
|
+
#add to our @categories list
|
|
110
|
+
if !@categories.include?(pattern[:category])
|
|
111
|
+
@categories.push(pattern[:category])
|
|
112
|
+
end
|
|
113
|
+
end
|
|
114
|
+
|
|
115
|
+
@ignore_words.each {|ign| @words.delete(ign) }
|
|
116
|
+
@words.map! {|word| word.stem }
|
|
117
|
+
@words.uniq!
|
|
118
|
+
@categories.uniq!
|
|
119
|
+
|
|
120
|
+
prepare_bow
|
|
121
|
+
end
|
|
122
|
+
|
|
123
|
+
def prepare_bow
|
|
124
|
+
#create an empty array for our output
|
|
125
|
+
output_empty = Array.new(@categories.size) { 0 }
|
|
126
|
+
|
|
127
|
+
#training set, bag of words for each sentence
|
|
128
|
+
@documents.each do |doc|
|
|
129
|
+
#initialize our bag of words
|
|
130
|
+
bag=[]
|
|
131
|
+
#list of tokenized words for the pattern
|
|
132
|
+
pattern_words=doc[0]
|
|
133
|
+
#stem each word
|
|
134
|
+
pattern_words.map! {|word| word.stem }
|
|
135
|
+
#create our bag of words array
|
|
136
|
+
@words.each { |w| if pattern_words.include?(w) then bag << 1 else bag << 0 end }
|
|
137
|
+
@training.push(bag)
|
|
138
|
+
#output is a 0 for each tag and 1 for current tag
|
|
139
|
+
# output_row = Array.new(output_empty)
|
|
140
|
+
output_row = output_empty.dup
|
|
141
|
+
output_row[@categories.index(doc[1])] = 1
|
|
142
|
+
@output << output_row
|
|
143
|
+
end
|
|
144
|
+
end
|
|
145
|
+
|
|
146
|
+
def training
|
|
147
|
+
return @training
|
|
148
|
+
end
|
|
149
|
+
|
|
150
|
+
def output
|
|
151
|
+
return @output
|
|
152
|
+
end
|
|
153
|
+
|
|
154
|
+
def klasses
|
|
155
|
+
return @categories
|
|
156
|
+
end
|
|
157
|
+
|
|
158
|
+
def words
|
|
159
|
+
return @words
|
|
160
|
+
end
|
|
161
|
+
|
|
162
|
+
def clean_up_sentence(sentence)
|
|
163
|
+
#tokenize the pattern
|
|
164
|
+
sentence_words = @tokenizer.tokenize(sentence)
|
|
165
|
+
#stem each word
|
|
166
|
+
# sentence_words=[stemmer.stem(word.lower()) for word in sentence_words]
|
|
167
|
+
sentence_words.map! {|word| word.stem }
|
|
168
|
+
end
|
|
169
|
+
|
|
170
|
+
#return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
|
|
171
|
+
def bow(sentence, words, show_details=false)
|
|
172
|
+
#tokenize the pattern
|
|
173
|
+
sentence_words=clean_up_sentence(sentence)
|
|
174
|
+
#bag of words
|
|
175
|
+
bag=[0] * words.size
|
|
176
|
+
# for s in sentence_words:
|
|
177
|
+
sentence_words.each do |s|
|
|
178
|
+
words.each_with_index do |w,i|
|
|
179
|
+
if w == s
|
|
180
|
+
bag[i] = 1
|
|
181
|
+
if show_details
|
|
182
|
+
puts "found in bag: #{w}"
|
|
183
|
+
end
|
|
184
|
+
end
|
|
185
|
+
end
|
|
186
|
+
end
|
|
187
|
+
# return Numo::Narray.new(bag)
|
|
188
|
+
return Numo::DFloat[bag].flatten
|
|
189
|
+
end
|
|
190
|
+
|
|
191
|
+
def think(sentence, show_details=false)
|
|
192
|
+
x= bow(sentence.downcase, words,show_details)
|
|
193
|
+
if show_details
|
|
194
|
+
puts "sentence: #{sentence},\nbow: #{x}"
|
|
195
|
+
end
|
|
196
|
+
#input layer is our bag of words
|
|
197
|
+
l0=x
|
|
198
|
+
# matrix multiplication of input and hidden layer
|
|
199
|
+
l1 = sigmoid(l0.dot @synapse[:synapse0])
|
|
200
|
+
# l1 = softmax(l0.dot @synapse_0)
|
|
201
|
+
# output layer
|
|
202
|
+
# l2 = sigmoid(l1.dot @synapse_1)
|
|
203
|
+
l2 = softmax(l1.dot @synapse[:synapse1])
|
|
204
|
+
|
|
205
|
+
return l2
|
|
206
|
+
end
|
|
207
|
+
|
|
208
|
+
def neural_network(x_inp, y, hidden_neurons=10, alpha=1, epochs=50000, dropout=false, dropout_percent=0.5)
|
|
209
|
+
|
|
210
|
+
puts "Training with #{hidden_neurons} neurons, alpha:#{alpha}, dropout:#{dropout} #{dropout_percent if dropout}"
|
|
211
|
+
# puts x_inp.inspect
|
|
212
|
+
# puts "Input matrix: #{x_inp.size}x#{x_inp[0].size} Output matrix: #{1}x#{@categories.size}"
|
|
213
|
+
puts "Input matrix: #{x_inp.shape} Output matrix: #{1}x#{@categories.size}"
|
|
214
|
+
puts "Epochs set to #{epochs}. Every 100th iteration will be printed."
|
|
215
|
+
puts
|
|
216
|
+
|
|
217
|
+
last_mean_error = 1
|
|
218
|
+
# randomly initialize our weights with mean 0
|
|
219
|
+
# synapse_0 = 2*np.random.random((len(x_inp[0]), hidden_neurons)) - 1
|
|
220
|
+
synapse_0 = 2*Numo::DFloat.new(x_inp[0,true].size, hidden_neurons).rand - 1
|
|
221
|
+
# puts "synapse_0 is #{synapse_0.inspect}"
|
|
222
|
+
# synapse_1 = 2*np.random.random((hidden_neurons, len(@categories))) - 1
|
|
223
|
+
synapse_1 = 2*Numo::DFloat.new(hidden_neurons, @categories.size).rand - 1
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
prev_synapse_0_weight_update = synapse_0.new_zeros
|
|
227
|
+
prev_synapse_1_weight_update = synapse_1.new_zeros
|
|
228
|
+
|
|
229
|
+
synapse_0_direction_count = synapse_0.new_zeros
|
|
230
|
+
synapse_1_direction_count = synapse_1.new_zeros
|
|
231
|
+
|
|
232
|
+
(epochs + 1).times do |j|
|
|
233
|
+
# Feed forward through layers 0, 1, and 2
|
|
234
|
+
layer_0 = x_inp
|
|
235
|
+
# puts "synapse_0 in block is #{synapse_0.inspect}"
|
|
236
|
+
# puts "layer_0 is #{layer_0.inspect}"
|
|
237
|
+
layer_1 = sigmoid(layer_0.dot synapse_0)
|
|
238
|
+
# layer_1 = tanh(layer_0.dot synapse_0)
|
|
239
|
+
|
|
240
|
+
if dropout
|
|
241
|
+
# layer_1 *= np.random.binomial([np.ones((len(x_inp),hidden_neurons))],1-dropout_percent)[0] * (1.0/(1-dropout_percent))
|
|
242
|
+
b = Croupier::Distributions.binomial size: 1, success: (1-dropout_percent)
|
|
243
|
+
arr = Array.new(x_inp.size) { Array.new(hidden_neurons) {b.generate_number} }
|
|
244
|
+
layer_1 = Numo::DFloat[arr].reshape(x_inp.size,hidden_neurons) * (1.0/(1-dropout_percent))
|
|
245
|
+
end
|
|
246
|
+
|
|
247
|
+
layer_2 = sigmoid((layer_1.dot synapse_1))
|
|
248
|
+
# layer_2 = tanh((layer_1.dot synapse_1))
|
|
249
|
+
|
|
250
|
+
# how much did we miss the target value?
|
|
251
|
+
layer_2_error = y - layer_2
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
if (j% 10000) == 0 and j > 5000
|
|
255
|
+
# if this 10k iteration's error is greater than the last iteration, break out
|
|
256
|
+
if (layer_2_error.abs).mean < last_mean_error
|
|
257
|
+
puts "delta after #{j} iterations: #{(layer_2_error.abs).mean} )"
|
|
258
|
+
last_mean_error = (layer_2_error.abs).mean
|
|
259
|
+
else
|
|
260
|
+
puts "break: #{(layer_2_error.abs).mean} > #{last_mean_error}"
|
|
261
|
+
break
|
|
262
|
+
end
|
|
263
|
+
end
|
|
264
|
+
|
|
265
|
+
# in what direction is the target value?
|
|
266
|
+
# were we really sure? if so, don't change too much.
|
|
267
|
+
# layer_2_delta = layer_2_error * sigmoid_output_to_derivative(layer_2)
|
|
268
|
+
layer_2_delta = layer_2_error * dtanh(layer_2)
|
|
269
|
+
|
|
270
|
+
# how much did each l1 value contribute to the l2 error (according to the weights)?
|
|
271
|
+
layer_1_error = layer_2_delta.dot(synapse_1.transpose)
|
|
272
|
+
|
|
273
|
+
# in what direction is the target l1?
|
|
274
|
+
# were we really sure? if so, don't change too much.
|
|
275
|
+
# layer_1_delta = layer_1_error * sigmoid_output_to_derivative(layer_1)
|
|
276
|
+
layer_1_delta = layer_1_error * dtanh(layer_1)
|
|
277
|
+
|
|
278
|
+
synapse_1_weight_update = (layer_1.transpose).dot(layer_2_delta)
|
|
279
|
+
synapse_0_weight_update = (layer_0.transpose).dot(layer_1_delta)
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
if(j > 0)
|
|
283
|
+
# Bit array does not support arithmetic operation. Cast to Numo::Int32.cast, see https://github.com/ruby-numo/numo-narray/issues/65#issuecomment-323665534
|
|
284
|
+
# puts "synapse_0_direction_count",synapse_0_direction_count.inspect
|
|
285
|
+
# puts "synapse_0_weight_update", synapse_0_weight_update.inspect
|
|
286
|
+
# puts "prev_synapse_0_weight_update", prev_synapse_0_weight_update.inspect
|
|
287
|
+
synapse_0_direction_count += ( Numo::Int32.cast((synapse_0_weight_update > 0)) - Numo::Int32.cast((prev_synapse_0_weight_update > 0)) ).abs
|
|
288
|
+
synapse_1_direction_count += ( Numo::Int32.cast((synapse_1_weight_update > 0)) - Numo::Int32.cast((prev_synapse_1_weight_update > 0))).abs
|
|
289
|
+
end
|
|
290
|
+
|
|
291
|
+
synapse_1 += alpha * synapse_1_weight_update
|
|
292
|
+
synapse_0 += alpha * synapse_0_weight_update
|
|
293
|
+
|
|
294
|
+
prev_synapse_0_weight_update = synapse_0_weight_update
|
|
295
|
+
prev_synapse_1_weight_update = synapse_1_weight_update
|
|
296
|
+
print "."
|
|
297
|
+
if (j%100 == 0)
|
|
298
|
+
print j
|
|
299
|
+
end
|
|
300
|
+
end
|
|
301
|
+
|
|
302
|
+
now = Time.now
|
|
303
|
+
# puts "BEFORE DUMPING #{synapse_0.inspect}"
|
|
304
|
+
# persist synapses
|
|
305
|
+
@synapse = {'synapse0': synapse_0.to_a, 'synapse1': synapse_1.to_a,
|
|
306
|
+
'datetime': now.strftime("%Y-%m-%d %H:%M"),
|
|
307
|
+
'words': @words,
|
|
308
|
+
'klasses': @categories
|
|
309
|
+
}
|
|
310
|
+
|
|
311
|
+
# synapse_file = "intent_class.nn"
|
|
312
|
+
|
|
313
|
+
# File.open(synapse_file, 'wb') do |file|
|
|
314
|
+
# file.write(Marshal.dump(@synapse))
|
|
315
|
+
# end
|
|
316
|
+
# puts "saved synapses to: #{synapse_file}"
|
|
317
|
+
end
|
|
318
|
+
|
|
319
|
+
#compute sigmoid nonlinearity
|
|
320
|
+
def sigmoid(x)
|
|
321
|
+
output=1/(1+Numo::NMath.exp(-x))
|
|
322
|
+
end
|
|
323
|
+
#convert output of sigmoid function to its derivative
|
|
324
|
+
def sigmoid_output_to_derivative(output)
|
|
325
|
+
output*(1-output)
|
|
326
|
+
end
|
|
327
|
+
|
|
328
|
+
# using softmax as output layer is recommended for classification where outputs are mutually exclusive
|
|
329
|
+
def softmax(w)
|
|
330
|
+
e = Numo::NMath.exp(w - (w.max))
|
|
331
|
+
dist = e / (e.sum)
|
|
332
|
+
return dist
|
|
333
|
+
end
|
|
334
|
+
|
|
335
|
+
# using tanh over logistic sigmoid for the hidden layer is recommended
|
|
336
|
+
def tanh(x)
|
|
337
|
+
Numo::NMath.tanh(x)
|
|
338
|
+
end
|
|
339
|
+
|
|
340
|
+
# derivative for tanh sigmoid
|
|
341
|
+
def dtanh(y)
|
|
342
|
+
# 1 - y*y
|
|
343
|
+
return 1.0 - Numo::NMath.tanh(y)**2
|
|
344
|
+
end
|
|
345
|
+
|
|
346
|
+
end # END class
|
|
347
|
+
|
|
348
|
+
end
|
data/smalltext.gemspec
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
|
|
2
|
+
lib = File.expand_path("../lib", __FILE__)
|
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
|
4
|
+
require "smalltext/version"
|
|
5
|
+
|
|
6
|
+
Gem::Specification.new do |spec|
|
|
7
|
+
spec.name = "smalltext"
|
|
8
|
+
spec.version = Smalltext::VERSION
|
|
9
|
+
spec.authors = ["arjun"]
|
|
10
|
+
spec.email = ["arjunmenon009@gmail.com"]
|
|
11
|
+
|
|
12
|
+
spec.summary = %q{Classify short texts with neural network}
|
|
13
|
+
spec.description = %q{Classify short texts with neural network}
|
|
14
|
+
spec.homepage = "https://www.github.com/arjunmenon/smalltext"
|
|
15
|
+
spec.license = "MIT"
|
|
16
|
+
|
|
17
|
+
# Prevent pushing this gem to RubyGems.org. To allow pushes either set the 'allowed_push_host'
|
|
18
|
+
# to allow pushing to a single host or delete this section to allow pushing to any host.
|
|
19
|
+
# if spec.respond_to?(:metadata)
|
|
20
|
+
# spec.metadata["allowed_push_host"] = "TODO: Set to 'http://mygemserver.com'"
|
|
21
|
+
|
|
22
|
+
# spec.metadata["homepage_uri"] = spec.homepage
|
|
23
|
+
# spec.metadata["source_code_uri"] = "https://www.github.com/arjunmenon/smalltext"
|
|
24
|
+
# spec.metadata["changelog_uri"] = "https://www.github.com/arjunmenon/smalltext/CHANGELOG.md"
|
|
25
|
+
# else
|
|
26
|
+
# raise "RubyGems 2.0 or newer is required to protect against " \
|
|
27
|
+
# "public gem pushes."
|
|
28
|
+
# end
|
|
29
|
+
|
|
30
|
+
# Specify which files should be added to the gem when it is released.
|
|
31
|
+
# The `git ls-files -z` loads the files in the RubyGem that have been added into git.
|
|
32
|
+
spec.files = Dir.chdir(File.expand_path('..', __FILE__)) do
|
|
33
|
+
`git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
|
|
34
|
+
end
|
|
35
|
+
spec.bindir = "exe"
|
|
36
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
|
37
|
+
spec.require_paths = ["lib"]
|
|
38
|
+
|
|
39
|
+
spec.add_runtime_dependency 'rambling-trie'
|
|
40
|
+
spec.add_runtime_dependency 'croupier'
|
|
41
|
+
spec.add_runtime_dependency 'numo-narray', '~> 0.9.1.3'
|
|
42
|
+
spec.add_runtime_dependency 'tokenizer'
|
|
43
|
+
spec.add_runtime_dependency 'porter2stemmer'
|
|
44
|
+
|
|
45
|
+
spec.add_development_dependency "bundler", "~> 1.17"
|
|
46
|
+
spec.add_development_dependency "rake", "~> 10.0"
|
|
47
|
+
spec.add_development_dependency "rspec", "~> 3.0"
|
|
48
|
+
end
|
metadata
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
|
2
|
+
name: smalltext
|
|
3
|
+
version: !ruby/object:Gem::Version
|
|
4
|
+
version: 0.1.0
|
|
5
|
+
platform: ruby
|
|
6
|
+
authors:
|
|
7
|
+
- arjun
|
|
8
|
+
autorequire:
|
|
9
|
+
bindir: exe
|
|
10
|
+
cert_chain: []
|
|
11
|
+
date: 2018-11-29 00:00:00.000000000 Z
|
|
12
|
+
dependencies:
|
|
13
|
+
- !ruby/object:Gem::Dependency
|
|
14
|
+
name: rambling-trie
|
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
|
16
|
+
requirements:
|
|
17
|
+
- - ">="
|
|
18
|
+
- !ruby/object:Gem::Version
|
|
19
|
+
version: '0'
|
|
20
|
+
type: :runtime
|
|
21
|
+
prerelease: false
|
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
23
|
+
requirements:
|
|
24
|
+
- - ">="
|
|
25
|
+
- !ruby/object:Gem::Version
|
|
26
|
+
version: '0'
|
|
27
|
+
- !ruby/object:Gem::Dependency
|
|
28
|
+
name: croupier
|
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
|
30
|
+
requirements:
|
|
31
|
+
- - ">="
|
|
32
|
+
- !ruby/object:Gem::Version
|
|
33
|
+
version: '0'
|
|
34
|
+
type: :runtime
|
|
35
|
+
prerelease: false
|
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
37
|
+
requirements:
|
|
38
|
+
- - ">="
|
|
39
|
+
- !ruby/object:Gem::Version
|
|
40
|
+
version: '0'
|
|
41
|
+
- !ruby/object:Gem::Dependency
|
|
42
|
+
name: numo-narray
|
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
|
44
|
+
requirements:
|
|
45
|
+
- - "~>"
|
|
46
|
+
- !ruby/object:Gem::Version
|
|
47
|
+
version: 0.9.1.3
|
|
48
|
+
type: :runtime
|
|
49
|
+
prerelease: false
|
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
51
|
+
requirements:
|
|
52
|
+
- - "~>"
|
|
53
|
+
- !ruby/object:Gem::Version
|
|
54
|
+
version: 0.9.1.3
|
|
55
|
+
- !ruby/object:Gem::Dependency
|
|
56
|
+
name: tokenizer
|
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
|
58
|
+
requirements:
|
|
59
|
+
- - ">="
|
|
60
|
+
- !ruby/object:Gem::Version
|
|
61
|
+
version: '0'
|
|
62
|
+
type: :runtime
|
|
63
|
+
prerelease: false
|
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
65
|
+
requirements:
|
|
66
|
+
- - ">="
|
|
67
|
+
- !ruby/object:Gem::Version
|
|
68
|
+
version: '0'
|
|
69
|
+
- !ruby/object:Gem::Dependency
|
|
70
|
+
name: porter2stemmer
|
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
|
72
|
+
requirements:
|
|
73
|
+
- - ">="
|
|
74
|
+
- !ruby/object:Gem::Version
|
|
75
|
+
version: '0'
|
|
76
|
+
type: :runtime
|
|
77
|
+
prerelease: false
|
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
79
|
+
requirements:
|
|
80
|
+
- - ">="
|
|
81
|
+
- !ruby/object:Gem::Version
|
|
82
|
+
version: '0'
|
|
83
|
+
- !ruby/object:Gem::Dependency
|
|
84
|
+
name: bundler
|
|
85
|
+
requirement: !ruby/object:Gem::Requirement
|
|
86
|
+
requirements:
|
|
87
|
+
- - "~>"
|
|
88
|
+
- !ruby/object:Gem::Version
|
|
89
|
+
version: '1.17'
|
|
90
|
+
type: :development
|
|
91
|
+
prerelease: false
|
|
92
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
93
|
+
requirements:
|
|
94
|
+
- - "~>"
|
|
95
|
+
- !ruby/object:Gem::Version
|
|
96
|
+
version: '1.17'
|
|
97
|
+
- !ruby/object:Gem::Dependency
|
|
98
|
+
name: rake
|
|
99
|
+
requirement: !ruby/object:Gem::Requirement
|
|
100
|
+
requirements:
|
|
101
|
+
- - "~>"
|
|
102
|
+
- !ruby/object:Gem::Version
|
|
103
|
+
version: '10.0'
|
|
104
|
+
type: :development
|
|
105
|
+
prerelease: false
|
|
106
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
107
|
+
requirements:
|
|
108
|
+
- - "~>"
|
|
109
|
+
- !ruby/object:Gem::Version
|
|
110
|
+
version: '10.0'
|
|
111
|
+
- !ruby/object:Gem::Dependency
|
|
112
|
+
name: rspec
|
|
113
|
+
requirement: !ruby/object:Gem::Requirement
|
|
114
|
+
requirements:
|
|
115
|
+
- - "~>"
|
|
116
|
+
- !ruby/object:Gem::Version
|
|
117
|
+
version: '3.0'
|
|
118
|
+
type: :development
|
|
119
|
+
prerelease: false
|
|
120
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
121
|
+
requirements:
|
|
122
|
+
- - "~>"
|
|
123
|
+
- !ruby/object:Gem::Version
|
|
124
|
+
version: '3.0'
|
|
125
|
+
description: Classify short texts with neural network
|
|
126
|
+
email:
|
|
127
|
+
- arjunmenon009@gmail.com
|
|
128
|
+
executables: []
|
|
129
|
+
extensions: []
|
|
130
|
+
extra_rdoc_files: []
|
|
131
|
+
files:
|
|
132
|
+
- ".gitignore"
|
|
133
|
+
- ".rspec"
|
|
134
|
+
- ".travis.yml"
|
|
135
|
+
- CHANGELOG.md
|
|
136
|
+
- CODE_OF_CONDUCT.md
|
|
137
|
+
- Gemfile
|
|
138
|
+
- Gemfile.lock
|
|
139
|
+
- LICENSE.txt
|
|
140
|
+
- README.md
|
|
141
|
+
- Rakefile
|
|
142
|
+
- bin/console
|
|
143
|
+
- bin/setup
|
|
144
|
+
- intent_class.nn
|
|
145
|
+
- lib/smalltext.rb
|
|
146
|
+
- lib/smalltext/version.rb
|
|
147
|
+
- smalltext.gemspec
|
|
148
|
+
homepage: https://www.github.com/arjunmenon/smalltext
|
|
149
|
+
licenses:
|
|
150
|
+
- MIT
|
|
151
|
+
metadata: {}
|
|
152
|
+
post_install_message:
|
|
153
|
+
rdoc_options: []
|
|
154
|
+
require_paths:
|
|
155
|
+
- lib
|
|
156
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
|
157
|
+
requirements:
|
|
158
|
+
- - ">="
|
|
159
|
+
- !ruby/object:Gem::Version
|
|
160
|
+
version: '0'
|
|
161
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
|
162
|
+
requirements:
|
|
163
|
+
- - ">="
|
|
164
|
+
- !ruby/object:Gem::Version
|
|
165
|
+
version: '0'
|
|
166
|
+
requirements: []
|
|
167
|
+
rubyforge_project:
|
|
168
|
+
rubygems_version: 2.7.8
|
|
169
|
+
signing_key:
|
|
170
|
+
specification_version: 4
|
|
171
|
+
summary: Classify short texts with neural network
|
|
172
|
+
test_files: []
|