smalltext 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: 4073482150c4b9864de23d5a8c4665c388e94c2b657de026e0bb9d29399110b3
4
+ data.tar.gz: ca5bc424871f2a3fe76b9fc81a8b0538108292c5f6fd41896d31c006ac7e4fda
5
+ SHA512:
6
+ metadata.gz: 6247ce3a178fc8d660ead9e4e92a6e3321f0c78019494a7f47c1d8fe7227c831ed39ec1c30519c4dd32045dd8941202c8048d3dcd83c32a853e444bbf0d24599
7
+ data.tar.gz: 3013217a0bf23d751206bb71acc94f0c0e57d4c3636bb68a55f65fd9e5e114f7e944f4a68103d7b62d56933726902a209d9324b711ed346bfd410bb183be6f55
@@ -0,0 +1,12 @@
1
+ /.bundle/
2
+ /.yardoc
3
+ /_yardoc/
4
+ /coverage/
5
+ /doc/
6
+ /pkg/
7
+ /spec/reports/
8
+ /tmp/
9
+
10
+ # rspec failure tracking
11
+ .rspec_status
12
+ .gem
data/.rspec ADDED
@@ -0,0 +1,3 @@
1
+ --format documentation
2
+ --color
3
+ --require spec_helper
@@ -0,0 +1,7 @@
1
+ ---
2
+ sudo: false
3
+ language: ruby
4
+ cache: bundler
5
+ rvm:
6
+ - 2.3.3
7
+ before_install: gem install bundler -v 1.17.1
File without changes
@@ -0,0 +1,74 @@
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to making participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, gender identity and expression, level of experience,
9
+ nationality, personal appearance, race, religion, or sexual identity and
10
+ orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies both within project spaces and in public spaces
49
+ when an individual is representing the project or its community. Examples of
50
+ representing a project or community include using an official project e-mail
51
+ address, posting via an official social media account, or acting as an appointed
52
+ representative at an online or offline event. Representation of a project may be
53
+ further defined and clarified by project maintainers.
54
+
55
+ ## Enforcement
56
+
57
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
58
+ reported by contacting the project team at arjunmenon009@gmail.com. All
59
+ complaints will be reviewed and investigated and will result in a response that
60
+ is deemed necessary and appropriate to the circumstances. The project team is
61
+ obligated to maintain confidentiality with regard to the reporter of an incident.
62
+ Further details of specific enforcement policies may be posted separately.
63
+
64
+ Project maintainers who do not follow or enforce the Code of Conduct in good
65
+ faith may face temporary or permanent repercussions as determined by other
66
+ members of the project's leadership.
67
+
68
+ ## Attribution
69
+
70
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71
+ available at [http://contributor-covenant.org/version/1/4][version]
72
+
73
+ [homepage]: http://contributor-covenant.org
74
+ [version]: http://contributor-covenant.org/version/1/4/
data/Gemfile ADDED
@@ -0,0 +1,6 @@
1
+ source "https://rubygems.org"
2
+
3
+ git_source(:github) {|repo_name| "https://github.com/#{repo_name}" }
4
+
5
+ # Specify your gem's dependencies in smalltext.gemspec
6
+ gemspec
@@ -0,0 +1,45 @@
1
+ PATH
2
+ remote: .
3
+ specs:
4
+ smalltext (0.1.0)
5
+ croupier
6
+ numo-narray (~> 0.9.1.3)
7
+ porter2stemmer
8
+ rambling-trie
9
+ tokenizer
10
+
11
+ GEM
12
+ remote: https://rubygems.org/
13
+ specs:
14
+ croupier (1.6.0)
15
+ diff-lcs (1.3)
16
+ numo-narray (0.9.1.3)
17
+ porter2stemmer (1.0.1)
18
+ rake (10.4.2)
19
+ rambling-trie (2.0.0)
20
+ rspec (3.8.0)
21
+ rspec-core (~> 3.8.0)
22
+ rspec-expectations (~> 3.8.0)
23
+ rspec-mocks (~> 3.8.0)
24
+ rspec-core (3.8.0)
25
+ rspec-support (~> 3.8.0)
26
+ rspec-expectations (3.8.2)
27
+ diff-lcs (>= 1.2.0, < 2.0)
28
+ rspec-support (~> 3.8.0)
29
+ rspec-mocks (3.8.0)
30
+ diff-lcs (>= 1.2.0, < 2.0)
31
+ rspec-support (~> 3.8.0)
32
+ rspec-support (3.8.0)
33
+ tokenizer (0.3.0)
34
+
35
+ PLATFORMS
36
+ x86-mingw32
37
+
38
+ DEPENDENCIES
39
+ bundler (~> 1.17)
40
+ rake (~> 10.0)
41
+ rspec (~> 3.0)
42
+ smalltext!
43
+
44
+ BUNDLED WITH
45
+ 1.17.1
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2018 arjun
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
@@ -0,0 +1,148 @@
1
+ # Smalltext
2
+
3
+ Welcome to your new gem! In this directory, you'll find the files you need to be able to package up your Ruby library into a gem. Put your Ruby code in the file `lib/smalltext`. To experiment with that code, run `bin/console` for an interactive prompt.
4
+
5
+ Classify short texts with neural network.
6
+
7
+ This gem is specifically created to classify small sentence/datasets using a supervised training algorithm. You can use this in place of Naive Bayes.
8
+
9
+ ## Installation
10
+
11
+ Add this line to your application's Gemfile:
12
+
13
+ ```ruby
14
+ gem 'smalltext'
15
+ ```
16
+
17
+ And then execute:
18
+
19
+ $ bundle
20
+
21
+ Or install it yourself as:
22
+
23
+ $ gem install smalltext
24
+
25
+
26
+ ## Dependencies
27
+
28
+ Gem depends on Numo/NArray, Porter2Stemmer, Tokenizer, Croupier
29
+
30
+ Gem dependencies should be automatically installed.
31
+
32
+ ## Usage
33
+
34
+ Classification is easy to get started.
35
+
36
+ ```ruby
37
+ require 'smalltext'
38
+
39
+ s = Smalltext::Classifier.new
40
+
41
+ # Add your sentence using the `add_item` method
42
+ # Classifier#add_item(category, sentence)
43
+
44
+ s.add_item("schedule_list", "What time is my next session?")
45
+ s.add_item("schedule_list", "When is my next session?")
46
+ s.add_item("schedule_list", "What time is my next meeting?")
47
+ s.add_item("schedule_list", "Can you please show me my schedule?")
48
+ s.add_item("schedule_list", "Show me my schedule.")
49
+
50
+ s.add_item("greetings", "Hi")
51
+ s.add_item("greetings", "How are you doing?")
52
+ s.add_item("greetings", "have a nice day")
53
+ s.add_item("greetings", "good morning.")
54
+ s.add_item("greetings", "Whats up")
55
+ s.add_item("greetings", "Yo")
56
+
57
+ s.add_item("where_is", "Where is narkel bagan")
58
+ s.add_item("where_is", "show me the way to sasta sundar")
59
+ s.add_item("where_is", "where is the staircase")
60
+ s.add_item("where_is", "give me the direction to the parking lot")
61
+
62
+ s.add_item("weather", "Whats the weather")
63
+ s.add_item("weather", "Weather in Noida")
64
+ s.add_item("weather", "Is it raining")
65
+ s.add_item("weather", "Will it be hot tomorrow in Mumbai")
66
+ s.add_item("weather", "What is the maximum temperature today")
67
+
68
+ s.add_item("finance", "How many dollars is 17 euros?")
69
+ s.add_item("finance", "How much is 100 ruppees in US dollars")
70
+ s.add_item("finance", "How much is Starbucks stock?")
71
+ s.add_item("finance", "Tell me bitcoin exchange rate")
72
+ s.add_item("finance", "What is the value of ruppee")
73
+ s.add_item("finance", "Share price of Microsoft")
74
+
75
+ # Train a model using the Classifier#train method
76
+
77
+ s.train
78
+
79
+ # Test your trained model using the CLassifier#classify method
80
+
81
+ s.classify("give me the direction to moon")
82
+
83
+ # sentence: give me the direction to moon
84
+ # classification: [["where_is", 1.0]]
85
+
86
+ # => [["where_is", 1.0]]
87
+ ```
88
+
89
+ You can also save your model. Use the `Classifier#save_model(file_name)`
90
+
91
+ ```ruby
92
+ s.save_model('intents.model')
93
+ ```
94
+
95
+ To load a saved model use the `Classifier#load_model(file_name)`
96
+
97
+ ```ruby
98
+ s.load_model('intents.model')
99
+
100
+ s.classify("when is the next meeting")
101
+ # sentence: when is the next meeting
102
+ # classification: [["schedule_list", 0.9999189960209529]]
103
+
104
+ # => [["schedule_list", 0.9999189960209529]]
105
+ ```
106
+
107
+
108
+ ## Development
109
+
110
+ After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
111
+
112
+ To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
113
+
114
+ ## Contributing
115
+
116
+ Bug reports and pull requests are welcome on GitHub at https://github.com/[USERNAME]/smalltext. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
117
+
118
+ ## License
119
+
120
+ The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
121
+
122
+ ## Code of Conduct
123
+
124
+ Everyone interacting in the Smalltext project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/[USERNAME]/smalltext/blob/master/CODE_OF_CONDUCT.md).
125
+
126
+ ## Credits
127
+
128
+ This gem is a Ruby port to the [Medium article](https://machinelearnings.co/text-classification-using-neural-networks-f5cd7b8765c6) describing text classification in Python.
129
+
130
+ ## Roadmap
131
+
132
+ Goal of this gem is be an efficient tool for short texts classifications, where dataset is a constraint.
133
+
134
+ - Implement word vectors.
135
+ When dataset is sparse, we should leverage word vectors to map in categorizing unseen words.
136
+
137
+ - More algorithm options
138
+ Apart from neural networks, one can also switch and compare with different algorithms which mostly suits their needs.
139
+
140
+ ## Todo
141
+
142
+ - Write Tests
143
+ - Add support for batch training
144
+ - Add SVD
145
+ - Add support for word vectors. Need to try this [method](https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/).
146
+ - Add more classification algorithms.
147
+ - Add benchmarking
148
+ - Create model for known text datasets like Reuters, etc.
@@ -0,0 +1,6 @@
1
+ require "bundler/gem_tasks"
2
+ require "rspec/core/rake_task"
3
+
4
+ RSpec::Core::RakeTask.new(:spec)
5
+
6
+ task :default => :spec
@@ -0,0 +1,14 @@
1
+ #!/usr/bin/env ruby
2
+
3
+ require "bundler/setup"
4
+ require "smalltext"
5
+
6
+ # You can add fixtures and/or initialization code here to make experimenting
7
+ # with your gem easier. You can also use a different console, if you like.
8
+
9
+ # (If you use this, don't forget to add pry to your Gemfile!)
10
+ # require "pry"
11
+ # Pry.start
12
+
13
+ require "irb"
14
+ IRB.start(__FILE__)
@@ -0,0 +1,8 @@
1
+ #!/usr/bin/env bash
2
+ set -euo pipefail
3
+ IFS=$'\n\t'
4
+ set -vx
5
+
6
+ bundle install
7
+
8
+ # Do any other automated setup that you need to do here
@@ -0,0 +1,110 @@
1
+ {
2
+ :
3
+ f0.4596867910248106f-0.687203151043698f-0.36728361439776314f-3.1538590480746134f1.3263269682990184[
4
+ f-1.441564192764147f0.9217975408499933f0.8302022778271181f-0.5180306687561195f-3.004470511797579[
5
+ f0.47236702217871024f-3.2564378413816506f-1.8561125119153883f0.08451786720555526f1.2934286960690824[
6
+ f-2.181737541606334f-0.5389229549371255f-0.6259628967845187f-2.3464055062328377f3.0243446802135683[
7
+ f0.12288687993183259f-2.610821781363835f-0.3973043460305657f-0.4609412036673507f-2.6980255283737637[
8
+ f-1.9219785164280614f1.080137445888194f0.8208612852022767f-1.8451941095656226f-1.7084821950463362[
9
+ f1.8439922120737957f1.7916671770321728f-0.46147175436107324f-3.1115553900921626f-2.767234668912591[
10
+ f-1.4892002889702398f2.384699958844114f-2.7548135828227207f-1.5472458452892048f1.9066930687588495[
11
+ f0.32737881875760283f-2.132579854900912f1.1550193660791115f-2.61473413086656f-0.313751144367379[
12
+ f-2.0188941471699007f2.279793119816791f0.24495796159125974f-0.6772179624131887f-1.3138818100821106[
13
+ f-2.069659302493741f0.025186215541228928f-2.6570410244353795f3.014115443952716f0.23615678357962905[
14
+ f-1.4403177374845622f2.085005560730284f-2.299576301607141f-1.6459620509973663f0.9061646479109549[
15
+ f-0.45376843157965324f0.2907081542069082f-4.062012629404391f0.9896126571308395f-1.8498313928947558[
16
+ f1.9215274233934307f-0.7440102923765316f-1.584239441209481f-2.9332405518587414f0.021206362990984357[
17
+ f1.680950118427406f-1.3097722574120703f-1.8240015891679504f1.4555512139687008f-3.369205350049291[
18
+ f-1.4337178794614471f2.182479903865861f-2.424323888497003f1.105692100894958f-1.3801306140154412[
19
+ f-3.626276034322108f-2.569631015404794f-0.33488709479446555f0.011340989294128523f0.9785159342724172[
20
+ f-1.6593647190509841f-0.20287260615288705f2.1485252597004685f1.755321726875816f-1.6640694086967727[
21
+ f-1.0054052890058038f2.0162347363108766f2.856080333912819f-2.1206250172441647f-1.86218195788549[
22
+ f-2.618412013792327f-2.575294799242185f1.722379713892787f0.3059455320988714f-0.5009685814265834:
23
+ words[MI" what:
24
+ @fI"is;
25
+ @fI"my;
26
+ @fI" next;
27
+ @fI" session;
28
+ @fI" when;
29
+ @fI" meet;
30
+ @fI"can;
31
+ @fI"you;
32
+ @fI"
33
+ pleas;
34
+ @fI" show;
35
+ @fI"me;
36
+ @fI" schedul;
37
+ @fI".;
38
+ @fI"hi;
39
+ @fI"how;
40
+ @fI"are;
41
+ @fI"do;
42
+ @fI" have;
43
+ @fI"a;
44
+ @fI" nice;
45
+ @fI"day;
46
+ @fI" good;
47
+ @fI" morn;
48
+ @fI"up;
49
+ @fI"yo;
50
+ @fI"
51
+ where;
52
+ @fI" narkel;
53
+ @fI"
54
+ bagan;
55
+ @fI"the;
56
+ @fI"way;
57
+ @fI"to;
58
+ @fI"
59
+ sasta;
60
+ @fI" sundar;
61
+ @fI"
62
+ @fI" give;
63
+ @fI" direct;
64
+ @fI" park;
65
+ @fI"lot;
66
+ @fI" weather;
67
+ @fI"in;
68
+ @fI"
69
+ noida;
70
+ @fI"it;
71
+ @fI" rain;
72
+ @fI" will;
73
+ @fI"be;
74
+ @fI"hot;
75
+ @fI"
76
+ @fI" mumbai;
77
+ @fI" maximum;
78
+ @fI"temperatur;
79
+ @fI"
80
+ today;
81
+ @fI" mani;
82
+ @fI" dollar;
83
+ @fI"17;
84
+ @fI" euro;
85
+ @fI" much;
86
+ @fI"100;
87
+ @fI"
88
+ ruppe;
89
+ @fI"us;
90
+ @fI"
91
+ @fI"
92
+ stock;
93
+ @fI" tell;
94
+ @fI" bitcoin;
95
+ @fI" exchang;
96
+ @fI" rate;
97
+ @fI" valu;
98
+ @fI"of;
99
+ @fI"
100
+ share;
101
+ @fI"
102
+ price;
103
+ @fI"microsoft;
104
+ @f: klasses[
105
+ I"schedule_list;
106
+ @fI"greetings;
107
+ @fI"
108
+ @fI" weather;
109
+ @fI" finance;
110
+ @f
@@ -0,0 +1,348 @@
1
+ require 'porter2stemmer'
2
+ require 'tokenizer'
3
+ require 'numo/narray'
4
+ require "croupier"
5
+ require 'rambling-trie'
6
+
7
+ require "smalltext/version"
8
+
9
+ # probability threshold
10
+ ERROR_THRESHOLD = 0.2
11
+
12
+ module Smalltext
13
+ class Error < StandardError; end
14
+ # Your code goes here...
15
+
16
+ class Classifier
17
+
18
+ def initialize
19
+ @training_data = []
20
+
21
+ #organizing our data structures for documents , @categories, words
22
+ @ignore_words = ['?']
23
+ @words=[]
24
+ @categories=[]
25
+ @documents=[]
26
+ @tokenizer = Tokenizer::Tokenizer.new(:en)
27
+
28
+ #create our bow training data
29
+ @training=[]
30
+ @output=[]
31
+ @synapse = {}
32
+ end
33
+
34
+ def add_item(category, sentence)
35
+ @training_data.push({"category":category, "sentence":sentence})
36
+ end
37
+
38
+ def train(hidden_neurons=20, alpha=0.1, epochs=1000, dropout=false, dropout_percent=0.2)
39
+ preprocess
40
+ x_inp = Numo::NArray[training][0,true,true]
41
+ y = Numo::NArray[output][0,true,true]
42
+
43
+ start_time = Time.now
44
+
45
+ neural_network(x_inp, y, hidden_neurons=hidden_neurons, alpha=alpha, epochs=epochs, dropout=dropout, dropout_percent=dropout_percent)
46
+
47
+ elapsed_time = Time.now - start_time
48
+ puts
49
+ puts
50
+ puts "Model training complete."
51
+ puts "Processing time: #{elapsed_time} seconds"
52
+
53
+ end
54
+
55
+ def classify(sentence, show_details=false)
56
+ results = think(sentence, show_details)
57
+ # puts "results is #{results.inspect}"
58
+
59
+ # results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD ]
60
+ results = results.to_a.map.each_with_index {|r,i| [i, r] if r > ERROR_THRESHOLD }.compact
61
+ # # results.sort(key=lambda x: x[1], reverse=True)
62
+ results.sort! {|a,b| b[1] <=> a[1] }
63
+ # return_results =[[classes[r[0]],r[1]] for r in results]
64
+ return_results = results.map {|r| [klasses[r[0]], r[1]] }
65
+ puts "sentence: #{sentence}\nclassification: #{return_results}"
66
+ puts
67
+ return return_results
68
+ end
69
+
70
+ def save_model(synapse_file)
71
+ synapse_file = synapse_file
72
+
73
+ unless @synapse.empty?
74
+ File.open(synapse_file, 'wb') do |file|
75
+ file.write(Marshal.dump(@synapse))
76
+ end
77
+ puts "saved synapses to: #{synapse_file}"
78
+ else
79
+ puts "Model not trained. Use the 'Classifier#train' method to build a model."
80
+ end
81
+ end
82
+
83
+ def load_model(synapse_file)
84
+ @synapse = Marshal.load(File.binread(synapse_file))
85
+ @synapse[:synapse0] = Numo::NArray.cast(@synapse[:synapse0])
86
+ @synapse[:synapse1] = Numo::NArray.cast(@synapse[:synapse1])
87
+
88
+ @words = @synapse[:words]
89
+ @categories = @synapse[:klasses]
90
+
91
+ puts "Model #{synapse_file} loaded. Model was created on #{@synapse[:datetime]}"
92
+ end
93
+
94
+
95
+ private
96
+
97
+ def preprocess
98
+ #loop through each sentence in our training data
99
+ @training_data.each do |pattern|
100
+ #tokenize in each word in the sentence
101
+ w = @tokenizer.tokenize(pattern[:sentence])
102
+
103
+ #add to our words list
104
+ @words += w
105
+
106
+ #add to documents in our corpus
107
+ @documents.push([w,pattern[:category]])
108
+
109
+ #add to our @categories list
110
+ if !@categories.include?(pattern[:category])
111
+ @categories.push(pattern[:category])
112
+ end
113
+ end
114
+
115
+ @ignore_words.each {|ign| @words.delete(ign) }
116
+ @words.map! {|word| word.stem }
117
+ @words.uniq!
118
+ @categories.uniq!
119
+
120
+ prepare_bow
121
+ end
122
+
123
+ def prepare_bow
124
+ #create an empty array for our output
125
+ output_empty = Array.new(@categories.size) { 0 }
126
+
127
+ #training set, bag of words for each sentence
128
+ @documents.each do |doc|
129
+ #initialize our bag of words
130
+ bag=[]
131
+ #list of tokenized words for the pattern
132
+ pattern_words=doc[0]
133
+ #stem each word
134
+ pattern_words.map! {|word| word.stem }
135
+ #create our bag of words array
136
+ @words.each { |w| if pattern_words.include?(w) then bag << 1 else bag << 0 end }
137
+ @training.push(bag)
138
+ #output is a 0 for each tag and 1 for current tag
139
+ # output_row = Array.new(output_empty)
140
+ output_row = output_empty.dup
141
+ output_row[@categories.index(doc[1])] = 1
142
+ @output << output_row
143
+ end
144
+ end
145
+
146
+ def training
147
+ return @training
148
+ end
149
+
150
+ def output
151
+ return @output
152
+ end
153
+
154
+ def klasses
155
+ return @categories
156
+ end
157
+
158
+ def words
159
+ return @words
160
+ end
161
+
162
+ def clean_up_sentence(sentence)
163
+ #tokenize the pattern
164
+ sentence_words = @tokenizer.tokenize(sentence)
165
+ #stem each word
166
+ # sentence_words=[stemmer.stem(word.lower()) for word in sentence_words]
167
+ sentence_words.map! {|word| word.stem }
168
+ end
169
+
170
+ #return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
171
+ def bow(sentence, words, show_details=false)
172
+ #tokenize the pattern
173
+ sentence_words=clean_up_sentence(sentence)
174
+ #bag of words
175
+ bag=[0] * words.size
176
+ # for s in sentence_words:
177
+ sentence_words.each do |s|
178
+ words.each_with_index do |w,i|
179
+ if w == s
180
+ bag[i] = 1
181
+ if show_details
182
+ puts "found in bag: #{w}"
183
+ end
184
+ end
185
+ end
186
+ end
187
+ # return Numo::Narray.new(bag)
188
+ return Numo::DFloat[bag].flatten
189
+ end
190
+
191
+ def think(sentence, show_details=false)
192
+ x= bow(sentence.downcase, words,show_details)
193
+ if show_details
194
+ puts "sentence: #{sentence},\nbow: #{x}"
195
+ end
196
+ #input layer is our bag of words
197
+ l0=x
198
+ # matrix multiplication of input and hidden layer
199
+ l1 = sigmoid(l0.dot @synapse[:synapse0])
200
+ # l1 = softmax(l0.dot @synapse_0)
201
+ # output layer
202
+ # l2 = sigmoid(l1.dot @synapse_1)
203
+ l2 = softmax(l1.dot @synapse[:synapse1])
204
+
205
+ return l2
206
+ end
207
+
208
+ def neural_network(x_inp, y, hidden_neurons=10, alpha=1, epochs=50000, dropout=false, dropout_percent=0.5)
209
+
210
+ puts "Training with #{hidden_neurons} neurons, alpha:#{alpha}, dropout:#{dropout} #{dropout_percent if dropout}"
211
+ # puts x_inp.inspect
212
+ # puts "Input matrix: #{x_inp.size}x#{x_inp[0].size} Output matrix: #{1}x#{@categories.size}"
213
+ puts "Input matrix: #{x_inp.shape} Output matrix: #{1}x#{@categories.size}"
214
+ puts "Epochs set to #{epochs}. Every 100th iteration will be printed."
215
+ puts
216
+
217
+ last_mean_error = 1
218
+ # randomly initialize our weights with mean 0
219
+ # synapse_0 = 2*np.random.random((len(x_inp[0]), hidden_neurons)) - 1
220
+ synapse_0 = 2*Numo::DFloat.new(x_inp[0,true].size, hidden_neurons).rand - 1
221
+ # puts "synapse_0 is #{synapse_0.inspect}"
222
+ # synapse_1 = 2*np.random.random((hidden_neurons, len(@categories))) - 1
223
+ synapse_1 = 2*Numo::DFloat.new(hidden_neurons, @categories.size).rand - 1
224
+
225
+
226
+ prev_synapse_0_weight_update = synapse_0.new_zeros
227
+ prev_synapse_1_weight_update = synapse_1.new_zeros
228
+
229
+ synapse_0_direction_count = synapse_0.new_zeros
230
+ synapse_1_direction_count = synapse_1.new_zeros
231
+
232
+ (epochs + 1).times do |j|
233
+ # Feed forward through layers 0, 1, and 2
234
+ layer_0 = x_inp
235
+ # puts "synapse_0 in block is #{synapse_0.inspect}"
236
+ # puts "layer_0 is #{layer_0.inspect}"
237
+ layer_1 = sigmoid(layer_0.dot synapse_0)
238
+ # layer_1 = tanh(layer_0.dot synapse_0)
239
+
240
+ if dropout
241
+ # layer_1 *= np.random.binomial([np.ones((len(x_inp),hidden_neurons))],1-dropout_percent)[0] * (1.0/(1-dropout_percent))
242
+ b = Croupier::Distributions.binomial size: 1, success: (1-dropout_percent)
243
+ arr = Array.new(x_inp.size) { Array.new(hidden_neurons) {b.generate_number} }
244
+ layer_1 = Numo::DFloat[arr].reshape(x_inp.size,hidden_neurons) * (1.0/(1-dropout_percent))
245
+ end
246
+
247
+ layer_2 = sigmoid((layer_1.dot synapse_1))
248
+ # layer_2 = tanh((layer_1.dot synapse_1))
249
+
250
+ # how much did we miss the target value?
251
+ layer_2_error = y - layer_2
252
+
253
+
254
+ if (j% 10000) == 0 and j > 5000
255
+ # if this 10k iteration's error is greater than the last iteration, break out
256
+ if (layer_2_error.abs).mean < last_mean_error
257
+ puts "delta after #{j} iterations: #{(layer_2_error.abs).mean} )"
258
+ last_mean_error = (layer_2_error.abs).mean
259
+ else
260
+ puts "break: #{(layer_2_error.abs).mean} > #{last_mean_error}"
261
+ break
262
+ end
263
+ end
264
+
265
+ # in what direction is the target value?
266
+ # were we really sure? if so, don't change too much.
267
+ # layer_2_delta = layer_2_error * sigmoid_output_to_derivative(layer_2)
268
+ layer_2_delta = layer_2_error * dtanh(layer_2)
269
+
270
+ # how much did each l1 value contribute to the l2 error (according to the weights)?
271
+ layer_1_error = layer_2_delta.dot(synapse_1.transpose)
272
+
273
+ # in what direction is the target l1?
274
+ # were we really sure? if so, don't change too much.
275
+ # layer_1_delta = layer_1_error * sigmoid_output_to_derivative(layer_1)
276
+ layer_1_delta = layer_1_error * dtanh(layer_1)
277
+
278
+ synapse_1_weight_update = (layer_1.transpose).dot(layer_2_delta)
279
+ synapse_0_weight_update = (layer_0.transpose).dot(layer_1_delta)
280
+
281
+
282
+ if(j > 0)
283
+ # Bit array does not support arithmetic operation. Cast to Numo::Int32.cast, see https://github.com/ruby-numo/numo-narray/issues/65#issuecomment-323665534
284
+ # puts "synapse_0_direction_count",synapse_0_direction_count.inspect
285
+ # puts "synapse_0_weight_update", synapse_0_weight_update.inspect
286
+ # puts "prev_synapse_0_weight_update", prev_synapse_0_weight_update.inspect
287
+ synapse_0_direction_count += ( Numo::Int32.cast((synapse_0_weight_update > 0)) - Numo::Int32.cast((prev_synapse_0_weight_update > 0)) ).abs
288
+ synapse_1_direction_count += ( Numo::Int32.cast((synapse_1_weight_update > 0)) - Numo::Int32.cast((prev_synapse_1_weight_update > 0))).abs
289
+ end
290
+
291
+ synapse_1 += alpha * synapse_1_weight_update
292
+ synapse_0 += alpha * synapse_0_weight_update
293
+
294
+ prev_synapse_0_weight_update = synapse_0_weight_update
295
+ prev_synapse_1_weight_update = synapse_1_weight_update
296
+ print "."
297
+ if (j%100 == 0)
298
+ print j
299
+ end
300
+ end
301
+
302
+ now = Time.now
303
+ # puts "BEFORE DUMPING #{synapse_0.inspect}"
304
+ # persist synapses
305
+ @synapse = {'synapse0': synapse_0.to_a, 'synapse1': synapse_1.to_a,
306
+ 'datetime': now.strftime("%Y-%m-%d %H:%M"),
307
+ 'words': @words,
308
+ 'klasses': @categories
309
+ }
310
+
311
+ # synapse_file = "intent_class.nn"
312
+
313
+ # File.open(synapse_file, 'wb') do |file|
314
+ # file.write(Marshal.dump(@synapse))
315
+ # end
316
+ # puts "saved synapses to: #{synapse_file}"
317
+ end
318
+
319
+ #compute sigmoid nonlinearity
320
+ def sigmoid(x)
321
+ output=1/(1+Numo::NMath.exp(-x))
322
+ end
323
+ #convert output of sigmoid function to its derivative
324
+ def sigmoid_output_to_derivative(output)
325
+ output*(1-output)
326
+ end
327
+
328
+ # using softmax as output layer is recommended for classification where outputs are mutually exclusive
329
+ def softmax(w)
330
+ e = Numo::NMath.exp(w - (w.max))
331
+ dist = e / (e.sum)
332
+ return dist
333
+ end
334
+
335
+ # using tanh over logistic sigmoid for the hidden layer is recommended
336
+ def tanh(x)
337
+ Numo::NMath.tanh(x)
338
+ end
339
+
340
+ # derivative for tanh sigmoid
341
+ def dtanh(y)
342
+ # 1 - y*y
343
+ return 1.0 - Numo::NMath.tanh(y)**2
344
+ end
345
+
346
+ end # END class
347
+
348
+ end
@@ -0,0 +1,3 @@
1
+ module Smalltext
2
+ VERSION = "0.1.0"
3
+ end
@@ -0,0 +1,48 @@
1
+
2
+ lib = File.expand_path("../lib", __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require "smalltext/version"
5
+
6
+ Gem::Specification.new do |spec|
7
+ spec.name = "smalltext"
8
+ spec.version = Smalltext::VERSION
9
+ spec.authors = ["arjun"]
10
+ spec.email = ["arjunmenon009@gmail.com"]
11
+
12
+ spec.summary = %q{Classify short texts with neural network}
13
+ spec.description = %q{Classify short texts with neural network}
14
+ spec.homepage = "https://www.github.com/arjunmenon/smalltext"
15
+ spec.license = "MIT"
16
+
17
+ # Prevent pushing this gem to RubyGems.org. To allow pushes either set the 'allowed_push_host'
18
+ # to allow pushing to a single host or delete this section to allow pushing to any host.
19
+ # if spec.respond_to?(:metadata)
20
+ # spec.metadata["allowed_push_host"] = "TODO: Set to 'http://mygemserver.com'"
21
+
22
+ # spec.metadata["homepage_uri"] = spec.homepage
23
+ # spec.metadata["source_code_uri"] = "https://www.github.com/arjunmenon/smalltext"
24
+ # spec.metadata["changelog_uri"] = "https://www.github.com/arjunmenon/smalltext/CHANGELOG.md"
25
+ # else
26
+ # raise "RubyGems 2.0 or newer is required to protect against " \
27
+ # "public gem pushes."
28
+ # end
29
+
30
+ # Specify which files should be added to the gem when it is released.
31
+ # The `git ls-files -z` loads the files in the RubyGem that have been added into git.
32
+ spec.files = Dir.chdir(File.expand_path('..', __FILE__)) do
33
+ `git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
34
+ end
35
+ spec.bindir = "exe"
36
+ spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
37
+ spec.require_paths = ["lib"]
38
+
39
+ spec.add_runtime_dependency 'rambling-trie'
40
+ spec.add_runtime_dependency 'croupier'
41
+ spec.add_runtime_dependency 'numo-narray', '~> 0.9.1.3'
42
+ spec.add_runtime_dependency 'tokenizer'
43
+ spec.add_runtime_dependency 'porter2stemmer'
44
+
45
+ spec.add_development_dependency "bundler", "~> 1.17"
46
+ spec.add_development_dependency "rake", "~> 10.0"
47
+ spec.add_development_dependency "rspec", "~> 3.0"
48
+ end
metadata ADDED
@@ -0,0 +1,172 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: smalltext
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.1.0
5
+ platform: ruby
6
+ authors:
7
+ - arjun
8
+ autorequire:
9
+ bindir: exe
10
+ cert_chain: []
11
+ date: 2018-11-29 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: rambling-trie
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - ">="
18
+ - !ruby/object:Gem::Version
19
+ version: '0'
20
+ type: :runtime
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - ">="
25
+ - !ruby/object:Gem::Version
26
+ version: '0'
27
+ - !ruby/object:Gem::Dependency
28
+ name: croupier
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - ">="
32
+ - !ruby/object:Gem::Version
33
+ version: '0'
34
+ type: :runtime
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - ">="
39
+ - !ruby/object:Gem::Version
40
+ version: '0'
41
+ - !ruby/object:Gem::Dependency
42
+ name: numo-narray
43
+ requirement: !ruby/object:Gem::Requirement
44
+ requirements:
45
+ - - "~>"
46
+ - !ruby/object:Gem::Version
47
+ version: 0.9.1.3
48
+ type: :runtime
49
+ prerelease: false
50
+ version_requirements: !ruby/object:Gem::Requirement
51
+ requirements:
52
+ - - "~>"
53
+ - !ruby/object:Gem::Version
54
+ version: 0.9.1.3
55
+ - !ruby/object:Gem::Dependency
56
+ name: tokenizer
57
+ requirement: !ruby/object:Gem::Requirement
58
+ requirements:
59
+ - - ">="
60
+ - !ruby/object:Gem::Version
61
+ version: '0'
62
+ type: :runtime
63
+ prerelease: false
64
+ version_requirements: !ruby/object:Gem::Requirement
65
+ requirements:
66
+ - - ">="
67
+ - !ruby/object:Gem::Version
68
+ version: '0'
69
+ - !ruby/object:Gem::Dependency
70
+ name: porter2stemmer
71
+ requirement: !ruby/object:Gem::Requirement
72
+ requirements:
73
+ - - ">="
74
+ - !ruby/object:Gem::Version
75
+ version: '0'
76
+ type: :runtime
77
+ prerelease: false
78
+ version_requirements: !ruby/object:Gem::Requirement
79
+ requirements:
80
+ - - ">="
81
+ - !ruby/object:Gem::Version
82
+ version: '0'
83
+ - !ruby/object:Gem::Dependency
84
+ name: bundler
85
+ requirement: !ruby/object:Gem::Requirement
86
+ requirements:
87
+ - - "~>"
88
+ - !ruby/object:Gem::Version
89
+ version: '1.17'
90
+ type: :development
91
+ prerelease: false
92
+ version_requirements: !ruby/object:Gem::Requirement
93
+ requirements:
94
+ - - "~>"
95
+ - !ruby/object:Gem::Version
96
+ version: '1.17'
97
+ - !ruby/object:Gem::Dependency
98
+ name: rake
99
+ requirement: !ruby/object:Gem::Requirement
100
+ requirements:
101
+ - - "~>"
102
+ - !ruby/object:Gem::Version
103
+ version: '10.0'
104
+ type: :development
105
+ prerelease: false
106
+ version_requirements: !ruby/object:Gem::Requirement
107
+ requirements:
108
+ - - "~>"
109
+ - !ruby/object:Gem::Version
110
+ version: '10.0'
111
+ - !ruby/object:Gem::Dependency
112
+ name: rspec
113
+ requirement: !ruby/object:Gem::Requirement
114
+ requirements:
115
+ - - "~>"
116
+ - !ruby/object:Gem::Version
117
+ version: '3.0'
118
+ type: :development
119
+ prerelease: false
120
+ version_requirements: !ruby/object:Gem::Requirement
121
+ requirements:
122
+ - - "~>"
123
+ - !ruby/object:Gem::Version
124
+ version: '3.0'
125
+ description: Classify short texts with neural network
126
+ email:
127
+ - arjunmenon009@gmail.com
128
+ executables: []
129
+ extensions: []
130
+ extra_rdoc_files: []
131
+ files:
132
+ - ".gitignore"
133
+ - ".rspec"
134
+ - ".travis.yml"
135
+ - CHANGELOG.md
136
+ - CODE_OF_CONDUCT.md
137
+ - Gemfile
138
+ - Gemfile.lock
139
+ - LICENSE.txt
140
+ - README.md
141
+ - Rakefile
142
+ - bin/console
143
+ - bin/setup
144
+ - intent_class.nn
145
+ - lib/smalltext.rb
146
+ - lib/smalltext/version.rb
147
+ - smalltext.gemspec
148
+ homepage: https://www.github.com/arjunmenon/smalltext
149
+ licenses:
150
+ - MIT
151
+ metadata: {}
152
+ post_install_message:
153
+ rdoc_options: []
154
+ require_paths:
155
+ - lib
156
+ required_ruby_version: !ruby/object:Gem::Requirement
157
+ requirements:
158
+ - - ">="
159
+ - !ruby/object:Gem::Version
160
+ version: '0'
161
+ required_rubygems_version: !ruby/object:Gem::Requirement
162
+ requirements:
163
+ - - ">="
164
+ - !ruby/object:Gem::Version
165
+ version: '0'
166
+ requirements: []
167
+ rubyforge_project:
168
+ rubygems_version: 2.7.8
169
+ signing_key:
170
+ specification_version: 4
171
+ summary: Classify short texts with neural network
172
+ test_files: []