shalmaneser 0.0.1.alpha
Sign up to get free protection for your applications and to get access to all the features.
- data/.yardopts +8 -0
- data/CHANGELOG.rdoc +0 -0
- data/LICENSE.rdoc +0 -0
- data/README.rdoc +0 -0
- data/lib/common/AbstractSynInterface.rb +1227 -0
- data/lib/common/BerkeleyInterface.rb +375 -0
- data/lib/common/CollinsInterface.rb +1165 -0
- data/lib/common/ConfigData.rb +694 -0
- data/lib/common/Counter.rb +18 -0
- data/lib/common/DBInterface.rb +48 -0
- data/lib/common/EnduserMode.rb +27 -0
- data/lib/common/Eval.rb +480 -0
- data/lib/common/FixSynSemMapping.rb +196 -0
- data/lib/common/FrPrepConfigData.rb +66 -0
- data/lib/common/FrprepHelper.rb +1324 -0
- data/lib/common/Graph.rb +345 -0
- data/lib/common/ISO-8859-1.rb +24 -0
- data/lib/common/ML.rb +186 -0
- data/lib/common/Maxent.rb +215 -0
- data/lib/common/MiniparInterface.rb +1388 -0
- data/lib/common/Optimise.rb +195 -0
- data/lib/common/Parser.rb +213 -0
- data/lib/common/RegXML.rb +269 -0
- data/lib/common/RosyConventions.rb +171 -0
- data/lib/common/SQLQuery.rb +243 -0
- data/lib/common/STXmlTerminalOrder.rb +194 -0
- data/lib/common/SalsaTigerRegXML.rb +2347 -0
- data/lib/common/SalsaTigerXMLHelper.rb +99 -0
- data/lib/common/SleepyInterface.rb +384 -0
- data/lib/common/SynInterfaces.rb +275 -0
- data/lib/common/TabFormat.rb +720 -0
- data/lib/common/Tiger.rb +1448 -0
- data/lib/common/TntInterface.rb +44 -0
- data/lib/common/Tree.rb +61 -0
- data/lib/common/TreetaggerInterface.rb +303 -0
- data/lib/common/headz.rb +338 -0
- data/lib/common/option_parser.rb +13 -0
- data/lib/common/ruby_class_extensions.rb +310 -0
- data/lib/fred/Baseline.rb +150 -0
- data/lib/fred/FileZipped.rb +31 -0
- data/lib/fred/FredBOWContext.rb +863 -0
- data/lib/fred/FredConfigData.rb +182 -0
- data/lib/fred/FredConventions.rb +232 -0
- data/lib/fred/FredDetermineTargets.rb +324 -0
- data/lib/fred/FredEval.rb +312 -0
- data/lib/fred/FredFeatureExtractors.rb +321 -0
- data/lib/fred/FredFeatures.rb +1061 -0
- data/lib/fred/FredFeaturize.rb +596 -0
- data/lib/fred/FredNumTrainingSenses.rb +27 -0
- data/lib/fred/FredParameters.rb +402 -0
- data/lib/fred/FredSplit.rb +84 -0
- data/lib/fred/FredSplitPkg.rb +180 -0
- data/lib/fred/FredTest.rb +607 -0
- data/lib/fred/FredTrain.rb +144 -0
- data/lib/fred/PlotAndREval.rb +480 -0
- data/lib/fred/fred.rb +45 -0
- data/lib/fred/md5.rb +23 -0
- data/lib/fred/opt_parser.rb +250 -0
- data/lib/frprep/AbstractSynInterface.rb +1227 -0
- data/lib/frprep/Ampersand.rb +37 -0
- data/lib/frprep/BerkeleyInterface.rb +375 -0
- data/lib/frprep/CollinsInterface.rb +1165 -0
- data/lib/frprep/ConfigData.rb +694 -0
- data/lib/frprep/Counter.rb +18 -0
- data/lib/frprep/FNCorpusXML.rb +643 -0
- data/lib/frprep/FNDatabase.rb +144 -0
- data/lib/frprep/FixSynSemMapping.rb +196 -0
- data/lib/frprep/FrPrepConfigData.rb +66 -0
- data/lib/frprep/FrameXML.rb +513 -0
- data/lib/frprep/FrprepHelper.rb +1324 -0
- data/lib/frprep/Graph.rb +345 -0
- data/lib/frprep/ISO-8859-1.rb +24 -0
- data/lib/frprep/MiniparInterface.rb +1388 -0
- data/lib/frprep/Parser.rb +213 -0
- data/lib/frprep/RegXML.rb +269 -0
- data/lib/frprep/STXmlTerminalOrder.rb +194 -0
- data/lib/frprep/SalsaTigerRegXML.rb +2347 -0
- data/lib/frprep/SalsaTigerXMLHelper.rb +99 -0
- data/lib/frprep/SleepyInterface.rb +384 -0
- data/lib/frprep/SynInterfaces.rb +275 -0
- data/lib/frprep/TabFormat.rb +720 -0
- data/lib/frprep/Tiger.rb +1448 -0
- data/lib/frprep/TntInterface.rb +44 -0
- data/lib/frprep/Tree.rb +61 -0
- data/lib/frprep/TreetaggerInterface.rb +303 -0
- data/lib/frprep/do_parses.rb +142 -0
- data/lib/frprep/frprep.rb +686 -0
- data/lib/frprep/headz.rb +338 -0
- data/lib/frprep/one_parsed_file.rb +28 -0
- data/lib/frprep/opt_parser.rb +94 -0
- data/lib/frprep/ruby_class_extensions.rb +310 -0
- data/lib/rosy/AbstractFeatureAndExternal.rb +240 -0
- data/lib/rosy/DBMySQL.rb +146 -0
- data/lib/rosy/DBSQLite.rb +280 -0
- data/lib/rosy/DBTable.rb +239 -0
- data/lib/rosy/DBWrapper.rb +176 -0
- data/lib/rosy/ExternalConfigData.rb +58 -0
- data/lib/rosy/FailedParses.rb +130 -0
- data/lib/rosy/FeatureInfo.rb +242 -0
- data/lib/rosy/GfInduce.rb +1115 -0
- data/lib/rosy/GfInduceFeature.rb +148 -0
- data/lib/rosy/InputData.rb +294 -0
- data/lib/rosy/RosyConfigData.rb +115 -0
- data/lib/rosy/RosyConfusability.rb +338 -0
- data/lib/rosy/RosyEval.rb +465 -0
- data/lib/rosy/RosyFeatureExtractors.rb +1609 -0
- data/lib/rosy/RosyFeaturize.rb +280 -0
- data/lib/rosy/RosyInspect.rb +336 -0
- data/lib/rosy/RosyIterator.rb +477 -0
- data/lib/rosy/RosyPhase2FeatureExtractors.rb +230 -0
- data/lib/rosy/RosyPruning.rb +165 -0
- data/lib/rosy/RosyServices.rb +744 -0
- data/lib/rosy/RosySplit.rb +232 -0
- data/lib/rosy/RosyTask.rb +19 -0
- data/lib/rosy/RosyTest.rb +826 -0
- data/lib/rosy/RosyTrain.rb +232 -0
- data/lib/rosy/RosyTrainingTestTable.rb +786 -0
- data/lib/rosy/TargetsMostFrequentFrame.rb +60 -0
- data/lib/rosy/View.rb +418 -0
- data/lib/rosy/opt_parser.rb +379 -0
- data/lib/rosy/rosy.rb +77 -0
- data/lib/shalmaneser/version.rb +3 -0
- data/test/frprep/test_opt_parser.rb +94 -0
- data/test/functional/functional_test_helper.rb +40 -0
- data/test/functional/sample_experiment_files/fred_test.salsa.erb +122 -0
- data/test/functional/sample_experiment_files/fred_train.salsa.erb +135 -0
- data/test/functional/sample_experiment_files/prp_test.salsa.erb +138 -0
- data/test/functional/sample_experiment_files/prp_test.salsa.fred.standalone.erb +120 -0
- data/test/functional/sample_experiment_files/prp_test.salsa.rosy.standalone.erb +120 -0
- data/test/functional/sample_experiment_files/prp_train.salsa.erb +138 -0
- data/test/functional/sample_experiment_files/prp_train.salsa.fred.standalone.erb +138 -0
- data/test/functional/sample_experiment_files/prp_train.salsa.rosy.standalone.erb +138 -0
- data/test/functional/sample_experiment_files/rosy_test.salsa.erb +257 -0
- data/test/functional/sample_experiment_files/rosy_train.salsa.erb +259 -0
- data/test/functional/test_fred.rb +47 -0
- data/test/functional/test_frprep.rb +52 -0
- data/test/functional/test_rosy.rb +20 -0
- metadata +284 -0
@@ -0,0 +1,180 @@
|
|
1
|
+
##
|
2
|
+
# splitting package for WSD:
|
3
|
+
# compute a split for feature files (one item a line, CSV),
|
4
|
+
# and apply pre-computed split
|
5
|
+
# to produce new feature files accordingly
|
6
|
+
|
7
|
+
require "tempfile"
|
8
|
+
|
9
|
+
require "fred/FredDetermineTargets"
|
10
|
+
require "fred/FredConventions"
|
11
|
+
|
12
|
+
class FredSplitPkg
|
13
|
+
###
|
14
|
+
def initialize(exp)
|
15
|
+
@exp = exp
|
16
|
+
end
|
17
|
+
|
18
|
+
###
|
19
|
+
def FredSplitPkg.split_dir(exp, split_id, mode = "existing")
|
20
|
+
return fred_dirname(exp, "split", split_id, mode)
|
21
|
+
end
|
22
|
+
|
23
|
+
###
|
24
|
+
# make a new split
|
25
|
+
def make_new_split(split_id, # string: ID
|
26
|
+
trainpercent, # float: percentage training data
|
27
|
+
ignore_unambiguous = false)
|
28
|
+
|
29
|
+
# where to store the split?
|
30
|
+
split_dir = FredSplitPkg.split_dir(@exp, split_id, "new")
|
31
|
+
|
32
|
+
lemmas_and_senses = Targets.new(@exp, nil, "r")
|
33
|
+
unless lemmas_and_senses.targets_okay
|
34
|
+
# error during initialization
|
35
|
+
$stderr.puts "Error: Could not read list of known targets, bailing out."
|
36
|
+
exit 1
|
37
|
+
end
|
38
|
+
|
39
|
+
# Iterate through lemmas,
|
40
|
+
# split training feature files.
|
41
|
+
#
|
42
|
+
# Do the split only once per lemma,
|
43
|
+
# even if we have sense-specific feature files
|
44
|
+
feature_dir = fred_dirname(@exp, "train", "features")
|
45
|
+
|
46
|
+
lemmas_and_senses.get_lemmas().each { |lemma|
|
47
|
+
# construct split file
|
48
|
+
splitfilename = split_dir + fred_split_filename(lemma)
|
49
|
+
begin
|
50
|
+
splitfile = File.new(splitfilename, "w")
|
51
|
+
rescue
|
52
|
+
raise "Error: Couldn't write to file " + splitfilename
|
53
|
+
end
|
54
|
+
|
55
|
+
# find lemma-specific feature file
|
56
|
+
|
57
|
+
filename = feature_dir + fred_feature_filename(lemma)
|
58
|
+
|
59
|
+
unless File.exists?(filename)
|
60
|
+
# try lemma+sense-specific feature file
|
61
|
+
file_pattern = fred_feature_filename(lemma, "*", true)
|
62
|
+
filename = Dir[feature_dir + file_pattern].first()
|
63
|
+
|
64
|
+
unless filename
|
65
|
+
# no lemma+sense-specific feature file
|
66
|
+
$stderr.puts "Warning: split: no feature file found for #{lemma}, skipping."
|
67
|
+
splitfile.close()
|
68
|
+
next
|
69
|
+
end
|
70
|
+
end
|
71
|
+
|
72
|
+
# open feature file for reading
|
73
|
+
begin
|
74
|
+
file = File.new(filename)
|
75
|
+
rescue
|
76
|
+
raise "Couldn't read feature file " + filename
|
77
|
+
end
|
78
|
+
|
79
|
+
if ignore_unambiguous and
|
80
|
+
lemmas_and_senses.get_senses(lemma).length() < 2
|
81
|
+
# unambiguous: ignore
|
82
|
+
|
83
|
+
while file.gets()
|
84
|
+
splitfile.puts "ignore"
|
85
|
+
end
|
86
|
+
|
87
|
+
else
|
88
|
+
# read from feature file, classify at random
|
89
|
+
# as train or test,
|
90
|
+
# write result to splitfile
|
91
|
+
|
92
|
+
while file.gets()
|
93
|
+
if rand() < trainpercent
|
94
|
+
splitfile.puts "train"
|
95
|
+
else
|
96
|
+
splitfile.puts "test"
|
97
|
+
end
|
98
|
+
end
|
99
|
+
end
|
100
|
+
|
101
|
+
splitfile.close()
|
102
|
+
}
|
103
|
+
end
|
104
|
+
|
105
|
+
###
|
106
|
+
# remove an old split
|
107
|
+
def FredSplitPkg.remove_split(exp, # FredConfigData object
|
108
|
+
splitID) # string: split ID
|
109
|
+
begin
|
110
|
+
split_dir = FredSplitPkg.split_dir(exp, splitID, "new")
|
111
|
+
rescue
|
112
|
+
# no split to be removed
|
113
|
+
return
|
114
|
+
end
|
115
|
+
%x{rm -rf #{split_dir}}
|
116
|
+
end
|
117
|
+
|
118
|
+
|
119
|
+
###
|
120
|
+
# change feature files according to
|
121
|
+
# pre-computed split
|
122
|
+
#
|
123
|
+
#
|
124
|
+
# returns: tempfile containing featurized items,
|
125
|
+
# according to split,
|
126
|
+
# or nil if the split file wouldn't contain any data
|
127
|
+
def apply_split(filename, # feature file
|
128
|
+
lemma, # string: lemma that filename is about
|
129
|
+
dataset, # string: train, test
|
130
|
+
split_id) # string: split ID
|
131
|
+
|
132
|
+
|
133
|
+
split_filename = FredSplitPkg.split_dir(@exp, split_id) +
|
134
|
+
fred_split_filename(lemma)
|
135
|
+
|
136
|
+
# read feature file and split file at the same time
|
137
|
+
# write to tempfile.
|
138
|
+
f_feat = File.new(filename)
|
139
|
+
f_split = File.new(split_filename)
|
140
|
+
f_out = Tempfile.new("fred_split")
|
141
|
+
|
142
|
+
num_yes = 0
|
143
|
+
|
144
|
+
f_feat.each { |line|
|
145
|
+
begin
|
146
|
+
split_part = f_split.readline().chomp()
|
147
|
+
rescue
|
148
|
+
$stderr.puts "FredSplit error: split file too short."
|
149
|
+
$stderr.puts "skipping rest of featurization data."
|
150
|
+
$stderr.puts "Split file: #{split_filename}"
|
151
|
+
$stderr.puts "Feature file: #{filename}"
|
152
|
+
raise "HIER"
|
153
|
+
f_out.close()
|
154
|
+
if num_yes > 0
|
155
|
+
return f_out
|
156
|
+
else
|
157
|
+
return nil
|
158
|
+
end
|
159
|
+
end
|
160
|
+
|
161
|
+
if split_part == dataset
|
162
|
+
# write training data, and this item is in the training
|
163
|
+
# part of the split,
|
164
|
+
# or write test data, and item is in test part
|
165
|
+
f_out.puts line
|
166
|
+
num_yes += 1
|
167
|
+
end
|
168
|
+
}
|
169
|
+
f_out.close()
|
170
|
+
f_feat.close()
|
171
|
+
f_split.close()
|
172
|
+
|
173
|
+
if num_yes > 0
|
174
|
+
return f_out
|
175
|
+
else
|
176
|
+
return nil
|
177
|
+
end
|
178
|
+
|
179
|
+
end
|
180
|
+
end
|
@@ -0,0 +1,607 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
# FredTest
|
3
|
+
# Katrin Erk April 05
|
4
|
+
#
|
5
|
+
# Frame disambiguation system:
|
6
|
+
# apply trained classifiers to test data
|
7
|
+
# Results are written out one output line per instance line.
|
8
|
+
|
9
|
+
# Ruby packages
|
10
|
+
require "tempfile"
|
11
|
+
|
12
|
+
# Salsa packages
|
13
|
+
require "common/Parser"
|
14
|
+
require "common/RegXML"
|
15
|
+
require "common/SalsaTigerRegXML"
|
16
|
+
require "common/ruby_class_extensions"
|
17
|
+
|
18
|
+
# Shalmaneser packages
|
19
|
+
require "common/FrPrepConfigData"
|
20
|
+
require "common/ML"
|
21
|
+
require "fred/Baseline"
|
22
|
+
require "fred/FredConventions"
|
23
|
+
require "fred/FredDetermineTargets"
|
24
|
+
require "fred/FredSplitPkg"
|
25
|
+
require "fred/FredFeatures"
|
26
|
+
require "fred/FredNumTrainingSenses"
|
27
|
+
|
28
|
+
class FredTest
|
29
|
+
|
30
|
+
###
|
31
|
+
# new
|
32
|
+
#
|
33
|
+
# evaluate runtime options and announce the task
|
34
|
+
def initialize(exp_obj, # FredConfigData object
|
35
|
+
options) # hash: runtime option name (string) => value(string)
|
36
|
+
|
37
|
+
# keep the experiment file object
|
38
|
+
@exp = exp_obj
|
39
|
+
|
40
|
+
# evaluate runtime options
|
41
|
+
@split_id = nil
|
42
|
+
@baseline = false
|
43
|
+
@produce_output = true
|
44
|
+
|
45
|
+
options.each_pair { |opt, arg|
|
46
|
+
case opt
|
47
|
+
when "--logID"
|
48
|
+
|
49
|
+
@split_id = arg
|
50
|
+
|
51
|
+
when "--baseline"
|
52
|
+
@baseline = true
|
53
|
+
|
54
|
+
when "--nooutput"
|
55
|
+
@produce_output = false
|
56
|
+
|
57
|
+
else
|
58
|
+
# case of unknown arguments has been dealt with by fred.rb
|
59
|
+
end
|
60
|
+
}
|
61
|
+
|
62
|
+
# announce the task
|
63
|
+
$stderr.puts "---------"
|
64
|
+
$stderr.print "Fred experiment #{@exp.get("experiment_ID")}: "
|
65
|
+
if @baseline
|
66
|
+
$stderr.print "Computing baseline "
|
67
|
+
else
|
68
|
+
$stderr.print "Applying classifiers"
|
69
|
+
end
|
70
|
+
if @split_id
|
71
|
+
$stderr.puts " using split with ID #{@split_id}"
|
72
|
+
else
|
73
|
+
$stderr.puts
|
74
|
+
end
|
75
|
+
if @produce_output and not @split_id
|
76
|
+
$stderr.print "Output is to "
|
77
|
+
if @exp.get("directory_output")
|
78
|
+
$stderr.puts @exp.get("directory_output")
|
79
|
+
else
|
80
|
+
$stderr.puts fred_dirname(@exp, "output", "stxml", "new")
|
81
|
+
end
|
82
|
+
end
|
83
|
+
$stderr.puts "---------"
|
84
|
+
|
85
|
+
###
|
86
|
+
# prepare data:
|
87
|
+
|
88
|
+
if @baseline
|
89
|
+
# only compute baseline: always assign most frequent sense
|
90
|
+
|
91
|
+
@classifiers = [
|
92
|
+
[Baseline.new(@exp, @split_id), "baseline"]
|
93
|
+
]
|
94
|
+
|
95
|
+
else
|
96
|
+
# determine classifiers
|
97
|
+
#
|
98
|
+
# get_lf returns: array of pairs [classifier_name, options[array]]
|
99
|
+
#
|
100
|
+
# @classifiers: list of pairs [Classifier object, classifier name(string)]
|
101
|
+
@classifiers = @exp.get_lf("classifier").map { |classif_name, options|
|
102
|
+
[Classifier.new(classif_name, options), classif_name]
|
103
|
+
}
|
104
|
+
# sanity check: we need at least one classifier
|
105
|
+
if @classifiers.empty?
|
106
|
+
$stderr.puts "Error: I need at least one classifier, please specify using exp. file option 'classifier'"
|
107
|
+
exit 1
|
108
|
+
end
|
109
|
+
|
110
|
+
|
111
|
+
if @classifiers.length() > 1
|
112
|
+
$stderr.puts "Warning: I'm not doing classifier combination at the moment,"
|
113
|
+
$stderr.puts "so I'll be ignoring all but the first classifier type."
|
114
|
+
end
|
115
|
+
end
|
116
|
+
|
117
|
+
# get an object for listing senses of each lemma
|
118
|
+
@lemmas_and_senses = Targets.new(@exp, nil, "r")
|
119
|
+
end
|
120
|
+
|
121
|
+
###
|
122
|
+
# compute
|
123
|
+
#
|
124
|
+
# classify test instances,
|
125
|
+
# write output to file.
|
126
|
+
def compute()
|
127
|
+
if @split_id
|
128
|
+
# make split object and parameter hash to pass to it.
|
129
|
+
# read feature data from training feature directory.
|
130
|
+
split_obj = FredSplitPkg.new(@exp)
|
131
|
+
dataset = "train"
|
132
|
+
else
|
133
|
+
# read feature data from test feature directory.
|
134
|
+
dataset = "test"
|
135
|
+
end
|
136
|
+
|
137
|
+
output_dir = fred_dirname(@exp, "output", "tab", "new")
|
138
|
+
classif_dir = fred_classifier_directory(@exp, @split_id)
|
139
|
+
|
140
|
+
###
|
141
|
+
# remove old classifier output files
|
142
|
+
Dir[output_dir + "*"].each { |f|
|
143
|
+
if File.exists? f
|
144
|
+
File.delete(f)
|
145
|
+
end
|
146
|
+
}
|
147
|
+
|
148
|
+
|
149
|
+
all_results = Array.new()
|
150
|
+
|
151
|
+
###
|
152
|
+
# get a list of all relevant feature files: lemma, sense?
|
153
|
+
lemma2_sense_and_filename = Hash.new()
|
154
|
+
|
155
|
+
FredFeatureAccess.each_feature_file(@exp, dataset) { |filename, values|
|
156
|
+
|
157
|
+
# catalogue under lemma
|
158
|
+
unless lemma2_sense_and_filename[values["lemma"]]
|
159
|
+
lemma2_sense_and_filename[values["lemma"]] = Array.new()
|
160
|
+
end
|
161
|
+
# catalogue only matches between chosen classifier type
|
162
|
+
# and actually existing classifier type
|
163
|
+
|
164
|
+
# hier checken
|
165
|
+
# senses ist nil, lemma2_sense_and_filename wird nicht gefüllt
|
166
|
+
# => es werden keine classifier gefunden
|
167
|
+
|
168
|
+
|
169
|
+
if @exp.get("binary_classifiers") and \
|
170
|
+
values["sense"] and not(values["sense"].empty?)
|
171
|
+
lemma2_sense_and_filename[values["lemma"]] << [values["sense"], filename]
|
172
|
+
|
173
|
+
elsif not(@exp.get("binary_classifiers")) and \
|
174
|
+
(values["sense"].nil? or values["sense"].empty?)
|
175
|
+
lemma2_sense_and_filename[values["lemma"]] << [nil, filename]
|
176
|
+
end
|
177
|
+
}
|
178
|
+
|
179
|
+
###
|
180
|
+
# check whether we have classifiers
|
181
|
+
found = 0
|
182
|
+
found_single_sense = 0
|
183
|
+
lemma2_sense_and_filename.each_pair { |lemma, senses_and_filenames|
|
184
|
+
if @lemmas_and_senses.get_senses(lemma).length() == 1
|
185
|
+
# lemma with only one sense? then mark as such
|
186
|
+
found_single_sense += 1
|
187
|
+
else
|
188
|
+
# lemma with more than one sense: look for classifiers
|
189
|
+
senses_and_filenames.each { |sense, filename|
|
190
|
+
@classifiers.each { |classifier, classifier_name|
|
191
|
+
if @exp.get("binary_classifiers") and \
|
192
|
+
classifier.exists? classif_dir + fred_classifier_filename(classifier_name,
|
193
|
+
lemma, sense)
|
194
|
+
found += 1
|
195
|
+
elsif not(@exp.get("binary_classifiers")) and\
|
196
|
+
classifier.exists? classif_dir + fred_classifier_filename(classifier_name,
|
197
|
+
lemma)
|
198
|
+
found += 1
|
199
|
+
end
|
200
|
+
}
|
201
|
+
}
|
202
|
+
end
|
203
|
+
}
|
204
|
+
if found == 0 and found_single_sense < lemma2_sense_and_filename.length()
|
205
|
+
# no matching classifiers found
|
206
|
+
$stderr.puts "ERROR: no classifiers found in #{classif_dir}."
|
207
|
+
if @exp.get("binary_classifiers")
|
208
|
+
$stderr.puts "(Looking for binary classifiers.)"
|
209
|
+
else
|
210
|
+
$stderr.puts "(Looking for n-ary classifiers.)"
|
211
|
+
end
|
212
|
+
$stderr.puts "Please check whether you mistyped the classifier directory name.
|
213
|
+
|
214
|
+
Another possibility: You may have trained binary classifiers, but
|
215
|
+
tried to apply n-ary ones (or vice versa.)
|
216
|
+
"
|
217
|
+
exit 1
|
218
|
+
end
|
219
|
+
|
220
|
+
###
|
221
|
+
# each test feature set:
|
222
|
+
# read classifier, apply
|
223
|
+
# iterate through instance files
|
224
|
+
lemma2_sense_and_filename.to_a().sort { |a, b|
|
225
|
+
a.first() <=> b.first
|
226
|
+
}.each { |lemma, senses_and_filenames|
|
227
|
+
# progress report
|
228
|
+
if @exp.get("verbose")
|
229
|
+
$stderr.puts "Applying to " + lemma
|
230
|
+
end
|
231
|
+
|
232
|
+
# results_this_lemma: array of classifier_results
|
233
|
+
# classifier_result: array of line_entries
|
234
|
+
# line entry: list of pairs [sense, confidence]
|
235
|
+
results_this_lemma = Array.new()
|
236
|
+
|
237
|
+
training_senses = determine_training_senses(lemma, @exp,
|
238
|
+
@lemmas_and_senses, @split_id)
|
239
|
+
|
240
|
+
senses_and_filenames.each { |sense, filename|
|
241
|
+
|
242
|
+
# if we're splitting the data, do that now
|
243
|
+
if split_obj
|
244
|
+
tempfile = split_obj.apply_split(filename, lemma, "test", @split_id)
|
245
|
+
if tempfile.nil?
|
246
|
+
# the test part of the split doesn't contain any data
|
247
|
+
$stderr.puts "Skipping #{lemma}: no test data in split"
|
248
|
+
next
|
249
|
+
end
|
250
|
+
|
251
|
+
filename = tempfile.path()
|
252
|
+
end
|
253
|
+
|
254
|
+
if training_senses.length() == 1
|
255
|
+
# single-sense lemma: just assign that sense to all occurrences
|
256
|
+
assigned_sense = training_senses.first()
|
257
|
+
|
258
|
+
classifier_result = Array.new()
|
259
|
+
f = File.open(filename)
|
260
|
+
|
261
|
+
f.each { |line| classifier_result << [[assigned_sense, 1.0]] }
|
262
|
+
results_this_lemma << classifier_result
|
263
|
+
|
264
|
+
else
|
265
|
+
#more than one sense: apply classifier(s)
|
266
|
+
|
267
|
+
# classifiers_read_okay:
|
268
|
+
# boolean, true if reading the stored classifier(s) succeeded
|
269
|
+
classifiers_read_okay = true
|
270
|
+
@classifiers.each { |classifier, classifier_name|
|
271
|
+
|
272
|
+
stored_classifier = classif_dir + fred_classifier_filename(classifier_name,
|
273
|
+
lemma, sense)
|
274
|
+
status = classifier.read(stored_classifier)
|
275
|
+
unless status
|
276
|
+
$stderr.puts "[FredTest] Error: could not read classifier."
|
277
|
+
classifiers_read_okay = false
|
278
|
+
end
|
279
|
+
}
|
280
|
+
|
281
|
+
if classifiers_read_okay
|
282
|
+
# apply classifiers, write result to database
|
283
|
+
classifier_results = apply_classifiers(filename, classif_dir)
|
284
|
+
|
285
|
+
if classifier_results.empty?
|
286
|
+
# something went wrong during the application of classifiers
|
287
|
+
$stderr.puts "Error while working on #{lemma}, skipping"
|
288
|
+
else
|
289
|
+
# we have classifier results:
|
290
|
+
# since we're not doing any classifier combination at the moment
|
291
|
+
# (if we did, this would be the place to do so!)
|
292
|
+
# discard the results of all but the first classifier
|
293
|
+
results_this_lemma << classifier_results.first()
|
294
|
+
end
|
295
|
+
end
|
296
|
+
|
297
|
+
if split_obj
|
298
|
+
tempfile.close(true)
|
299
|
+
end
|
300
|
+
end
|
301
|
+
}
|
302
|
+
|
303
|
+
# write to output file:
|
304
|
+
# if we have binary classifiers, join.
|
305
|
+
results_this_lemma = join_binary_classifier_results(results_this_lemma)
|
306
|
+
|
307
|
+
outfilename = output_dir + fred_result_filename(lemma)
|
308
|
+
begin
|
309
|
+
outfile = File.new(outfilename, "w")
|
310
|
+
rescue
|
311
|
+
raise "Couldn't write to result file " + outfilename
|
312
|
+
end
|
313
|
+
|
314
|
+
if results_this_lemma.nil?
|
315
|
+
# nothing has been done for this lemma
|
316
|
+
next
|
317
|
+
end
|
318
|
+
|
319
|
+
results_this_lemma.each { |result|
|
320
|
+
# result: an ordered list of pairs [label, confidence]
|
321
|
+
outfile.puts result.map { |label, confidence|
|
322
|
+
"#{label} #{confidence}"
|
323
|
+
}.join(" ")
|
324
|
+
}
|
325
|
+
|
326
|
+
# remember results for output
|
327
|
+
if @produce_output
|
328
|
+
all_results << [lemma, results_this_lemma]
|
329
|
+
end
|
330
|
+
}
|
331
|
+
|
332
|
+
|
333
|
+
##
|
334
|
+
# produce output: disambiguated data in SalsaTigerXML format
|
335
|
+
if @produce_output
|
336
|
+
salsatiger_output(all_results)
|
337
|
+
end
|
338
|
+
|
339
|
+
end
|
340
|
+
|
341
|
+
#####
|
342
|
+
private
|
343
|
+
|
344
|
+
#########################
|
345
|
+
def apply_classifiers(filename, # name of feature file
|
346
|
+
classif_dir) # string: name of directory with classifiers
|
347
|
+
|
348
|
+
# make output file for classifiers
|
349
|
+
tf_output = Tempfile.new("fred")
|
350
|
+
tf_output.close()
|
351
|
+
|
352
|
+
###
|
353
|
+
# apply classifiers
|
354
|
+
|
355
|
+
classifier_results = Array.new
|
356
|
+
|
357
|
+
@classifiers.each { |classifier, classifier_name|
|
358
|
+
|
359
|
+
success = classifier.apply(filename, tf_output.path())
|
360
|
+
|
361
|
+
# did we manage to classify the test data?
|
362
|
+
# there may be errors on the way (eg no training data)
|
363
|
+
if success
|
364
|
+
# read classifier output from file
|
365
|
+
# classifier_results: list of line entries
|
366
|
+
# line entry: list of pairs [sense, confidence]
|
367
|
+
classifier_results << classifier.read_resultfile(tf_output.path())
|
368
|
+
|
369
|
+
else
|
370
|
+
# error: return empty Array, so that error handling can take over
|
371
|
+
return Array.new
|
372
|
+
end
|
373
|
+
}
|
374
|
+
|
375
|
+
# if we are here, all classifiers have succeeded...
|
376
|
+
|
377
|
+
# clean up
|
378
|
+
tf_output.close(true)
|
379
|
+
|
380
|
+
# return list of classifier results,
|
381
|
+
# each entry is a list of results,
|
382
|
+
# one entry per classifier type
|
383
|
+
return classifier_results
|
384
|
+
end
|
385
|
+
|
386
|
+
###
|
387
|
+
# join binary classifier results (if we are doing binary classifiers):
|
388
|
+
# if we have classifiers that are specific to individual senses,
|
389
|
+
# collect all classifiers that we have for a lemma, and
|
390
|
+
# for each instance, choose the sense that won with the highest confidence
|
391
|
+
#
|
392
|
+
# input: a list of result lists.
|
393
|
+
# a result list is a list of instance_results
|
394
|
+
# instance_results is a list of pairs [label, confidence]
|
395
|
+
# such that the label with the highest confidence is mentioned first
|
396
|
+
#
|
397
|
+
# output: a result list.
|
398
|
+
def join_binary_classifier_results(resultlists) # list:list:tuples [label, confidence]
|
399
|
+
unless @exp.get("binary_classifiers")
|
400
|
+
# we are doing lemma-specific, not sense-specific classifiers.
|
401
|
+
# so resultlist is a list containing just one entry.
|
402
|
+
# all classifier: list of lists of lists of pairs label, confidence
|
403
|
+
# one classifier: list of lists of pairs label, confidence
|
404
|
+
# line: list of pairs label, confidence
|
405
|
+
# label: pair label, confidence
|
406
|
+
return resultlists.first()
|
407
|
+
end
|
408
|
+
|
409
|
+
# we are doing sense-specific classifiers.
|
410
|
+
# group triples
|
411
|
+
|
412
|
+
# what is the name of the negative sense?
|
413
|
+
unless (negsense = @exp.get("negsense"))
|
414
|
+
negsense = "NONE"
|
415
|
+
end
|
416
|
+
|
417
|
+
# retv: list of instance results
|
418
|
+
# where an instance result is a list of pairs [label, confidence]
|
419
|
+
retv = Array.new()
|
420
|
+
|
421
|
+
# choose the sense that was assigned with highest confidence
|
422
|
+
# how many instances? max. length of any of the instance lists
|
423
|
+
# (we'll deal with mismatches in instance numbers later)
|
424
|
+
num_instances = resultlists.map { |list_one_classifier| list_one_classifier.length() }.max()
|
425
|
+
if num_instances.nil?
|
426
|
+
# no instances, it seems
|
427
|
+
return nil
|
428
|
+
end
|
429
|
+
|
430
|
+
0.upto(num_instances - 1) { |instno|
|
431
|
+
|
432
|
+
# get the results of all classifiers for instance number instno
|
433
|
+
all_results_this_instance = resultlists.map { |list_one_classifier|
|
434
|
+
# get the instno-th line
|
435
|
+
if list_one_classifier.at(instno)
|
436
|
+
list_one_classifier.at(instno)
|
437
|
+
else
|
438
|
+
# length mismatch: we're missing an instance
|
439
|
+
$stderr.puts "Error: binary classifier results don't all have the same length."
|
440
|
+
$stderr.puts "Assuming missing results to be negative."
|
441
|
+
[["NONE", 1.0]]
|
442
|
+
end
|
443
|
+
}
|
444
|
+
|
445
|
+
# now throw out the negsense judgments, and sort results by confidence
|
446
|
+
joint_result_this_instance = all_results_this_instance.map { |inst_result|
|
447
|
+
# if we have more than 2 entries here,
|
448
|
+
# this is very weird for a binary classifier
|
449
|
+
if inst_result.length() > 2
|
450
|
+
$stderr.puts "Judgments for more than 2 senses in binary classifier? Very weird!"
|
451
|
+
$stderr.puts inst_result.map { |label, confidence| "#{label}:#{confidence}" }.join(" ")
|
452
|
+
$stderr.puts "Only considering the first non-negative sense."
|
453
|
+
end
|
454
|
+
|
455
|
+
# choose the first entry that is not the negsense,
|
456
|
+
# or nil, if only the negative sense has been assigned with 1.0 certainty.
|
457
|
+
# nil choices will be removed by the compact() below
|
458
|
+
inst_result.detect { |label, confidence|
|
459
|
+
label != negsense
|
460
|
+
}
|
461
|
+
}.compact().sort { |a, b|
|
462
|
+
# sort senses by confidence, highest confidence first
|
463
|
+
b[1] <=> a[1]
|
464
|
+
}
|
465
|
+
|
466
|
+
retv << joint_result_this_instance
|
467
|
+
}
|
468
|
+
|
469
|
+
return retv
|
470
|
+
end
|
471
|
+
|
472
|
+
|
473
|
+
###
|
474
|
+
# produce output in SalsaTigerXML: disambiguated training data,
|
475
|
+
# assigned senses are recorded as frames, the targets of which are the
|
476
|
+
# disambiguated words
|
477
|
+
def salsatiger_output(all_results)
|
478
|
+
|
479
|
+
if @split_id
|
480
|
+
# we're not writing Salsa/Tiger XML output for splits.
|
481
|
+
$stderr.puts "No Salsa/Tiger XML output for random splits of the data,"
|
482
|
+
$stderr.puts "only for separate test sets."
|
483
|
+
return
|
484
|
+
end
|
485
|
+
|
486
|
+
##
|
487
|
+
# determine output directory
|
488
|
+
if @exp.get("directory_output")
|
489
|
+
output_dir = File.new_dir(@exp.get("directory_output"))
|
490
|
+
else
|
491
|
+
output_dir = fred_dirname(@exp, "output", "stxml", "new")
|
492
|
+
end
|
493
|
+
|
494
|
+
$stderr.puts "Writing SalsaTigerXML output to #{output_dir}"
|
495
|
+
|
496
|
+
##
|
497
|
+
# empty output directory
|
498
|
+
Dir[output_dir + "*"].each { |filename|
|
499
|
+
if File.exists?(filename)
|
500
|
+
File.delete(filename)
|
501
|
+
end
|
502
|
+
}
|
503
|
+
|
504
|
+
# input directory: where we stored the zipped input files
|
505
|
+
input_dir = fred_dirname(@exp, "test", "input_data")
|
506
|
+
|
507
|
+
##
|
508
|
+
# map results to target IDs, using answer key files
|
509
|
+
|
510
|
+
# record results: hash
|
511
|
+
# <sentencde ID>(string) -> assigned senses
|
512
|
+
# where assigned senses are a list of tuples
|
513
|
+
# [target IDs, sense, lemma, pos]
|
514
|
+
recorded_results = Hash.new
|
515
|
+
|
516
|
+
all_results.each { |lemma, results|
|
517
|
+
answer_obj = AnswerKeyAccess.new(@exp, "test", lemma, "r")
|
518
|
+
|
519
|
+
instance_index = 0
|
520
|
+
answer_obj.each { |a_lemma, a_pos, a_targetIDs, a_sid, a_senses, a_senses_this|
|
521
|
+
key = a_sid
|
522
|
+
|
523
|
+
unless recorded_results[key]
|
524
|
+
recorded_results[key] = Array.new()
|
525
|
+
end
|
526
|
+
|
527
|
+
labels_and_senses_for_this_instance = results.at(instance_index)
|
528
|
+
if not(labels_and_senses_for_this_instance.empty?) and
|
529
|
+
(winning_sense = labels_and_senses_for_this_instance.first().first())
|
530
|
+
|
531
|
+
recorded_results[key] << [a_targetIDs, winning_sense, a_lemma, a_pos]
|
532
|
+
end
|
533
|
+
|
534
|
+
instance_index += 1
|
535
|
+
} # each answerkey line for this lemma
|
536
|
+
} # each lemma/results pair
|
537
|
+
|
538
|
+
|
539
|
+
##
|
540
|
+
# read in SalsaTiger syntax, remove old semantics, add new semantics, write
|
541
|
+
|
542
|
+
Dir[input_dir + "*.xml.gz"].each { |filename|
|
543
|
+
# unzip input file
|
544
|
+
tempfile = Tempfile.new("FredTest")
|
545
|
+
tempfile.close()
|
546
|
+
%x{gunzip -c #{filename} > #{tempfile.path()}}
|
547
|
+
|
548
|
+
infile = FilePartsParser.new(tempfile.path())
|
549
|
+
if @exp.get("verbose")
|
550
|
+
$stderr.puts "SalsaTigerXML output of " + File.basename(filename, ".gz")
|
551
|
+
end
|
552
|
+
|
553
|
+
begin
|
554
|
+
outfile = File.new(output_dir + File.basename(filename, ".gz"), "w")
|
555
|
+
rescue
|
556
|
+
$stderr.puts "Couldn't write to output file #{output_dir}#{File.basename(filename)}."
|
557
|
+
$stderr.puts "Skipping Salsa/Tiger XML output."
|
558
|
+
return
|
559
|
+
end
|
560
|
+
|
561
|
+
# write header
|
562
|
+
outfile.puts infile.head()
|
563
|
+
|
564
|
+
infile.scan_s { |sent_string|
|
565
|
+
sent = SalsaTigerSentence.new(sent_string)
|
566
|
+
|
567
|
+
# remove old semantics
|
568
|
+
sent.remove_semantics()
|
569
|
+
|
570
|
+
if recorded_results and recorded_results[sent.id()]
|
571
|
+
recorded_results[sent.id()].each { |target_ids, sense, lemma, pos|
|
572
|
+
|
573
|
+
# add frame to sentence
|
574
|
+
new_frame = sent.add_frame(sense)
|
575
|
+
|
576
|
+
# get list of target nodes from target IDs
|
577
|
+
# assuming that target_ids is a string of target IDs
|
578
|
+
# separated by comma.
|
579
|
+
# IDs for which no node could be found are just ignored
|
580
|
+
|
581
|
+
targets = target_ids.map { |target_id|
|
582
|
+
sent.syn_node_with_id(target_id)
|
583
|
+
}.compact
|
584
|
+
# enter the target nodes for this new frame
|
585
|
+
new_frame.add_fe("target", targets)
|
586
|
+
|
587
|
+
# put lemma and POS info into <target>
|
588
|
+
new_frame.target.set_attribute("lemma", lemma)
|
589
|
+
new_frame.target.set_attribute("pos", pos)
|
590
|
+
}
|
591
|
+
end
|
592
|
+
|
593
|
+
# write changed sentence:
|
594
|
+
# only if there are recorded results for this sentence!
|
595
|
+
outfile.puts sent.get()
|
596
|
+
|
597
|
+
} # each sentence of file
|
598
|
+
|
599
|
+
# write footer
|
600
|
+
outfile.puts infile.tail()
|
601
|
+
outfile.close()
|
602
|
+
tempfile.close(true)
|
603
|
+
} # each SalsaTiger file of the input directory
|
604
|
+
|
605
|
+
end
|
606
|
+
|
607
|
+
end
|