scicom 0.2.3.1-java → 0.3.0-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -25,6 +25,7 @@ require 'java'
25
25
  require 'securerandom'
26
26
 
27
27
  require_relative 'rbsexp'
28
+ require_relative 'package'
28
29
  # require_relative 'index'
29
30
 
30
31
 
@@ -97,7 +98,8 @@ class Renjin
97
98
 
98
99
  factory = Java::JavaxScript.ScriptEngineManager.new()
99
100
  @engine = factory.getEngineByName("Renjin")
100
-
101
+ super
102
+
101
103
  end
102
104
 
103
105
  #----------------------------------------------------------------------------------------
@@ -394,6 +396,31 @@ class Renjin
394
396
 
395
397
  end
396
398
 
399
+ #----------------------------------------------------------------------------------------
400
+ #
401
+ #----------------------------------------------------------------------------------------
402
+
403
+ def install__package(name)
404
+
405
+ pm = PackageManager.new
406
+ pm.load_package(name)
407
+
408
+ end
409
+
410
+ #----------------------------------------------------------------------------------------
411
+ #
412
+ #----------------------------------------------------------------------------------------
413
+
414
+ def library(package)
415
+
416
+ Dir.chdir(SciCom.cran_dir)
417
+ filename = SciCom.cran_dir + "/#{package}.jar"
418
+
419
+ require filename
420
+ eval("library(#{package})")
421
+
422
+ end
423
+
397
424
  #----------------------------------------------------------------------------------------
398
425
  # Builds a Renjin vector from an MDArray. Should be private, but public for testing.
399
426
  #----------------------------------------------------------------------------------------
@@ -163,7 +163,7 @@ class SciComTest < Test::Unit::TestCase
163
163
  # engine, ..., etc.
164
164
  mtcars[24, nil].pp
165
165
 
166
- # To retrieve more than one rows, we use a numeric index vector.
166
+ # To retrieve more than one row, we use a numeric index vector.
167
167
  mtcars[R.c(3, 24), nil].pp
168
168
 
169
169
  # Name Indexing
@@ -213,7 +213,6 @@ class SciComTest < Test::Unit::TestCase
213
213
  df.colnames.pp
214
214
  df.colnames(prefix: "sc").pp
215
215
 
216
-
217
216
  # Renjin allows changes to variable properties
218
217
  R.eval("colnames(#{df.r}) = c('name', 'age', 'height', 'weigth', 'race', 'SAT')")
219
218
  R.eval("print(colnames(#{df.r}))")
@@ -46,6 +46,9 @@ class SciComTest < Test::Unit::TestCase
46
46
 
47
47
  # This dataset comes from Baseball-Reference.com.
48
48
  baseball = R.read__csv("baseball.csv")
49
+ # convert the second column of dataframe 'baseball' to a Ruby vector
50
+ # arr = baseball[[2]].get
51
+ # arr.print
49
52
  # Lets look at the data available for Momeyball.
50
53
  # (baseball.Year < R.d(2002)).pp
51
54
  moneyball = baseball.subset(baseball.Year < 2002)
@@ -54,7 +54,7 @@ class SciComTest < Test::Unit::TestCase
54
54
  #
55
55
  #--------------------------------------------------------------------------------------
56
56
 
57
- should "access lists elements with indexing [] and [[]]" do
57
+ should "access list elements with indexing [] and [[]]" do
58
58
 
59
59
  # get the first element of the list, usign indexing.
60
60
  # Both [] and [[]] indexing can be used with the same R rules.
@@ -0,0 +1,66 @@
1
+ # -*- coding: utf-8 -*-
2
+
3
+ ##########################################################################################
4
+ # Copyright © 2013 Rodrigo Botafogo. All Rights Reserved. Permission to use, copy, modify,
5
+ # and distribute this software and its documentation, without fee and without a signed
6
+ # licensing agreement, is hereby granted, provided that the above copyright notice, this
7
+ # paragraph and the following two paragraphs appear in all copies, modifications, and
8
+ # distributions.
9
+ #
10
+ # IN NO EVENT SHALL RODRIGO BOTAFOGO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
11
+ # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
12
+ # THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF RODRIGO BOTAFOGO HAS BEEN ADVISED OF THE
13
+ # POSSIBILITY OF SUCH DAMAGE.
14
+ #
15
+ # RODRIGO BOTAFOGO SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16
+ # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
17
+ # SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS".
18
+ # RODRIGO BOTAFOGO HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
19
+ # OR MODIFICATIONS.
20
+ ##########################################################################################
21
+
22
+ require 'rubygems'
23
+ require "test/unit"
24
+ require 'shoulda'
25
+
26
+ require 'env'
27
+ require 'scicom'
28
+
29
+ class SciComTest < Test::Unit::TestCase
30
+
31
+ context "R environment" do
32
+
33
+ #--------------------------------------------------------------------------------------
34
+ #
35
+ #--------------------------------------------------------------------------------------
36
+
37
+ setup do
38
+
39
+ end
40
+
41
+ #--------------------------------------------------------------------------------------
42
+ #
43
+ #--------------------------------------------------------------------------------------
44
+
45
+ should "download the proper package" do
46
+
47
+ R.install__package("AssetPricing")
48
+ R.library("AssetPricing")
49
+
50
+ R.install__package("AppliedPredictiveModeling")
51
+ R.library("AppliedPredictiveModeling")
52
+
53
+ ### Section 3.1 Case Study: Cell Segmentation in High-Content Screening
54
+
55
+ R.data('segmentationOriginal')
56
+ seg = R.segmentationOriginal
57
+ segTrain = seg.subset(Case: "Train")
58
+ segTrainX = segTrain[true, -(1..3)]
59
+ segTrainClass = segTrain.Class
60
+ segTrainClass.pp
61
+
62
+ end
63
+
64
+ end
65
+
66
+ end
@@ -55,11 +55,11 @@ class SciComTest < Test::Unit::TestCase
55
55
  #--------------------------------------------------------------------------------------
56
56
 
57
57
  should "assign to a character vector" do
58
-
59
- h = {f: :colnames, index: [[1]]}
60
- p h[:f]
61
- p h[:index]
62
-
58
+
59
+ R.eval("r.i = 10L")
60
+ R.eval("print(r.i)") # will print the R int vector
61
+ p r.i # results in an error in the Ruby script
62
+
63
63
  end
64
64
 
65
65
  end
@@ -65,6 +65,9 @@ class SciComTest < Test::Unit::TestCase
65
65
  assert_equal(4, log_var.length)
66
66
  assert_equal(true, log_var.logical?)
67
67
 
68
+ str_var = R.c("hello there")
69
+ str_var.pp
70
+
68
71
  # string vector: create string (character) vectors
69
72
  chr_var = R.c("these are", "some strings")
70
73
  assert_equal("character", chr_var.typeof.gz)
data/version.rb CHANGED
@@ -1,2 +1,2 @@
1
1
  $gem_name = "scicom"
2
- $version="0.2.3.1"
2
+ $version="0.3.0"
metadata CHANGED
@@ -1,52 +1,84 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: scicom
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.2.3.1
4
+ version: 0.3.0
5
5
  platform: java
6
6
  authors:
7
7
  - Rodrigo Botafogo
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2015-01-02 00:00:00.000000000 Z
11
+ date: 2015-03-19 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: shoulda
15
15
  version_requirements: !ruby/object:Gem::Requirement
16
16
  requirements:
17
- - - '>='
17
+ - - ~>
18
18
  - !ruby/object:Gem::Version
19
- version: '0'
19
+ version: '3.5'
20
20
  requirement: !ruby/object:Gem::Requirement
21
21
  requirements:
22
- - - '>='
22
+ - - ~>
23
23
  - !ruby/object:Gem::Version
24
- version: '0'
24
+ version: '3.5'
25
25
  prerelease: false
26
26
  type: :runtime
27
27
  - !ruby/object:Gem::Dependency
28
28
  name: mdarray
29
29
  version_requirements: !ruby/object:Gem::Requirement
30
30
  requirements:
31
+ - - ~>
32
+ - !ruby/object:Gem::Version
33
+ version: '0.5'
31
34
  - - '>='
32
35
  - !ruby/object:Gem::Version
33
36
  version: 0.5.5.2
34
37
  requirement: !ruby/object:Gem::Requirement
35
38
  requirements:
39
+ - - ~>
40
+ - !ruby/object:Gem::Version
41
+ version: '0.5'
36
42
  - - '>='
37
43
  - !ruby/object:Gem::Version
38
44
  version: 0.5.5.2
39
45
  prerelease: false
40
46
  type: :runtime
47
+ - !ruby/object:Gem::Dependency
48
+ name: state_machine
49
+ version_requirements: !ruby/object:Gem::Requirement
50
+ requirements:
51
+ - - ~>
52
+ - !ruby/object:Gem::Version
53
+ version: '1.2'
54
+ - - '>='
55
+ - !ruby/object:Gem::Version
56
+ version: 1.2.0
57
+ requirement: !ruby/object:Gem::Requirement
58
+ requirements:
59
+ - - ~>
60
+ - !ruby/object:Gem::Version
61
+ version: '1.2'
62
+ - - '>='
63
+ - !ruby/object:Gem::Version
64
+ version: 1.2.0
65
+ prerelease: false
66
+ type: :runtime
41
67
  - !ruby/object:Gem::Dependency
42
68
  name: simplecov
43
69
  version_requirements: !ruby/object:Gem::Requirement
44
70
  requirements:
71
+ - - ~>
72
+ - !ruby/object:Gem::Version
73
+ version: '0.7'
45
74
  - - '>='
46
75
  - !ruby/object:Gem::Version
47
76
  version: 0.7.1
48
77
  requirement: !ruby/object:Gem::Requirement
49
78
  requirements:
79
+ - - ~>
80
+ - !ruby/object:Gem::Version
81
+ version: '0.7'
50
82
  - - '>='
51
83
  - !ruby/object:Gem::Version
52
84
  version: 0.7.1
@@ -56,11 +88,17 @@ dependencies:
56
88
  name: yard
57
89
  version_requirements: !ruby/object:Gem::Requirement
58
90
  requirements:
91
+ - - ~>
92
+ - !ruby/object:Gem::Version
93
+ version: '0.8'
59
94
  - - '>='
60
95
  - !ruby/object:Gem::Version
61
96
  version: 0.8.5.2
62
97
  requirement: !ruby/object:Gem::Requirement
63
98
  requirements:
99
+ - - ~>
100
+ - !ruby/object:Gem::Version
101
+ version: '0.8'
64
102
  - - '>='
65
103
  - !ruby/object:Gem::Version
66
104
  version: 0.8.5.2
@@ -70,11 +108,17 @@ dependencies:
70
108
  name: kramdown
71
109
  version_requirements: !ruby/object:Gem::Requirement
72
110
  requirements:
111
+ - - ~>
112
+ - !ruby/object:Gem::Version
113
+ version: '1.0'
73
114
  - - '>='
74
115
  - !ruby/object:Gem::Version
75
116
  version: 1.0.1
76
117
  requirement: !ruby/object:Gem::Requirement
77
118
  requirements:
119
+ - - ~>
120
+ - !ruby/object:Gem::Version
121
+ version: '1.0'
78
122
  - - '>='
79
123
  - !ruby/object:Gem::Version
80
124
  version: 1.0.1
@@ -118,7 +162,9 @@ files:
118
162
  - lib/JRubyR/logical_value.rb
119
163
  - lib/JRubyR/environment.rb
120
164
  - lib/JRubyR/ruby_classes.rb
165
+ - lib/JRubyR/package.rb
121
166
  - lib/JRubyR/function.rb
167
+ - lib/JRubyR/download_url_to_file.rb
122
168
  - lib/JRubyR/dataframe.rb
123
169
  - test/env.rb
124
170
  - test/test_tmp.rb
@@ -146,15 +192,27 @@ files:
146
192
  - test/test_assign_mdarray_2d.rb
147
193
  - test/test_assign_mdarray_3d.rb
148
194
  - test/test_assign_mdarray_4d.rb
195
+ - test/test_package.rb
149
196
  - test/test_list.rb
150
197
  - test/baseball.csv
151
198
  - doc/PypeR.pdf
152
199
  - doc/The R interface.docx
153
200
  - doc/Stat 133 Class Notes (Phil Spector).pdf
154
- - vendor/renjin-script-engine-0.7.0-RC7-SNAPSHOT-jar-with-dependencies.jar
201
+ - doc/SciCom.tex~
202
+ - doc/hearder.tex~
203
+ - doc/hearder.tex
204
+ - doc/hearder.log
205
+ - doc/hearder.aux
206
+ - doc/hearder.pdf
207
+ - doc/SciCom.tex
208
+ - doc/hearder.synctex.gz
155
209
  - vendor/Renjin.pdf
210
+ - vendor/renjin-script-engine-0.7.0-RC7-SNAPSHOT-jar-with-dependencies.jar
156
211
  - target/helper.jar
157
- - README.md~
212
+ - cran/AssetPricing.xml
213
+ - cran/AssetPricing.jar
214
+ - cran/AppliedPredictiveModeling.xml
215
+ - cran/AppliedPredictiveModeling.jar
158
216
  - README.md
159
217
  - LICENSE.txt
160
218
  homepage: http://github.com/rbotafogo/scicom/wiki
@@ -208,4 +266,5 @@ test_files:
208
266
  - test/test_assign_mdarray_2d.rb
209
267
  - test/test_assign_mdarray_3d.rb
210
268
  - test/test_assign_mdarray_4d.rb
269
+ - test/test_package.rb
211
270
  - test/test_list.rb
data/README.md~ DELETED
@@ -1,290 +0,0 @@
1
- Announcement
2
- ============
3
-
4
- MDArray version 0.5.5 has Just been released. MDArray is a multi dimensional array implemented
5
- for JRuby inspired by NumPy (www.numpy.org) and Masahiro Tanaka´s Narray (narray.rubyforge.org).
6
- MDArray stands on the shoulders of Java-NetCDF and Parallel Colt. At this point MDArray has
7
- libraries for linear algebra, mathematical, trigonometric and descriptive statistics methods.
8
-
9
- NetCDF-Java Library is a Java interface to NetCDF files, as well as to many other types of
10
- scientific data formats. It is developed and distributed by Unidata (http://www.unidata.ucar.edu).
11
-
12
- Parallel Colt (https://sites.google.com/site/piotrwendykier/software/parallelcolt is a
13
- multithreaded version of Colt (http://acs.lbl.gov/software/colt/). Colt provides a set of
14
- Open Source Libraries for High Performance Scientific and Technical Computing in Java.
15
- Scientific and technical computing is characterized by demanding problem sizes and a need for
16
- high performance at reasonably small memory footprint.
17
-
18
-
19
- What´s new:
20
- ===========
21
-
22
- Class MDMatrix and Linear Algebra Methods
23
- -----------------------------------------
24
-
25
- This version of MDArray introduces class MDMatrix. MDMatrix is a matrix class wrapping many
26
- linear algebra methods from Parallel Colt (see below). MDMatrix support only the following
27
- types: i) int; ii) long; iii) float and iv) double.
28
-
29
- Differently from other libraries, in which matrix is a subclass of array, MDMatrix is a
30
- twin class of MDArray. MDMatrix is a twin class of MDArray as every time an MDMatrix is
31
- instantiated, an MDArray class is also instantiated. In reality, there is only one backing
32
- store that can be viewed by either MDMatrix or MDArray.
33
-
34
- Creation of MDMatrix follows the same API as MDArray API. For instance, creating a double
35
- square matrix of size 5 x 5 can be done by:
36
-
37
- matrix = MDMatrix.double([5, 5], [2.0, 0.0, 8.0, 6.0, 0.0,\
38
- 1.0, 6.0, 0.0, 1.0, 7.0,\
39
- 5.0, 0.0, 7.0, 4.0, 0.0,\
40
- 7.0, 0.0, 8.0, 5.0, 0.0,\
41
- 0.0, 10.0, 0.0, 0.0, 7.0])
42
-
43
- Creating an int matrix filled with zero can be done by:
44
-
45
- matrix = MDMatrix.int([4, 3])
46
-
47
- MDMatrix also supports creation based on methods such as fromfunction, linspace, init_with,
48
- arange, typed_arange and ones:
49
-
50
-
51
- array = MDArray.typed_arange("double", 0, 15)
52
- array = MDMatrix.fromfunction("double", [4, 4]) { |x, y| x + y }
53
-
54
- An MDMatrix can also be created from an MDArray as follows:
55
-
56
- d2 = MDArray.typed_arange("double", 0, 15)
57
- double_matrix = MDMatrix.from_mdarray(d2)
58
-
59
- An MDMatrix can only be created from MDArrays of one, two or three dimensions. However,
60
- one can take a view from an MDArray to create an MDMatrix, as long as the view is at most
61
- three dimensional:
62
-
63
- # Instantiate an MDArray and shape it with 4 dimensions
64
- > d1 = MDArray.typed_arange("double", 0, 420)
65
- > d1.reshape!([5, 4, 3, 7])
66
- # slice the array, getting a three dimensional array and from that, make a matrix
67
- > matrix = MDMatrix.from_mdarray(d1.slice(0, 0))
68
- # get a region from the array, with the first two dimensions of size 0, reduce it to a
69
- # size two array and then build a two dimensional matrix
70
- > matrix = MDMatrix.from_mdarray(d1.region(:spec => "0:0, 0:0, 0:2, 0:6").reduce)
71
-
72
- printing the above two dimensional matrix gives us:
73
-
74
- > matrix.print
75
- 3 x 7 matrix
76
- 0,00000 1,00000 2,00000 3,00000 4,00000 5,00000 6,00000
77
- 7,00000 8,00000 9,00000 10,0000 11,0000 12,0000 13,0000
78
- 14,0000 15,0000 16,0000 17,0000 18,0000 19,0000 20,0000
79
-
80
- Every MDMatrix instance has a twin MDArray instance that uses the same backing store. This
81
- allows the user to treat the data as either a matrix or an array and use methods either from
82
- matrix or array. The above matrix can be printed as an array:
83
-
84
-
85
- > matrix.mdarray.print
86
- [[0.00 1.00 2.00 3.00 4.00 5.00 6.00]
87
- [7.00 8.00 9.00 10.00 11.00 12.00 13.00]
88
- [14.00 15.00 16.00 17.00 18.00 19.00 20.00]]
89
-
90
- With an MDMatrix, many linear algebra methods can be easily calculated:
91
-
92
- # basic operations on matrix can be done, such as, ‘+’, ‘-‘, ´*’, ‘/’
93
- # make a 4 x 4 matrix and fill it with ´double´ 2.5
94
- > a = MDMatrix.double([4, 4])
95
- > a.fill(2.5)
96
- > make a 4 x 4 matrix ´b´ from a given function (block)
97
- > b = MDMatrix.fromfunction("double", [4, 4]) { |x, y| x + y }
98
- # add both matrices
99
- > c = a + b
100
- # multiply by scalar
101
- > c = a * 2
102
- # divide two matrices. Matrix ´b´ has to be non-singular, otherwise an exception is
103
- # raised.
104
- # generate a non-singular matrix from a given matrix
105
- > b.generate_non_singular!
106
- > c = a / b
107
-
108
- Linear algebra methods:
109
-
110
- # create a matrix with the given data
111
- > pos = MDArray.double([3, 3], [4, 12, -16, 12, 37, -43, -16, -43, 98])
112
- > matrix = MDMatrix.from_mdarray(pos)
113
- # Cholesky decomposition from wikipedia example
114
- > chol = matrix.chol
115
- > assert_equal(2, chol[0, 0])
116
- > assert_equal(6, chol[1, 0])
117
- > assert_equal(-8, chol[2, 0])
118
- > assert_equal(5, chol[2, 1])
119
- > assert_equal(3, chol[2, 2])
120
-
121
- All other linear algebra methods are called the same way.
122
-
123
-
124
- MDArray and SciRuby:
125
- ====================
126
-
127
- MDArray subscribes fully to the SciRuby Manifesto (http://sciruby.com/).
128
-
129
- “Ruby has for some time had no equivalent to the beautifully constructed NumPy, SciPy, and
130
- matplotlib libraries for Python.
131
-
132
- We believe that the time for a Ruby science and visualization package has come. Sometimes
133
- when a solution of sugar and water becomes super-saturated, from it precipitates a pure,
134
- delicious, and diabetes-inducing crystal of sweetness, induced by no more than the tap of a
135
- finger. So is occurring now, we believe, with numeric and visualization libraries for Ruby.”
136
-
137
- MDArray main properties are:
138
- ============================
139
-
140
- + Homogeneous multidimensional array, a table of elements (usually numbers), all of the
141
- same type, indexed by a tuple of positive integers;
142
- + Support for many linear algebra methods (see bellow);
143
- + Easy calculation for large numerical multi dimensional arrays;
144
- + Basic types are: boolean, byte, short, int, long, float, double, string, structure;
145
- + Based on JRuby, which allows importing Java libraries;
146
- + Operator: +,-,*,/,%,**, >, >=, etc.;
147
- + Functions: abs, ceil, floor, truncate, is_zero, square, cube, fourth;
148
- + Binary Operators: &, |, ^, ~ (binary_ones_complement), <<, >>;
149
- + Ruby Math functions: acos, acosh, asin, asinh, atan, atan2, atanh, cbrt, cos, erf, exp,
150
- gamma, hypot, ldexp, log, log10, log2, sin, sinh, sqrt, tan, tanh, neg;
151
- + Boolean operations on boolean arrays: and, or, not;
152
- + Fast descriptive statistics from Parallel Colt (complete list found bellow);
153
- + Easy manipulation of arrays: reshape, reduce dimension, permute, section, slice, etc.;
154
- + Support for reading and writing NetCDF-3 files;
155
- + Reading of two dimensional arrays from CSV files (mainly for debugging and simple testing
156
- purposes);
157
- + StatList: a list that can grow/shrink and that can compute Parallel Colt descriptive
158
- statistics;
159
- + Experimental lazy evaluation (still slower than eager evaluation).
160
-
161
- Supported linear algebra methods:
162
- =================================
163
-
164
- + backwardSolve: Solves the upper triangular system U*x=b;
165
- + chol: Constructs and returns the cholesky-decomposition of the given matrix.
166
- + cond: Returns the condition of matrix A, which is the ratio of largest to smallest singular value.
167
- + det: Returns the determinant of matrix A.
168
- + eig: Constructs and returns the Eigenvalue-decomposition of the given matrix.
169
- + forwardSolve: Solves the lower triangular system L*x=b;
170
- + inverse: Returns the inverse or pseudo-inverse of matrix A.
171
- + kron: Computes the Kronecker product of two real matrices.
172
- + lu: Constructs and returns the LU-decomposition of the given matrix.
173
- + mult: Inner product of two vectors; Sum(x[i] * y[i]).
174
- + mult: Linear algebraic matrix-vector multiplication; z = A * y.
175
- + mult: Linear algebraic matrix-matrix multiplication; C = A x B.
176
- + multOuter: Outer product of two vectors; Sets A[i,j] = x[i] * y[j].
177
- + norm1: Returns the one-norm of vector x, which is Sum(abs(x[i])).
178
- + norm1: Returns the one-norm of matrix A, which is the maximum absolute column sum.
179
- + norm2: Returns the two-norm (aka euclidean norm) of vector x; equivalent to Sqrt(mult(x,x)).
180
- + norm2: Returns the two-norm of matrix A, which is the maximum singular value; obtained from SVD.
181
- + normF: Returns the Frobenius norm of matrix A, which is Sqrt(Sum(A[i]2)).
182
- + normF: Returns the Frobenius norm of matrix A, which is Sqrt(Sum(A[i,j]2)).
183
- + normInfinity: Returns the infinity norm of vector x, which is Max(abs(x[i])).
184
- + normInfinity: Returns the infinity norm of matrix A, which is the maximum absolute row sum.
185
- + pow: Linear algebraic matrix power; B = Ak <==> B = A*A*...*A.
186
- + qr: Constructs and returns the QR-decomposition of the given matrix.
187
- + rank: Returns the effective numerical rank of matrix A, obtained from Singular Value Decomposition.
188
- + solve: Solves A*x = b.
189
- + solve: Solves A*X = B.
190
- + solveTranspose: Solves X*A = B, which is also A'*X' = B'.
191
- + svd: Constructs and returns the SingularValue-decomposition of the given matrix.
192
- + trace: Returns the sum of the diagonal elements of matrix A; Sum(A[i,i]).
193
- + trapezoidalLower: Modifies the matrix to be a lower trapezoidal matrix.
194
- + vectorNorm2: Returns the two-norm (aka euclidean norm) of vector X.vectorize();
195
- + xmultOuter: Outer product of two vectors; Returns a matrix with A[i,j] = x[i] * y[j].
196
- + xpowSlow: Linear algebraic matrix power; B = Ak <==> B = A*A*...*A.
197
-
198
- Properties´ methods tested on matrices:
199
- =======================================
200
-
201
- + density: Returns the matrix's fraction of non-zero cells; A.cardinality() / A.size().
202
- + generate_non_singular!: Modifies the given square matrix A such that it is diagonally dominant by row and column, hence non-singular, hence invertible.
203
- + diagonal?: A matrix A is diagonal if A[i,j] == 0 whenever i != j.
204
- + diagonally_dominant_by_column?: A matrix A is diagonally dominant by column if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding column.
205
- + diagonally_dominant_by_row?: A matrix A is diagonally dominant by row if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding row.
206
- + identity?: A matrix A is an identity matrix if A[i,i] == 1 and all other cells are zero.
207
- + lower_bidiagonal?: A matrix A is lower bidiagonal if A[i,j]==0 unless i==j || i==j+1.
208
- + lower_triangular?: A matrix A is lower triangular if A[i,j]==0 whenever i < j.
209
- + nonnegative?: A matrix A is non-negative if A[i,j] >= 0 holds for all cells.
210
- + orthogonal?: A square matrix A is orthogonal if A*transpose(A) = I.
211
- + positive?: A matrix A is positive if A[i,j] > 0 holds for all cells.
212
- + singular?: A matrix A is singular if it has no inverse, that is, iff det(A)==0.
213
- + skew_symmetric?: A square matrix A is skew-symmetric if A = -transpose(A), that is A[i,j] == -A[j,i].
214
- + square?: A matrix A is square if it has the same number of rows and columns.
215
- + strictly_lower_triangular?: A matrix A is strictly lower triangular if A[i,j]==0 whenever i <= j.
216
- + strictly_triangular?: A matrix A is strictly triangular if it is triangular and its diagonal elements all equal 0.
217
- + strictly_upper_triangular?: A matrix A is strictly upper triangular if A[i,j]==0 whenever i >= j.
218
- + symmetric?: A matrix A is symmetric if A = tranpose(A), that is A[i,j] == A[j,i].
219
- + triangular?: A matrix A is triangular iff it is either upper or lower triangular.
220
- + tridiagonal?: A matrix A is tridiagonal if A[i,j]==0 whenever Math.abs(i-j) > 1.
221
- + unit_triangular?: A matrix A is unit triangular if it is triangular and its diagonal elements all equal 1.
222
- + upper_bidiagonal?: A matrix A is upper bidiagonal if A[i,j]==0 unless i==j || i==j-1.
223
- + upper_triangular?: A matrix A is upper triangular if A[i,j]==0 whenever i > j.
224
- + zero?: A matrix A is zero if all its cells are zero.
225
- + lower_bandwidth: The lower bandwidth of a square matrix A is the maximum i-j for which A[i,j] is nonzero and i > j.
226
- + semi_bandwidth: Returns the semi-bandwidth of the given square matrix A.
227
- + upper_bandwidth: The upper bandwidth of a square matrix A is the maximum j-i for which A[i,j] is nonzero and j > i.
228
-
229
- Descriptive statistics methods imported from Parallel Colt:
230
- ===========================================================
231
-
232
- + auto_correlation, correlation, covariance, durbin_watson, frequencies, geometric_mean,
233
- + harmonic_mean, kurtosis, lag1, max, mean, mean_deviation, median, min, moment, moment3,
234
- + moment4, pooled_mean, pooled_variance, product, quantile, quantile_inverse,
235
- + rank_interpolated, rms, sample_covariance, sample_kurtosis, sample_kurtosis_standard_error,
236
- + sample_skew, sample_skew_standard_error, sample_standard_deviation, sample_variance,
237
- + sample_weighted_variance, skew, split, standard_deviation, standard_error, sum,
238
- + sum_of_inversions, sum_of_logarithms, sum_of_powers, sum_of_power_deviations,
239
- + sum_of_squares, sum_of_squared_deviations, trimmed_mean, variance, weighted_mean,
240
- + weighted_rms, weighted_sums, winsorized_mean.
241
-
242
- Double and Float methods from Parallel Colt:
243
- ============================================
244
-
245
- + acos, asin, atan, atan2, ceil, cos, exp, floor, greater, IEEEremainder, inv, less, lg,
246
- + log, log2, rint, sin, sqrt, tan.
247
-
248
- Double, Float, Long and Int methods from Parallel Colt:
249
- =======================================================
250
-
251
- + abs, compare, div, divNeg, equals, isEqual (is_equal), isGreater (is_greater),
252
- + isles (is_less), max, min, minus, mod, mult, multNeg (mult_neg), multSquare (mult_square),
253
- + neg, plus (add), plusAbs (plus_abs), pow (power), sign, square.
254
-
255
- Long and Int methods from Parallel Colt
256
- =======================================
257
-
258
- + and, dec, factorial, inc, not, or, shiftLeft (shift_left), shiftRightSigned
259
- (shift_right_signed), shiftRightUnsigned (shift_right_unsigned), xor.
260
-
261
- MDArray installation and download:
262
- ==================================
263
-
264
- + Install Jruby
265
- + jruby –S gem install mdarray
266
-
267
- MDArray Homepages:
268
- ==================
269
-
270
- + http://rubygems.org/gems/mdarray
271
- + https://github.com/rbotafogo/mdarray/wiki
272
-
273
- Contributors:
274
- =============
275
- Contributors are welcome.
276
-
277
- MDArray History:
278
- ================
279
-
280
- + 14/11/2013: Version 0.5.5 - Support for linear algebra methods
281
- + 07/08/2013: Version 0.5.4 - Support for reading and writing NetCDF-3 files
282
- + 24/06/2013: Version 0.5.3 – Over 90% Performance improvements for methods imported
283
- from Parallel Colt and over 40% performance improvements for all other methods
284
- (implemented in Ruby);
285
- + 16/05/2013: Version 0.5.0 - All loops transferred to Java with over 50% performance
286
- improvements. Descriptive statistics from Parallel Colt;
287
- + 19/04/2013: Version 0.4.3 - Fixes a simple, but fatal bug in 0.4.2. No new features;
288
- + 17/04/2013: Version 0.4.2 - Adds simple statistics and boolean operators;
289
- + 05/04/2013: Version 0.4.0 – Initial release.
290
-