rust 0.4 → 0.10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,155 @@
1
+ require_relative 'datatype'
2
+
3
+ module Rust
4
+
5
+ ##
6
+ # Mirror of the matrix type in R.
7
+
8
+ class Matrix < RustDatatype
9
+ def self.can_pull?(type, klass)
10
+ return klass.is_a?(Array) && klass.include?("matrix")
11
+ end
12
+
13
+ def self.pull_variable(variable, type, klass)
14
+ if Rust._pull("length(#{variable})") == 1
15
+ core = ::Matrix[[Rust._pull("#{variable}[1]")]]
16
+ else
17
+ core = Rust._pull(variable)
18
+ end
19
+ row_names = [Rust["rownames(#{variable})"]].flatten
20
+ column_names = [Rust["colnames(#{variable})"]].flatten
21
+
22
+ row_names = nil if row_names.all? { |v| v == nil }
23
+ column_names = nil if column_names.all? { |v| v == nil }
24
+
25
+ Matrix.new(core, row_names, column_names)
26
+ end
27
+
28
+ def load_in_r_as(variable_name)
29
+ matrix = ::Matrix[*@data]
30
+
31
+ Rust[variable_name] = matrix
32
+ end
33
+
34
+ ##
35
+ # Creates a new matrix with the given +data+ (Ruby Matrix). Optionally, +row_names+ and +column_names+ can
36
+ # be specified.
37
+
38
+ def initialize(data, row_names = nil, column_names = nil)
39
+ @data = data.clone
40
+
41
+ @row_names = row_names
42
+ @column_names = column_names
43
+
44
+ if @data.is_a?(::Matrix)
45
+ @data = @data.row_vectors.map { |v| v.to_a }
46
+ end
47
+
48
+ if self.flatten.size == 0
49
+ raise "Empty matrices are not allowed"
50
+ else
51
+ raise TypeError, "Expected array of array" unless @data.is_a?(Array) || @data[0].is_a?(Array)
52
+ raise TypeError, "Only numeric matrices are supported" unless self.flatten.all? { |e| e.is_a?(Numeric) }
53
+ raise "All the rows must have the same size" unless @data.map { |row| row.size }.uniq.size == 1
54
+ raise ArgumentError, "Expected row names #@row_names to match the number of rows in #{self.inspect}" if @row_names && @row_names.size != self.rows
55
+ raise ArgumentError, "Expected column names #@column_names to match the number of columns in #{self.inspect}" if @column_names && @column_names.size != self.cols
56
+ end
57
+ end
58
+
59
+ ##
60
+ # Returns the matrix element at row +i+ and column +j+.
61
+
62
+ def [](i, j)
63
+ i, j = indices(i, j)
64
+
65
+ return @data[i][j]
66
+ end
67
+
68
+ ##
69
+ # Sets the matrix element at row +i+ and column +j+ with +value+.
70
+
71
+ def []=(i, j, value)
72
+ i, j = indices(i, j)
73
+
74
+ @data[i][j] = value
75
+ end
76
+
77
+ ##
78
+ # Returns the number of rows.
79
+
80
+ def rows
81
+ @data.size
82
+ end
83
+
84
+ ##
85
+ # Returns the number of columns.
86
+
87
+ def cols
88
+ @data[0].size
89
+ end
90
+
91
+ ##
92
+ # Returns a flattened version of the matrix (Array).
93
+
94
+ def flatten
95
+ return @data.flatten
96
+ end
97
+
98
+ def inspect
99
+ row_names = @row_names || (0...self.rows).to_a.map { |v| v.to_s }
100
+ column_names = @column_names || (0...self.cols).to_a.map { |v| v.to_s }
101
+
102
+ separator = " | "
103
+ col_widths = column_names.map do |colname|
104
+ [
105
+ colname,
106
+ (
107
+ [colname ? colname.length : 1] +
108
+ @data.map {|r| r[column_names.index(colname)]}.map { |e| e.inspect.length }
109
+ ).max
110
+ ]
111
+ end.to_h
112
+ col_widths[:rowscol] = row_names.map { |rowname| rowname.length }.max + 3
113
+
114
+ result = ""
115
+ result << "-" * (col_widths.values.sum + ((col_widths.size - 1) * separator.length)) + "\n"
116
+ result << (" " * col_widths[:rowscol]) + column_names.map { |colname| (" " * (col_widths[colname] - colname.length)) + colname }.join(separator) + "\n"
117
+ result << "-" * (col_widths.values.sum + ((col_widths.size - 1) * separator.length)) + "\n"
118
+
119
+ @data.each_with_index do |row, i|
120
+ row_name = row_names[i]
121
+ row = column_names.zip(row)
122
+
123
+ index_part = "[" + (" " * (col_widths[:rowscol] - row_name.length - 3)) + "#{row_name}] "
124
+ row_part = row.map { |colname, value| (" " * (col_widths[colname] - value.inspect.length)) + value.inspect }.join(separator)
125
+
126
+ result << index_part + row_part + "\n"
127
+ end
128
+
129
+ result << "-" * (col_widths.values.sum + ((col_widths.size - 1) * separator.length))
130
+
131
+ return result
132
+ end
133
+
134
+ private
135
+ def indices(i, j)
136
+ if i.is_a?(String)
137
+ ri = @row_names.index(i)
138
+ raise ArgumentError, "Can not find row #{i}" unless ri
139
+ i = ri
140
+ end
141
+
142
+ if j.is_a?(String)
143
+ rj = @column_names.index(j)
144
+ raise ArgumentError, "Can not find column #{j}" unless rj
145
+ j = rj
146
+ end
147
+
148
+ raise ArgumentError, "Expected i and j to be both integers or strings" unless i.is_a?(Integer) && j.is_a?(Integer)
149
+ raise "Wrong i" unless i.between?(0, @data.size - 1)
150
+ raise "Wrong j" unless j.between?(0, @data[0].size - 1)
151
+
152
+ return [i, j]
153
+ end
154
+ end
155
+ end
@@ -0,0 +1,78 @@
1
+ require_relative 'datatype'
2
+
3
+ module Rust
4
+
5
+ ##
6
+ # Mirror for the S4 class in R.
7
+
8
+ class S4Class < RustDatatype
9
+ def self.can_pull?(type, klass)
10
+ return type == "S4"
11
+ end
12
+
13
+ def self.pull_variable(variable, type, klass)
14
+ slots = [Rust._pull("names(getSlots(\"#{klass}\"))")].flatten
15
+
16
+ return S4Class.new(variable, klass, slots)
17
+ end
18
+
19
+ def load_in_r_as(variable_name)
20
+ Rust._eval("#{variable_name} <- #{self.r_mirror}")
21
+ end
22
+
23
+ def r_hash
24
+ "immutable"
25
+ end
26
+
27
+ ##
28
+ # Creates a new S4 element, given its +variable_name+, class name (+klass+), and +slots+.
29
+
30
+ def initialize(variable_name, klass, slots)
31
+ @klass = klass
32
+ @slots = slots
33
+
34
+ self.r_mirror_to(variable_name)
35
+ end
36
+
37
+ ##
38
+ # Returns the slot +key+ for the class name (+klass+).
39
+
40
+ def [](key)
41
+ raise ArgumentError, "Unknown slot `#{key}` for class `#@klass`" unless @slots.include?(key)
42
+
43
+ Rust.exclusive do
44
+ return Rust["#{self.r_mirror}@#{key}"]
45
+ end
46
+ end
47
+ alias :| :[]
48
+
49
+ ##
50
+ # Returns the slot +key+ for the class name (+klass+) with +value+.
51
+
52
+ def []=(key, value)
53
+ raise ArgumentError, "Unknown slot `#{key}` for class `#@klass`" unless @slots.include?(key)
54
+
55
+ Rust.exclusive do
56
+ return Rust["#{self.r_mirror}@#{key}"] = value
57
+ end
58
+ end
59
+
60
+ ##
61
+ # Returns the slots.
62
+
63
+ def slots
64
+ @slots
65
+ end
66
+
67
+ ##
68
+ # Returns the class name.
69
+
70
+ def class_name
71
+ @klass
72
+ end
73
+
74
+ def inspect
75
+ return "<S4 instance of #@klass, with slots #@slots>"
76
+ end
77
+ end
78
+ end
@@ -0,0 +1,122 @@
1
+ require_relative 'datatype'
2
+
3
+ module Rust
4
+
5
+ ##
6
+ # Represents a sequence of values in R (through a call to the seq function).
7
+
8
+ class Sequence < RustDatatype
9
+ attr_reader :min
10
+ attr_reader :max
11
+
12
+ def self.can_pull?(type, klass)
13
+ return false
14
+ end
15
+
16
+ ##
17
+ # Creates a new sequence from +min+ to +max+ with a given +step+ (default = 1).
18
+
19
+ def initialize(min, max, step=1)
20
+ @min = min
21
+ @max = max
22
+ @step = step
23
+ end
24
+
25
+ ##
26
+ # Sets the step to +step+.
27
+
28
+ def step=(step)
29
+ @step = step
30
+
31
+ return self
32
+ end
33
+ alias :step :step=
34
+
35
+ def each
36
+ (@min..@max).step(@step) do |v|
37
+ yield v
38
+ end
39
+ end
40
+
41
+ def to_a
42
+ result = []
43
+ self.each do |v|
44
+ result << v
45
+ end
46
+ return result
47
+ end
48
+
49
+ def to_R
50
+ "seq(from=#@min, to=#@max, by=#@step)"
51
+ end
52
+
53
+ def load_in_r_as(variable_name)
54
+ Rust._eval("#{variable_name} <- #{self.to_R}")
55
+ end
56
+ end
57
+
58
+ class MathArray < Array
59
+ def -(other)
60
+ raise ArgumentError, "Expected array or numeric" if !other.is_a?(::Array) && !other.is_a?(Numeric)
61
+ raise ArgumentError, "The two arrays must have the same size" if other.is_a?(::Array) && self.size != other.size
62
+
63
+ result = self.clone
64
+ other = [other] * self.size if other.is_a?(Numeric)
65
+ for i in 0...self.size
66
+ result[i] -= other[i]
67
+ end
68
+
69
+ return result
70
+ end
71
+
72
+ def *(other)
73
+ raise ArgumentError, "Expected array or numeric" if !other.is_a?(::Array) && !other.is_a?(Numeric)
74
+ raise ArgumentError, "The two arrays must have the same size" if other.is_a?(::Array) && self.size != other.size
75
+
76
+ result = self.clone
77
+ other = [other] * self.size if other.is_a?(Numeric)
78
+ for i in 0...self.size
79
+ result[i] *= other[i]
80
+ end
81
+
82
+ return result
83
+ end
84
+
85
+ def +(other)
86
+ raise ArgumentError, "Expected array or numeric" if !other.is_a?(::Array) && !other.is_a?(Numeric)
87
+ raise ArgumentError, "The two arrays must have the same size" if other.is_a?(::Array) && self.size != other.size
88
+
89
+ result = self.clone
90
+ other = [other] * self.size if other.is_a?(Numeric)
91
+ for i in 0...self.size
92
+ result[i] += other[i]
93
+ end
94
+
95
+ return result
96
+ end
97
+
98
+ def /(other) #/# <- this comment is just to recover the syntax highlighting bug in Kate
99
+ raise ArgumentError, "Expected array or numeric" if !other.is_a?(::Array) && !other.is_a?(Numeric)
100
+ raise ArgumentError, "The two arrays must have the same size" if other.is_a?(::Array) && self.size != other.size
101
+
102
+ result = self.clone
103
+ other = [other] * self.size if other.is_a?(Numeric)
104
+ for i in 0...self.size
105
+ result[i] /= other[i]
106
+ end
107
+
108
+ return result
109
+ end
110
+
111
+ def **(other)
112
+ raise ArgumentError, "Expected numeric" if !other.is_a?(Numeric)
113
+
114
+ result = self.clone
115
+ for i in 0...self.size
116
+ result[i] = result[i] ** other
117
+ end
118
+
119
+ return result
120
+ end
121
+ end
122
+ end
data/lib/rust/core.rb ADDED
@@ -0,0 +1,7 @@
1
+ require_relative 'core/rust'
2
+ require_relative 'core/csv'
3
+
4
+ self_path = File.expand_path(__FILE__)
5
+ Dir.glob(File.join(File.dirname(self_path), "core/types/*.rb")).each do |lib|
6
+ require_relative lib
7
+ end
@@ -0,0 +1,4 @@
1
+ self_path = File.expand_path(__FILE__)
2
+ Dir.glob(File.dirname(self_path) + "/*.rb").each do |lib|
3
+ require_relative lib unless lib == self_path
4
+ end
@@ -0,0 +1,77 @@
1
+ require_relative '../core'
2
+
3
+ module Rust
4
+
5
+ ##
6
+ # Mirror for an ANOVA model type in R. To create a new ANOVA model (aov), call the #generate method.
7
+
8
+ class ANOVAModel < RustDatatype
9
+ def self.can_pull?(type, klass)
10
+ return type == "list" && [klass].flatten.include?("aov")
11
+ end
12
+
13
+ def self.pull_variable(variable, type, klass)
14
+ model = RustDatatype.pull_variable(variable, Rust::List)
15
+
16
+ return ANOVAModel.new(model)
17
+ end
18
+
19
+ def load_in_r_as(variable_name)
20
+ @model.load_in_r_as(variable_name)
21
+ end
22
+
23
+ ##
24
+ # Generates a new ANOVA model with a given +formula+, +data+. +options+ can be specified and directly passed
25
+ # to the aov function in R.
26
+
27
+ def self.generate(formula, data, **options)
28
+ mapped = ""
29
+ if options.size > 0
30
+ mapped = options.map { |k, v| "#{k}=#{v}" }.join(", ")
31
+ mapped = ", " + mapped
32
+ end
33
+
34
+ Rust.exclusive do
35
+ Rust["aov.data"] = data
36
+ Rust._eval("aov.model.result <- aov(#{formula.to_R}, data=aov.data#{mapped})")
37
+ result = ANOVAModel.new(Rust["aov.model.result"])
38
+ result.r_mirror_to("aov.model.result")
39
+ return result
40
+ end
41
+ end
42
+
43
+ ##
44
+ # Creates a new +model+.
45
+
46
+ def initialize(model)
47
+ @model = model
48
+ end
49
+
50
+ ##
51
+ # Returns the model.
52
+
53
+ def model
54
+ @model
55
+ end
56
+
57
+ ##
58
+ # Returns a summary of the ANOVA model through the summary function in R.
59
+
60
+ def summary
61
+ unless @summary
62
+ Rust.exclusive do
63
+ Rust._eval("aov.smr <- summary(#{self.r_mirror})")
64
+ @summary = Rust['aov.smr']
65
+ end
66
+ end
67
+
68
+ return @summary
69
+ end
70
+ end
71
+ end
72
+
73
+ module Rust::RBindings
74
+ def aov(formula, data, **options)
75
+ return ANOVAModel.generate(formula, data, **options)
76
+ end
77
+ end
@@ -0,0 +1,258 @@
1
+ require_relative '../core'
2
+ require_relative '../stats/descriptive'
3
+ require_relative '../stats/correlation'
4
+
5
+ module Rust::Models
6
+ end
7
+
8
+ ##
9
+ # Contains classes that allow to run regression models.
10
+
11
+ module Rust::Models::Regression
12
+
13
+ ##
14
+ # Generic regression model in R.
15
+
16
+ class RegressionModel < Rust::RustDatatype
17
+ def self.can_pull?(type, klass)
18
+ # Can only pull specific sub-types
19
+ return false
20
+ end
21
+
22
+ def load_in_r_as(variable_name)
23
+ @model.load_in_r_as(variable_name)
24
+ end
25
+
26
+ ##
27
+ # Generates a new regression model. +object_type+ is the Ruby class of the model object; +model_type+ represents
28
+ # the type of model at hand; +dependent_variable+ and +independent_variables+ are directly used as part of the
29
+ # model formula. +data+ represents the dataset to be used. +options+ can be specified and directly passed to the
30
+ # model.
31
+
32
+ def self.generate(object_type, model_type, dependent_variable, independent_variables, data, **options)
33
+ mapped = ""
34
+ if options.size > 0
35
+ mapped = options.map { |k, v| "#{k}=#{v}" }.join(", ")
36
+ mapped = ", " + mapped
37
+ end
38
+
39
+ formula = Rust::Formula.new(dependent_variable, independent_variables.join(" + "))
40
+
41
+ Rust.exclusive do
42
+ Rust["#{model_type}.data"] = data
43
+
44
+ Rust._eval("#{model_type}.model.result <- #{model_type}(#{formula.to_R}, data=#{model_type}.data#{mapped})")
45
+ result = Rust["#{model_type}.model.result"]
46
+ result.r_mirror_to("#{model_type}.model.result")
47
+
48
+ return result
49
+ end
50
+ end
51
+
52
+ ##
53
+ # Creates a new +model+.
54
+
55
+ def initialize(model)
56
+ raise StandardError if model.is_a?(RegressionModel)
57
+ @model = model
58
+ end
59
+
60
+ def model
61
+ @model
62
+ end
63
+
64
+ ##
65
+ # Returns the residuals of the model.
66
+
67
+ def residuals
68
+ Rust.exclusive do
69
+ @residuals = Rust["residuals(#{self.r_mirror})"] unless @residuals
70
+ end
71
+
72
+ return @residuals
73
+ end
74
+
75
+ ##
76
+ # Returns the fitted values of the model.
77
+
78
+ def fitted
79
+ Rust.exclusive do
80
+ @fitted = Rust["fitted(#{self.r_mirror})"] unless @fitted
81
+ end
82
+
83
+ return @fitted
84
+ end
85
+
86
+ ##
87
+ # Returns the actual values in the dataset.
88
+
89
+ def actuals
90
+ return self.fitted.zip(self.residuals).map { |couple| couple.sum }
91
+ end
92
+
93
+ ##
94
+ # Returns the r-squared of the model.
95
+
96
+ def r_2
97
+ return self.summary|"r.squared"
98
+ end
99
+
100
+ ##
101
+ # Returns the adjusted r-squared of the model.
102
+
103
+ def r_2_adjusted
104
+ return self.summary|"adj.r.squared"
105
+ end
106
+
107
+ ##
108
+ # Returns the mean squared error of the model.
109
+
110
+ def mse
111
+ Rust::Descriptive.variance(self.residuals)
112
+ end
113
+
114
+ ##
115
+ # Returns the coefficients of the model.
116
+
117
+ def coefficients
118
+ a = self.summary|"coefficients"
119
+ end
120
+
121
+ def method_missing(name, *args)
122
+ return model|name.to_s
123
+ end
124
+
125
+ ##
126
+ # Returns a summary for the model using the summary function in R.
127
+
128
+ def summary
129
+ unless @summary
130
+ Rust.exclusive do
131
+ @summary = Rust["summary(#{self.r_mirror})"]
132
+ end
133
+ end
134
+
135
+ return @summary
136
+ end
137
+
138
+ def r_hash
139
+ @model.r_hash
140
+ end
141
+ end
142
+
143
+ ##
144
+ # Represents a linear regression model in R.
145
+
146
+ class LinearRegressionModel < RegressionModel
147
+ def self.can_pull?(type, klass)
148
+ return type == "list" && klass == "lm"
149
+ end
150
+
151
+ def self.pull_variable(variable, type, klass)
152
+ model = Rust::RustDatatype.pull_variable(variable, Rust::List)
153
+
154
+ return LinearRegressionModel.new(model)
155
+ end
156
+
157
+ ##
158
+ # Generates a linear regression model, given its +dependent_variable+ and +independent_variables+ and its +data+.
159
+ # +options+ can be specified and directly passed to the model.
160
+
161
+ def self.generate(dependent_variable, independent_variables, data, **options)
162
+ RegressionModel.generate(
163
+ LinearRegressionModel,
164
+ "lm",
165
+ dependent_variable,
166
+ independent_variables,
167
+ data,
168
+ **options
169
+ )
170
+ end
171
+ end
172
+
173
+ ##
174
+ # Represents a linear mixed effects model in R.
175
+
176
+ class LinearMixedEffectsModel < RegressionModel
177
+ def self.can_pull?(type, klass)
178
+ return type == "S4" && klass == "lmerModLmerTest"
179
+ end
180
+
181
+ def self.pull_priority
182
+ 1
183
+ end
184
+
185
+ def self.pull_variable(variable, type, klass)
186
+ model = Rust::RustDatatype.pull_variable(variable, Rust::S4Class)
187
+
188
+ return LinearMixedEffectsModel.new(model)
189
+ end
190
+
191
+ def summary
192
+ unless @summary
193
+ Rust.exclusive do
194
+ Rust._eval("tmp.summary <- summary(#{self.r_mirror})")
195
+ Rust._eval("mode(tmp.summary$objClass) <- \"list\"")
196
+ Rust._eval("tmp.summary$logLik <- attributes(tmp.summary$logLik)")
197
+ @summary = Rust["tmp.summary"]
198
+ end
199
+ end
200
+
201
+ return @summary
202
+ end
203
+
204
+ ##
205
+ # Generates a linear mixed effects model, given its +dependent_variable+ and +independent_variables+ and its +data+.
206
+ # +options+ can be specified and directly passed to the model.
207
+
208
+ def self.generate(dependent_variable, fixed_effects, random_effects, data, **options)
209
+ Rust.prerequisite("lmerTest")
210
+ Rust.prerequisite("rsq")
211
+
212
+ random_effects = random_effects.map { |effect| "(1|#{effect})" }
213
+
214
+ RegressionModel.generate(
215
+ LinearMixedEffectsModel,
216
+ "lmer",
217
+ dependent_variable,
218
+ fixed_effects + random_effects,
219
+ data,
220
+ **options
221
+ )
222
+ end
223
+
224
+ def r_2
225
+ Rust.exclusive do
226
+ Rust._eval("tmp.rsq <- rsq(#{self.r_mirror}, adj=F)")
227
+ return Rust['tmp.rsq']
228
+ end
229
+ end
230
+
231
+ def r_2_adjusted
232
+ Rust.exclusive do
233
+ Rust._eval("tmp.rsq <- rsq(#{self.r_mirror}, adj=T)")
234
+ return Rust['tmp.rsq']
235
+ end
236
+ end
237
+ end
238
+ end
239
+
240
+ module Rust::RBindings
241
+ def lm(formula, data, **options)
242
+ independent = formula.right_part.split("+").map { |v| v.strip }
243
+ return LinearRegressionModel.generate(formula.left_part, independent, data, **options)
244
+ end
245
+
246
+ def lmer(formula, data, **options)
247
+ independent = formula.right_part.split("+").map { |v| v.strip }
248
+
249
+ RegressionModel.generate(
250
+ LinearMixedEffectsModel,
251
+ "lmer",
252
+ formula.left_part,
253
+ independent,
254
+ data,
255
+ **options
256
+ )
257
+ end
258
+ end