rumale 0.22.3 → 0.22.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.github/workflows/build.yml +5 -2
- data/CHANGELOG.md +7 -0
- data/Gemfile +1 -1
- data/ext/rumale/tree.c +1 -2
- data/lib/rumale.rb +2 -0
- data/lib/rumale/ensemble/stacking_classifier.rb +5 -4
- data/lib/rumale/ensemble/stacking_regressor.rb +3 -3
- data/lib/rumale/ensemble/voting_classifier.rb +126 -0
- data/lib/rumale/ensemble/voting_regressor.rb +82 -0
- data/lib/rumale/version.rb +1 -1
- metadata +5 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 4936b7c7b0ed920383f88743f8eba2e827d586dae471e40a6974dd1fe19342fe
|
4
|
+
data.tar.gz: 5a33c242b3cd881b0003db5e5f2d77905d0571442eb7494a64dff08262ce0c14
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: b45a243c247610d918eeb6cfbb31c461e5773b5404c989fe7e0b8758e0482d165ea1e0cf1d61642d71233458821e1b92e45eb6ff0d0fcb11080c6c1e9692ef91
|
7
|
+
data.tar.gz: feddfc807995b08e753b1ad635901f2db8e806e300478a1f6bdb24a5bf1123cb7fbd0ee402da92ddcdd079a8ad653eec4224e22be9d2c6609ea73ea84bc47ca1
|
data/.github/workflows/build.yml
CHANGED
@@ -6,8 +6,9 @@ jobs:
|
|
6
6
|
build:
|
7
7
|
runs-on: ubuntu-latest
|
8
8
|
strategy:
|
9
|
+
fail-fast: false
|
9
10
|
matrix:
|
10
|
-
ruby: [ '2.5', '2.6', '2.7' ]
|
11
|
+
ruby: [ '2.5', '2.6', '2.7', '3.0' ]
|
11
12
|
steps:
|
12
13
|
- uses: actions/checkout@v2
|
13
14
|
- name: Install BLAS and LAPACK
|
@@ -17,7 +18,9 @@ jobs:
|
|
17
18
|
with:
|
18
19
|
ruby-version: ${{ matrix.ruby }}
|
19
20
|
- name: Build and test with Rake
|
21
|
+
env:
|
22
|
+
LD_LIBRARY_PATH: '/usr/lib/x86_64-linux-gnu/'
|
20
23
|
run: |
|
21
|
-
gem install bundler
|
24
|
+
gem install --no-document bundler
|
22
25
|
bundle install --jobs 4 --retry 3
|
23
26
|
bundle exec rake
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,10 @@
|
|
1
|
+
# 0.22.4
|
2
|
+
- Add classifier and regressor classes for voting ensemble method.
|
3
|
+
- [VotingClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/VotingClassifier.html)
|
4
|
+
- [VotingRegressor](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/VotingRegressor.html)
|
5
|
+
- Refactor some codes.
|
6
|
+
- Fix some typos on API documentation.
|
7
|
+
|
1
8
|
# 0.22.3
|
2
9
|
- Add regressor class for non-negative least square method.
|
3
10
|
- [NNLS](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/NNLS.html)
|
data/Gemfile
CHANGED
data/ext/rumale/tree.c
CHANGED
@@ -5,9 +5,8 @@ RUBY_EXTERN VALUE mRumale;
|
|
5
5
|
double*
|
6
6
|
alloc_dbl_array(const long n_dimensions)
|
7
7
|
{
|
8
|
-
long i;
|
9
8
|
double* arr = ALLOC_N(double, n_dimensions);
|
10
|
-
|
9
|
+
memset(arr, 0, n_dimensions * sizeof(double));
|
11
10
|
return arr;
|
12
11
|
}
|
13
12
|
|
data/lib/rumale.rb
CHANGED
@@ -62,6 +62,8 @@ require 'rumale/ensemble/extra_trees_classifier'
|
|
62
62
|
require 'rumale/ensemble/extra_trees_regressor'
|
63
63
|
require 'rumale/ensemble/stacking_classifier'
|
64
64
|
require 'rumale/ensemble/stacking_regressor'
|
65
|
+
require 'rumale/ensemble/voting_classifier'
|
66
|
+
require 'rumale/ensemble/voting_regressor'
|
65
67
|
require 'rumale/clustering/k_means'
|
66
68
|
require 'rumale/clustering/mini_batch_k_means'
|
67
69
|
require 'rumale/clustering/k_medoids'
|
@@ -2,6 +2,7 @@
|
|
2
2
|
|
3
3
|
require 'rumale/base/base_estimator'
|
4
4
|
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/preprocessing/label_encoder'
|
5
6
|
|
6
7
|
module Rumale
|
7
8
|
module Ensemble
|
@@ -10,18 +11,18 @@ module Rumale
|
|
10
11
|
# @example
|
11
12
|
# estimators = {
|
12
13
|
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2, random_seed: 1),
|
13
|
-
# mlp:
|
14
|
+
# mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
|
14
15
|
# rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
15
16
|
# }
|
16
17
|
# meta_estimator = Rumale::LinearModel::LogisticRegression.new(random_seed: 1)
|
17
18
|
# classifier = Rumale::Ensemble::StackedClassifier.new(
|
18
19
|
# estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
|
19
20
|
# )
|
20
|
-
# classifier.fit(training_samples,
|
21
|
+
# classifier.fit(training_samples, training_labels)
|
21
22
|
# results = classifier.predict(testing_samples)
|
22
23
|
#
|
23
24
|
# *Reference*
|
24
|
-
# - Zhou, Z-H., "Ensemble
|
25
|
+
# - Zhou, Z-H., "Ensemble Methods - Foundations and Algorithms," CRC Press Taylor and Francis Group, Chapman and Hall/CRC, 2012.
|
25
26
|
class StackingClassifier
|
26
27
|
include Base::BaseEstimator
|
27
28
|
include Base::Classifier
|
@@ -149,7 +150,7 @@ module Rumale
|
|
149
150
|
|
150
151
|
# Predict probability for samples.
|
151
152
|
#
|
152
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the
|
153
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probabilities.
|
153
154
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) The predicted probability of each class per sample.
|
154
155
|
def predict_proba(x)
|
155
156
|
x = check_convert_sample_array(x)
|
@@ -10,18 +10,18 @@ module Rumale
|
|
10
10
|
# @example
|
11
11
|
# estimators = {
|
12
12
|
# las: Rumale::LinearModel::Lasso.new(reg_param: 1e-2, random_seed: 1),
|
13
|
-
# mlp:
|
13
|
+
# mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
|
14
14
|
# rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
|
15
15
|
# }
|
16
16
|
# meta_estimator = Rumale::LinearModel::Ridge.new(random_seed: 1)
|
17
17
|
# regressor = Rumale::Ensemble::StackedRegressor.new(
|
18
18
|
# estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
|
19
19
|
# )
|
20
|
-
# regressor.fit(training_samples,
|
20
|
+
# regressor.fit(training_samples, training_values)
|
21
21
|
# results = regressor.predict(testing_samples)
|
22
22
|
#
|
23
23
|
# *Reference*
|
24
|
-
# - Zhou, Z-H., "Ensemble
|
24
|
+
# - Zhou, Z-H., "Ensemble Methods - Foundations and Algorithms," CRC Press Taylor and Francis Group, Chapman and Hall/CRC, 2012.
|
25
25
|
class StackingRegressor
|
26
26
|
include Base::BaseEstimator
|
27
27
|
include Base::Regressor
|
@@ -0,0 +1,126 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/preprocessing/label_encoder'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module Ensemble
|
9
|
+
# VotingClassifier is a class that implements classifier with voting ensemble method.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# estimators = {
|
13
|
+
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2, random_seed: 1),
|
14
|
+
# mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
|
15
|
+
# rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
16
|
+
# }
|
17
|
+
# weights = { lgr: 0.2, mlp: 0.3, rnd: 0.5 }
|
18
|
+
#
|
19
|
+
# classifier = Rumale::Ensemble::VotingClassifier.new(estimators: estimators, weights: weights, voting: 'soft')
|
20
|
+
# classifier.fit(x_train, y_train)
|
21
|
+
# results = classifier.predict(x_test)
|
22
|
+
#
|
23
|
+
# *Reference*
|
24
|
+
# - Zhou, Z-H., "Ensemble Methods - Foundations and Algorithms," CRC Press Taylor and Francis Group, Chapman and Hall/CRC, 2012.
|
25
|
+
class VotingClassifier
|
26
|
+
include Base::BaseEstimator
|
27
|
+
include Base::Classifier
|
28
|
+
|
29
|
+
# Return the sub-classifiers that voted.
|
30
|
+
# @return [Hash<Symbol,Classifier>]
|
31
|
+
attr_reader :estimators
|
32
|
+
|
33
|
+
# Return the class labels.
|
34
|
+
# @return [Numo::Int32] (size: n_classes)
|
35
|
+
attr_reader :classes
|
36
|
+
|
37
|
+
# Create a new ensembled classifier with voting rule.
|
38
|
+
#
|
39
|
+
# @param estimators [Hash<Symbol,Classifier>] The sub-classifiers to vote.
|
40
|
+
# @param weights [Hash<Symbol,Float>] The weight value for each classifier.
|
41
|
+
# @param voting [String] The voting rule for the predicted results of each classifier.
|
42
|
+
# If 'hard' is given, the ensembled classifier predicts the class label by majority vote.
|
43
|
+
# If 'soft' is given, the ensembled classifier uses the weighted average of predicted probabilities for the prediction.
|
44
|
+
def initialize(estimators:, weights: nil, voting: 'hard')
|
45
|
+
check_params_type(Hash, estimators: estimators)
|
46
|
+
check_params_type_or_nil(Hash, weights: weights)
|
47
|
+
check_params_string(voting: voting)
|
48
|
+
@estimators = estimators
|
49
|
+
@classes = nil
|
50
|
+
@params = {}
|
51
|
+
@params[:weights] = weights || estimators.each_key.with_object({}) { |name, w| w[name] = 1.0 }
|
52
|
+
@params[:voting] = voting
|
53
|
+
end
|
54
|
+
|
55
|
+
# Fit the model with given training data.
|
56
|
+
#
|
57
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
58
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
59
|
+
# @return [VotingClassifier] The learned classifier itself.
|
60
|
+
def fit(x, y)
|
61
|
+
x = check_convert_sample_array(x)
|
62
|
+
y = check_convert_label_array(y)
|
63
|
+
check_sample_label_size(x, y)
|
64
|
+
|
65
|
+
@encoder = Rumale::Preprocessing::LabelEncoder.new
|
66
|
+
y_encoded = @encoder.fit_transform(y)
|
67
|
+
@classes = Numo::NArray[*@encoder.classes]
|
68
|
+
@estimators.each_key { |name| @estimators[name].fit(x, y_encoded) }
|
69
|
+
|
70
|
+
self
|
71
|
+
end
|
72
|
+
|
73
|
+
# Calculate confidence scores for samples.
|
74
|
+
#
|
75
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
76
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) The confidence score per sample.
|
77
|
+
def decision_function(x)
|
78
|
+
x = check_convert_sample_array(x)
|
79
|
+
return predict_proba(x) if soft_voting?
|
80
|
+
|
81
|
+
n_samples = x.shape[0]
|
82
|
+
n_classes = @classes.size
|
83
|
+
z = Numo::DFloat.zeros(n_samples, n_classes)
|
84
|
+
@estimators.each do |name, estimator|
|
85
|
+
estimator.predict(x).to_a.each_with_index { |c, i| z[i, c] += @params[:weights][name] }
|
86
|
+
end
|
87
|
+
z
|
88
|
+
end
|
89
|
+
|
90
|
+
# Predict class labels for samples.
|
91
|
+
#
|
92
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
93
|
+
# @return [Numo::Int32] (shape: [n_samples]) The predicted class label per sample.
|
94
|
+
def predict(x)
|
95
|
+
x = check_convert_sample_array(x)
|
96
|
+
n_samples = x.shape[0]
|
97
|
+
n_classes = @classes.size
|
98
|
+
z = decision_function(x)
|
99
|
+
predicted = z.max_index(axis: 1) - Numo::Int32.new(n_samples).seq * n_classes
|
100
|
+
Numo::Int32.cast(@encoder.inverse_transform(predicted))
|
101
|
+
end
|
102
|
+
|
103
|
+
# Predict probability for samples.
|
104
|
+
#
|
105
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probabilities.
|
106
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
107
|
+
def predict_proba(x)
|
108
|
+
x = check_convert_sample_array(x)
|
109
|
+
n_samples = x.shape[0]
|
110
|
+
n_classes = @classes.size
|
111
|
+
z = Numo::DFloat.zeros(n_samples, n_classes)
|
112
|
+
sum_weight = @params[:weights].each_value.inject(&:+)
|
113
|
+
@estimators.each do |name, estimator|
|
114
|
+
z += @params[:weights][name] * estimator.predict_proba(x)
|
115
|
+
end
|
116
|
+
z /= sum_weight
|
117
|
+
end
|
118
|
+
|
119
|
+
private
|
120
|
+
|
121
|
+
def soft_voting?
|
122
|
+
@params[:voting] == 'soft'
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|
126
|
+
end
|
@@ -0,0 +1,82 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/regressor'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Ensemble
|
8
|
+
# VotingRegressor is a class that implements regressor with voting ensemble method.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# estimators = {
|
12
|
+
# rdg: Rumale::LinearModel::Ridge.new(reg_param: 1e-2, random_seed: 1),
|
13
|
+
# mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
|
14
|
+
# rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
|
15
|
+
# }
|
16
|
+
# weights = { rdg: 0.2, mlp: 0.3, rnd: 0.5 }
|
17
|
+
#
|
18
|
+
# regressor = Rumale::Ensemble::VotingRegressor.new(estimators: estimators, weights: weights, voting: 'soft')
|
19
|
+
# regressor.fit(x_train, y_train)
|
20
|
+
# results = regressor.predict(x_test)
|
21
|
+
#
|
22
|
+
# *Reference*
|
23
|
+
# - Zhou, Z-H., "Ensemble Methods - Foundations and Algorithms," CRC Press Taylor and Francis Group, Chapman and Hall/CRC, 2012.
|
24
|
+
class VotingRegressor
|
25
|
+
include Base::BaseEstimator
|
26
|
+
include Base::Regressor
|
27
|
+
|
28
|
+
# Return the sub-regressors that voted.
|
29
|
+
# @return [Hash<Symbol,Regressor>]
|
30
|
+
attr_reader :estimators
|
31
|
+
|
32
|
+
# Create a new ensembled regressor with voting rule.
|
33
|
+
#
|
34
|
+
# @param estimators [Hash<Symbol,Regressor>] The sub-regressors to vote.
|
35
|
+
# @param weights [Hash<Symbol,Float>] The weight value for each regressor.
|
36
|
+
def initialize(estimators:, weights: nil)
|
37
|
+
check_params_type(Hash, estimators: estimators)
|
38
|
+
check_params_type_or_nil(Hash, weights: weights)
|
39
|
+
@estimators = estimators
|
40
|
+
@n_outputs = nil
|
41
|
+
@params = {}
|
42
|
+
@params[:weights] = weights || estimators.each_key.with_object({}) { |name, w| w[name] = 1.0 }
|
43
|
+
end
|
44
|
+
|
45
|
+
# Fit the model with given training data.
|
46
|
+
#
|
47
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
48
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
49
|
+
# @return [VotingRegressor] The learned regressor itself.
|
50
|
+
def fit(x, y)
|
51
|
+
x = check_convert_sample_array(x)
|
52
|
+
y = check_convert_tvalue_array(y)
|
53
|
+
check_sample_tvalue_size(x, y)
|
54
|
+
|
55
|
+
@n_outputs = y.ndim > 1 ? y.shape[1] : 1
|
56
|
+
@estimators.each_key { |name| @estimators[name].fit(x, y) }
|
57
|
+
|
58
|
+
self
|
59
|
+
end
|
60
|
+
|
61
|
+
# Predict values for samples.
|
62
|
+
#
|
63
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
64
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
65
|
+
def predict(x)
|
66
|
+
x = check_convert_sample_array(x)
|
67
|
+
z = single_target? ? Numo::DFloat.zeros(x.shape[0]) : Numo::DFloat.zeros(x.shape[0], @n_outputs)
|
68
|
+
sum_weight = @params[:weights].each_value.inject(&:+)
|
69
|
+
@estimators.each do |name, estimator|
|
70
|
+
z += @params[:weights][name] * estimator.predict(x)
|
71
|
+
end
|
72
|
+
z / sum_weight
|
73
|
+
end
|
74
|
+
|
75
|
+
private
|
76
|
+
|
77
|
+
def single_target?
|
78
|
+
@n_outputs == 1
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
82
|
+
end
|
data/lib/rumale/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.22.
|
4
|
+
version: 0.22.4
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-
|
11
|
+
date: 2021-02-22 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -108,6 +108,8 @@ files:
|
|
108
108
|
- lib/rumale/ensemble/random_forest_regressor.rb
|
109
109
|
- lib/rumale/ensemble/stacking_classifier.rb
|
110
110
|
- lib/rumale/ensemble/stacking_regressor.rb
|
111
|
+
- lib/rumale/ensemble/voting_classifier.rb
|
112
|
+
- lib/rumale/ensemble/voting_regressor.rb
|
111
113
|
- lib/rumale/evaluation_measure/accuracy.rb
|
112
114
|
- lib/rumale/evaluation_measure/adjusted_rand_score.rb
|
113
115
|
- lib/rumale/evaluation_measure/calinski_harabasz_score.rb
|
@@ -229,7 +231,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
229
231
|
- !ruby/object:Gem::Version
|
230
232
|
version: '0'
|
231
233
|
requirements: []
|
232
|
-
rubygems_version: 3.2.
|
234
|
+
rubygems_version: 3.2.7
|
233
235
|
signing_key:
|
234
236
|
specification_version: 4
|
235
237
|
summary: Rumale is a machine learning library in Ruby. Rumale provides machine learning
|