rumale 0.22.2 → 0.22.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.coveralls.yml +1 -0
- data/.github/workflows/coverage.yml +28 -0
- data/.gitignore +1 -0
- data/CHANGELOG.md +9 -0
- data/Gemfile +2 -1
- data/LICENSE.txt +1 -1
- data/README.md +44 -7
- data/ext/rumale/tree.c +23 -10
- data/lib/rumale.rb +1 -0
- data/lib/rumale/base/base_estimator.rb +5 -3
- data/lib/rumale/linear_model/elastic_net.rb +1 -1
- data/lib/rumale/linear_model/lasso.rb +1 -1
- data/lib/rumale/linear_model/linear_regression.rb +63 -34
- data/lib/rumale/linear_model/nnls.rb +137 -0
- data/lib/rumale/linear_model/ridge.rb +70 -33
- data/lib/rumale/validation.rb +12 -0
- data/lib/rumale/version.rb +1 -1
- metadata +9 -6
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 2bcd9baeafc1a271f75ccd74123f50ebd9d4fbe9065c2583f376c562f8e49155
|
4
|
+
data.tar.gz: 937dda6bbe4c41953f1e6eb1ea205eaa54277ae9f4202fa8a1e7e789348a76ad
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: cbad4cc283bb449116b360bc4ef8002928add3399005bcc30aaccdf95ea03233f0d035862de643b4aa4d688eedbeaaa7dc029c67a2336156d7e03c9435468cfa
|
7
|
+
data.tar.gz: 83bfa0f53d7c0e094f271bfb3ddfef21ca58d41d77e1278886b5e26216a5b614629c9be33bc587bccc62e280612c75dbd0356fce772a727ed8cc003f86a03976
|
data/.coveralls.yml
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
service_name: github-ci
|
@@ -0,0 +1,28 @@
|
|
1
|
+
name: coverage
|
2
|
+
|
3
|
+
on:
|
4
|
+
push:
|
5
|
+
branches: [ main ]
|
6
|
+
pull_request:
|
7
|
+
branches: [ main ]
|
8
|
+
|
9
|
+
jobs:
|
10
|
+
coverage:
|
11
|
+
runs-on: ubuntu-20.04
|
12
|
+
steps:
|
13
|
+
- uses: actions/checkout@v2
|
14
|
+
- name: Install BLAS and LAPACK
|
15
|
+
run: sudo apt-get install -y libopenblas-dev liblapacke-dev
|
16
|
+
- name: Set up Ruby 2.7
|
17
|
+
uses: actions/setup-ruby@v1
|
18
|
+
with:
|
19
|
+
ruby-version: '2.7'
|
20
|
+
- name: Build and test with Rake
|
21
|
+
run: |
|
22
|
+
gem install bundler
|
23
|
+
bundle install
|
24
|
+
bundle exec rake
|
25
|
+
- name: Coveralls GitHub Action
|
26
|
+
uses: coverallsapp/github-action@v1.1.2
|
27
|
+
with:
|
28
|
+
github-token: ${{ secrets.GITHUB_TOKEN }}
|
data/.gitignore
CHANGED
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,12 @@
|
|
1
|
+
# 0.22.3
|
2
|
+
- Add regressor class for non-negative least square method.
|
3
|
+
- [NNLS](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/NNLS.html)
|
4
|
+
- Add lbfgs solver to [Ridge](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html) and [LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html).
|
5
|
+
- In version 0.23.0, these classes will be changed to attempt to optimize with 'svd' or 'lbfgs' solver if 'auto' is given to
|
6
|
+
the solver parameter. If you use 'sgd' solver, you need specify it explicitly.
|
7
|
+
- Add GC guard to native extension codes.
|
8
|
+
- Update API documentation.
|
9
|
+
|
1
10
|
# 0.22.2
|
2
11
|
- Add classifier and regressor classes for stacking method.
|
3
12
|
- [StackingClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble/StackingClassifier.html)
|
data/Gemfile
CHANGED
data/LICENSE.txt
CHANGED
data/README.md
CHANGED
@@ -3,6 +3,7 @@
|
|
3
3
|
![Rumale](https://dl.dropboxusercontent.com/s/joxruk2720ur66o/rumale_header_400.png)
|
4
4
|
|
5
5
|
[![Build Status](https://github.com/yoshoku/rumale/workflows/build/badge.svg)](https://github.com/yoshoku/rumale/actions?query=workflow%3Abuild)
|
6
|
+
[![Coverage Status](https://coveralls.io/repos/github/yoshoku/rumale/badge.svg?branch=main)](https://coveralls.io/github/yoshoku/rumale?branch=main)
|
6
7
|
[![Gem Version](https://badge.fury.io/rb/rumale.svg)](https://badge.fury.io/rb/rumale)
|
7
8
|
[![BSD 2-Clause License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/LICENSE.txt)
|
8
9
|
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/)
|
@@ -176,7 +177,7 @@ For example, using the [OpenBLAS](https://github.com/xianyi/OpenBLAS) speeds up
|
|
176
177
|
|
177
178
|
Install OpenBLAS library.
|
178
179
|
|
179
|
-
|
180
|
+
macOS:
|
180
181
|
|
181
182
|
```bash
|
182
183
|
$ brew install openblas
|
@@ -185,12 +186,13 @@ $ brew install openblas
|
|
185
186
|
Ubuntu:
|
186
187
|
|
187
188
|
```bash
|
188
|
-
$ sudo apt-get install
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
189
|
+
$ sudo apt-get install libopenblas-dev liblapacke-dev
|
190
|
+
```
|
191
|
+
|
192
|
+
Windows (MSYS2):
|
193
|
+
|
194
|
+
```bash
|
195
|
+
$ pacman -S mingw-w64-x86_64-ruby mingw-w64-x86_64-openblas mingw-w64-x86_64-lapack
|
194
196
|
```
|
195
197
|
|
196
198
|
Install Numo::Linalg gem.
|
@@ -206,6 +208,37 @@ require 'numo/linalg/autoloader'
|
|
206
208
|
require 'rumale'
|
207
209
|
```
|
208
210
|
|
211
|
+
### Numo::OpenBLAS
|
212
|
+
[Numo::OpenBLAS](https://github.com/yoshoku/numo-openblas) downloads and builds OpenBLAS during installation
|
213
|
+
and uses that as a background library for Numo::Linalg.
|
214
|
+
|
215
|
+
Install compilers for building OpenBLAS.
|
216
|
+
|
217
|
+
macOS:
|
218
|
+
|
219
|
+
```bash
|
220
|
+
$ brew install gcc gfortran make
|
221
|
+
```
|
222
|
+
|
223
|
+
Ubuntu:
|
224
|
+
|
225
|
+
```bash
|
226
|
+
$ sudo apt-get install gcc gfortran make
|
227
|
+
```
|
228
|
+
|
229
|
+
Install Numo::OpenBLAS gem.
|
230
|
+
|
231
|
+
```bash
|
232
|
+
$ gem install numo-openblas
|
233
|
+
```
|
234
|
+
|
235
|
+
Load Numo::OpenBLAS gem instead of Numo::Linalg.
|
236
|
+
|
237
|
+
```ruby
|
238
|
+
require 'numo/openblas'
|
239
|
+
require 'rumale'
|
240
|
+
```
|
241
|
+
|
209
242
|
### Parallel
|
210
243
|
Several estimators in Rumale support parallel processing.
|
211
244
|
Parallel processing in Rumale is realized by [Parallel](https://github.com/grosser/parallel) gem,
|
@@ -227,6 +260,10 @@ When -1 is given to n_jobs parameter, all processors are used.
|
|
227
260
|
estimator = Rumale::Ensemble::RandomForestClassifier.new(n_jobs: -1, random_seed: 1)
|
228
261
|
```
|
229
262
|
|
263
|
+
## Related Projects
|
264
|
+
- [Rumale::SVM](https://github.com/yoshoku/rumale-svm) provides support vector machine algorithms in LIBSVM and LIBLINEAR with Rumale interface.
|
265
|
+
- [Rumale::Torch](https://github.com/yoshoku/rumale-torch) provides the learning and inference by the neural network defined in torch.rb with Rumale interface.
|
266
|
+
|
230
267
|
## Novelties
|
231
268
|
|
232
269
|
* [Rumale SHOP](https://suzuri.jp/yoshoku)
|
data/ext/rumale/tree.c
CHANGED
@@ -257,10 +257,13 @@ find_split_params_cls(VALUE self, VALUE criterion, VALUE impurity, VALUE order,
|
|
257
257
|
split_opts_cls opts = { StringValuePtr(criterion), NUM2LONG(n_classes), NUM2DBL(impurity) };
|
258
258
|
VALUE params = na_ndloop3(&ndf, &opts, 3, order, features, labels);
|
259
259
|
VALUE results = rb_ary_new2(4);
|
260
|
-
|
261
|
-
rb_ary_store(results,
|
262
|
-
rb_ary_store(results,
|
263
|
-
rb_ary_store(results,
|
260
|
+
double* params_ptr = (double*)na_get_pointer_for_read(params);
|
261
|
+
rb_ary_store(results, 0, DBL2NUM(params_ptr[0]));
|
262
|
+
rb_ary_store(results, 1, DBL2NUM(params_ptr[1]));
|
263
|
+
rb_ary_store(results, 2, DBL2NUM(params_ptr[2]));
|
264
|
+
rb_ary_store(results, 3, DBL2NUM(params_ptr[3]));
|
265
|
+
RB_GC_GUARD(params);
|
266
|
+
RB_GC_GUARD(criterion);
|
264
267
|
return results;
|
265
268
|
}
|
266
269
|
|
@@ -375,10 +378,13 @@ find_split_params_reg(VALUE self, VALUE criterion, VALUE impurity, VALUE order,
|
|
375
378
|
split_opts_reg opts = { StringValuePtr(criterion), NUM2DBL(impurity) };
|
376
379
|
VALUE params = na_ndloop3(&ndf, &opts, 3, order, features, targets);
|
377
380
|
VALUE results = rb_ary_new2(4);
|
378
|
-
|
379
|
-
rb_ary_store(results,
|
380
|
-
rb_ary_store(results,
|
381
|
-
rb_ary_store(results,
|
381
|
+
double* params_ptr = (double*)na_get_pointer_for_read(params);
|
382
|
+
rb_ary_store(results, 0, DBL2NUM(params_ptr[0]));
|
383
|
+
rb_ary_store(results, 1, DBL2NUM(params_ptr[1]));
|
384
|
+
rb_ary_store(results, 2, DBL2NUM(params_ptr[2]));
|
385
|
+
rb_ary_store(results, 3, DBL2NUM(params_ptr[3]));
|
386
|
+
RB_GC_GUARD(params);
|
387
|
+
RB_GC_GUARD(criterion);
|
382
388
|
return results;
|
383
389
|
}
|
384
390
|
|
@@ -464,8 +470,10 @@ find_split_params_grad_reg
|
|
464
470
|
double opts[3] = { NUM2DBL(sum_gradient), NUM2DBL(sum_hessian), NUM2DBL(reg_lambda) };
|
465
471
|
VALUE params = na_ndloop3(&ndf, opts, 4, order, features, gradients, hessians);
|
466
472
|
VALUE results = rb_ary_new2(2);
|
467
|
-
|
468
|
-
rb_ary_store(results,
|
473
|
+
double* params_ptr = (double*)na_get_pointer_for_read(params);
|
474
|
+
rb_ary_store(results, 0, DBL2NUM(params_ptr[0]));
|
475
|
+
rb_ary_store(results, 1, DBL2NUM(params_ptr[1]));
|
476
|
+
RB_GC_GUARD(params);
|
469
477
|
return results;
|
470
478
|
}
|
471
479
|
|
@@ -497,6 +505,9 @@ node_impurity_cls(VALUE self, VALUE criterion, VALUE y_nary, VALUE n_elements_,
|
|
497
505
|
|
498
506
|
xfree(histogram);
|
499
507
|
|
508
|
+
RB_GC_GUARD(y_nary);
|
509
|
+
RB_GC_GUARD(criterion);
|
510
|
+
|
500
511
|
return ret;
|
501
512
|
}
|
502
513
|
|
@@ -531,6 +542,8 @@ node_impurity_reg(VALUE self, VALUE criterion, VALUE y)
|
|
531
542
|
|
532
543
|
xfree(sum_vec);
|
533
544
|
|
545
|
+
RB_GC_GUARD(criterion);
|
546
|
+
|
534
547
|
return ret;
|
535
548
|
}
|
536
549
|
|
data/lib/rumale.rb
CHANGED
@@ -30,6 +30,7 @@ require 'rumale/linear_model/linear_regression'
|
|
30
30
|
require 'rumale/linear_model/ridge'
|
31
31
|
require 'rumale/linear_model/lasso'
|
32
32
|
require 'rumale/linear_model/elastic_net'
|
33
|
+
require 'rumale/linear_model/nnls'
|
33
34
|
require 'rumale/kernel_machine/kernel_svc'
|
34
35
|
require 'rumale/kernel_machine/kernel_pca'
|
35
36
|
require 'rumale/kernel_machine/kernel_fda'
|
@@ -11,13 +11,15 @@ module Rumale
|
|
11
11
|
|
12
12
|
private
|
13
13
|
|
14
|
-
def enable_linalg?
|
14
|
+
def enable_linalg?(warning: true)
|
15
15
|
if defined?(Numo::Linalg).nil?
|
16
|
-
warn('If you want to use features that depend on Numo::Linalg, you should install and load Numo::Linalg in advance.')
|
16
|
+
warn('If you want to use features that depend on Numo::Linalg, you should install and load Numo::Linalg in advance.') if warning
|
17
17
|
return false
|
18
18
|
end
|
19
19
|
if Numo::Linalg::VERSION < '0.1.4'
|
20
|
-
|
20
|
+
if warning
|
21
|
+
warn('The loaded Numo::Linalg does not implement the methods required by Rumale. Please load Numo::Linalg version 0.1.4 or later.')
|
22
|
+
end
|
21
23
|
return false
|
22
24
|
end
|
23
25
|
true
|
@@ -81,7 +81,7 @@ module Rumale
|
|
81
81
|
# Fit the model with given training data.
|
82
82
|
#
|
83
83
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
84
|
-
# @param y [Numo::
|
84
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
85
85
|
# @return [ElasticNet] The learned regressor itself.
|
86
86
|
def fit(x, y)
|
87
87
|
x = check_convert_sample_array(x)
|
@@ -77,7 +77,7 @@ module Rumale
|
|
77
77
|
# Fit the model with given training data.
|
78
78
|
#
|
79
79
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
80
|
-
# @param y [Numo::
|
80
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
81
81
|
# @return [Lasso] The learned regressor itself.
|
82
82
|
def fit(x, y)
|
83
83
|
x = check_convert_sample_array(x)
|
@@ -6,7 +6,8 @@ require 'rumale/base/regressor'
|
|
6
6
|
module Rumale
|
7
7
|
module LinearModel
|
8
8
|
# LinearRegression is a class that implements ordinary least square linear regression
|
9
|
-
# with stochastic gradient descent (SGD) optimization
|
9
|
+
# with stochastic gradient descent (SGD) optimization,
|
10
|
+
# singular value decomposition (SVD), or L-BFGS optimization.
|
10
11
|
#
|
11
12
|
# @example
|
12
13
|
# estimator =
|
@@ -41,31 +42,32 @@ module Rumale
|
|
41
42
|
#
|
42
43
|
# @param learning_rate [Float] The initial value of learning rate.
|
43
44
|
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
44
|
-
# If solver
|
45
|
+
# If solver is not 'sgd', this parameter is ignored.
|
45
46
|
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
46
47
|
# If nil is given, the decay sets to 'learning_rate'.
|
47
|
-
# If solver
|
48
|
+
# If solver is not 'sgd', this parameter is ignored.
|
48
49
|
# @param momentum [Float] The momentum factor.
|
49
|
-
# If solver
|
50
|
+
# If solver is not 'sgd', this parameter is ignored.
|
50
51
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
51
52
|
# @param bias_scale [Float] The scale of the bias term.
|
52
53
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
53
54
|
# how many times the whole data is given to the training process.
|
54
|
-
# If solver
|
55
|
+
# If solver is 'svd', this parameter is ignored.
|
55
56
|
# @param batch_size [Integer] The size of the mini batches.
|
56
|
-
# If solver
|
57
|
+
# If solver is not 'sgd', this parameter is ignored.
|
57
58
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
58
|
-
# If solver
|
59
|
-
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd' or '
|
59
|
+
# If solver is 'svd', this parameter is ignored.
|
60
|
+
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd', 'svd' or 'lbfgs').
|
60
61
|
# 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'sgd' solver.
|
61
62
|
# 'sgd' uses the stochastic gradient descent optimization.
|
62
63
|
# 'svd' performs singular value decomposition of samples.
|
64
|
+
# 'lbfgs' uses the L-BFGS method for optimization.
|
63
65
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
64
66
|
# If nil is given, the method does not execute in parallel.
|
65
67
|
# If zero or less is given, it becomes equal to the number of processors.
|
66
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
68
|
+
# This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'.
|
67
69
|
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
68
|
-
# If solver
|
70
|
+
# If solver is 'svd', this parameter is ignored.
|
69
71
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
70
72
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
71
73
|
fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4,
|
@@ -80,9 +82,9 @@ module Rumale
|
|
80
82
|
super()
|
81
83
|
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
82
84
|
@params[:solver] = if solver == 'auto'
|
83
|
-
|
85
|
+
enable_linalg?(warning: false) ? 'svd' : 'sgd'
|
84
86
|
else
|
85
|
-
solver
|
87
|
+
solver.match?(/^svd$|^sgd$|^lbfgs$/) ? solver : 'sgd'
|
86
88
|
end
|
87
89
|
@params[:decay] ||= @params[:learning_rate]
|
88
90
|
@params[:random_seed] ||= srand
|
@@ -95,15 +97,17 @@ module Rumale
|
|
95
97
|
# Fit the model with given training data.
|
96
98
|
#
|
97
99
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
98
|
-
# @param y [Numo::
|
100
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
99
101
|
# @return [LinearRegression] The learned regressor itself.
|
100
102
|
def fit(x, y)
|
101
103
|
x = check_convert_sample_array(x)
|
102
104
|
y = check_convert_tvalue_array(y)
|
103
105
|
check_sample_tvalue_size(x, y)
|
104
106
|
|
105
|
-
if @params[:solver] == 'svd' && enable_linalg?
|
107
|
+
if @params[:solver] == 'svd' && enable_linalg?(warning: false)
|
106
108
|
fit_svd(x, y)
|
109
|
+
elsif @params[:solver] == 'lbfgs'
|
110
|
+
fit_lbfgs(x, y)
|
107
111
|
else
|
108
112
|
fit_sgd(x, y)
|
109
113
|
end
|
@@ -124,24 +128,46 @@ module Rumale
|
|
124
128
|
|
125
129
|
def fit_svd(x, y)
|
126
130
|
x = expand_feature(x) if fit_bias?
|
127
|
-
|
128
131
|
w = Numo::Linalg.pinv(x, driver: 'svd').dot(y)
|
132
|
+
@weight_vec, @bias_term = single_target?(y) ? split_weight(w) : split_weight_mult(w)
|
133
|
+
end
|
129
134
|
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
135
|
+
def fit_lbfgs(x, y)
|
136
|
+
fnc = proc do |w, x, y| # rubocop:disable Lint/ShadowingOuterLocalVariable
|
137
|
+
n_samples, n_features = x.shape
|
138
|
+
w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
|
139
|
+
z = x.dot(w.transpose)
|
140
|
+
d = z - y
|
141
|
+
loss = (d**2).sum.fdiv(n_samples)
|
142
|
+
gradient = 2.fdiv(n_samples) * d.transpose.dot(x)
|
143
|
+
[loss, gradient.flatten.dup]
|
137
144
|
end
|
138
|
-
end
|
139
145
|
|
140
|
-
|
141
|
-
|
146
|
+
x = expand_feature(x) if fit_bias?
|
147
|
+
|
142
148
|
n_features = x.shape[1]
|
149
|
+
n_outputs = single_target?(y) ? 1 : y.shape[1]
|
150
|
+
|
151
|
+
res = Lbfgsb.minimize(
|
152
|
+
fnc: fnc, jcb: true, x_init: init_weight(n_features, n_outputs), args: [x, y],
|
153
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
154
|
+
verbose: @params[:verbose] ? 1 : -1
|
155
|
+
)
|
156
|
+
|
157
|
+
@weight_vec, @bias_term =
|
158
|
+
if single_target?(y)
|
159
|
+
split_weight(res[:x])
|
160
|
+
else
|
161
|
+
split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose)
|
162
|
+
end
|
163
|
+
end
|
143
164
|
|
144
|
-
|
165
|
+
def fit_sgd(x, y)
|
166
|
+
if single_target?(y)
|
167
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
168
|
+
else
|
169
|
+
n_outputs = y.shape[1]
|
170
|
+
n_features = x.shape[1]
|
145
171
|
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
146
172
|
@bias_term = Numo::DFloat.zeros(n_outputs)
|
147
173
|
if enable_parallel?
|
@@ -150,20 +176,23 @@ module Rumale
|
|
150
176
|
else
|
151
177
|
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
152
178
|
end
|
153
|
-
else
|
154
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
155
179
|
end
|
156
180
|
end
|
157
181
|
|
158
|
-
def
|
159
|
-
|
182
|
+
def single_target?(y)
|
183
|
+
y.ndim == 1
|
160
184
|
end
|
161
185
|
|
162
|
-
def
|
163
|
-
|
164
|
-
|
186
|
+
def init_weight(n_features, n_outputs)
|
187
|
+
Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
|
188
|
+
end
|
165
189
|
|
166
|
-
|
190
|
+
def split_weight_mult(w)
|
191
|
+
if fit_bias?
|
192
|
+
[w[0...-1, true].dup, w[-1, true].dup]
|
193
|
+
else
|
194
|
+
[w.dup, Numo::DFloat.zeros(w.shape[1])]
|
195
|
+
end
|
167
196
|
end
|
168
197
|
end
|
169
198
|
end
|
@@ -0,0 +1,137 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'lbfgsb'
|
4
|
+
|
5
|
+
require 'rumale/base/base_estimator'
|
6
|
+
require 'rumale/base/regressor'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module LinearModel
|
10
|
+
# NNLS is a class that implements non-negative least squares regression.
|
11
|
+
# NNLS solves least squares problem under non-negative constraints on the coefficient using L-BFGS-B method.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# estimator = Rumale::LinearModel::NNLS.new(reg_param: 0.01, random_seed: 1)
|
15
|
+
# estimator.fit(training_samples, traininig_values)
|
16
|
+
# results = estimator.predict(testing_samples)
|
17
|
+
#
|
18
|
+
class NNLS
|
19
|
+
include Base::BaseEstimator
|
20
|
+
include Base::Regressor
|
21
|
+
|
22
|
+
# Return the weight vector.
|
23
|
+
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
24
|
+
attr_reader :weight_vec
|
25
|
+
|
26
|
+
# Return the bias term (a.k.a. intercept).
|
27
|
+
# @return [Numo::DFloat] (shape: [n_outputs])
|
28
|
+
attr_reader :bias_term
|
29
|
+
|
30
|
+
# Returns the number of iterations when converged.
|
31
|
+
# @return [Integer]
|
32
|
+
attr_reader :n_iter
|
33
|
+
|
34
|
+
# Return the random generator for initializing weight.
|
35
|
+
# @return [Random]
|
36
|
+
attr_reader :rng
|
37
|
+
|
38
|
+
# Create a new regressor with non-negative least squares method.
|
39
|
+
#
|
40
|
+
# @param reg_param [Float] The regularization parameter for L2 regularization term.
|
41
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
42
|
+
# @param bias_scale [Float] The scale of the bias term.
|
43
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
44
|
+
# how many times the whole data is given to the training process.
|
45
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
46
|
+
# If solver = 'svd', this parameter is ignored.
|
47
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
48
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
49
|
+
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
50
|
+
max_iter: 1000, tol: 1e-4, verbose: false, random_seed: nil)
|
51
|
+
check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, tol: tol)
|
52
|
+
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
53
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
54
|
+
check_params_positive(reg_param: reg_param, max_iter: max_iter)
|
55
|
+
@params = method(:initialize).parameters.each_with_object({}) { |(_, prm), obj| obj[prm] = binding.local_variable_get(prm) }
|
56
|
+
@params[:random_seed] ||= srand
|
57
|
+
@n_iter = nil
|
58
|
+
@weight_vec = nil
|
59
|
+
@bias_term = nil
|
60
|
+
@rng = Random.new(@params[:random_seed])
|
61
|
+
end
|
62
|
+
|
63
|
+
# Fit the model with given training data.
|
64
|
+
#
|
65
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
66
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
67
|
+
# @return [NonneagtiveLeastSquare] The learned regressor itself.
|
68
|
+
def fit(x, y)
|
69
|
+
x = check_convert_sample_array(x)
|
70
|
+
y = check_convert_tvalue_array(y)
|
71
|
+
check_sample_tvalue_size(x, y)
|
72
|
+
|
73
|
+
x = expand_feature(x) if fit_bias?
|
74
|
+
|
75
|
+
n_features = x.shape[1]
|
76
|
+
n_outputs = single_target?(y) ? 1 : y.shape[1]
|
77
|
+
|
78
|
+
w_init = Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
|
79
|
+
w_init[w_init.lt(0)] = 0
|
80
|
+
bounds = Numo::DFloat.zeros(n_outputs * n_features, 2)
|
81
|
+
bounds.shape[0].times { |n| bounds[n, 1] = Float::INFINITY }
|
82
|
+
|
83
|
+
res = Lbfgsb.minimize(
|
84
|
+
fnc: method(:nnls_fnc), jcb: true, x_init: w_init, args: [x, y, @params[:reg_param]], bounds: bounds,
|
85
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1
|
86
|
+
)
|
87
|
+
|
88
|
+
@n_iter = res[:n_iter]
|
89
|
+
w = single_target?(y) ? res[:x] : res[:x].reshape(n_outputs, n_features).transpose
|
90
|
+
|
91
|
+
if fit_bias?
|
92
|
+
@weight_vec = single_target?(y) ? w[0...-1].dup : w[0...-1, true].dup
|
93
|
+
@bias_term = single_target?(y) ? w[-1] : w[-1, true].dup
|
94
|
+
else
|
95
|
+
@weight_vec = w.dup
|
96
|
+
@bias_term = single_target?(y) ? 0 : Numo::DFloat.zeros(y.shape[1])
|
97
|
+
end
|
98
|
+
|
99
|
+
self
|
100
|
+
end
|
101
|
+
|
102
|
+
# Predict values for samples.
|
103
|
+
#
|
104
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
105
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
106
|
+
def predict(x)
|
107
|
+
x = check_convert_sample_array(x)
|
108
|
+
x.dot(@weight_vec.transpose) + @bias_term
|
109
|
+
end
|
110
|
+
|
111
|
+
private
|
112
|
+
|
113
|
+
def nnls_fnc(w, x, y, alpha)
|
114
|
+
n_samples, n_features = x.shape
|
115
|
+
w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
|
116
|
+
z = x.dot(w.transpose)
|
117
|
+
d = z - y
|
118
|
+
loss = (d**2).sum.fdiv(n_samples) + alpha * (w * w).sum
|
119
|
+
gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * alpha * w
|
120
|
+
[loss, gradient.flatten.dup]
|
121
|
+
end
|
122
|
+
|
123
|
+
def expand_feature(x)
|
124
|
+
n_samples = x.shape[0]
|
125
|
+
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
126
|
+
end
|
127
|
+
|
128
|
+
def fit_bias?
|
129
|
+
@params[:fit_bias] == true
|
130
|
+
end
|
131
|
+
|
132
|
+
def single_target?(y)
|
133
|
+
y.ndim == 1
|
134
|
+
end
|
135
|
+
end
|
136
|
+
end
|
137
|
+
end
|
@@ -1,12 +1,15 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
+
require 'lbfgsb'
|
4
|
+
|
3
5
|
require 'rumale/linear_model/base_sgd'
|
4
6
|
require 'rumale/base/regressor'
|
5
7
|
|
6
8
|
module Rumale
|
7
9
|
module LinearModel
|
8
10
|
# Ridge is a class that implements Ridge Regression
|
9
|
-
# with stochastic gradient descent (SGD) optimization
|
11
|
+
# with stochastic gradient descent (SGD) optimization,
|
12
|
+
# singular value decomposition (SVD), or L-BFGS optimization.
|
10
13
|
#
|
11
14
|
# @example
|
12
15
|
# estimator =
|
@@ -41,32 +44,33 @@ module Rumale
|
|
41
44
|
#
|
42
45
|
# @param learning_rate [Float] The initial value of learning rate.
|
43
46
|
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
44
|
-
# If solver
|
47
|
+
# If solver is not 'sgd', this parameter is ignored.
|
45
48
|
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
46
49
|
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
47
|
-
# If solver
|
50
|
+
# If solver is not 'sgd', this parameter is ignored.
|
48
51
|
# @param momentum [Float] The momentum factor.
|
49
|
-
# If solver
|
52
|
+
# If solver is not 'sgd', this parameter is ignored.
|
50
53
|
# @param reg_param [Float] The regularization parameter.
|
51
54
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
52
55
|
# @param bias_scale [Float] The scale of the bias term.
|
53
56
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
54
57
|
# how many times the whole data is given to the training process.
|
55
|
-
# If solver
|
58
|
+
# If solver is 'svd', this parameter is ignored.
|
56
59
|
# @param batch_size [Integer] The size of the mini batches.
|
57
|
-
# If solver
|
60
|
+
# If solver is not 'sgd', this parameter is ignored.
|
58
61
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
59
|
-
# If solver
|
60
|
-
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd' or '
|
62
|
+
# If solver is 'svd', this parameter is ignored.
|
63
|
+
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd', 'svd', or 'lbfgs').
|
61
64
|
# 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'sgd' solver.
|
62
65
|
# 'sgd' uses the stochastic gradient descent optimization.
|
63
66
|
# 'svd' performs singular value decomposition of samples.
|
67
|
+
# 'lbfgs' uses the L-BFGS method for optimization.
|
64
68
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
65
69
|
# If nil is given, the method does not execute in parallel.
|
66
70
|
# If zero or less is given, it becomes equal to the number of processors.
|
67
|
-
# This parameter is ignored if the Parallel gem is not loaded or
|
71
|
+
# This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'.
|
68
72
|
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
69
|
-
# If solver
|
73
|
+
# If solver is 'svd', this parameter is ignored.
|
70
74
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
71
75
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
72
76
|
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
@@ -83,9 +87,9 @@ module Rumale
|
|
83
87
|
super()
|
84
88
|
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
85
89
|
@params[:solver] = if solver == 'auto'
|
86
|
-
|
90
|
+
enable_linalg?(warning: false) ? 'svd' : 'sgd'
|
87
91
|
else
|
88
|
-
solver
|
92
|
+
solver.match?(/^svd$|^sgd$|^lbfgs$/) ? solver : 'sgd'
|
89
93
|
end
|
90
94
|
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
91
95
|
@params[:random_seed] ||= srand
|
@@ -99,15 +103,17 @@ module Rumale
|
|
99
103
|
# Fit the model with given training data.
|
100
104
|
#
|
101
105
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
102
|
-
# @param y [Numo::
|
106
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
103
107
|
# @return [Ridge] The learned regressor itself.
|
104
108
|
def fit(x, y)
|
105
109
|
x = check_convert_sample_array(x)
|
106
110
|
y = check_convert_tvalue_array(y)
|
107
111
|
check_sample_tvalue_size(x, y)
|
108
112
|
|
109
|
-
if @params[:solver] == 'svd' && enable_linalg?
|
113
|
+
if @params[:solver] == 'svd' && enable_linalg?(warning: false)
|
110
114
|
fit_svd(x, y)
|
115
|
+
elsif @params[:solver] == 'lbfgs'
|
116
|
+
fit_lbfgs(x, y)
|
111
117
|
else
|
112
118
|
fit_sgd(x, y)
|
113
119
|
end
|
@@ -127,27 +133,51 @@ module Rumale
|
|
127
133
|
private
|
128
134
|
|
129
135
|
def fit_svd(x, y)
|
130
|
-
|
136
|
+
x = expand_feature(x) if fit_bias?
|
131
137
|
|
132
|
-
s, u, vt = Numo::Linalg.svd(
|
138
|
+
s, u, vt = Numo::Linalg.svd(x, driver: 'sdd', job: 'S')
|
133
139
|
d = (s / (s**2 + @params[:reg_param])).diag
|
134
140
|
w = vt.transpose.dot(d).dot(u.transpose).dot(y)
|
135
141
|
|
136
|
-
|
137
|
-
if @params[:fit_bias]
|
138
|
-
@weight_vec = is_single_target_vals ? w[0...-1].dup : w[0...-1, true].dup
|
139
|
-
@bias_term = is_single_target_vals ? w[-1] : w[-1, true].dup
|
140
|
-
else
|
141
|
-
@weight_vec = w.dup
|
142
|
-
@bias_term = is_single_target_vals ? 0 : Numo::DFloat.zeros(y.shape[1])
|
143
|
-
end
|
142
|
+
@weight_vec, @bias_term = single_target?(y) ? split_weight(w) : split_weight_mult(w)
|
144
143
|
end
|
145
144
|
|
146
|
-
def
|
147
|
-
|
145
|
+
def fit_lbfgs(x, y)
|
146
|
+
fnc = proc do |w, x, y, a| # rubocop:disable Lint/ShadowingOuterLocalVariable
|
147
|
+
n_samples, n_features = x.shape
|
148
|
+
w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
|
149
|
+
z = x.dot(w.transpose)
|
150
|
+
d = z - y
|
151
|
+
loss = (d**2).sum.fdiv(n_samples) + a * (w * w).sum
|
152
|
+
gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * a * w
|
153
|
+
[loss, gradient.flatten.dup]
|
154
|
+
end
|
155
|
+
|
156
|
+
x = expand_feature(x) if fit_bias?
|
157
|
+
|
148
158
|
n_features = x.shape[1]
|
159
|
+
n_outputs = single_target?(y) ? 1 : y.shape[1]
|
160
|
+
|
161
|
+
res = Lbfgsb.minimize(
|
162
|
+
fnc: fnc, jcb: true, x_init: init_weight(n_features, n_outputs), args: [x, y, @params[:reg_param]],
|
163
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
164
|
+
verbose: @params[:verbose] ? 1 : -1
|
165
|
+
)
|
166
|
+
|
167
|
+
@weight_vec, @bias_term =
|
168
|
+
if single_target?(y)
|
169
|
+
split_weight(res[:x])
|
170
|
+
else
|
171
|
+
split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose)
|
172
|
+
end
|
173
|
+
end
|
149
174
|
|
150
|
-
|
175
|
+
def fit_sgd(x, y)
|
176
|
+
if single_target?(y)
|
177
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
178
|
+
else
|
179
|
+
n_outputs = y.shape[1]
|
180
|
+
n_features = x.shape[1]
|
151
181
|
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
152
182
|
@bias_term = Numo::DFloat.zeros(n_outputs)
|
153
183
|
if enable_parallel?
|
@@ -156,16 +186,23 @@ module Rumale
|
|
156
186
|
else
|
157
187
|
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
158
188
|
end
|
159
|
-
else
|
160
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
161
189
|
end
|
162
190
|
end
|
163
191
|
|
164
|
-
def
|
165
|
-
|
166
|
-
|
192
|
+
def single_target?(y)
|
193
|
+
y.ndim == 1
|
194
|
+
end
|
195
|
+
|
196
|
+
def init_weight(n_features, n_outputs)
|
197
|
+
Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
|
198
|
+
end
|
167
199
|
|
168
|
-
|
200
|
+
def split_weight_mult(w)
|
201
|
+
if fit_bias?
|
202
|
+
[w[0...-1, true].dup, w[-1, true].dup]
|
203
|
+
else
|
204
|
+
[w.dup, Numo::DFloat.zeros(w.shape[1])]
|
205
|
+
end
|
169
206
|
end
|
170
207
|
end
|
171
208
|
end
|
data/lib/rumale/validation.rb
CHANGED
@@ -27,6 +27,7 @@ module Rumale
|
|
27
27
|
y
|
28
28
|
end
|
29
29
|
|
30
|
+
# @deprecated Use check_convert_sample_array instead of this method.
|
30
31
|
# @!visibility private
|
31
32
|
def check_sample_array(x)
|
32
33
|
raise TypeError, 'Expect class of sample matrix to be Numo::DFloat' unless x.is_a?(Numo::DFloat)
|
@@ -35,6 +36,7 @@ module Rumale
|
|
35
36
|
nil
|
36
37
|
end
|
37
38
|
|
39
|
+
# @deprecated Use check_convert_label_array instead of this method.
|
38
40
|
# @!visibility private
|
39
41
|
def check_label_array(y)
|
40
42
|
raise TypeError, 'Expect class of label vector to be Numo::Int32' unless y.is_a?(Numo::Int32)
|
@@ -43,6 +45,7 @@ module Rumale
|
|
43
45
|
nil
|
44
46
|
end
|
45
47
|
|
48
|
+
# @deprecated Use check_convert_tvalue_array instead of this method.
|
46
49
|
# @!visibility private
|
47
50
|
def check_tvalue_array(y)
|
48
51
|
raise TypeError, 'Expect class of target value vector to be Numo::DFloat' unless y.is_a?(Numo::DFloat)
|
@@ -64,49 +67,58 @@ module Rumale
|
|
64
67
|
nil
|
65
68
|
end
|
66
69
|
|
70
|
+
# TODO: Better to replace with RBS in the future.
|
67
71
|
# @!visibility private
|
68
72
|
def check_params_type(type, params = {})
|
69
73
|
params.each { |k, v| raise TypeError, "Expect class of #{k} to be #{type}" unless v.is_a?(type) }
|
70
74
|
nil
|
71
75
|
end
|
72
76
|
|
77
|
+
# TODO: Better to replace with RBS in the future.
|
73
78
|
# @!visibility private
|
74
79
|
def check_params_type_or_nil(type, params = {})
|
75
80
|
params.each { |k, v| raise TypeError, "Expect class of #{k} to be #{type} or nil" unless v.is_a?(type) || v.is_a?(NilClass) }
|
76
81
|
nil
|
77
82
|
end
|
78
83
|
|
84
|
+
# TODO: Better to replace with RBS in the future.
|
79
85
|
# @!visibility private
|
80
86
|
def check_params_numeric(params = {})
|
81
87
|
check_params_type(Numeric, params)
|
82
88
|
end
|
83
89
|
|
90
|
+
# TODO: Better to replace with RBS in the future.
|
84
91
|
# @!visibility private
|
85
92
|
def check_params_numeric_or_nil(params = {})
|
86
93
|
check_params_type_or_nil(Numeric, params)
|
87
94
|
end
|
88
95
|
|
96
|
+
# @deprecated Use check_params_numeric instead of this method.
|
89
97
|
# @!visibility private
|
90
98
|
def check_params_float(params = {})
|
91
99
|
check_params_type(Float, params)
|
92
100
|
end
|
93
101
|
|
102
|
+
# @deprecated Use check_params_numeric instead of this method.
|
94
103
|
# @!visibility private
|
95
104
|
def check_params_integer(params = {})
|
96
105
|
check_params_type(Integer, params)
|
97
106
|
end
|
98
107
|
|
108
|
+
# TODO: Better to replace with RBS in the future.
|
99
109
|
# @!visibility private
|
100
110
|
def check_params_string(params = {})
|
101
111
|
check_params_type(String, params)
|
102
112
|
end
|
103
113
|
|
114
|
+
# TODO: Better to replace with RBS in the future.
|
104
115
|
# @!visibility private
|
105
116
|
def check_params_boolean(params = {})
|
106
117
|
params.each { |k, v| raise TypeError, "Expect class of #{k} to be Boolean" unless v.is_a?(FalseClass) || v.is_a?(TrueClass) }
|
107
118
|
nil
|
108
119
|
end
|
109
120
|
|
121
|
+
# TODO: Better to replace with RBS in the future.
|
110
122
|
# @!visibility private
|
111
123
|
def check_params_positive(params = {})
|
112
124
|
params.compact.each { |k, v| raise ArgumentError, "Expect #{k} to be positive value" if v.negative? }
|
data/lib/rumale/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.22.
|
4
|
+
version: 0.22.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-01-
|
11
|
+
date: 2021-01-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -57,7 +57,9 @@ extensions:
|
|
57
57
|
- ext/rumale/extconf.rb
|
58
58
|
extra_rdoc_files: []
|
59
59
|
files:
|
60
|
+
- ".coveralls.yml"
|
60
61
|
- ".github/workflows/build.yml"
|
62
|
+
- ".github/workflows/coverage.yml"
|
61
63
|
- ".gitignore"
|
62
64
|
- ".rspec"
|
63
65
|
- ".rubocop.yml"
|
@@ -141,6 +143,7 @@ files:
|
|
141
143
|
- lib/rumale/linear_model/lasso.rb
|
142
144
|
- lib/rumale/linear_model/linear_regression.rb
|
143
145
|
- lib/rumale/linear_model/logistic_regression.rb
|
146
|
+
- lib/rumale/linear_model/nnls.rb
|
144
147
|
- lib/rumale/linear_model/ridge.rb
|
145
148
|
- lib/rumale/linear_model/svc.rb
|
146
149
|
- lib/rumale/linear_model/svr.rb
|
@@ -211,7 +214,7 @@ metadata:
|
|
211
214
|
source_code_uri: https://github.com/yoshoku/rumale
|
212
215
|
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
213
216
|
bug_tracker_uri: https://github.com/yoshoku/rumale/issues
|
214
|
-
post_install_message:
|
217
|
+
post_install_message:
|
215
218
|
rdoc_options: []
|
216
219
|
require_paths:
|
217
220
|
- lib
|
@@ -226,8 +229,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
226
229
|
- !ruby/object:Gem::Version
|
227
230
|
version: '0'
|
228
231
|
requirements: []
|
229
|
-
rubygems_version: 3.
|
230
|
-
signing_key:
|
232
|
+
rubygems_version: 3.2.3
|
233
|
+
signing_key:
|
231
234
|
specification_version: 4
|
232
235
|
summary: Rumale is a machine learning library in Ruby. Rumale provides machine learning
|
233
236
|
algorithms with interfaces similar to Scikit-Learn in Python.
|