rumale 0.20.3 → 0.22.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,137 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'lbfgsb'
4
+
5
+ require 'rumale/base/base_estimator'
6
+ require 'rumale/base/regressor'
7
+
8
+ module Rumale
9
+ module LinearModel
10
+ # NNLS is a class that implements non-negative least squares regression.
11
+ # NNLS solves least squares problem under non-negative constraints on the coefficient using L-BFGS-B method.
12
+ #
13
+ # @example
14
+ # estimator = Rumale::LinearModel::NNLS.new(reg_param: 0.01, random_seed: 1)
15
+ # estimator.fit(training_samples, traininig_values)
16
+ # results = estimator.predict(testing_samples)
17
+ #
18
+ class NNLS
19
+ include Base::BaseEstimator
20
+ include Base::Regressor
21
+
22
+ # Return the weight vector.
23
+ # @return [Numo::DFloat] (shape: [n_outputs, n_features])
24
+ attr_reader :weight_vec
25
+
26
+ # Return the bias term (a.k.a. intercept).
27
+ # @return [Numo::DFloat] (shape: [n_outputs])
28
+ attr_reader :bias_term
29
+
30
+ # Returns the number of iterations when converged.
31
+ # @return [Integer]
32
+ attr_reader :n_iter
33
+
34
+ # Return the random generator for initializing weight.
35
+ # @return [Random]
36
+ attr_reader :rng
37
+
38
+ # Create a new regressor with non-negative least squares method.
39
+ #
40
+ # @param reg_param [Float] The regularization parameter for L2 regularization term.
41
+ # @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
42
+ # @param bias_scale [Float] The scale of the bias term.
43
+ # @param max_iter [Integer] The maximum number of epochs that indicates
44
+ # how many times the whole data is given to the training process.
45
+ # @param tol [Float] The tolerance of loss for terminating optimization.
46
+ # If solver = 'svd', this parameter is ignored.
47
+ # @param verbose [Boolean] The flag indicating whether to output loss during iteration.
48
+ # @param random_seed [Integer] The seed value using to initialize the random generator.
49
+ def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
50
+ max_iter: 1000, tol: 1e-4, verbose: false, random_seed: nil)
51
+ check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, tol: tol)
52
+ check_params_boolean(fit_bias: fit_bias, verbose: verbose)
53
+ check_params_numeric_or_nil(random_seed: random_seed)
54
+ check_params_positive(reg_param: reg_param, max_iter: max_iter)
55
+ @params = method(:initialize).parameters.each_with_object({}) { |(_, prm), obj| obj[prm] = binding.local_variable_get(prm) }
56
+ @params[:random_seed] ||= srand
57
+ @n_iter = nil
58
+ @weight_vec = nil
59
+ @bias_term = nil
60
+ @rng = Random.new(@params[:random_seed])
61
+ end
62
+
63
+ # Fit the model with given training data.
64
+ #
65
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
66
+ # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
67
+ # @return [NonneagtiveLeastSquare] The learned regressor itself.
68
+ def fit(x, y)
69
+ x = check_convert_sample_array(x)
70
+ y = check_convert_tvalue_array(y)
71
+ check_sample_tvalue_size(x, y)
72
+
73
+ x = expand_feature(x) if fit_bias?
74
+
75
+ n_features = x.shape[1]
76
+ n_outputs = single_target?(y) ? 1 : y.shape[1]
77
+
78
+ w_init = Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
79
+ w_init[w_init.lt(0)] = 0
80
+ bounds = Numo::DFloat.zeros(n_outputs * n_features, 2)
81
+ bounds.shape[0].times { |n| bounds[n, 1] = Float::INFINITY }
82
+
83
+ res = Lbfgsb.minimize(
84
+ fnc: method(:nnls_fnc), jcb: true, x_init: w_init, args: [x, y, @params[:reg_param]], bounds: bounds,
85
+ maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1
86
+ )
87
+
88
+ @n_iter = res[:n_iter]
89
+ w = single_target?(y) ? res[:x] : res[:x].reshape(n_outputs, n_features).transpose
90
+
91
+ if fit_bias?
92
+ @weight_vec = single_target?(y) ? w[0...-1].dup : w[0...-1, true].dup
93
+ @bias_term = single_target?(y) ? w[-1] : w[-1, true].dup
94
+ else
95
+ @weight_vec = w.dup
96
+ @bias_term = single_target?(y) ? 0 : Numo::DFloat.zeros(y.shape[1])
97
+ end
98
+
99
+ self
100
+ end
101
+
102
+ # Predict values for samples.
103
+ #
104
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
105
+ # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
106
+ def predict(x)
107
+ x = check_convert_sample_array(x)
108
+ x.dot(@weight_vec.transpose) + @bias_term
109
+ end
110
+
111
+ private
112
+
113
+ def nnls_fnc(w, x, y, alpha)
114
+ n_samples, n_features = x.shape
115
+ w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
116
+ z = x.dot(w.transpose)
117
+ d = z - y
118
+ loss = (d**2).sum.fdiv(n_samples) + alpha * (w * w).sum
119
+ gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * alpha * w
120
+ [loss, gradient.flatten.dup]
121
+ end
122
+
123
+ def expand_feature(x)
124
+ n_samples = x.shape[0]
125
+ Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
126
+ end
127
+
128
+ def fit_bias?
129
+ @params[:fit_bias] == true
130
+ end
131
+
132
+ def single_target?(y)
133
+ y.ndim == 1
134
+ end
135
+ end
136
+ end
137
+ end
@@ -1,16 +1,19 @@
1
1
  # frozen_string_literal: true
2
2
 
3
+ require 'lbfgsb'
4
+
3
5
  require 'rumale/linear_model/base_sgd'
4
6
  require 'rumale/base/regressor'
5
7
 
6
8
  module Rumale
7
9
  module LinearModel
8
10
  # Ridge is a class that implements Ridge Regression
9
- # with stochastic gradient descent (SGD) optimization or singular value decomposition (SVD).
11
+ # with stochastic gradient descent (SGD) optimization,
12
+ # singular value decomposition (SVD), or L-BFGS optimization.
10
13
  #
11
14
  # @example
12
15
  # estimator =
13
- # Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 500, batch_size: 20, random_seed: 1)
16
+ # Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
14
17
  # estimator.fit(training_samples, traininig_values)
15
18
  # results = estimator.predict(testing_samples)
16
19
  #
@@ -41,36 +44,37 @@ module Rumale
41
44
  #
42
45
  # @param learning_rate [Float] The initial value of learning rate.
43
46
  # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
44
- # If solver = 'svd', this parameter is ignored.
47
+ # If solver is not 'sgd', this parameter is ignored.
45
48
  # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
46
49
  # If nil is given, the decay sets to 'reg_param * learning_rate'.
47
- # If solver = 'svd', this parameter is ignored.
50
+ # If solver is not 'sgd', this parameter is ignored.
48
51
  # @param momentum [Float] The momentum factor.
49
- # If solver = 'svd', this parameter is ignored.
52
+ # If solver is not 'sgd', this parameter is ignored.
50
53
  # @param reg_param [Float] The regularization parameter.
51
54
  # @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
52
55
  # @param bias_scale [Float] The scale of the bias term.
53
56
  # @param max_iter [Integer] The maximum number of epochs that indicates
54
57
  # how many times the whole data is given to the training process.
55
- # If solver = 'svd', this parameter is ignored.
58
+ # If solver is 'svd', this parameter is ignored.
56
59
  # @param batch_size [Integer] The size of the mini batches.
57
- # If solver = 'svd', this parameter is ignored.
60
+ # If solver is not 'sgd', this parameter is ignored.
58
61
  # @param tol [Float] The tolerance of loss for terminating optimization.
59
- # If solver = 'svd', this parameter is ignored.
60
- # @param solver [String] The algorithm to calculate weights. ('auto', 'sgd' or 'svd').
62
+ # If solver is 'svd', this parameter is ignored.
63
+ # @param solver [String] The algorithm to calculate weights. ('auto', 'sgd', 'svd', or 'lbfgs').
61
64
  # 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'sgd' solver.
62
65
  # 'sgd' uses the stochastic gradient descent optimization.
63
66
  # 'svd' performs singular value decomposition of samples.
67
+ # 'lbfgs' uses the L-BFGS method for optimization.
64
68
  # @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
65
69
  # If nil is given, the method does not execute in parallel.
66
70
  # If zero or less is given, it becomes equal to the number of processors.
67
- # This parameter is ignored if the Parallel gem is not loaded or the solver is 'svd'.
71
+ # This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'.
68
72
  # @param verbose [Boolean] The flag indicating whether to output loss during iteration.
69
- # If solver = 'svd', this parameter is ignored.
73
+ # If solver is 'svd', this parameter is ignored.
70
74
  # @param random_seed [Integer] The seed value using to initialize the random generator.
71
75
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
72
76
  reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
73
- max_iter: 200, batch_size: 50, tol: 1e-4,
77
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
74
78
  solver: 'auto',
75
79
  n_jobs: nil, verbose: false, random_seed: nil)
76
80
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
@@ -83,9 +87,9 @@ module Rumale
83
87
  super()
84
88
  @params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
85
89
  @params[:solver] = if solver == 'auto'
86
- load_linalg? ? 'svd' : 'sgd'
90
+ enable_linalg?(warning: false) ? 'svd' : 'sgd'
87
91
  else
88
- solver != 'svd' ? 'sgd' : 'svd'
92
+ solver.match?(/^svd$|^sgd$|^lbfgs$/) ? solver : 'sgd'
89
93
  end
90
94
  @params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
91
95
  @params[:random_seed] ||= srand
@@ -99,15 +103,17 @@ module Rumale
99
103
  # Fit the model with given training data.
100
104
  #
101
105
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
102
- # @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
106
+ # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
103
107
  # @return [Ridge] The learned regressor itself.
104
108
  def fit(x, y)
105
109
  x = check_convert_sample_array(x)
106
110
  y = check_convert_tvalue_array(y)
107
111
  check_sample_tvalue_size(x, y)
108
112
 
109
- if @params[:solver] == 'svd' && enable_linalg?
113
+ if @params[:solver] == 'svd' && enable_linalg?(warning: false)
110
114
  fit_svd(x, y)
115
+ elsif @params[:solver] == 'lbfgs'
116
+ fit_lbfgs(x, y)
111
117
  else
112
118
  fit_sgd(x, y)
113
119
  end
@@ -127,27 +133,51 @@ module Rumale
127
133
  private
128
134
 
129
135
  def fit_svd(x, y)
130
- samples = @params[:fit_bias] ? expand_feature(x) : x
136
+ x = expand_feature(x) if fit_bias?
131
137
 
132
- s, u, vt = Numo::Linalg.svd(samples, driver: 'sdd', job: 'S')
138
+ s, u, vt = Numo::Linalg.svd(x, driver: 'sdd', job: 'S')
133
139
  d = (s / (s**2 + @params[:reg_param])).diag
134
140
  w = vt.transpose.dot(d).dot(u.transpose).dot(y)
135
141
 
136
- is_single_target_vals = y.shape[1].nil?
137
- if @params[:fit_bias]
138
- @weight_vec = is_single_target_vals ? w[0...-1].dup : w[0...-1, true].dup
139
- @bias_term = is_single_target_vals ? w[-1] : w[-1, true].dup
140
- else
141
- @weight_vec = w.dup
142
- @bias_term = is_single_target_vals ? 0 : Numo::DFloat.zeros(y.shape[1])
143
- end
142
+ @weight_vec, @bias_term = single_target?(y) ? split_weight(w) : split_weight_mult(w)
144
143
  end
145
144
 
146
- def fit_sgd(x, y)
147
- n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
145
+ def fit_lbfgs(x, y)
146
+ fnc = proc do |w, x, y, a| # rubocop:disable Lint/ShadowingOuterLocalVariable
147
+ n_samples, n_features = x.shape
148
+ w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
149
+ z = x.dot(w.transpose)
150
+ d = z - y
151
+ loss = (d**2).sum.fdiv(n_samples) + a * (w * w).sum
152
+ gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * a * w
153
+ [loss, gradient.flatten.dup]
154
+ end
155
+
156
+ x = expand_feature(x) if fit_bias?
157
+
148
158
  n_features = x.shape[1]
159
+ n_outputs = single_target?(y) ? 1 : y.shape[1]
160
+
161
+ res = Lbfgsb.minimize(
162
+ fnc: fnc, jcb: true, x_init: init_weight(n_features, n_outputs), args: [x, y, @params[:reg_param]],
163
+ maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
164
+ verbose: @params[:verbose] ? 1 : -1
165
+ )
166
+
167
+ @weight_vec, @bias_term =
168
+ if single_target?(y)
169
+ split_weight(res[:x])
170
+ else
171
+ split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose)
172
+ end
173
+ end
149
174
 
150
- if n_outputs > 1
175
+ def fit_sgd(x, y)
176
+ if single_target?(y)
177
+ @weight_vec, @bias_term = partial_fit(x, y)
178
+ else
179
+ n_outputs = y.shape[1]
180
+ n_features = x.shape[1]
151
181
  @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
152
182
  @bias_term = Numo::DFloat.zeros(n_outputs)
153
183
  if enable_parallel?
@@ -156,16 +186,23 @@ module Rumale
156
186
  else
157
187
  n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
158
188
  end
159
- else
160
- @weight_vec, @bias_term = partial_fit(x, y)
161
189
  end
162
190
  end
163
191
 
164
- def load_linalg?
165
- return false if defined?(Numo::Linalg).nil?
166
- return false if Numo::Linalg::VERSION < '0.1.4'
192
+ def single_target?(y)
193
+ y.ndim == 1
194
+ end
195
+
196
+ def init_weight(n_features, n_outputs)
197
+ Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
198
+ end
167
199
 
168
- true
200
+ def split_weight_mult(w)
201
+ if fit_bias?
202
+ [w[0...-1, true].dup, w[-1, true].dup]
203
+ else
204
+ [w.dup, Numo::DFloat.zeros(w.shape[1])]
205
+ end
169
206
  end
170
207
  end
171
208
  end
@@ -11,13 +11,14 @@ module Rumale
11
11
  # with stochastic gradient descent optimization.
12
12
  # For multiclass classification problem, it uses one-vs-the-rest strategy.
13
13
  #
14
- # Rumale::SVM provides linear support vector classifier based on LIBLINEAR.
15
- # If you prefer execution speed, you should use Rumale::SVM::LinearSVC.
16
- # https://github.com/yoshoku/rumale-svm
14
+ # @note
15
+ # Rumale::SVM provides linear support vector classifier based on LIBLINEAR.
16
+ # If you prefer execution speed, you should use Rumale::SVM::LinearSVC.
17
+ # https://github.com/yoshoku/rumale-svm
17
18
  #
18
19
  # @example
19
20
  # estimator =
20
- # Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 200, batch_size: 50, random_seed: 1)
21
+ # Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
21
22
  # estimator.fit(training_samples, traininig_labels)
22
23
  # results = estimator.predict(testing_samples)
23
24
  #
@@ -74,7 +75,7 @@ module Rumale
74
75
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
75
76
  penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
76
77
  fit_bias: true, bias_scale: 1.0,
77
- max_iter: 200, batch_size: 50, tol: 1e-4,
78
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
78
79
  probability: false,
79
80
  n_jobs: nil, verbose: false, random_seed: nil)
80
81
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
@@ -8,13 +8,14 @@ module Rumale
8
8
  # SVR is a class that implements Support Vector Regressor
9
9
  # with stochastic gradient descent optimization.
10
10
  #
11
- # Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM.
12
- # If you prefer execution speed, you should use Rumale::SVM::LinearSVR.
13
- # https://github.com/yoshoku/rumale-svm
11
+ # @note
12
+ # Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM.
13
+ # If you prefer execution speed, you should use Rumale::SVM::LinearSVR.
14
+ # https://github.com/yoshoku/rumale-svm
14
15
  #
15
16
  # @example
16
17
  # estimator =
17
- # Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 200, batch_size: 50, random_seed: 1)
18
+ # Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, random_seed: 1)
18
19
  # estimator.fit(training_samples, traininig_target_values)
19
20
  # results = estimator.predict(testing_samples)
20
21
  #
@@ -68,7 +69,7 @@ module Rumale
68
69
  penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
69
70
  fit_bias: true, bias_scale: 1.0,
70
71
  epsilon: 0.1,
71
- max_iter: 200, batch_size: 50, tol: 1e-4,
72
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
72
73
  n_jobs: nil, verbose: false, random_seed: nil)
73
74
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
74
75
  reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
@@ -0,0 +1,161 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/base_estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/decomposition/pca'
6
+ require 'rumale/pairwise_metric'
7
+ require 'rumale/utils'
8
+ require 'lbfgsb'
9
+
10
+ module Rumale
11
+ module MetricLearning
12
+ # MLKR is a class that implements Metric Learning for Kernel Regression.
13
+ #
14
+ # @example
15
+ # transformer = Rumale::MetricLearning::MLKR.new
16
+ # transformer.fit(training_samples, traininig_target_values)
17
+ # low_samples = transformer.transform(testing_samples)
18
+ #
19
+ # *Reference*
20
+ # - Weinberger, K. Q. and Tesauro, G., "Metric Learning for Kernel Regression," Proc. AISTATS'07, pp. 612--629, 2007.
21
+ class MLKR
22
+ include Base::BaseEstimator
23
+ include Base::Transformer
24
+
25
+ # Returns the metric components.
26
+ # @return [Numo::DFloat] (shape: [n_components, n_features])
27
+ attr_reader :components
28
+
29
+ # Return the number of iterations run for optimization
30
+ # @return [Integer]
31
+ attr_reader :n_iter
32
+
33
+ # Return the random generator.
34
+ # @return [Random]
35
+ attr_reader :rng
36
+
37
+ # Create a new transformer with MLKR.
38
+ #
39
+ # @param n_components [Integer] The number of components.
40
+ # @param init [String] The initialization method for components ('random' or 'pca').
41
+ # @param max_iter [Integer] The maximum number of iterations.
42
+ # @param tol [Float] The tolerance of termination criterion.
43
+ # This value is given as tol / Lbfgsb::DBL_EPSILON to the factr argument of Lbfgsb.minimize method.
44
+ # @param verbose [Boolean] The flag indicating whether to output loss during iteration.
45
+ # If true is given, 'iterate.dat' file is generated by lbfgsb.rb.
46
+ # @param random_seed [Integer] The seed value using to initialize the random generator.
47
+ def initialize(n_components: nil, init: 'random', max_iter: 100, tol: 1e-6, verbose: false, random_seed: nil)
48
+ check_params_numeric_or_nil(n_components: n_components, random_seed: random_seed)
49
+ check_params_numeric(max_iter: max_iter, tol: tol)
50
+ check_params_string(init: init)
51
+ check_params_boolean(verbose: verbose)
52
+ @params = {}
53
+ @params[:n_components] = n_components
54
+ @params[:init] = init
55
+ @params[:max_iter] = max_iter
56
+ @params[:tol] = tol
57
+ @params[:verbose] = verbose
58
+ @params[:random_seed] = random_seed
59
+ @params[:random_seed] ||= srand
60
+ @components = nil
61
+ @n_iter = nil
62
+ @rng = Random.new(@params[:random_seed])
63
+ end
64
+
65
+ # Fit the model with given training data.
66
+ #
67
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
68
+ # @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
69
+ # @return [MLKR] The learned classifier itself.
70
+ def fit(x, y)
71
+ x = check_convert_sample_array(x)
72
+ y = check_convert_tvalue_array(y)
73
+ check_sample_tvalue_size(x, y)
74
+ n_features = x.shape[1]
75
+ n_components = if @params[:n_components].nil?
76
+ n_features
77
+ else
78
+ [n_features, @params[:n_components]].min
79
+ end
80
+ @components, @n_iter = optimize_components(x, y, n_features, n_components)
81
+ @prototypes = x.dot(@components.transpose)
82
+ @values = y
83
+ self
84
+ end
85
+
86
+ # Fit the model with training data, and then transform them with the learned model.
87
+ #
88
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
89
+ # @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
90
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
91
+ def fit_transform(x, y)
92
+ x = check_convert_sample_array(x)
93
+ y = check_convert_tvalue_array(y)
94
+ check_sample_tvalue_size(x, y)
95
+ fit(x, y).transform(x)
96
+ end
97
+
98
+ # Transform the given data with the learned model.
99
+ #
100
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
101
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
102
+ def transform(x)
103
+ x = check_convert_sample_array(x)
104
+ x.dot(@components.transpose)
105
+ end
106
+
107
+ private
108
+
109
+ def init_components(x, n_features, n_components)
110
+ if @params[:init] == 'pca'
111
+ pca = Rumale::Decomposition::PCA.new(n_components: n_components)
112
+ pca.fit(x).components.flatten.dup
113
+ else
114
+ Rumale::Utils.rand_normal([n_features, n_components], @rng.dup).flatten.dup
115
+ end
116
+ end
117
+
118
+ def optimize_components(x, y, n_features, n_components)
119
+ # initialize components.
120
+ comp_init = init_components(x, n_features, n_components)
121
+ # initialize optimization results.
122
+ res = {}
123
+ res[:x] = comp_init
124
+ res[:n_iter] = 0
125
+ # perform optimization.
126
+ verbose = @params[:verbose] ? 1 : -1
127
+ res = Lbfgsb.minimize(
128
+ fnc: method(:mlkr_fnc), jcb: true, x_init: comp_init, args: [x, y],
129
+ maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: verbose
130
+ )
131
+ # return the results.
132
+ n_iter = res[:n_iter]
133
+ comps = n_components == 1 ? res[:x].dup : res[:x].reshape(n_components, n_features)
134
+ [comps, n_iter]
135
+ end
136
+
137
+ def mlkr_fnc(w, x, y)
138
+ # initialize some variables.
139
+ n_features = x.shape[1]
140
+ n_components = w.size / n_features
141
+ # projection.
142
+ w = w.reshape(n_components, n_features)
143
+ z = x.dot(w.transpose)
144
+ # predict values.
145
+ kernel_mat = Numo::NMath.exp(-Rumale::PairwiseMetric.squared_error(z))
146
+ kernel_mat[kernel_mat.diag_indices] = 0.0
147
+ norm = kernel_mat.sum(1)
148
+ norm[norm.eq(0)] = 1
149
+ y_pred = kernel_mat.dot(y) / norm
150
+ # calculate loss.
151
+ y_diff = y_pred - y
152
+ loss = (y_diff**2).sum
153
+ # calculate gradient.
154
+ weight_mat = y_diff * y_diff.expand_dims(1) * kernel_mat
155
+ weight_mat = weight_mat.sum(0).diag - weight_mat
156
+ gradient = 8 * z.transpose.dot(weight_mat).dot(x)
157
+ [loss, gradient.flatten.dup]
158
+ end
159
+ end
160
+ end
161
+ end