rumale 0.18.7 → 0.20.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.rubocop.yml +66 -1
- data/CHANGELOG.md +46 -0
- data/Gemfile +2 -0
- data/README.md +5 -36
- data/lib/rumale.rb +5 -10
- data/lib/rumale/clustering/hdbscan.rb +1 -1
- data/lib/rumale/clustering/k_means.rb +1 -1
- data/lib/rumale/clustering/k_medoids.rb +1 -1
- data/lib/rumale/clustering/mini_batch_k_means.rb +139 -0
- data/lib/rumale/dataset.rb +3 -3
- data/lib/rumale/decomposition/pca.rb +23 -5
- data/lib/rumale/feature_extraction/feature_hasher.rb +14 -1
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +113 -0
- data/lib/rumale/kernel_approximation/nystroem.rb +1 -1
- data/lib/rumale/kernel_machine/kernel_svc.rb +1 -1
- data/lib/rumale/linear_model/base_sgd.rb +1 -1
- data/lib/rumale/metric_learning/neighbourhood_component_analysis.rb +13 -1
- data/lib/rumale/model_selection/cross_validation.rb +3 -2
- data/lib/rumale/model_selection/k_fold.rb +1 -1
- data/lib/rumale/model_selection/shuffle_split.rb +1 -1
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +2 -2
- data/lib/rumale/nearest_neighbors/vp_tree.rb +1 -1
- data/lib/rumale/neural_network/adam.rb +1 -1
- data/lib/rumale/neural_network/base_mlp.rb +1 -1
- data/lib/rumale/preprocessing/binarizer.rb +60 -0
- data/lib/rumale/preprocessing/l1_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +2 -1
- data/lib/rumale/preprocessing/max_normalizer.rb +62 -0
- data/lib/rumale/version.rb +1 -1
- data/rumale.gemspec +1 -3
- metadata +11 -44
- data/lib/rumale/linear_model/base_linear_model.rb +0 -101
- data/lib/rumale/optimizer/ada_grad.rb +0 -39
- data/lib/rumale/optimizer/adam.rb +0 -53
- data/lib/rumale/optimizer/nadam.rb +0 -62
- data/lib/rumale/optimizer/rmsprop.rb +0 -47
- data/lib/rumale/optimizer/sgd.rb +0 -43
- data/lib/rumale/optimizer/yellow_fin.rb +0 -101
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +0 -121
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +0 -215
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +0 -129
@@ -1,62 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement optimizers adaptively tuning hyperparameters.
|
8
|
-
module Optimizer
|
9
|
-
# Nadam is a class that implements Nadam optimizer.
|
10
|
-
#
|
11
|
-
# *Reference*
|
12
|
-
# - Dozat, T., "Incorporating Nesterov Momentum into Adam," Tech. Repo. Stanford University, 2015.
|
13
|
-
class Nadam
|
14
|
-
include Base::BaseEstimator
|
15
|
-
include Validation
|
16
|
-
|
17
|
-
# Create a new optimizer with Nadam
|
18
|
-
#
|
19
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
20
|
-
# @param decay1 [Float] The smoothing parameter for the first moment.
|
21
|
-
# @param decay2 [Float] The smoothing parameter for the second moment.
|
22
|
-
def initialize(learning_rate: 0.01, decay1: 0.9, decay2: 0.999)
|
23
|
-
check_params_numeric(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
|
24
|
-
check_params_positive(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
|
25
|
-
@params = {}
|
26
|
-
@params[:learning_rate] = learning_rate
|
27
|
-
@params[:decay1] = decay1
|
28
|
-
@params[:decay2] = decay2
|
29
|
-
@fst_moment = nil
|
30
|
-
@sec_moment = nil
|
31
|
-
@decay1_prod = 1.0
|
32
|
-
@iter = 0
|
33
|
-
end
|
34
|
-
|
35
|
-
# Calculate the updated weight with Nadam adaptive learning rate.
|
36
|
-
#
|
37
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
38
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
39
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
40
|
-
def call(weight, gradient)
|
41
|
-
@fst_moment ||= Numo::DFloat.zeros(weight.shape[0])
|
42
|
-
@sec_moment ||= Numo::DFloat.zeros(weight.shape[0])
|
43
|
-
|
44
|
-
@iter += 1
|
45
|
-
|
46
|
-
decay1_curr = @params[:decay1] * (1.0 - 0.5 * 0.96**(@iter * 0.004))
|
47
|
-
decay1_next = @params[:decay1] * (1.0 - 0.5 * 0.96**((@iter + 1) * 0.004))
|
48
|
-
decay1_prod_curr = @decay1_prod * decay1_curr
|
49
|
-
decay1_prod_next = @decay1_prod * decay1_curr * decay1_next
|
50
|
-
@decay1_prod = decay1_prod_curr
|
51
|
-
|
52
|
-
@fst_moment = @params[:decay1] * @fst_moment + (1.0 - @params[:decay1]) * gradient
|
53
|
-
@sec_moment = @params[:decay2] * @sec_moment + (1.0 - @params[:decay2]) * gradient**2
|
54
|
-
nm_gradient = gradient / (1.0 - decay1_prod_curr)
|
55
|
-
nm_fst_moment = @fst_moment / (1.0 - decay1_prod_next)
|
56
|
-
nm_sec_moment = @sec_moment / (1.0 - @params[:decay2]**@iter)
|
57
|
-
|
58
|
-
weight - (@params[:learning_rate] / (nm_sec_moment**0.5 + 1e-8)) * ((1 - decay1_curr) * nm_gradient + decay1_next * nm_fst_moment)
|
59
|
-
end
|
60
|
-
end
|
61
|
-
end
|
62
|
-
end
|
@@ -1,47 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# RMSProp is a class that implements RMSProp optimizer.
|
9
|
-
#
|
10
|
-
# *Reference*
|
11
|
-
# - Sutskever, I., Martens, J., Dahl, G., and Hinton, G., "On the importance of initialization and momentum in deep learning," Proc. ICML' 13, pp. 1139--1147, 2013.
|
12
|
-
# - Hinton, G., Srivastava, N., and Swersky, K., "Lecture 6e rmsprop," Neural Networks for Machine Learning, 2012.
|
13
|
-
class RMSProp
|
14
|
-
include Base::BaseEstimator
|
15
|
-
include Validation
|
16
|
-
|
17
|
-
# Create a new optimizer with RMSProp.
|
18
|
-
#
|
19
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
20
|
-
# @param momentum [Float] The initial value of momentum.
|
21
|
-
# @param decay [Float] The smooting parameter.
|
22
|
-
def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.9)
|
23
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
24
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
25
|
-
@params = {}
|
26
|
-
@params[:learning_rate] = learning_rate
|
27
|
-
@params[:momentum] = momentum
|
28
|
-
@params[:decay] = decay
|
29
|
-
@moment = nil
|
30
|
-
@update = nil
|
31
|
-
end
|
32
|
-
|
33
|
-
# Calculate the updated weight with RMSProp adaptive learning rate.
|
34
|
-
#
|
35
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
36
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
37
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
38
|
-
def call(weight, gradient)
|
39
|
-
@moment ||= Numo::DFloat.zeros(weight.shape[0])
|
40
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
41
|
-
@moment = @params[:decay] * @moment + (1.0 - @params[:decay]) * gradient**2
|
42
|
-
@update = @params[:momentum] * @update - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
|
43
|
-
weight + @update
|
44
|
-
end
|
45
|
-
end
|
46
|
-
end
|
47
|
-
end
|
data/lib/rumale/optimizer/sgd.rb
DELETED
@@ -1,43 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# SGD is a class that implements SGD optimizer.
|
9
|
-
class SGD
|
10
|
-
include Base::BaseEstimator
|
11
|
-
include Validation
|
12
|
-
|
13
|
-
# Create a new optimizer with SGD.
|
14
|
-
#
|
15
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
16
|
-
# @param momentum [Float] The initial value of momentum.
|
17
|
-
# @param decay [Float] The smooting parameter.
|
18
|
-
def initialize(learning_rate: 0.01, momentum: 0.0, decay: 0.0)
|
19
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
20
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
21
|
-
@params = {}
|
22
|
-
@params[:learning_rate] = learning_rate
|
23
|
-
@params[:momentum] = momentum
|
24
|
-
@params[:decay] = decay
|
25
|
-
@iter = 0
|
26
|
-
@update = nil
|
27
|
-
end
|
28
|
-
|
29
|
-
# Calculate the updated weight with SGD.
|
30
|
-
#
|
31
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
32
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
33
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
34
|
-
def call(weight, gradient)
|
35
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
36
|
-
current_learning_rate = @params[:learning_rate] / (1.0 + @params[:decay] * @iter)
|
37
|
-
@iter += 1
|
38
|
-
@update = @params[:momentum] * @update - current_learning_rate * gradient
|
39
|
-
weight + @update
|
40
|
-
end
|
41
|
-
end
|
42
|
-
end
|
43
|
-
end
|
@@ -1,101 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# YellowFin is a class that implements YellowFin optimizer.
|
9
|
-
#
|
10
|
-
# *Reference*
|
11
|
-
# - Zhang, J., and Mitliagkas, I., "YellowFin and the Art of Momentum Tuning," CoRR abs/1706.03471, 2017.
|
12
|
-
class YellowFin
|
13
|
-
include Base::BaseEstimator
|
14
|
-
include Validation
|
15
|
-
|
16
|
-
# Create a new optimizer with YellowFin.
|
17
|
-
#
|
18
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
19
|
-
# @param momentum [Float] The initial value of momentum.
|
20
|
-
# @param decay [Float] The smooting parameter.
|
21
|
-
# @param window_width [Integer] The sliding window width for searching curvature range.
|
22
|
-
def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.999, window_width: 20)
|
23
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay, window_width: window_width)
|
24
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay, window_width: window_width)
|
25
|
-
@params = {}
|
26
|
-
@params[:learning_rate] = learning_rate
|
27
|
-
@params[:momentum] = momentum
|
28
|
-
@params[:decay] = decay
|
29
|
-
@params[:window_width] = window_width
|
30
|
-
@smth_learning_rate = learning_rate
|
31
|
-
@smth_momentum = momentum
|
32
|
-
@grad_norms = nil
|
33
|
-
@grad_norm_min = 0.0
|
34
|
-
@grad_norm_max = 0.0
|
35
|
-
@grad_mean_sqr = 0.0
|
36
|
-
@grad_mean = 0.0
|
37
|
-
@grad_var = 0.0
|
38
|
-
@grad_norm_mean = 0.0
|
39
|
-
@curve_mean = 0.0
|
40
|
-
@distance_mean = 0.0
|
41
|
-
@update = nil
|
42
|
-
end
|
43
|
-
|
44
|
-
# Calculate the updated weight with adaptive momentum coefficient and learning rate.
|
45
|
-
#
|
46
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
47
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
48
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
49
|
-
def call(weight, gradient)
|
50
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
51
|
-
curvature_range(gradient)
|
52
|
-
gradient_variance(gradient)
|
53
|
-
distance_to_optimum(gradient)
|
54
|
-
@smth_momentum = @params[:decay] * @smth_momentum + (1 - @params[:decay]) * current_momentum
|
55
|
-
@smth_learning_rate = @params[:decay] * @smth_learning_rate + (1 - @params[:decay]) * current_learning_rate
|
56
|
-
@update = @smth_momentum * @update - @smth_learning_rate * gradient
|
57
|
-
weight + @update
|
58
|
-
end
|
59
|
-
|
60
|
-
private
|
61
|
-
|
62
|
-
def current_momentum
|
63
|
-
dr = Math.sqrt(@grad_norm_max / @grad_norm_min + 1.0e-8)
|
64
|
-
[cubic_root**2, ((dr - 1) / (dr + 1))**2].max
|
65
|
-
end
|
66
|
-
|
67
|
-
def current_learning_rate
|
68
|
-
(1.0 - Math.sqrt(@params[:momentum]))**2 / (@grad_norm_min + 1.0e-8)
|
69
|
-
end
|
70
|
-
|
71
|
-
def cubic_root
|
72
|
-
p = (@distance_mean**2 * @grad_norm_min**2) / (2 * @grad_var + 1.0e-8)
|
73
|
-
w3 = (-Math.sqrt(p**2 + 4.fdiv(27) * p**3) - p).fdiv(2)
|
74
|
-
w = (w3 >= 0.0 ? 1 : -1) * w3.abs**1.fdiv(3)
|
75
|
-
y = w - p / (3 * w + 1.0e-8)
|
76
|
-
y + 1
|
77
|
-
end
|
78
|
-
|
79
|
-
def curvature_range(gradient)
|
80
|
-
@grad_norms ||= []
|
81
|
-
@grad_norms.push((gradient**2).sum)
|
82
|
-
@grad_norms.shift(@grad_norms.size - @params[:window_width]) if @grad_norms.size > @params[:window_width]
|
83
|
-
@grad_norm_min = @params[:decay] * @grad_norm_min + (1 - @params[:decay]) * @grad_norms.min
|
84
|
-
@grad_norm_max = @params[:decay] * @grad_norm_max + (1 - @params[:decay]) * @grad_norms.max
|
85
|
-
end
|
86
|
-
|
87
|
-
def gradient_variance(gradient)
|
88
|
-
@grad_mean_sqr = @params[:decay] * @grad_mean_sqr + (1 - @params[:decay]) * gradient**2
|
89
|
-
@grad_mean = @params[:decay] * @grad_mean + (1 - @params[:decay]) * gradient
|
90
|
-
@grad_var = (@grad_mean_sqr - @grad_mean**2).sum
|
91
|
-
end
|
92
|
-
|
93
|
-
def distance_to_optimum(gradient)
|
94
|
-
grad_sqr = (gradient**2).sum
|
95
|
-
@grad_norm_mean = @params[:decay] * @grad_norm_mean + (1 - @params[:decay]) * Math.sqrt(grad_sqr + 1.0e-8)
|
96
|
-
@curve_mean = @params[:decay] * @curve_mean + (1 - @params[:decay]) * grad_sqr
|
97
|
-
@distance_mean = @params[:decay] * @distance_mean + (1 - @params[:decay]) * (@grad_norm_mean / @curve_mean)
|
98
|
-
end
|
99
|
-
end
|
100
|
-
end
|
101
|
-
end
|
@@ -1,121 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/optimizer/nadam'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement polynomial models.
|
8
|
-
module PolynomialModel
|
9
|
-
# BaseFactorizationMachine is an abstract class for implementation of Factorization Machine-based estimators.
|
10
|
-
# This class is used internally.
|
11
|
-
class BaseFactorizationMachine
|
12
|
-
include Base::BaseEstimator
|
13
|
-
|
14
|
-
# Initialize a Factorization Machine-based estimator.
|
15
|
-
#
|
16
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
17
|
-
# @param loss [String] The loss function ('hinge' or 'logistic' or nil).
|
18
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
19
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
20
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
21
|
-
# how many times the whole data is given to the training process.
|
22
|
-
# @param batch_size [Integer] The size of the mini batches.
|
23
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
24
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
25
|
-
# If nil is given, Nadam is used.
|
26
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
27
|
-
# If nil is given, the methods do not execute in parallel.
|
28
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
29
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
30
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
31
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
32
|
-
def initialize(n_factors: 2, loss: nil, reg_param_linear: 1.0, reg_param_factor: 1.0,
|
33
|
-
max_iter: 200, batch_size: 50, tol: 1e-4,
|
34
|
-
optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
|
35
|
-
@params = {}
|
36
|
-
@params[:n_factors] = n_factors
|
37
|
-
@params[:loss] = loss unless loss.nil?
|
38
|
-
@params[:reg_param_linear] = reg_param_linear
|
39
|
-
@params[:reg_param_factor] = reg_param_factor
|
40
|
-
@params[:max_iter] = max_iter
|
41
|
-
@params[:batch_size] = batch_size
|
42
|
-
@params[:tol] = tol
|
43
|
-
@params[:optimizer] = optimizer
|
44
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
45
|
-
@params[:n_jobs] = n_jobs
|
46
|
-
@params[:verbose] = verbose
|
47
|
-
@params[:random_seed] = random_seed
|
48
|
-
@params[:random_seed] ||= srand
|
49
|
-
@factor_mat = nil
|
50
|
-
@weight_vec = nil
|
51
|
-
@bias_term = nil
|
52
|
-
@rng = Random.new(@params[:random_seed])
|
53
|
-
end
|
54
|
-
|
55
|
-
private
|
56
|
-
|
57
|
-
def partial_fit(x, y)
|
58
|
-
# Initialize some variables.
|
59
|
-
class_name = self.class.to_s.split('::').last if @params[:verbose]
|
60
|
-
n_samples, n_features = x.shape
|
61
|
-
sub_rng = @rng.dup
|
62
|
-
weight_vec = Numo::DFloat.zeros(n_features + 1)
|
63
|
-
factor_mat = Rumale::Utils.rand_normal([@params[:n_factors], n_features], sub_rng)
|
64
|
-
weight_optimizer = @params[:optimizer].dup
|
65
|
-
factor_optimizers = Array.new(@params[:n_factors]) { @params[:optimizer].dup }
|
66
|
-
# Start optimization.
|
67
|
-
@params[:max_iter].times do |t|
|
68
|
-
sample_ids = [*0...n_samples]
|
69
|
-
sample_ids.shuffle!(random: sub_rng)
|
70
|
-
until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
|
71
|
-
# Sampling.
|
72
|
-
sub_x = x[subset_ids, true]
|
73
|
-
sub_y = y[subset_ids]
|
74
|
-
ex_sub_x = expand_feature(sub_x)
|
75
|
-
# Calculate gradients for loss function.
|
76
|
-
loss_grad = loss_gradient(sub_x, ex_sub_x, sub_y, factor_mat, weight_vec)
|
77
|
-
next if loss_grad.ne(0.0).count.zero?
|
78
|
-
|
79
|
-
# Update each parameter.
|
80
|
-
weight_vec = weight_optimizer.call(weight_vec, weight_gradient(loss_grad, ex_sub_x, weight_vec))
|
81
|
-
@params[:n_factors].times do |n|
|
82
|
-
factor_mat[n, true] = factor_optimizers[n].call(factor_mat[n, true],
|
83
|
-
factor_gradient(loss_grad, sub_x, factor_mat[n, true]))
|
84
|
-
end
|
85
|
-
end
|
86
|
-
loss = loss_func(x, expand_feature(x), y, factor_mat, weight_vec)
|
87
|
-
puts "[#{class_name}] Loss after #{t + 1} epochs: #{loss}" if @params[:verbose]
|
88
|
-
break if loss < @params[:tol]
|
89
|
-
end
|
90
|
-
[factor_mat, *split_weight_vec_bias(weight_vec)]
|
91
|
-
end
|
92
|
-
|
93
|
-
def loss_func(_x, _expanded_x, _y, _factor, _weight)
|
94
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
95
|
-
end
|
96
|
-
|
97
|
-
def loss_gradient(_x, _expanded_x, _y, _factor, _weight)
|
98
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
99
|
-
end
|
100
|
-
|
101
|
-
def weight_gradient(loss_grad, data, weight)
|
102
|
-
(loss_grad.expand_dims(1) * data).mean(0) + @params[:reg_param_linear] * weight
|
103
|
-
end
|
104
|
-
|
105
|
-
def factor_gradient(loss_grad, data, factor)
|
106
|
-
(loss_grad.expand_dims(1) * (data * data.dot(factor).expand_dims(1) - factor * (data**2))).mean(0) +
|
107
|
-
@params[:reg_param_factor] * factor
|
108
|
-
end
|
109
|
-
|
110
|
-
def expand_feature(x)
|
111
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
|
112
|
-
end
|
113
|
-
|
114
|
-
def split_weight_vec_bias(weight_vec)
|
115
|
-
weights = weight_vec[0...-1].dup
|
116
|
-
bias = weight_vec[-1]
|
117
|
-
[weights, bias]
|
118
|
-
end
|
119
|
-
end
|
120
|
-
end
|
121
|
-
end
|
@@ -1,215 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/classifier'
|
4
|
-
require 'rumale/polynomial_model/base_factorization_machine'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement polynomial models.
|
8
|
-
module PolynomialModel
|
9
|
-
# FactorizationMachineClassifier is a class that implements Factorization Machine
|
10
|
-
# with stochastic gradient descent (SGD) optimization.
|
11
|
-
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
12
|
-
#
|
13
|
-
# @example
|
14
|
-
# estimator =
|
15
|
-
# Rumale::PolynomialModel::FactorizationMachineClassifier.new(
|
16
|
-
# n_factors: 10, loss: 'hinge', reg_param_linear: 0.001, reg_param_factor: 0.001,
|
17
|
-
# max_iter: 500, batch_size: 50, random_seed: 1)
|
18
|
-
# estimator.fit(training_samples, traininig_labels)
|
19
|
-
# results = estimator.predict(testing_samples)
|
20
|
-
#
|
21
|
-
# *Reference*
|
22
|
-
# - Rendle, S., "Factorization Machines with libFM," ACM TIST, vol. 3 (3), pp. 57:1--57:22, 2012.
|
23
|
-
# - Rendle, S., "Factorization Machines," Proc. ICDM'10, pp. 995--1000, 2010.
|
24
|
-
class FactorizationMachineClassifier < BaseFactorizationMachine
|
25
|
-
include Base::Classifier
|
26
|
-
|
27
|
-
# Return the factor matrix for Factorization Machine.
|
28
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_factors, n_features])
|
29
|
-
attr_reader :factor_mat
|
30
|
-
|
31
|
-
# Return the weight vector for Factorization Machine.
|
32
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
33
|
-
attr_reader :weight_vec
|
34
|
-
|
35
|
-
# Return the bias term for Factoriazation Machine.
|
36
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
37
|
-
attr_reader :bias_term
|
38
|
-
|
39
|
-
# Return the class labels.
|
40
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
41
|
-
attr_reader :classes
|
42
|
-
|
43
|
-
# Return the random generator for random sampling.
|
44
|
-
# @return [Random]
|
45
|
-
attr_reader :rng
|
46
|
-
|
47
|
-
# Create a new classifier with Factorization Machine.
|
48
|
-
#
|
49
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
50
|
-
# @param loss [String] The loss function ('hinge' or 'logistic').
|
51
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
52
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
53
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
54
|
-
# how many times the whole data is given to the training process.
|
55
|
-
# @param batch_size [Integer] The size of the mini batches.
|
56
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
57
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
58
|
-
# If nil is given, Nadam is used.
|
59
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
60
|
-
# If nil is given, the methods do not execute in parallel.
|
61
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
62
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
63
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
64
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
65
|
-
def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0,
|
66
|
-
max_iter: 200, batch_size: 50, tol: 1e-4,
|
67
|
-
optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
|
68
|
-
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
69
|
-
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size, tol: tol)
|
70
|
-
check_params_string(loss: loss)
|
71
|
-
check_params_boolean(verbose: verbose)
|
72
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
73
|
-
check_params_positive(n_factors: n_factors,
|
74
|
-
reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
75
|
-
max_iter: max_iter, batch_size: batch_size)
|
76
|
-
super
|
77
|
-
@classes = nil
|
78
|
-
end
|
79
|
-
|
80
|
-
# Fit the model with given training data.
|
81
|
-
#
|
82
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
83
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
84
|
-
# @return [FactorizationMachineClassifier] The learned classifier itself.
|
85
|
-
def fit(x, y)
|
86
|
-
x = check_convert_sample_array(x)
|
87
|
-
y = check_convert_label_array(y)
|
88
|
-
check_sample_label_size(x, y)
|
89
|
-
|
90
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
91
|
-
|
92
|
-
if multiclass_problem?
|
93
|
-
n_classes = @classes.size
|
94
|
-
n_features = x.shape[1]
|
95
|
-
@factor_mat = Numo::DFloat.zeros(n_classes, @params[:n_factors], n_features)
|
96
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
97
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
98
|
-
if enable_parallel?
|
99
|
-
# :nocov:
|
100
|
-
models = parallel_map(n_classes) do |n|
|
101
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
102
|
-
partial_fit(x, bin_y)
|
103
|
-
end
|
104
|
-
# :nocov:
|
105
|
-
n_classes.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = models[n] }
|
106
|
-
else
|
107
|
-
n_classes.times do |n|
|
108
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
109
|
-
@factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
110
|
-
end
|
111
|
-
end
|
112
|
-
else
|
113
|
-
negative_label = @classes[0]
|
114
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
115
|
-
@factor_mat, @weight_vec, @bias_term = partial_fit(x, bin_y)
|
116
|
-
end
|
117
|
-
|
118
|
-
self
|
119
|
-
end
|
120
|
-
|
121
|
-
# Calculate confidence scores for samples.
|
122
|
-
#
|
123
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
124
|
-
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
125
|
-
def decision_function(x)
|
126
|
-
x = check_convert_sample_array(x)
|
127
|
-
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
128
|
-
factor_term = if multiclass_problem?
|
129
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
|
130
|
-
else
|
131
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
132
|
-
end
|
133
|
-
linear_term + factor_term
|
134
|
-
end
|
135
|
-
|
136
|
-
# Predict class labels for samples.
|
137
|
-
#
|
138
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
139
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
140
|
-
def predict(x)
|
141
|
-
x = check_convert_sample_array(x)
|
142
|
-
|
143
|
-
n_samples = x.shape[0]
|
144
|
-
predicted = if multiclass_problem?
|
145
|
-
decision_values = decision_function(x)
|
146
|
-
if enable_parallel?
|
147
|
-
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
148
|
-
else
|
149
|
-
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
150
|
-
end
|
151
|
-
else
|
152
|
-
decision_values = decision_function(x).ge(0.0).to_a
|
153
|
-
Array.new(n_samples) { |n| @classes[decision_values[n]] }
|
154
|
-
end
|
155
|
-
Numo::Int32.asarray(predicted)
|
156
|
-
end
|
157
|
-
|
158
|
-
# Predict probability for samples.
|
159
|
-
#
|
160
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
161
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
162
|
-
def predict_proba(x)
|
163
|
-
x = check_convert_sample_array(x)
|
164
|
-
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
165
|
-
return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem?
|
166
|
-
|
167
|
-
n_samples, = x.shape
|
168
|
-
probs = Numo::DFloat.zeros(n_samples, 2)
|
169
|
-
probs[true, 1] = proba
|
170
|
-
probs[true, 0] = 1.0 - proba
|
171
|
-
probs
|
172
|
-
end
|
173
|
-
|
174
|
-
private
|
175
|
-
|
176
|
-
def bin_decision_function(x, ex_x, factor, weight)
|
177
|
-
ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
178
|
-
end
|
179
|
-
|
180
|
-
def loss_func(x, ex_x, y, factor, weight)
|
181
|
-
z = bin_decision_function(x, ex_x, factor, weight)
|
182
|
-
if @params[:loss] == 'hinge'
|
183
|
-
z.class.maximum(0.0, 1 - y * z).sum.fdiv(y.shape[0])
|
184
|
-
else
|
185
|
-
Numo::NMath.log(1 + Numo::NMath.exp(-y * z)).sum.fdiv(y.shape[0])
|
186
|
-
end
|
187
|
-
end
|
188
|
-
|
189
|
-
def hinge_loss_gradient(x, ex_x, y, factor, weight)
|
190
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
191
|
-
gradient = Numo::DFloat.zeros(evaluated.size)
|
192
|
-
gradient[evaluated < 1.0] = -y[evaluated < 1.0]
|
193
|
-
gradient
|
194
|
-
end
|
195
|
-
|
196
|
-
def logistic_loss_gradient(x, ex_x, y, factor, weight)
|
197
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
198
|
-
sigmoid_func = 1.0 / (Numo::NMath.exp(-evaluated) + 1.0)
|
199
|
-
(sigmoid_func - 1.0) * y
|
200
|
-
end
|
201
|
-
|
202
|
-
def loss_gradient(x, ex_x, y, factor, weight)
|
203
|
-
if @params[:loss] == 'hinge'
|
204
|
-
hinge_loss_gradient(x, ex_x, y, factor, weight)
|
205
|
-
else
|
206
|
-
logistic_loss_gradient(x, ex_x, y, factor, weight)
|
207
|
-
end
|
208
|
-
end
|
209
|
-
|
210
|
-
def multiclass_problem?
|
211
|
-
@classes.size > 2
|
212
|
-
end
|
213
|
-
end
|
214
|
-
end
|
215
|
-
end
|