rumale 0.14.2 → 0.14.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.rubocop.yml +4 -1
- data/CHANGELOG.md +5 -0
- data/README.md +2 -1
- data/lib/rumale/clustering/gaussian_mixture.rb +2 -3
- data/lib/rumale/ensemble/extra_trees_classifier.rb +2 -2
- data/lib/rumale/ensemble/extra_trees_regressor.rb +2 -2
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +1 -0
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +1 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +2 -2
- data/lib/rumale/ensemble/random_forest_regressor.rb +2 -2
- data/lib/rumale/version.rb +1 -1
- data/rumale.gemspec +2 -1
- metadata +4 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d1df6dee93147a75173bc099cd68dd116e7729c1
|
4
|
+
data.tar.gz: da85a19ca4964ee95cf026a69f2610b0c5d2b92c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 893ae704bf217de39ee1b4ccbb0601ffea3804252c992c5b4d79f9dc68171d6a7f0be8d6218af315cd540331bc6b91627d8c990cd53c10cf3d13e5a5123481c0
|
7
|
+
data.tar.gz: 5faf0ce1a7f38974a996534b0817557fea033bf0aea5a867f1fd2460db7153a09bc4ab7ddc233791d73be7c220be9da714830b8dcfbc20a9b366164ef48ea617
|
data/.rubocop.yml
CHANGED
@@ -48,7 +48,7 @@ Metrics/ParameterLists:
|
|
48
48
|
Security/MarshalLoad:
|
49
49
|
Enabled: false
|
50
50
|
|
51
|
-
Naming/
|
51
|
+
Naming/MethodParameterName:
|
52
52
|
Enabled: false
|
53
53
|
|
54
54
|
Naming/ConstantName:
|
@@ -66,6 +66,9 @@ Layout/EmptyLineAfterGuardClause:
|
|
66
66
|
RSpec/MultipleExpectations:
|
67
67
|
Enabled: false
|
68
68
|
|
69
|
+
RSpec/NestedGroups:
|
70
|
+
Max: 4
|
71
|
+
|
69
72
|
RSpec/ExampleLength:
|
70
73
|
Max: 40
|
71
74
|
|
data/CHANGELOG.md
CHANGED
data/README.md
CHANGED
@@ -15,7 +15,8 @@ Logistic Regression, Ridge, Lasso, Factorization Machine,
|
|
15
15
|
Multi-layer Perceptron,
|
16
16
|
Naive Bayes, Decision Tree, Gradient Tree Boosting, Random Forest,
|
17
17
|
K-Means, Gaussian Mixture Model, DBSCAN, Spectral Clustering,
|
18
|
-
Mutidimensional Scaling, t-SNE, Principal Component Analysis,
|
18
|
+
Mutidimensional Scaling, t-SNE, Principal Component Analysis, Non-negative Matrix Factorization,
|
19
|
+
and many other algorithms.
|
19
20
|
|
20
21
|
This project was formerly known as "SVMKit".
|
21
22
|
If you are using SVMKit, please install Rumale and replace `SVMKit` constants with `Rumale`.
|
@@ -229,9 +229,8 @@ module Rumale
|
|
229
229
|
end
|
230
230
|
|
231
231
|
def check_enable_linalg(method_name)
|
232
|
-
|
233
|
-
|
234
|
-
end
|
232
|
+
return unless @params[:covariance_type] == 'full' && !enable_linalg?
|
233
|
+
raise "GaussianMixture##{method_name} requires Numo::Linalg when covariance_type is 'full' but that is not loaded."
|
235
234
|
end
|
236
235
|
end
|
237
236
|
end
|
@@ -46,7 +46,7 @@ module Rumale
|
|
46
46
|
# If nil is given, number of leaves is not limited.
|
47
47
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
48
48
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
49
|
-
# If nil is given, split process considers
|
49
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
50
50
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
51
51
|
# If nil is given, the method does not execute in parallel.
|
52
52
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -77,7 +77,7 @@ module Rumale
|
|
77
77
|
check_sample_label_size(x, y)
|
78
78
|
# Initialize some variables.
|
79
79
|
n_features = x.shape[1]
|
80
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
80
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
81
81
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
82
82
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
83
83
|
sub_rng = @rng.dup
|
@@ -42,7 +42,7 @@ module Rumale
|
|
42
42
|
# If nil is given, number of leaves is not limited.
|
43
43
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
44
44
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
45
|
-
# If nil is given, split process considers
|
45
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
46
46
|
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
47
47
|
# If nil is given, the methods do not execute in parallel.
|
48
48
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -73,7 +73,7 @@ module Rumale
|
|
73
73
|
check_sample_tvalue_size(x, y)
|
74
74
|
# Initialize some variables.
|
75
75
|
n_features = x.shape[1]
|
76
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
76
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
77
77
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
78
78
|
sub_rng = @rng.dup
|
79
79
|
# Construct forest.
|
@@ -49,6 +49,7 @@ module Rumale
|
|
49
49
|
# @param n_estimators [Integer] The numeber of trees for contructing classifier.
|
50
50
|
# @param learning_rate [Float] The boosting learining rate
|
51
51
|
# @param reg_lambda [Float] The L2 regularization term on weight.
|
52
|
+
# @param subsample [Float] The subsampling ratio of the training samples.
|
52
53
|
# @param max_depth [Integer] The maximum depth of the tree.
|
53
54
|
# If nil is given, decision tree grows without concern for depth.
|
54
55
|
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
@@ -44,6 +44,7 @@ module Rumale
|
|
44
44
|
# @param n_estimators [Integer] The numeber of trees for contructing regressor.
|
45
45
|
# @param learning_rate [Float] The boosting learining rate
|
46
46
|
# @param reg_lambda [Float] The L2 regularization term on weight.
|
47
|
+
# @param subsample [Float] The subsampling ratio of the training samples.
|
47
48
|
# @param max_depth [Integer] The maximum depth of the tree.
|
48
49
|
# If nil is given, decision tree grows without concern for depth.
|
49
50
|
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
@@ -47,7 +47,7 @@ module Rumale
|
|
47
47
|
# If nil is given, number of leaves is not limited.
|
48
48
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
49
49
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
50
|
-
# If nil is given, split process considers
|
50
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
51
51
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
52
52
|
# If nil is given, the method does not execute in parallel.
|
53
53
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -91,7 +91,7 @@ module Rumale
|
|
91
91
|
check_sample_label_size(x, y)
|
92
92
|
# Initialize some variables.
|
93
93
|
n_samples, n_features = x.shape
|
94
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
94
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
95
95
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
96
96
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
97
97
|
sub_rng = @rng.dup
|
@@ -42,7 +42,7 @@ module Rumale
|
|
42
42
|
# If nil is given, number of leaves is not limited.
|
43
43
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
44
44
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
45
|
-
# If nil is given, split process considers
|
45
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
46
46
|
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
47
47
|
# If nil is given, the methods do not execute in parallel.
|
48
48
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -85,7 +85,7 @@ module Rumale
|
|
85
85
|
check_sample_tvalue_size(x, y)
|
86
86
|
# Initialize some variables.
|
87
87
|
n_samples, n_features = x.shape
|
88
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
88
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
89
89
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
90
90
|
single_target = y.shape[1].nil?
|
91
91
|
sub_rng = @rng.dup
|
data/lib/rumale/version.rb
CHANGED
data/rumale.gemspec
CHANGED
@@ -20,7 +20,8 @@ Gem::Specification.new do |spec|
|
|
20
20
|
Multi-layer Perceptron,
|
21
21
|
Naive Bayes, Decision Tree, Gradient Tree Boosting, Random Forest,
|
22
22
|
K-Means, Gaussian Mixture Model, DBSCAN, Spectral Clustering,
|
23
|
-
Mutidimensional Scaling, t-SNE, Principal Component Analysis,
|
23
|
+
Mutidimensional Scaling, t-SNE, Principal Component Analysis, Non-negative Matrix Factorization,
|
24
|
+
and many other algorithms.
|
24
25
|
MSG
|
25
26
|
spec.homepage = 'https://github.com/yoshoku/rumale'
|
26
27
|
spec.license = 'BSD-2-Clause'
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.14.
|
4
|
+
version: 0.14.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-12-
|
11
|
+
date: 2019-12-16 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -130,7 +130,8 @@ description: |
|
|
130
130
|
Multi-layer Perceptron,
|
131
131
|
Naive Bayes, Decision Tree, Gradient Tree Boosting, Random Forest,
|
132
132
|
K-Means, Gaussian Mixture Model, DBSCAN, Spectral Clustering,
|
133
|
-
Mutidimensional Scaling, t-SNE, Principal Component Analysis,
|
133
|
+
Mutidimensional Scaling, t-SNE, Principal Component Analysis, Non-negative Matrix Factorization,
|
134
|
+
and many other algorithms.
|
134
135
|
email:
|
135
136
|
- yoshoku@outlook.com
|
136
137
|
executables: []
|