rumale 0.14.2 → 0.14.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.rubocop.yml +4 -1
- data/CHANGELOG.md +5 -0
- data/README.md +2 -1
- data/lib/rumale/clustering/gaussian_mixture.rb +2 -3
- data/lib/rumale/ensemble/extra_trees_classifier.rb +2 -2
- data/lib/rumale/ensemble/extra_trees_regressor.rb +2 -2
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +1 -0
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +1 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +2 -2
- data/lib/rumale/ensemble/random_forest_regressor.rb +2 -2
- data/lib/rumale/version.rb +1 -1
- data/rumale.gemspec +2 -1
- metadata +4 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d1df6dee93147a75173bc099cd68dd116e7729c1
|
4
|
+
data.tar.gz: da85a19ca4964ee95cf026a69f2610b0c5d2b92c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 893ae704bf217de39ee1b4ccbb0601ffea3804252c992c5b4d79f9dc68171d6a7f0be8d6218af315cd540331bc6b91627d8c990cd53c10cf3d13e5a5123481c0
|
7
|
+
data.tar.gz: 5faf0ce1a7f38974a996534b0817557fea033bf0aea5a867f1fd2460db7153a09bc4ab7ddc233791d73be7c220be9da714830b8dcfbc20a9b366164ef48ea617
|
data/.rubocop.yml
CHANGED
@@ -48,7 +48,7 @@ Metrics/ParameterLists:
|
|
48
48
|
Security/MarshalLoad:
|
49
49
|
Enabled: false
|
50
50
|
|
51
|
-
Naming/
|
51
|
+
Naming/MethodParameterName:
|
52
52
|
Enabled: false
|
53
53
|
|
54
54
|
Naming/ConstantName:
|
@@ -66,6 +66,9 @@ Layout/EmptyLineAfterGuardClause:
|
|
66
66
|
RSpec/MultipleExpectations:
|
67
67
|
Enabled: false
|
68
68
|
|
69
|
+
RSpec/NestedGroups:
|
70
|
+
Max: 4
|
71
|
+
|
69
72
|
RSpec/ExampleLength:
|
70
73
|
Max: 40
|
71
74
|
|
data/CHANGELOG.md
CHANGED
data/README.md
CHANGED
@@ -15,7 +15,8 @@ Logistic Regression, Ridge, Lasso, Factorization Machine,
|
|
15
15
|
Multi-layer Perceptron,
|
16
16
|
Naive Bayes, Decision Tree, Gradient Tree Boosting, Random Forest,
|
17
17
|
K-Means, Gaussian Mixture Model, DBSCAN, Spectral Clustering,
|
18
|
-
Mutidimensional Scaling, t-SNE, Principal Component Analysis,
|
18
|
+
Mutidimensional Scaling, t-SNE, Principal Component Analysis, Non-negative Matrix Factorization,
|
19
|
+
and many other algorithms.
|
19
20
|
|
20
21
|
This project was formerly known as "SVMKit".
|
21
22
|
If you are using SVMKit, please install Rumale and replace `SVMKit` constants with `Rumale`.
|
@@ -229,9 +229,8 @@ module Rumale
|
|
229
229
|
end
|
230
230
|
|
231
231
|
def check_enable_linalg(method_name)
|
232
|
-
|
233
|
-
|
234
|
-
end
|
232
|
+
return unless @params[:covariance_type] == 'full' && !enable_linalg?
|
233
|
+
raise "GaussianMixture##{method_name} requires Numo::Linalg when covariance_type is 'full' but that is not loaded."
|
235
234
|
end
|
236
235
|
end
|
237
236
|
end
|
@@ -46,7 +46,7 @@ module Rumale
|
|
46
46
|
# If nil is given, number of leaves is not limited.
|
47
47
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
48
48
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
49
|
-
# If nil is given, split process considers
|
49
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
50
50
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
51
51
|
# If nil is given, the method does not execute in parallel.
|
52
52
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -77,7 +77,7 @@ module Rumale
|
|
77
77
|
check_sample_label_size(x, y)
|
78
78
|
# Initialize some variables.
|
79
79
|
n_features = x.shape[1]
|
80
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
80
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
81
81
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
82
82
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
83
83
|
sub_rng = @rng.dup
|
@@ -42,7 +42,7 @@ module Rumale
|
|
42
42
|
# If nil is given, number of leaves is not limited.
|
43
43
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
44
44
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
45
|
-
# If nil is given, split process considers
|
45
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
46
46
|
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
47
47
|
# If nil is given, the methods do not execute in parallel.
|
48
48
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -73,7 +73,7 @@ module Rumale
|
|
73
73
|
check_sample_tvalue_size(x, y)
|
74
74
|
# Initialize some variables.
|
75
75
|
n_features = x.shape[1]
|
76
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
76
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
77
77
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
78
78
|
sub_rng = @rng.dup
|
79
79
|
# Construct forest.
|
@@ -49,6 +49,7 @@ module Rumale
|
|
49
49
|
# @param n_estimators [Integer] The numeber of trees for contructing classifier.
|
50
50
|
# @param learning_rate [Float] The boosting learining rate
|
51
51
|
# @param reg_lambda [Float] The L2 regularization term on weight.
|
52
|
+
# @param subsample [Float] The subsampling ratio of the training samples.
|
52
53
|
# @param max_depth [Integer] The maximum depth of the tree.
|
53
54
|
# If nil is given, decision tree grows without concern for depth.
|
54
55
|
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
@@ -44,6 +44,7 @@ module Rumale
|
|
44
44
|
# @param n_estimators [Integer] The numeber of trees for contructing regressor.
|
45
45
|
# @param learning_rate [Float] The boosting learining rate
|
46
46
|
# @param reg_lambda [Float] The L2 regularization term on weight.
|
47
|
+
# @param subsample [Float] The subsampling ratio of the training samples.
|
47
48
|
# @param max_depth [Integer] The maximum depth of the tree.
|
48
49
|
# If nil is given, decision tree grows without concern for depth.
|
49
50
|
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
@@ -47,7 +47,7 @@ module Rumale
|
|
47
47
|
# If nil is given, number of leaves is not limited.
|
48
48
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
49
49
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
50
|
-
# If nil is given, split process considers
|
50
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
51
51
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
52
52
|
# If nil is given, the method does not execute in parallel.
|
53
53
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -91,7 +91,7 @@ module Rumale
|
|
91
91
|
check_sample_label_size(x, y)
|
92
92
|
# Initialize some variables.
|
93
93
|
n_samples, n_features = x.shape
|
94
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
94
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
95
95
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
96
96
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
97
97
|
sub_rng = @rng.dup
|
@@ -42,7 +42,7 @@ module Rumale
|
|
42
42
|
# If nil is given, number of leaves is not limited.
|
43
43
|
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
44
44
|
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
45
|
-
# If nil is given, split process considers
|
45
|
+
# If nil is given, split process considers 'Math.sqrt(n_features)' features.
|
46
46
|
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
47
47
|
# If nil is given, the methods do not execute in parallel.
|
48
48
|
# If zero or less is given, it becomes equal to the number of processors.
|
@@ -85,7 +85,7 @@ module Rumale
|
|
85
85
|
check_sample_tvalue_size(x, y)
|
86
86
|
# Initialize some variables.
|
87
87
|
n_samples, n_features = x.shape
|
88
|
-
@params[:max_features] = Math.sqrt(n_features).to_i
|
88
|
+
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
89
89
|
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
90
90
|
single_target = y.shape[1].nil?
|
91
91
|
sub_rng = @rng.dup
|
data/lib/rumale/version.rb
CHANGED
data/rumale.gemspec
CHANGED
@@ -20,7 +20,8 @@ Gem::Specification.new do |spec|
|
|
20
20
|
Multi-layer Perceptron,
|
21
21
|
Naive Bayes, Decision Tree, Gradient Tree Boosting, Random Forest,
|
22
22
|
K-Means, Gaussian Mixture Model, DBSCAN, Spectral Clustering,
|
23
|
-
Mutidimensional Scaling, t-SNE, Principal Component Analysis,
|
23
|
+
Mutidimensional Scaling, t-SNE, Principal Component Analysis, Non-negative Matrix Factorization,
|
24
|
+
and many other algorithms.
|
24
25
|
MSG
|
25
26
|
spec.homepage = 'https://github.com/yoshoku/rumale'
|
26
27
|
spec.license = 'BSD-2-Clause'
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.14.
|
4
|
+
version: 0.14.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-12-
|
11
|
+
date: 2019-12-16 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -130,7 +130,8 @@ description: |
|
|
130
130
|
Multi-layer Perceptron,
|
131
131
|
Naive Bayes, Decision Tree, Gradient Tree Boosting, Random Forest,
|
132
132
|
K-Means, Gaussian Mixture Model, DBSCAN, Spectral Clustering,
|
133
|
-
Mutidimensional Scaling, t-SNE, Principal Component Analysis,
|
133
|
+
Mutidimensional Scaling, t-SNE, Principal Component Analysis, Non-negative Matrix Factorization,
|
134
|
+
and many other algorithms.
|
134
135
|
email:
|
135
136
|
- yoshoku@outlook.com
|
136
137
|
executables: []
|