rumale-torch 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.github/workflows/build.yml +33 -0
- data/.gitignore +18 -0
- data/.rspec +3 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +84 -0
- data/Gemfile +10 -0
- data/LICENSE.txt +27 -0
- data/README.md +222 -0
- data/Rakefile +8 -0
- data/lib/rumale/torch.rb +8 -0
- data/lib/rumale/torch/neural_net_classifier.rb +223 -0
- data/lib/rumale/torch/neural_net_regressor.rb +205 -0
- data/lib/rumale/torch/version.rb +11 -0
- data/rumale-torch.gemspec +32 -0
- metadata +91 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 0ec07a29a0bfa24f06e95a9cd8ca4e80eb61ffcb80d66caa2fc29b9f288bbb70
|
4
|
+
data.tar.gz: 4831243f51051c809c73d090424341fffec4b194f9f6e8fb83e648ab5ba4619e
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 053ed2b73a9edb5bb44631ed815555ca9bea25dab6de0edaa88bbd3358de07ea488d9c830ed083a99cb62007691512beb8cf68b0380fa440ecdfd22d5c1457c6
|
7
|
+
data.tar.gz: 1c483667b49e6bab0d2bd9cf8665b1f5d1f2e7a58f3e70b01800f50dc89d98b3cedd03ad30cb59c441c4c8bb355d63556863bb238081e304e20dfc15cd2d478c
|
@@ -0,0 +1,33 @@
|
|
1
|
+
name: build
|
2
|
+
on: [push, pull_request]
|
3
|
+
jobs:
|
4
|
+
build:
|
5
|
+
runs-on: ubuntu-20.04
|
6
|
+
strategy:
|
7
|
+
matrix:
|
8
|
+
ruby: [ '2.5', '2.6', '2.7' ]
|
9
|
+
env:
|
10
|
+
LIBTORCH_VERSION: 1.7.1
|
11
|
+
steps:
|
12
|
+
- uses: actions/checkout@v2
|
13
|
+
- name: Set up Ruby ${{ matrix.ruby }}
|
14
|
+
uses: actions/setup-ruby@v1
|
15
|
+
with:
|
16
|
+
ruby-version: ${{ matrix.ruby }}
|
17
|
+
- uses: actions/cache@v2
|
18
|
+
with:
|
19
|
+
path: ~/libtorch
|
20
|
+
key: libtorch-${{ env.LIBTORCH_VERSION }}
|
21
|
+
id: cache-libtorch
|
22
|
+
- name: Download LibTorch
|
23
|
+
if: steps.cache-libtorch.outputs.cache-hit != 'true'
|
24
|
+
run: |
|
25
|
+
cd ~
|
26
|
+
wget -q -O libtorch.zip https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-$LIBTORCH_VERSION%2Bcpu.zip
|
27
|
+
unzip -q libtorch.zip
|
28
|
+
- name: Build and test with Rake
|
29
|
+
run: |
|
30
|
+
gem install bundler
|
31
|
+
bundle config build.torch-rb --with-torch-dir=$HOME/libtorch
|
32
|
+
bundle install
|
33
|
+
bundle exec rake
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/CHANGELOG.md
ADDED
data/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,84 @@
|
|
1
|
+
# Contributor Covenant Code of Conduct
|
2
|
+
|
3
|
+
## Our Pledge
|
4
|
+
|
5
|
+
We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.
|
6
|
+
|
7
|
+
We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.
|
8
|
+
|
9
|
+
## Our Standards
|
10
|
+
|
11
|
+
Examples of behavior that contributes to a positive environment for our community include:
|
12
|
+
|
13
|
+
* Demonstrating empathy and kindness toward other people
|
14
|
+
* Being respectful of differing opinions, viewpoints, and experiences
|
15
|
+
* Giving and gracefully accepting constructive feedback
|
16
|
+
* Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
|
17
|
+
* Focusing on what is best not just for us as individuals, but for the overall community
|
18
|
+
|
19
|
+
Examples of unacceptable behavior include:
|
20
|
+
|
21
|
+
* The use of sexualized language or imagery, and sexual attention or
|
22
|
+
advances of any kind
|
23
|
+
* Trolling, insulting or derogatory comments, and personal or political attacks
|
24
|
+
* Public or private harassment
|
25
|
+
* Publishing others' private information, such as a physical or email
|
26
|
+
address, without their explicit permission
|
27
|
+
* Other conduct which could reasonably be considered inappropriate in a
|
28
|
+
professional setting
|
29
|
+
|
30
|
+
## Enforcement Responsibilities
|
31
|
+
|
32
|
+
Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.
|
33
|
+
|
34
|
+
Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.
|
35
|
+
|
36
|
+
## Scope
|
37
|
+
|
38
|
+
This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
|
39
|
+
|
40
|
+
## Enforcement
|
41
|
+
|
42
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at yoshoku@outlook.com. All complaints will be reviewed and investigated promptly and fairly.
|
43
|
+
|
44
|
+
All community leaders are obligated to respect the privacy and security of the reporter of any incident.
|
45
|
+
|
46
|
+
## Enforcement Guidelines
|
47
|
+
|
48
|
+
Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:
|
49
|
+
|
50
|
+
### 1. Correction
|
51
|
+
|
52
|
+
**Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.
|
53
|
+
|
54
|
+
**Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.
|
55
|
+
|
56
|
+
### 2. Warning
|
57
|
+
|
58
|
+
**Community Impact**: A violation through a single incident or series of actions.
|
59
|
+
|
60
|
+
**Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.
|
61
|
+
|
62
|
+
### 3. Temporary Ban
|
63
|
+
|
64
|
+
**Community Impact**: A serious violation of community standards, including sustained inappropriate behavior.
|
65
|
+
|
66
|
+
**Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.
|
67
|
+
|
68
|
+
### 4. Permanent Ban
|
69
|
+
|
70
|
+
**Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.
|
71
|
+
|
72
|
+
**Consequence**: A permanent ban from any sort of public interaction within the community.
|
73
|
+
|
74
|
+
## Attribution
|
75
|
+
|
76
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0,
|
77
|
+
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
|
78
|
+
|
79
|
+
Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity).
|
80
|
+
|
81
|
+
[homepage]: https://www.contributor-covenant.org
|
82
|
+
|
83
|
+
For answers to common questions about this code of conduct, see the FAQ at
|
84
|
+
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
|
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Copyright (c) 2020 Atsushi Tatsuma
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
* Neither the name of the copyright holder nor the names of its
|
15
|
+
contributors may be used to endorse or promote products derived from
|
16
|
+
this software without specific prior written permission.
|
17
|
+
|
18
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
21
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
22
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
24
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
25
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
26
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,222 @@
|
|
1
|
+
# Rumale::Torch
|
2
|
+
|
3
|
+
[![Build Status](https://github.com/yoshoku/rumale-torch/workflows/build/badge.svg)](https://github.com/yoshoku/rumale-torch/actions?query=workflow%3Abuild)
|
4
|
+
[![Gem Version](https://badge.fury.io/rb/rumale-torch.svg)](https://badge.fury.io/rb/rumale-torch)
|
5
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale-torch/blob/main/LICENSE.txt)
|
6
|
+
[![Documentation](http://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale-torch/doc/)
|
7
|
+
|
8
|
+
Rumale::Torch provides the learning and inference by the neural network defined in [torch.rb](https://github.com/ankane/torch.rb)
|
9
|
+
with the same interface as [Rumale](https://github.com/yoshoku/rumale).
|
10
|
+
|
11
|
+
## Installation
|
12
|
+
torch.rb is a runtime dependent gem of Rumale::Torch. It requires to install [LibTorch](https://github.com/ankane/torch.rb#libtorch-installation):
|
13
|
+
|
14
|
+
$ brew install automake libtorch
|
15
|
+
|
16
|
+
Here, automake is needed to install [rice](https://github.com/jasonroelofs/rice) gem, which torch.rb depends on.
|
17
|
+
|
18
|
+
Add this line to your application's Gemfile:
|
19
|
+
|
20
|
+
```ruby
|
21
|
+
gem 'rumale-torch'
|
22
|
+
```
|
23
|
+
|
24
|
+
And then execute:
|
25
|
+
|
26
|
+
$ bundle install
|
27
|
+
|
28
|
+
Or install it yourself as:
|
29
|
+
|
30
|
+
$ gem install rumale-torch
|
31
|
+
|
32
|
+
## Usage
|
33
|
+
|
34
|
+
### Example 1. Pendigits dataset classification
|
35
|
+
|
36
|
+
We start by downloading the pendigits dataset from [LIBSVM Data](https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/) web site.
|
37
|
+
|
38
|
+
```bash
|
39
|
+
$ wget https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/pendigits
|
40
|
+
$ wget https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/pendigits.t
|
41
|
+
```
|
42
|
+
|
43
|
+
Training phase:
|
44
|
+
|
45
|
+
```ruby
|
46
|
+
require 'rumale'
|
47
|
+
require 'rumale/torch'
|
48
|
+
|
49
|
+
Torch.manual_seed(1)
|
50
|
+
device = Torch.device('cpu')
|
51
|
+
|
52
|
+
# Loading pendigits dataset consisting of
|
53
|
+
# 16-dimensional data divided into 10 classes.
|
54
|
+
x, y = Rumale::Dataset.load_libsvm_file('pendigits')
|
55
|
+
|
56
|
+
# Define a neural network in torch.rb framework.
|
57
|
+
class MyNet < Torch::NN::Module
|
58
|
+
def initialize
|
59
|
+
super
|
60
|
+
@dropout = Torch::NN::Dropout.new(p: 0.5)
|
61
|
+
@fc1 = Torch::NN::Linear.new(16, 128)
|
62
|
+
@fc2 = Torch::NN::Linear.new(128, 10)
|
63
|
+
end
|
64
|
+
|
65
|
+
def forward(x)
|
66
|
+
x = @fc1.call(x)
|
67
|
+
x = Torch::NN::F.relu(x)
|
68
|
+
x = @dropout.call(x)
|
69
|
+
x = @fc2.call(x)
|
70
|
+
Torch::NN::F.softmax(x)
|
71
|
+
end
|
72
|
+
end
|
73
|
+
|
74
|
+
net = MyNet.new.to(device)
|
75
|
+
|
76
|
+
# Create a classifier with neural network model.
|
77
|
+
classifier = Rumale::Torch::NeuralNetClassifier.new(
|
78
|
+
model: net, device: device,
|
79
|
+
batch_size: 10, max_epoch: 50, validation_split: 0.1,
|
80
|
+
verbose: true
|
81
|
+
)
|
82
|
+
|
83
|
+
# Learning classifier.
|
84
|
+
classifier.fit(x, y)
|
85
|
+
|
86
|
+
# Saving model.
|
87
|
+
Torch.save(net.state_dict, 'pendigits.pth')
|
88
|
+
File.binwrite('pendigits.dat', Marshal.dump(classifier))
|
89
|
+
```
|
90
|
+
|
91
|
+
Testing phase:
|
92
|
+
|
93
|
+
```ruby
|
94
|
+
require 'rumale'
|
95
|
+
require 'rumale/torch'
|
96
|
+
|
97
|
+
# Loading neural network model.
|
98
|
+
class MyNet < Torch::NN::Module
|
99
|
+
def initialize
|
100
|
+
super
|
101
|
+
@dropout = Torch::NN::Dropout.new(p: 0.5)
|
102
|
+
@fc1 = Torch::NN::Linear.new(16, 128)
|
103
|
+
@fc2 = Torch::NN::Linear.new(128, 10)
|
104
|
+
end
|
105
|
+
|
106
|
+
def forward(x)
|
107
|
+
x = @fc1.call(x)
|
108
|
+
x = Torch::NN::F.relu(x)
|
109
|
+
# x = @dropout.call(x)
|
110
|
+
x = @fc2.call(x)
|
111
|
+
Torch::NN::F.softmax(x)
|
112
|
+
end
|
113
|
+
end
|
114
|
+
|
115
|
+
net = MyNet.new
|
116
|
+
net.load_state_dict(Torch.load('pendigits.pth'))
|
117
|
+
|
118
|
+
# Loading classifier.
|
119
|
+
classifier = Marshal.load(File.binread('pendigits.dat'))
|
120
|
+
classifier.model = net
|
121
|
+
|
122
|
+
# Loading test dataset.
|
123
|
+
x_test, y_test = Rumale::Dataset.load_libsvm_file('pendigits.t')
|
124
|
+
|
125
|
+
# Predict labels of test data.
|
126
|
+
p_test = classifier.predict(x_test)
|
127
|
+
|
128
|
+
# Evaluate predicted result.
|
129
|
+
accuracy = Rumale::EvaluationMeasure::Accuracy.new.score(y_test, p_test)
|
130
|
+
puts(format("Accuracy: %2.1f%%", accuracy * 100))
|
131
|
+
```
|
132
|
+
|
133
|
+
The result of executing the above scripts is as follows:
|
134
|
+
|
135
|
+
```sh
|
136
|
+
$ ruby train.rb
|
137
|
+
epoch: 1/50 - loss: 0.2073 - accuracy: 0.3885 - val_loss: 0.2074 - val_accuracy: 0.3853
|
138
|
+
epoch: 2/50 - loss: 0.1973 - accuracy: 0.4883 - val_loss: 0.1970 - val_accuracy: 0.4893
|
139
|
+
epoch: 3/50 - loss: 0.1962 - accuracy: 0.4997 - val_loss: 0.1959 - val_accuracy: 0.5013
|
140
|
+
|
141
|
+
...
|
142
|
+
|
143
|
+
epoch: 50/50 - loss: 0.1542 - accuracy: 0.9199 - val_loss: 0.1531 - val_accuracy: 0.9293
|
144
|
+
|
145
|
+
$ ruby test.rb
|
146
|
+
Accuracy: 91.2%
|
147
|
+
```
|
148
|
+
|
149
|
+
### Example 2. Cross-validation with Rumale
|
150
|
+
|
151
|
+
Perform 5-fold cross-validation for regression problem using the housing dataset.
|
152
|
+
|
153
|
+
```sh
|
154
|
+
$ wget https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/housing
|
155
|
+
```
|
156
|
+
|
157
|
+
The example script:
|
158
|
+
|
159
|
+
```ruby
|
160
|
+
require 'rumale'
|
161
|
+
require 'rumale/torch'
|
162
|
+
|
163
|
+
Torch.manual_seed(1)
|
164
|
+
device = Torch.device('cpu')
|
165
|
+
|
166
|
+
# Loading pendigits dataset consisting of
|
167
|
+
# 13-dimensional data with single target variable.
|
168
|
+
x, y = Rumale::Dataset.load_libsvm_file('housing')
|
169
|
+
|
170
|
+
# Define a neural network in torch.rb framework.
|
171
|
+
class MyNet < Torch::NN::Module
|
172
|
+
def initialize
|
173
|
+
super
|
174
|
+
@fc1 = Torch::NN::Linear.new(13, 128)
|
175
|
+
@fc2 = Torch::NN::Linear.new(128, 1)
|
176
|
+
end
|
177
|
+
|
178
|
+
def forward(x)
|
179
|
+
x = @fc1.call(x)
|
180
|
+
x = Torch::NN::F.relu(x)
|
181
|
+
x = @fc2.call(x)
|
182
|
+
end
|
183
|
+
end
|
184
|
+
|
185
|
+
net = MyNet.new.to(device)
|
186
|
+
|
187
|
+
# Create a regressor with neural network model.
|
188
|
+
regressor = Rumale::Torch::NeuralNetRegressor.new(
|
189
|
+
model: net, device: device, batch_size: 10, max_epoch: 100
|
190
|
+
)
|
191
|
+
|
192
|
+
# Create evaluation measure, splitting strategy, and cross validation.
|
193
|
+
ev = Rumale::EvaluationMeasure::R2Score.new
|
194
|
+
kf = Rumale::ModelSelection::ShuffleSplit.new(n_splits: 5, test_size: 0.1, random_seed: 1)
|
195
|
+
cv = Rumale::ModelSelection::CrossValidation.new(estimator: regressor, splitter: kf, evaluator: ev)
|
196
|
+
|
197
|
+
# Perform 5-cross validation.
|
198
|
+
report = cv.perform(x, y)
|
199
|
+
|
200
|
+
# Output result.
|
201
|
+
mean_score = report[:test_score].sum / kf.n_splits
|
202
|
+
puts(format("5-CV R2-score: %.3f", mean_score))
|
203
|
+
```
|
204
|
+
|
205
|
+
The execution result is as follows:
|
206
|
+
|
207
|
+
```ruby
|
208
|
+
$ ruby cv.rb
|
209
|
+
5-CV R2-score: 0.755
|
210
|
+
```
|
211
|
+
|
212
|
+
## Contributing
|
213
|
+
|
214
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/rumale-torch. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [code of conduct](https://github.com/yoshoku/rumale-torch/blob/master/CODE_OF_CONDUCT.md).
|
215
|
+
|
216
|
+
## License
|
217
|
+
|
218
|
+
The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
|
219
|
+
|
220
|
+
## Code of Conduct
|
221
|
+
|
222
|
+
Everyone interacting in the Rumale::Torch project's codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/yoshoku/rumale-torch/blob/master/CODE_OF_CONDUCT.md).
|
data/Rakefile
ADDED
data/lib/rumale/torch.rb
ADDED
@@ -0,0 +1,223 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/preprocessing/label_encoder'
|
6
|
+
require 'rumale/model_selection/function'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Torch
|
10
|
+
# NeuralNetClassifier is a class that provides learning and inference by the neural network defined in torch.rb
|
11
|
+
# with an interface similar to classifier of Rumale.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# require 'rumale/torch'
|
15
|
+
#
|
16
|
+
# class MyNet < Torch::NN::Module
|
17
|
+
# def initialize
|
18
|
+
# super
|
19
|
+
# @dropout = Torch::NN::Dropout.new(p: 0.5)
|
20
|
+
# @fc1 = Torch::NN::Linear.new(2, 8)
|
21
|
+
# @fc2 = Torch::NN::Linear.new(8, 2)
|
22
|
+
# end
|
23
|
+
#
|
24
|
+
# def forward(x)
|
25
|
+
# x = @fc1.call(x)
|
26
|
+
# x = Torch::NN::F.relu(x)
|
27
|
+
# x = @dropout.call(x)
|
28
|
+
# x = @fc2.call(x)
|
29
|
+
# Torch::NN::F.softmax(x)
|
30
|
+
# end
|
31
|
+
# end
|
32
|
+
#
|
33
|
+
# device = Torch.device('gpu')
|
34
|
+
# net = MyNet.new.to(device)
|
35
|
+
#
|
36
|
+
# classifier = Rumale::Torch::NeuralNetClassifier.new(model: net, device: device, batch_size: 50, max_epoch: 10)
|
37
|
+
# classifier.fit(x, y)
|
38
|
+
#
|
39
|
+
# classifier.predict(x)
|
40
|
+
#
|
41
|
+
class NeuralNetClassifier
|
42
|
+
include Base::BaseEstimator
|
43
|
+
include Base::Classifier
|
44
|
+
|
45
|
+
# Return the class labels.
|
46
|
+
# @return [Numo::Int32] (size: n_classes)
|
47
|
+
attr_reader :classes
|
48
|
+
|
49
|
+
# Return the neural nets defined with torch.rb.
|
50
|
+
# @return [Torch::NN::Module]
|
51
|
+
attr_accessor :model
|
52
|
+
|
53
|
+
# Return the compute device.
|
54
|
+
# @return [Torch::Device]
|
55
|
+
attr_accessor :device
|
56
|
+
|
57
|
+
# Return the optimizer.
|
58
|
+
# @return [Torch::Optim]
|
59
|
+
attr_accessor :optimizer
|
60
|
+
|
61
|
+
# Return the loss function.
|
62
|
+
# @return [Torch::NN]
|
63
|
+
attr_accessor :loss
|
64
|
+
|
65
|
+
# Create a new classifier with neural nets defined by torch.rb.
|
66
|
+
#
|
67
|
+
# @param model [Torch::NN::Module] The neural nets defined with torch.rb.
|
68
|
+
# @param device [Torch::Device/Nil] The compute device to be used.
|
69
|
+
# If nil is given, it to be set to Torch.device('cpu').
|
70
|
+
# @param optimizer [Torch::Optim/Nil] The optimizer to be used to optimize the model.
|
71
|
+
# If nil is given, it to be set to Torch::Optim::Adam.
|
72
|
+
# @param loss [Torch:NN] The loss function to be used to optimize the model.
|
73
|
+
# If nil is given, it to be set to Torch::NN::CrossEntropyLoss.
|
74
|
+
# @param batch_size [Integer] The number of samples per batch to load.
|
75
|
+
# @param max_epoch [Integer] The number of epochs to train the model.
|
76
|
+
# @param shuffle [Boolean] The flag indicating whether to shuffle the data at every epoch.
|
77
|
+
# @param validation_split [Float] The fraction of the training data to be used as validation data.
|
78
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during epoch.
|
79
|
+
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator for data splitting.
|
80
|
+
def initialize(model:, device: nil, optimizer: nil, loss: nil,
|
81
|
+
batch_size: 128, max_epoch: 10, shuffle: true, validation_split: 0,
|
82
|
+
verbose: false, random_seed: nil)
|
83
|
+
@model = model
|
84
|
+
@device = device || ::Torch.device('cpu')
|
85
|
+
@optimizer = optimizer || ::Torch::Optim::Adam.new(model.parameters)
|
86
|
+
@loss = loss || ::Torch::NN::CrossEntropyLoss.new
|
87
|
+
@params = {}
|
88
|
+
@params[:batch_size] = batch_size
|
89
|
+
@params[:max_epoch] = max_epoch
|
90
|
+
@params[:shuffle] = shuffle
|
91
|
+
@params[:validation_split] = validation_split
|
92
|
+
@params[:verbose] = verbose
|
93
|
+
@params[:random_seed] = random_seed || srand
|
94
|
+
define_parameter_accessors
|
95
|
+
end
|
96
|
+
|
97
|
+
# Fit the model with given training data.
|
98
|
+
#
|
99
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
100
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
101
|
+
# @return [NeuralNetClassifier] The learned classifier itself.
|
102
|
+
def fit(x, y)
|
103
|
+
encoder = Rumale::Preprocessing::LabelEncoder.new
|
104
|
+
y_encoded = encoder.fit_transform(y)
|
105
|
+
@classes = Numo::NArray[*encoder.classes]
|
106
|
+
|
107
|
+
train_loader, test_loader = prepare_dataset(x, y_encoded)
|
108
|
+
|
109
|
+
model.children.each do |layer|
|
110
|
+
layer.reset_parameters if layer.class.method_defined?(:reset_parameters)
|
111
|
+
end
|
112
|
+
|
113
|
+
1.upto(max_epoch) do |epoch|
|
114
|
+
train(train_loader)
|
115
|
+
display_epoch(train_loader, test_loader, epoch) if verbose
|
116
|
+
end
|
117
|
+
|
118
|
+
self
|
119
|
+
end
|
120
|
+
|
121
|
+
# Predict class labels for samples.
|
122
|
+
#
|
123
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
124
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
125
|
+
def predict(x)
|
126
|
+
output = ::Torch.no_grad { model.call(::Torch.from_numo(x).to(:float32)) }
|
127
|
+
_, indices = ::Torch.max(output, 1)
|
128
|
+
@classes[indices.numo].dup
|
129
|
+
end
|
130
|
+
|
131
|
+
# Calculate confidence scores for samples.
|
132
|
+
#
|
133
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
134
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) The confidence score per sample.
|
135
|
+
def decision_function(x)
|
136
|
+
Numo::DFloat.cast(::Torch.no_grad { model.call(::Torch.from_numo(x).to(:float32)) }.numo)
|
137
|
+
end
|
138
|
+
|
139
|
+
# @!visibility private
|
140
|
+
def marshal_dump
|
141
|
+
{ classes: @classes, params: @params }
|
142
|
+
end
|
143
|
+
|
144
|
+
# @!visibility private
|
145
|
+
def marshal_load(obj)
|
146
|
+
@model = nil
|
147
|
+
@device = nil
|
148
|
+
@optimizer = nil
|
149
|
+
@loss = nil
|
150
|
+
@classes = obj[:classes]
|
151
|
+
@params = obj[:params]
|
152
|
+
define_parameter_accessors
|
153
|
+
end
|
154
|
+
|
155
|
+
private
|
156
|
+
|
157
|
+
def define_parameter_accessors
|
158
|
+
@params.each_key do |name|
|
159
|
+
self.class.send(:define_method, name) { @params[name] }
|
160
|
+
self.class.send(:private, name)
|
161
|
+
end
|
162
|
+
end
|
163
|
+
|
164
|
+
def prepare_dataset(x, y)
|
165
|
+
n_validations = (validation_split * x.shape[0]).ceil.to_i
|
166
|
+
return [torch_data_loader(x, y), nil] unless n_validations.positive?
|
167
|
+
|
168
|
+
x_train, x_test, y_train, y_test = Rumale::ModelSelection.train_test_split(
|
169
|
+
x, y, test_size: validation_split, stratify: true, random_seed: random_seed
|
170
|
+
)
|
171
|
+
[torch_data_loader(x_train, y_train), torch_data_loader(x_test, y_test)]
|
172
|
+
end
|
173
|
+
|
174
|
+
def torch_data_loader(x, y)
|
175
|
+
x_tensor = ::Torch.from_numo(x).to(:float32)
|
176
|
+
y_tensor = ::Torch.from_numo(y).to(:int64)
|
177
|
+
dataset = ::Torch::Utils::Data::TensorDataset.new(x_tensor, y_tensor)
|
178
|
+
::Torch::Utils::Data::DataLoader.new(dataset, batch_size: batch_size, shuffle: shuffle)
|
179
|
+
end
|
180
|
+
|
181
|
+
def train(data_loader)
|
182
|
+
model.train
|
183
|
+
data_loader.each_with_index do |(data, target), _batch_idx|
|
184
|
+
data = data.to(device)
|
185
|
+
target = target.to(device)
|
186
|
+
optimizer.zero_grad
|
187
|
+
output = model.call(data)
|
188
|
+
ls = loss.call(output, target)
|
189
|
+
ls.backward
|
190
|
+
optimizer.step
|
191
|
+
end
|
192
|
+
end
|
193
|
+
|
194
|
+
def display_epoch(train_loader, test_loader, epoch)
|
195
|
+
if test_loader.nil?
|
196
|
+
puts(format("epoch: %#{max_epoch.to_s.length}d/#{max_epoch} - loss: %.4f - accuracy: %.4f", epoch, *evaluate(train_loader)))
|
197
|
+
else
|
198
|
+
puts(format("epoch: %#{max_epoch.to_s.length}d/#{max_epoch} - loss: %.4f - accuracy: %.4f - val_loss: %.4f - val_accuracy: %.4f", epoch, *evaluate(train_loader), *evaluate(test_loader)))
|
199
|
+
end
|
200
|
+
end
|
201
|
+
|
202
|
+
def evaluate(data_loader)
|
203
|
+
model.eval
|
204
|
+
mean_loss = 0
|
205
|
+
correct = 0
|
206
|
+
::Torch.no_grad do
|
207
|
+
data_loader.each do |data, target|
|
208
|
+
data = data.to(device)
|
209
|
+
target = target.to(device)
|
210
|
+
output = model.call(data)
|
211
|
+
mean_loss += loss.call(output, target).item
|
212
|
+
pred = output.argmax(1, keepdim: true).view(-1)
|
213
|
+
correct += pred.eq(target.view_as(pred)).sum.item
|
214
|
+
end
|
215
|
+
end
|
216
|
+
|
217
|
+
mean_loss /= data_loader.dataset.size
|
218
|
+
accuracy = correct.fdiv(data_loader.dataset.size)
|
219
|
+
[mean_loss, accuracy]
|
220
|
+
end
|
221
|
+
end
|
222
|
+
end
|
223
|
+
end
|
@@ -0,0 +1,205 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/regressor'
|
5
|
+
require 'rumale/model_selection/shuffle_split'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module Torch
|
9
|
+
# NeuralNetRegressor is a class that provides learning and inference by the neural network defined in torch.rb
|
10
|
+
# with an interface similar to regressor of Rumale.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'rumale/torch'
|
14
|
+
#
|
15
|
+
# class MyNet < Torch::NN::Module
|
16
|
+
# def initialize
|
17
|
+
# super
|
18
|
+
# @dropout = Torch::NN::Dropout.new(p: 0.5)
|
19
|
+
# @fc1 = Torch::NN::Linear.new(2, 64)
|
20
|
+
# @fc2 = Torch::NN::Linear.new(64, 1)
|
21
|
+
# end
|
22
|
+
#
|
23
|
+
# def forward(x)
|
24
|
+
# x = @fc1.call(x)
|
25
|
+
# x = Torch::NN::F.relu(x)
|
26
|
+
# x = @dropout.call(x)
|
27
|
+
# @fc2.call(x)
|
28
|
+
# end
|
29
|
+
# end
|
30
|
+
#
|
31
|
+
# device = Torch.device('gpu')
|
32
|
+
# net = MyNet.new.to(device)
|
33
|
+
#
|
34
|
+
# regressor = Rumale::Torch::NeuralNetRegressor.new(model: net, device: device, batch_size: 50, max_epoch: 10)
|
35
|
+
# regressor.fit(x, y)
|
36
|
+
#
|
37
|
+
# regressor.predict(x)
|
38
|
+
#
|
39
|
+
class NeuralNetRegressor
|
40
|
+
include Base::BaseEstimator
|
41
|
+
include Base::Regressor
|
42
|
+
|
43
|
+
# Return the neural nets defined with torch.rb.
|
44
|
+
# @return [Torch::NN::Module]
|
45
|
+
attr_accessor :model
|
46
|
+
|
47
|
+
# Return the compute device.
|
48
|
+
# @return [Torch::Device]
|
49
|
+
attr_accessor :device
|
50
|
+
|
51
|
+
# Return the optimizer.
|
52
|
+
# @return [Torch::Optim]
|
53
|
+
attr_accessor :optimizer
|
54
|
+
|
55
|
+
# Return the loss function.
|
56
|
+
# @return [Torch::NN]
|
57
|
+
attr_accessor :loss
|
58
|
+
|
59
|
+
# Create a new regressor with neural nets defined by torch.rb.
|
60
|
+
#
|
61
|
+
# @param model [Torch::NN::Module] The neural nets defined with torch.rb.
|
62
|
+
# @param device [Torch::Device/Nil] The compute device to be used.
|
63
|
+
# If nil is given, it to be set to Torch.device('cpu').
|
64
|
+
# @param optimizer [Torch::Optim/Nil] The optimizer to be used to optimize the model.
|
65
|
+
# If nil is given, it to be set to Torch::Optim::Adam.
|
66
|
+
# @param loss [Torch:NN] The loss function to be used to optimize the model.
|
67
|
+
# If nil is given, it to be set to Torch::NN::MSELoss.
|
68
|
+
# @param batch_size [Integer] The number of samples per batch to load.
|
69
|
+
# @param max_epoch [Integer] The number of epochs to train the model.
|
70
|
+
# @param shuffle [Boolean] The flag indicating whether to shuffle the data at every epoch.
|
71
|
+
# @param validation_split [Float] The fraction of the training data to be used as validation data.
|
72
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during epoch.
|
73
|
+
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator for data splitting.
|
74
|
+
def initialize(model:, device: nil, optimizer: nil, loss: nil,
|
75
|
+
batch_size: 128, max_epoch: 10, shuffle: true, validation_split: 0,
|
76
|
+
verbose: false, random_seed: nil)
|
77
|
+
@model = model
|
78
|
+
@device = device || ::Torch.device('cpu')
|
79
|
+
@optimizer = optimizer || ::Torch::Optim::Adam.new(model.parameters)
|
80
|
+
@loss = loss || ::Torch::NN::MSELoss.new
|
81
|
+
@params = {}
|
82
|
+
@params[:batch_size] = batch_size
|
83
|
+
@params[:max_epoch] = max_epoch
|
84
|
+
@params[:shuffle] = shuffle
|
85
|
+
@params[:validation_split] = validation_split
|
86
|
+
@params[:verbose] = verbose
|
87
|
+
@params[:random_seed] = random_seed || srand
|
88
|
+
define_parameter_accessors
|
89
|
+
end
|
90
|
+
|
91
|
+
# Fit the model with given training data.
|
92
|
+
#
|
93
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
94
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
95
|
+
# @return [NeuralNetRegressor] The learned regressor itself.
|
96
|
+
def fit(x, y)
|
97
|
+
y = y.expand_dims(1) if y.ndim == 1
|
98
|
+
|
99
|
+
train_loader, test_loader = prepare_dataset(x, y)
|
100
|
+
|
101
|
+
model.children.each do |layer|
|
102
|
+
layer.reset_parameters if layer.class.method_defined?(:reset_parameters)
|
103
|
+
end
|
104
|
+
|
105
|
+
1.upto(max_epoch) do |epoch|
|
106
|
+
train(train_loader)
|
107
|
+
display_epoch(train_loader, test_loader, epoch) if verbose
|
108
|
+
end
|
109
|
+
|
110
|
+
self
|
111
|
+
end
|
112
|
+
|
113
|
+
# Predict values for samples.
|
114
|
+
#
|
115
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
116
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) The predicted values per sample.
|
117
|
+
def predict(x)
|
118
|
+
output = Numo::DFloat.cast(::Torch.no_grad { model.call(::Torch.from_numo(x).to(:float32)) }.numo)
|
119
|
+
output.shape[1] == 1 ? output[true, 0].dup : output
|
120
|
+
end
|
121
|
+
|
122
|
+
# @!visibility private
|
123
|
+
def marshal_dump
|
124
|
+
{ params: @params }
|
125
|
+
end
|
126
|
+
|
127
|
+
# @!visibility private
|
128
|
+
def marshal_load(obj)
|
129
|
+
@model = nil
|
130
|
+
@device = nil
|
131
|
+
@optimizer = nil
|
132
|
+
@loss = nil
|
133
|
+
@params = obj[:params]
|
134
|
+
define_parameter_accessors
|
135
|
+
end
|
136
|
+
|
137
|
+
private
|
138
|
+
|
139
|
+
def define_parameter_accessors
|
140
|
+
@params.each_key do |name|
|
141
|
+
self.class.send(:define_method, name) { @params[name] }
|
142
|
+
self.class.send(:private, name)
|
143
|
+
end
|
144
|
+
end
|
145
|
+
|
146
|
+
def prepare_dataset(x, y)
|
147
|
+
n_validations = (validation_split * x.shape[0]).ceil.to_i
|
148
|
+
return [torch_data_loader(x, y), nil] unless n_validations.positive?
|
149
|
+
|
150
|
+
splitter = Rumale::ModelSelection::ShuffleSplit.new(
|
151
|
+
n_splits: 1, test_size: validation_split, random_seed: random_seed
|
152
|
+
)
|
153
|
+
train_ids, test_ids = splitter.split(x).first
|
154
|
+
x_train = x[train_ids, true]
|
155
|
+
x_test = x[test_ids, true]
|
156
|
+
y_train = y[train_ids, true]
|
157
|
+
y_test = y[test_ids, true]
|
158
|
+
[torch_data_loader(x_train, y_train), torch_data_loader(x_test, y_test)]
|
159
|
+
end
|
160
|
+
|
161
|
+
def torch_data_loader(x, y)
|
162
|
+
x_tensor = ::Torch.from_numo(x).to(:float32)
|
163
|
+
y_tensor = ::Torch.from_numo(y).to(:float32)
|
164
|
+
dataset = ::Torch::Utils::Data::TensorDataset.new(x_tensor, y_tensor)
|
165
|
+
::Torch::Utils::Data::DataLoader.new(dataset, batch_size: batch_size, shuffle: shuffle)
|
166
|
+
end
|
167
|
+
|
168
|
+
def train(data_loader)
|
169
|
+
model.train
|
170
|
+
data_loader.each_with_index do |(data, target), _batch_idx|
|
171
|
+
data = data.to(device)
|
172
|
+
target = target.to(device)
|
173
|
+
optimizer.zero_grad
|
174
|
+
output = model.call(data)
|
175
|
+
ls = loss.call(output, target)
|
176
|
+
ls.backward
|
177
|
+
optimizer.step
|
178
|
+
end
|
179
|
+
end
|
180
|
+
|
181
|
+
def display_epoch(train_loader, test_loader, epoch)
|
182
|
+
if test_loader.nil?
|
183
|
+
puts(format("epoch: %#{max_epoch.to_s.length}d/#{max_epoch} - loss: %.4f", epoch, evaluate(train_loader)))
|
184
|
+
else
|
185
|
+
puts(format("epoch: %#{max_epoch.to_s.length}d/#{max_epoch} - loss: %.4f - val_loss: %.4f", epoch, evaluate(train_loader), evaluate(test_loader)))
|
186
|
+
end
|
187
|
+
end
|
188
|
+
|
189
|
+
def evaluate(data_loader)
|
190
|
+
model.eval
|
191
|
+
mean_loss = 0
|
192
|
+
::Torch.no_grad do
|
193
|
+
data_loader.each do |data, target|
|
194
|
+
data = data.to(device)
|
195
|
+
target = target.to(device)
|
196
|
+
output = model.call(data)
|
197
|
+
mean_loss += loss.call(output, target).item
|
198
|
+
end
|
199
|
+
end
|
200
|
+
|
201
|
+
mean_loss / data_loader.dataset.size
|
202
|
+
end
|
203
|
+
end
|
204
|
+
end
|
205
|
+
end
|
@@ -0,0 +1,11 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
# Rumale is a machine learning library in Ruby.
|
4
|
+
module Rumale
|
5
|
+
# Rumale::Torch provides the learning and inference function by
|
6
|
+
# the neural nets defined in torch.rb with the same interface as Rumale.
|
7
|
+
module Torch
|
8
|
+
# The version of Rumale::Torch you are using.
|
9
|
+
VERSION = '0.1.0'
|
10
|
+
end
|
11
|
+
end
|
@@ -0,0 +1,32 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require_relative 'lib/rumale/torch/version'
|
4
|
+
|
5
|
+
Gem::Specification.new do |spec|
|
6
|
+
spec.name = 'rumale-torch'
|
7
|
+
spec.version = Rumale::Torch::VERSION
|
8
|
+
spec.authors = ['yoshoku']
|
9
|
+
spec.email = ['yoshoku@outlook.com']
|
10
|
+
|
11
|
+
spec.summary = 'Rumale::Torch provides the learning and inference by the neural network defined in torch.rb with the same interface as Rumale'
|
12
|
+
spec.description = 'Rumale::Torch provides the learning and inference by the neural network defined in torch.rb with the same interface as Rumale'
|
13
|
+
spec.homepage = 'https://github.com/yoshoku/rumale-torch'
|
14
|
+
spec.license = 'BSD-3-Clause'
|
15
|
+
|
16
|
+
spec.metadata['homepage_uri'] = spec.homepage
|
17
|
+
spec.metadata['source_code_uri'] = spec.homepage
|
18
|
+
spec.metadata['changelog_uri'] = 'https://github.com/yoshoku/rumale-torch/blob/main/CHANGELOG.md'
|
19
|
+
spec.metadata['documentation_uri'] = 'https://yoshoku.github.io/rumale-torch/doc/'
|
20
|
+
|
21
|
+
# Specify which files should be added to the gem when it is released.
|
22
|
+
# The `git ls-files -z` loads the files in the RubyGem that have been added into git.
|
23
|
+
spec.files = Dir.chdir(File.expand_path(__dir__)) do
|
24
|
+
`git ls-files -z`.split("\x0").reject { |f| f.match(%r{\A(?:test|spec|features)/}) }
|
25
|
+
end
|
26
|
+
spec.bindir = 'exe'
|
27
|
+
spec.executables = spec.files.grep(%r{\Aexe/}) { |f| File.basename(f) }
|
28
|
+
spec.require_paths = ['lib']
|
29
|
+
|
30
|
+
spec.add_runtime_dependency 'rumale'
|
31
|
+
spec.add_runtime_dependency 'torch-rb'
|
32
|
+
end
|
metadata
ADDED
@@ -0,0 +1,91 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rumale-torch
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2020-12-29 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: rumale
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '0'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '0'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: torch-rb
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - ">="
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '0'
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '0'
|
41
|
+
description: Rumale::Torch provides the learning and inference by the neural network
|
42
|
+
defined in torch.rb with the same interface as Rumale
|
43
|
+
email:
|
44
|
+
- yoshoku@outlook.com
|
45
|
+
executables: []
|
46
|
+
extensions: []
|
47
|
+
extra_rdoc_files: []
|
48
|
+
files:
|
49
|
+
- ".github/workflows/build.yml"
|
50
|
+
- ".gitignore"
|
51
|
+
- ".rspec"
|
52
|
+
- CHANGELOG.md
|
53
|
+
- CODE_OF_CONDUCT.md
|
54
|
+
- Gemfile
|
55
|
+
- LICENSE.txt
|
56
|
+
- README.md
|
57
|
+
- Rakefile
|
58
|
+
- lib/rumale/torch.rb
|
59
|
+
- lib/rumale/torch/neural_net_classifier.rb
|
60
|
+
- lib/rumale/torch/neural_net_regressor.rb
|
61
|
+
- lib/rumale/torch/version.rb
|
62
|
+
- rumale-torch.gemspec
|
63
|
+
homepage: https://github.com/yoshoku/rumale-torch
|
64
|
+
licenses:
|
65
|
+
- BSD-3-Clause
|
66
|
+
metadata:
|
67
|
+
homepage_uri: https://github.com/yoshoku/rumale-torch
|
68
|
+
source_code_uri: https://github.com/yoshoku/rumale-torch
|
69
|
+
changelog_uri: https://github.com/yoshoku/rumale-torch/blob/main/CHANGELOG.md
|
70
|
+
documentation_uri: https://yoshoku.github.io/rumale-torch/doc/
|
71
|
+
post_install_message:
|
72
|
+
rdoc_options: []
|
73
|
+
require_paths:
|
74
|
+
- lib
|
75
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
76
|
+
requirements:
|
77
|
+
- - ">="
|
78
|
+
- !ruby/object:Gem::Version
|
79
|
+
version: '0'
|
80
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
81
|
+
requirements:
|
82
|
+
- - ">="
|
83
|
+
- !ruby/object:Gem::Version
|
84
|
+
version: '0'
|
85
|
+
requirements: []
|
86
|
+
rubygems_version: 3.1.4
|
87
|
+
signing_key:
|
88
|
+
specification_version: 4
|
89
|
+
summary: Rumale::Torch provides the learning and inference by the neural network defined
|
90
|
+
in torch.rb with the same interface as Rumale
|
91
|
+
test_files: []
|