rumale-svm 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +18 -0
- data/.rspec +3 -0
- data/.travis.yml +13 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +27 -0
- data/README.md +92 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale/svm.rb +11 -0
- data/lib/rumale/svm/linear_svc.rb +238 -0
- data/lib/rumale/svm/linear_svr.rb +150 -0
- data/lib/rumale/svm/logistic_regression.rb +190 -0
- data/lib/rumale/svm/nu_svc.rb +193 -0
- data/lib/rumale/svm/nu_svr.rb +156 -0
- data/lib/rumale/svm/one_class_svm.rb +150 -0
- data/lib/rumale/svm/svc.rb +194 -0
- data/lib/rumale/svm/svr.rb +160 -0
- data/lib/rumale/svm/version.rb +10 -0
- data/rumale-svm.gemspec +40 -0
- metadata +171 -0
@@ -0,0 +1,156 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'numo/libsvm'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/regressor'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module SVM
|
9
|
+
# NuSVR is a class that provides Kernel Nu-Support Vector Regressor in LIBSVM with Rumale interface.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# estimator = Rumale::SVM::NuSVR.new(nu: 0.5, kernel: 'rbf', gamma: 10.0, random_seed: 1)
|
13
|
+
# estimator.fit(training_samples, traininig_target_values)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
class NuSVR
|
16
|
+
include Base::BaseEstimator
|
17
|
+
include Base::Regressor
|
18
|
+
|
19
|
+
# Create a new regressor with Kernel Nu-Support Vector Regressor.
|
20
|
+
#
|
21
|
+
# @param nu [Float] The regularization parameter. The interval of nu is (0, 1].
|
22
|
+
# @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', 'sigmoid', and 'precomputed').
|
23
|
+
# @param degree [Integer] The degree parameter in polynomial kernel function.
|
24
|
+
# @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
|
25
|
+
# @param coef0 [Float] The coefficient in poly/sigmoid kernel function.
|
26
|
+
# @param shrinking [Boolean] The flag indicating whether to use the shrinking heuristics.
|
27
|
+
# @param cache_size [Float] The cache memory size in MB.
|
28
|
+
# @param tol [Float] The tolerance of termination criterion.
|
29
|
+
# @param verbose [Boolean] The flag indicating whether to output learning process message
|
30
|
+
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
31
|
+
def initialize(nu: 0.5, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
32
|
+
shrinking: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
33
|
+
check_params_float(nu: nu, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
|
34
|
+
check_params_integer(degree: degree)
|
35
|
+
check_params_boolean(shrinking: shrinking, verbose: verbose)
|
36
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
37
|
+
@params = {}
|
38
|
+
@params[:nu] = nu
|
39
|
+
@params[:kernel] = kernel
|
40
|
+
@params[:degree] = degree
|
41
|
+
@params[:gamma] = gamma
|
42
|
+
@params[:coef0] = coef0
|
43
|
+
@params[:shrinking] = shrinking
|
44
|
+
@params[:cache_size] = cache_size
|
45
|
+
@params[:tol] = tol
|
46
|
+
@params[:verbose] = verbose
|
47
|
+
@params[:random_seed] = random_seed
|
48
|
+
@model = nil
|
49
|
+
end
|
50
|
+
|
51
|
+
# Fit the model with given training data.
|
52
|
+
#
|
53
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
54
|
+
# If the kernel is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
55
|
+
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
56
|
+
# @return [NuSVR] The learned regressor itself.
|
57
|
+
def fit(x, y)
|
58
|
+
check_sample_array(x)
|
59
|
+
check_tvalue_array(y)
|
60
|
+
check_sample_tvalue_size(x, y)
|
61
|
+
xx = precomputed_kernel? ? add_index_col(x) : x
|
62
|
+
@model = Numo::Libsvm.train(xx, y, libsvm_params)
|
63
|
+
self
|
64
|
+
end
|
65
|
+
|
66
|
+
# Predict values for samples.
|
67
|
+
#
|
68
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
69
|
+
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
70
|
+
# @return [Numo::DFloat] (shape: [n_samples]) Predicted value per sample.
|
71
|
+
def predict(x)
|
72
|
+
check_sample_array(x)
|
73
|
+
xx = precomputed_kernel? ? add_index_col(x) : x
|
74
|
+
Numo::Libsvm.predict(xx, libsvm_params, @model)
|
75
|
+
end
|
76
|
+
|
77
|
+
# Dump marshal data.
|
78
|
+
# @return [Hash] The marshal data about SVR.
|
79
|
+
def marshal_dump
|
80
|
+
{ params: @params,
|
81
|
+
model: @model }
|
82
|
+
end
|
83
|
+
|
84
|
+
# Load marshal data.
|
85
|
+
# @return [nil]
|
86
|
+
def marshal_load(obj)
|
87
|
+
@params = obj[:params]
|
88
|
+
@model = obj[:model]
|
89
|
+
nil
|
90
|
+
end
|
91
|
+
|
92
|
+
# Return the indices of support vectors.
|
93
|
+
# @return [Numo::Int32] (shape: [n_support_vectors])
|
94
|
+
def support
|
95
|
+
@model[:sv_indices]
|
96
|
+
end
|
97
|
+
|
98
|
+
# Return the support_vectors.
|
99
|
+
# @return [Numo::DFloat] (shape: [n_support_vectors, n_features])
|
100
|
+
def support_vectors
|
101
|
+
precomputed_kernel? ? del_index_col(@model[:SV]) : @model[:SV]
|
102
|
+
end
|
103
|
+
|
104
|
+
# Return the number of support vectors.
|
105
|
+
# @return [Integer]
|
106
|
+
def n_support
|
107
|
+
support.size
|
108
|
+
end
|
109
|
+
|
110
|
+
# Return the coefficients of the support vector in decision function.
|
111
|
+
# @return [Numo::DFloat] (shape: [1, n_support_vectors])
|
112
|
+
def duel_coef
|
113
|
+
@model[:sv_coef]
|
114
|
+
end
|
115
|
+
|
116
|
+
# Return the intercepts in decision function.
|
117
|
+
# @return [Numo::DFloat] (shape: [1])
|
118
|
+
def intercept
|
119
|
+
@model[:rho]
|
120
|
+
end
|
121
|
+
|
122
|
+
private
|
123
|
+
|
124
|
+
def add_index_col(x)
|
125
|
+
idx = Numo::Int32.new(x.shape[0]).seq + 1
|
126
|
+
Numo::NArray.hstack([idx.expand_dims(1), x])
|
127
|
+
end
|
128
|
+
|
129
|
+
def del_index_col(x)
|
130
|
+
x[true, 1..-1].dup
|
131
|
+
end
|
132
|
+
|
133
|
+
def precomputed_kernel?
|
134
|
+
@params[:kernel] == 'precomputed'
|
135
|
+
end
|
136
|
+
|
137
|
+
def libsvm_params
|
138
|
+
res = @params.merge(svm_type: Numo::Libsvm::SvmType::EPSILON_SVR)
|
139
|
+
res[:kernel_type] = case res.delete(:kernel)
|
140
|
+
when 'linear'
|
141
|
+
Numo::Libsvm::KernelType::LINEAR
|
142
|
+
when 'poly'
|
143
|
+
Numo::Libsvm::KernelType::POLY
|
144
|
+
when 'sigmoid'
|
145
|
+
Numo::Libsvm::KernelType::SIGMOID
|
146
|
+
when 'precomputed'
|
147
|
+
Numo::Libsvm::KernelType::PRECOMPUTED
|
148
|
+
else
|
149
|
+
Numo::Libsvm::KernelType::RBF
|
150
|
+
end
|
151
|
+
res[:eps] = res.delete(:tol)
|
152
|
+
res
|
153
|
+
end
|
154
|
+
end
|
155
|
+
end
|
156
|
+
end
|
@@ -0,0 +1,150 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'numo/libsvm'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module SVM
|
9
|
+
# OneClassSVM is a class that provides One-class Support Vector Machine in LIBSVM with Rumale interface.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# estimator = Rumale::SVM::OneClassSVM.new(nu: 0.5, kernel: 'rbf', gamma: 10.0, random_seed: 1)
|
13
|
+
# estimator.fit(training_samples, traininig_labels)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
class OneClassSVM
|
16
|
+
include Base::BaseEstimator
|
17
|
+
include Validation
|
18
|
+
|
19
|
+
# Create a new estimator with One-class Support Vector Machine.
|
20
|
+
#
|
21
|
+
# @param nu [Float] The regularization parameter. The interval of nu is (0, 1].
|
22
|
+
# @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', 'sigmoid', and 'precomputed').
|
23
|
+
# @param degree [Integer] The degree parameter in polynomial kernel function.
|
24
|
+
# @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
|
25
|
+
# @param coef0 [Float] The coefficient in poly/sigmoid kernel function.
|
26
|
+
# @param shrinking [Boolean] The flag indicating whether to use the shrinking heuristics.
|
27
|
+
# @param cache_size [Float] The cache memory size in MB.
|
28
|
+
# @param tol [Float] The tolerance of termination criterion.
|
29
|
+
# @param verbose [Boolean] The flag indicating whether to output learning process message
|
30
|
+
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
31
|
+
def initialize(nu: 1.0, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
32
|
+
shrinking: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
33
|
+
check_params_float(nu: nu, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
|
34
|
+
check_params_integer(degree: degree)
|
35
|
+
check_params_boolean(shrinking: shrinking, verbose: verbose)
|
36
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
37
|
+
@params = {}
|
38
|
+
@params[:nu] = nu
|
39
|
+
@params[:kernel] = kernel
|
40
|
+
@params[:degree] = degree
|
41
|
+
@params[:gamma] = gamma
|
42
|
+
@params[:coef0] = coef0
|
43
|
+
@params[:shrinking] = shrinking
|
44
|
+
@params[:cache_size] = cache_size
|
45
|
+
@params[:tol] = tol
|
46
|
+
@params[:verbose] = verbose
|
47
|
+
@params[:random_seed] = random_seed
|
48
|
+
@model = nil
|
49
|
+
end
|
50
|
+
|
51
|
+
# Fit the model with given training data.
|
52
|
+
#
|
53
|
+
# @overload fit(x) -> OneClassSVM
|
54
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
55
|
+
# If the kernel is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
56
|
+
# @return [OneClassSVM] The learned estimator itself.
|
57
|
+
def fit(x, _y = nil)
|
58
|
+
check_sample_array(x)
|
59
|
+
dummy = Numo::DFloat.ones(x.shape[0])
|
60
|
+
@model = Numo::Libsvm.train(x, dummy, libsvm_params)
|
61
|
+
self
|
62
|
+
end
|
63
|
+
|
64
|
+
# Calculate confidence scores for samples.
|
65
|
+
#
|
66
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
67
|
+
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
68
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
69
|
+
def decision_function(x)
|
70
|
+
check_sample_array(x)
|
71
|
+
Numo::Libsvm.decision_function(x, libsvm_params, @model)
|
72
|
+
end
|
73
|
+
|
74
|
+
# Predict class labels for samples.
|
75
|
+
#
|
76
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
77
|
+
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
78
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted label per sample.
|
79
|
+
def predict(x)
|
80
|
+
check_sample_array(x)
|
81
|
+
Numo::Int32.cast(Numo::Libsvm.predict(x, libsvm_params, @model))
|
82
|
+
end
|
83
|
+
|
84
|
+
# Dump marshal data.
|
85
|
+
# @return [Hash] The marshal data about SVC.
|
86
|
+
def marshal_dump
|
87
|
+
{ params: @params,
|
88
|
+
model: @model }
|
89
|
+
end
|
90
|
+
|
91
|
+
# Load marshal data.
|
92
|
+
# @return [nil]
|
93
|
+
def marshal_load(obj)
|
94
|
+
@params = obj[:params]
|
95
|
+
@model = obj[:model]
|
96
|
+
nil
|
97
|
+
end
|
98
|
+
|
99
|
+
# Return the indices of support vectors.
|
100
|
+
# @return [Numo::Int32] (shape: [n_support_vectors])
|
101
|
+
def support
|
102
|
+
@model[:sv_indices]
|
103
|
+
end
|
104
|
+
|
105
|
+
# Return the support_vectors.
|
106
|
+
# @return [Numo::DFloat] (shape: [n_support_vectors, n_features])
|
107
|
+
def support_vectors
|
108
|
+
@model[:SV]
|
109
|
+
end
|
110
|
+
|
111
|
+
# Return the number of support vectors.
|
112
|
+
# @return [Integer]
|
113
|
+
def n_support
|
114
|
+
@model[:sv_indices].size
|
115
|
+
end
|
116
|
+
|
117
|
+
# Return the coefficients of the support vector in decision function.
|
118
|
+
# @return [Numo::DFloat] (shape: [1, n_support_vectors])
|
119
|
+
def duel_coef
|
120
|
+
@model[:sv_coef]
|
121
|
+
end
|
122
|
+
|
123
|
+
# Return the intercepts in decision function.
|
124
|
+
# @return [Numo::DFloat] (shape: [1])
|
125
|
+
def intercept
|
126
|
+
@model[:rho]
|
127
|
+
end
|
128
|
+
|
129
|
+
private
|
130
|
+
|
131
|
+
def libsvm_params
|
132
|
+
res = @params.merge(svm_type: Numo::Libsvm::SvmType::ONE_CLASS)
|
133
|
+
res[:kernel_type] = case res.delete(:kernel)
|
134
|
+
when 'linear'
|
135
|
+
Numo::Libsvm::KernelType::LINEAR
|
136
|
+
when 'poly'
|
137
|
+
Numo::Libsvm::KernelType::POLY
|
138
|
+
when 'sigmoid'
|
139
|
+
Numo::Libsvm::KernelType::SIGMOID
|
140
|
+
when 'precomputed'
|
141
|
+
Numo::Libsvm::KernelType::PRECOMPUTED
|
142
|
+
else
|
143
|
+
Numo::Libsvm::KernelType::RBF
|
144
|
+
end
|
145
|
+
res[:eps] = res.delete(:tol)
|
146
|
+
res
|
147
|
+
end
|
148
|
+
end
|
149
|
+
end
|
150
|
+
end
|
@@ -0,0 +1,194 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'numo/libsvm'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/classifier'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module SVM
|
9
|
+
# SVC is a class that provides Kernel C-Support Vector Classifier in LIBSVM with Rumale interface.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# estimator = Rumale::SVM::SVC.new(reg_param: 1.0, kernel: 'rbf', gamma: 10.0, random_seed: 1)
|
13
|
+
# estimator.fit(training_samples, traininig_labels)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
class SVC
|
16
|
+
include Base::BaseEstimator
|
17
|
+
include Base::Classifier
|
18
|
+
|
19
|
+
# Create a new classifier with Kernel C-Support Vector Classifier.
|
20
|
+
#
|
21
|
+
# @param reg_param [Float] The regularization parameter.
|
22
|
+
# @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', 'sigmoid', and 'precomputed').
|
23
|
+
# @param degree [Integer] The degree parameter in polynomial kernel function.
|
24
|
+
# @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
|
25
|
+
# @param coef0 [Float] The coefficient in poly/sigmoid kernel function.
|
26
|
+
# @param shrinking [Boolean] The flag indicating whether to use the shrinking heuristics.
|
27
|
+
# @param probability [Boolean] The flag indicating whether to train the parameter for probability estimation.
|
28
|
+
# @param cache_size [Float] The cache memory size in MB.
|
29
|
+
# @param tol [Float] The tolerance of termination criterion.
|
30
|
+
# @param verbose [Boolean] The flag indicating whether to output learning process message
|
31
|
+
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
32
|
+
def initialize(reg_param: 1.0, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
33
|
+
shrinking: true, probability: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
34
|
+
check_params_float(reg_param: reg_param, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
|
35
|
+
check_params_integer(degree: degree)
|
36
|
+
check_params_boolean(shrinking: shrinking, probability: probability, verbose: verbose)
|
37
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
38
|
+
@params = {}
|
39
|
+
@params[:reg_param] = reg_param
|
40
|
+
@params[:kernel] = kernel
|
41
|
+
@params[:degree] = degree
|
42
|
+
@params[:gamma] = gamma
|
43
|
+
@params[:coef0] = coef0
|
44
|
+
@params[:shrinking] = shrinking
|
45
|
+
@params[:probability] = probability
|
46
|
+
@params[:cache_size] = cache_size
|
47
|
+
@params[:tol] = tol
|
48
|
+
@params[:verbose] = verbose
|
49
|
+
@params[:random_seed] = random_seed
|
50
|
+
@model = nil
|
51
|
+
end
|
52
|
+
|
53
|
+
# Fit the model with given training data.
|
54
|
+
#
|
55
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
56
|
+
# If the kernel is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
57
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
58
|
+
# @return [SVC] The learned classifier itself.
|
59
|
+
def fit(x, y)
|
60
|
+
check_sample_array(x)
|
61
|
+
check_label_array(y)
|
62
|
+
check_sample_label_size(x, y)
|
63
|
+
xx = precomputed_kernel? ? add_index_col(x) : x
|
64
|
+
@model = Numo::Libsvm.train(xx, y, libsvm_params)
|
65
|
+
self
|
66
|
+
end
|
67
|
+
|
68
|
+
# Calculate confidence scores for samples.
|
69
|
+
#
|
70
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
71
|
+
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
72
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
73
|
+
def decision_function(x)
|
74
|
+
check_sample_array(x)
|
75
|
+
xx = precomputed_kernel? ? add_index_col(x) : x
|
76
|
+
Numo::Libsvm.decision_function(xx, libsvm_params, @model)
|
77
|
+
end
|
78
|
+
|
79
|
+
# Predict class labels for samples.
|
80
|
+
#
|
81
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
82
|
+
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
83
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
84
|
+
def predict(x)
|
85
|
+
check_sample_array(x)
|
86
|
+
xx = precomputed_kernel? ? add_index_col(x) : x
|
87
|
+
Numo::Int32.cast(Numo::Libsvm.predict(xx, libsvm_params, @model))
|
88
|
+
end
|
89
|
+
|
90
|
+
# Predict class probability for samples.
|
91
|
+
# This method works correctly only if the probability parameter is true.
|
92
|
+
#
|
93
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
94
|
+
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
95
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
96
|
+
def predict_proba(x)
|
97
|
+
check_sample_array(x)
|
98
|
+
xx = precomputed_kernel? ? add_index_col(x) : x
|
99
|
+
Numo::Libsvm.predict_proba(xx, libsvm_params, @model)
|
100
|
+
end
|
101
|
+
|
102
|
+
# Dump marshal data.
|
103
|
+
# @return [Hash] The marshal data about SVC.
|
104
|
+
def marshal_dump
|
105
|
+
{ params: @params,
|
106
|
+
model: @model }
|
107
|
+
end
|
108
|
+
|
109
|
+
# Load marshal data.
|
110
|
+
# @return [nil]
|
111
|
+
def marshal_load(obj)
|
112
|
+
@params = obj[:params]
|
113
|
+
@model = obj[:model]
|
114
|
+
nil
|
115
|
+
end
|
116
|
+
|
117
|
+
# Return the indices of support vectors.
|
118
|
+
# @return [Numo::Int32] (shape: [n_support_vectors])
|
119
|
+
def support
|
120
|
+
@model[:sv_indices]
|
121
|
+
end
|
122
|
+
|
123
|
+
# Return the support_vectors.
|
124
|
+
# @return [Numo::DFloat] (shape: [n_support_vectors, n_features])
|
125
|
+
def support_vectors
|
126
|
+
precomputed_kernel? ? del_index_col(@model[:SV]) : @model[:SV]
|
127
|
+
end
|
128
|
+
|
129
|
+
# Return the number of support vectors for each class.
|
130
|
+
# @return [Numo::Int32] (shape: [n_classes])
|
131
|
+
def n_support
|
132
|
+
@model[:nSV]
|
133
|
+
end
|
134
|
+
|
135
|
+
# Return the coefficients of the support vector in decision function.
|
136
|
+
# @return [Numo::DFloat] (shape: [n_classes - 1, n_support_vectors])
|
137
|
+
def duel_coef
|
138
|
+
@model[:sv_coef]
|
139
|
+
end
|
140
|
+
|
141
|
+
# Return the intercepts in decision function.
|
142
|
+
# @return [Numo::DFloat] (shape: [n_classes * (n_classes - 1) / 2])
|
143
|
+
def intercept
|
144
|
+
@model[:rho]
|
145
|
+
end
|
146
|
+
|
147
|
+
# Return the probability parameter alpha.
|
148
|
+
# @return [Numo::DFloat] (shape: [n_classes * (n_classes - 1) / 2])
|
149
|
+
def prob_a
|
150
|
+
@model[:probA]
|
151
|
+
end
|
152
|
+
|
153
|
+
# Return the probability parameter beta.
|
154
|
+
# @return [Numo::DFloat] (shape: [n_classes * (n_classes - 1) / 2])
|
155
|
+
def prob_b
|
156
|
+
@model[:probB]
|
157
|
+
end
|
158
|
+
|
159
|
+
private
|
160
|
+
|
161
|
+
def add_index_col(x)
|
162
|
+
idx = Numo::Int32.new(x.shape[0]).seq + 1
|
163
|
+
Numo::NArray.hstack([idx.expand_dims(1), x])
|
164
|
+
end
|
165
|
+
|
166
|
+
def del_index_col(x)
|
167
|
+
x[true, 1..-1].dup
|
168
|
+
end
|
169
|
+
|
170
|
+
def precomputed_kernel?
|
171
|
+
@params[:kernel] == 'precomputed'
|
172
|
+
end
|
173
|
+
|
174
|
+
def libsvm_params
|
175
|
+
res = @params.merge(svm_type: Numo::Libsvm::SvmType::C_SVC)
|
176
|
+
res[:kernel_type] = case res.delete(:kernel)
|
177
|
+
when 'linear'
|
178
|
+
Numo::Libsvm::KernelType::LINEAR
|
179
|
+
when 'poly'
|
180
|
+
Numo::Libsvm::KernelType::POLY
|
181
|
+
when 'sigmoid'
|
182
|
+
Numo::Libsvm::KernelType::SIGMOID
|
183
|
+
when 'precomputed'
|
184
|
+
Numo::Libsvm::KernelType::PRECOMPUTED
|
185
|
+
else
|
186
|
+
Numo::Libsvm::KernelType::RBF
|
187
|
+
end
|
188
|
+
res[:C] = res.delete(:reg_param)
|
189
|
+
res[:eps] = res.delete(:tol)
|
190
|
+
res
|
191
|
+
end
|
192
|
+
end
|
193
|
+
end
|
194
|
+
end
|