rumale-svm 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,156 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'numo/libsvm'
4
+ require 'rumale/base/base_estimator'
5
+ require 'rumale/base/regressor'
6
+
7
+ module Rumale
8
+ module SVM
9
+ # NuSVR is a class that provides Kernel Nu-Support Vector Regressor in LIBSVM with Rumale interface.
10
+ #
11
+ # @example
12
+ # estimator = Rumale::SVM::NuSVR.new(nu: 0.5, kernel: 'rbf', gamma: 10.0, random_seed: 1)
13
+ # estimator.fit(training_samples, traininig_target_values)
14
+ # results = estimator.predict(testing_samples)
15
+ class NuSVR
16
+ include Base::BaseEstimator
17
+ include Base::Regressor
18
+
19
+ # Create a new regressor with Kernel Nu-Support Vector Regressor.
20
+ #
21
+ # @param nu [Float] The regularization parameter. The interval of nu is (0, 1].
22
+ # @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', 'sigmoid', and 'precomputed').
23
+ # @param degree [Integer] The degree parameter in polynomial kernel function.
24
+ # @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
25
+ # @param coef0 [Float] The coefficient in poly/sigmoid kernel function.
26
+ # @param shrinking [Boolean] The flag indicating whether to use the shrinking heuristics.
27
+ # @param cache_size [Float] The cache memory size in MB.
28
+ # @param tol [Float] The tolerance of termination criterion.
29
+ # @param verbose [Boolean] The flag indicating whether to output learning process message
30
+ # @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
31
+ def initialize(nu: 0.5, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
32
+ shrinking: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
33
+ check_params_float(nu: nu, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
34
+ check_params_integer(degree: degree)
35
+ check_params_boolean(shrinking: shrinking, verbose: verbose)
36
+ check_params_type_or_nil(Integer, random_seed: random_seed)
37
+ @params = {}
38
+ @params[:nu] = nu
39
+ @params[:kernel] = kernel
40
+ @params[:degree] = degree
41
+ @params[:gamma] = gamma
42
+ @params[:coef0] = coef0
43
+ @params[:shrinking] = shrinking
44
+ @params[:cache_size] = cache_size
45
+ @params[:tol] = tol
46
+ @params[:verbose] = verbose
47
+ @params[:random_seed] = random_seed
48
+ @model = nil
49
+ end
50
+
51
+ # Fit the model with given training data.
52
+ #
53
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
54
+ # If the kernel is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
55
+ # @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
56
+ # @return [NuSVR] The learned regressor itself.
57
+ def fit(x, y)
58
+ check_sample_array(x)
59
+ check_tvalue_array(y)
60
+ check_sample_tvalue_size(x, y)
61
+ xx = precomputed_kernel? ? add_index_col(x) : x
62
+ @model = Numo::Libsvm.train(xx, y, libsvm_params)
63
+ self
64
+ end
65
+
66
+ # Predict values for samples.
67
+ #
68
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
69
+ # If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
70
+ # @return [Numo::DFloat] (shape: [n_samples]) Predicted value per sample.
71
+ def predict(x)
72
+ check_sample_array(x)
73
+ xx = precomputed_kernel? ? add_index_col(x) : x
74
+ Numo::Libsvm.predict(xx, libsvm_params, @model)
75
+ end
76
+
77
+ # Dump marshal data.
78
+ # @return [Hash] The marshal data about SVR.
79
+ def marshal_dump
80
+ { params: @params,
81
+ model: @model }
82
+ end
83
+
84
+ # Load marshal data.
85
+ # @return [nil]
86
+ def marshal_load(obj)
87
+ @params = obj[:params]
88
+ @model = obj[:model]
89
+ nil
90
+ end
91
+
92
+ # Return the indices of support vectors.
93
+ # @return [Numo::Int32] (shape: [n_support_vectors])
94
+ def support
95
+ @model[:sv_indices]
96
+ end
97
+
98
+ # Return the support_vectors.
99
+ # @return [Numo::DFloat] (shape: [n_support_vectors, n_features])
100
+ def support_vectors
101
+ precomputed_kernel? ? del_index_col(@model[:SV]) : @model[:SV]
102
+ end
103
+
104
+ # Return the number of support vectors.
105
+ # @return [Integer]
106
+ def n_support
107
+ support.size
108
+ end
109
+
110
+ # Return the coefficients of the support vector in decision function.
111
+ # @return [Numo::DFloat] (shape: [1, n_support_vectors])
112
+ def duel_coef
113
+ @model[:sv_coef]
114
+ end
115
+
116
+ # Return the intercepts in decision function.
117
+ # @return [Numo::DFloat] (shape: [1])
118
+ def intercept
119
+ @model[:rho]
120
+ end
121
+
122
+ private
123
+
124
+ def add_index_col(x)
125
+ idx = Numo::Int32.new(x.shape[0]).seq + 1
126
+ Numo::NArray.hstack([idx.expand_dims(1), x])
127
+ end
128
+
129
+ def del_index_col(x)
130
+ x[true, 1..-1].dup
131
+ end
132
+
133
+ def precomputed_kernel?
134
+ @params[:kernel] == 'precomputed'
135
+ end
136
+
137
+ def libsvm_params
138
+ res = @params.merge(svm_type: Numo::Libsvm::SvmType::EPSILON_SVR)
139
+ res[:kernel_type] = case res.delete(:kernel)
140
+ when 'linear'
141
+ Numo::Libsvm::KernelType::LINEAR
142
+ when 'poly'
143
+ Numo::Libsvm::KernelType::POLY
144
+ when 'sigmoid'
145
+ Numo::Libsvm::KernelType::SIGMOID
146
+ when 'precomputed'
147
+ Numo::Libsvm::KernelType::PRECOMPUTED
148
+ else
149
+ Numo::Libsvm::KernelType::RBF
150
+ end
151
+ res[:eps] = res.delete(:tol)
152
+ res
153
+ end
154
+ end
155
+ end
156
+ end
@@ -0,0 +1,150 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'numo/libsvm'
4
+ require 'rumale/base/base_estimator'
5
+ require 'rumale/validation'
6
+
7
+ module Rumale
8
+ module SVM
9
+ # OneClassSVM is a class that provides One-class Support Vector Machine in LIBSVM with Rumale interface.
10
+ #
11
+ # @example
12
+ # estimator = Rumale::SVM::OneClassSVM.new(nu: 0.5, kernel: 'rbf', gamma: 10.0, random_seed: 1)
13
+ # estimator.fit(training_samples, traininig_labels)
14
+ # results = estimator.predict(testing_samples)
15
+ class OneClassSVM
16
+ include Base::BaseEstimator
17
+ include Validation
18
+
19
+ # Create a new estimator with One-class Support Vector Machine.
20
+ #
21
+ # @param nu [Float] The regularization parameter. The interval of nu is (0, 1].
22
+ # @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', 'sigmoid', and 'precomputed').
23
+ # @param degree [Integer] The degree parameter in polynomial kernel function.
24
+ # @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
25
+ # @param coef0 [Float] The coefficient in poly/sigmoid kernel function.
26
+ # @param shrinking [Boolean] The flag indicating whether to use the shrinking heuristics.
27
+ # @param cache_size [Float] The cache memory size in MB.
28
+ # @param tol [Float] The tolerance of termination criterion.
29
+ # @param verbose [Boolean] The flag indicating whether to output learning process message
30
+ # @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
31
+ def initialize(nu: 1.0, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
32
+ shrinking: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
33
+ check_params_float(nu: nu, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
34
+ check_params_integer(degree: degree)
35
+ check_params_boolean(shrinking: shrinking, verbose: verbose)
36
+ check_params_type_or_nil(Integer, random_seed: random_seed)
37
+ @params = {}
38
+ @params[:nu] = nu
39
+ @params[:kernel] = kernel
40
+ @params[:degree] = degree
41
+ @params[:gamma] = gamma
42
+ @params[:coef0] = coef0
43
+ @params[:shrinking] = shrinking
44
+ @params[:cache_size] = cache_size
45
+ @params[:tol] = tol
46
+ @params[:verbose] = verbose
47
+ @params[:random_seed] = random_seed
48
+ @model = nil
49
+ end
50
+
51
+ # Fit the model with given training data.
52
+ #
53
+ # @overload fit(x) -> OneClassSVM
54
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
55
+ # If the kernel is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
56
+ # @return [OneClassSVM] The learned estimator itself.
57
+ def fit(x, _y = nil)
58
+ check_sample_array(x)
59
+ dummy = Numo::DFloat.ones(x.shape[0])
60
+ @model = Numo::Libsvm.train(x, dummy, libsvm_params)
61
+ self
62
+ end
63
+
64
+ # Calculate confidence scores for samples.
65
+ #
66
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
67
+ # If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
68
+ # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
69
+ def decision_function(x)
70
+ check_sample_array(x)
71
+ Numo::Libsvm.decision_function(x, libsvm_params, @model)
72
+ end
73
+
74
+ # Predict class labels for samples.
75
+ #
76
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
77
+ # If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
78
+ # @return [Numo::Int32] (shape: [n_samples]) Predicted label per sample.
79
+ def predict(x)
80
+ check_sample_array(x)
81
+ Numo::Int32.cast(Numo::Libsvm.predict(x, libsvm_params, @model))
82
+ end
83
+
84
+ # Dump marshal data.
85
+ # @return [Hash] The marshal data about SVC.
86
+ def marshal_dump
87
+ { params: @params,
88
+ model: @model }
89
+ end
90
+
91
+ # Load marshal data.
92
+ # @return [nil]
93
+ def marshal_load(obj)
94
+ @params = obj[:params]
95
+ @model = obj[:model]
96
+ nil
97
+ end
98
+
99
+ # Return the indices of support vectors.
100
+ # @return [Numo::Int32] (shape: [n_support_vectors])
101
+ def support
102
+ @model[:sv_indices]
103
+ end
104
+
105
+ # Return the support_vectors.
106
+ # @return [Numo::DFloat] (shape: [n_support_vectors, n_features])
107
+ def support_vectors
108
+ @model[:SV]
109
+ end
110
+
111
+ # Return the number of support vectors.
112
+ # @return [Integer]
113
+ def n_support
114
+ @model[:sv_indices].size
115
+ end
116
+
117
+ # Return the coefficients of the support vector in decision function.
118
+ # @return [Numo::DFloat] (shape: [1, n_support_vectors])
119
+ def duel_coef
120
+ @model[:sv_coef]
121
+ end
122
+
123
+ # Return the intercepts in decision function.
124
+ # @return [Numo::DFloat] (shape: [1])
125
+ def intercept
126
+ @model[:rho]
127
+ end
128
+
129
+ private
130
+
131
+ def libsvm_params
132
+ res = @params.merge(svm_type: Numo::Libsvm::SvmType::ONE_CLASS)
133
+ res[:kernel_type] = case res.delete(:kernel)
134
+ when 'linear'
135
+ Numo::Libsvm::KernelType::LINEAR
136
+ when 'poly'
137
+ Numo::Libsvm::KernelType::POLY
138
+ when 'sigmoid'
139
+ Numo::Libsvm::KernelType::SIGMOID
140
+ when 'precomputed'
141
+ Numo::Libsvm::KernelType::PRECOMPUTED
142
+ else
143
+ Numo::Libsvm::KernelType::RBF
144
+ end
145
+ res[:eps] = res.delete(:tol)
146
+ res
147
+ end
148
+ end
149
+ end
150
+ end
@@ -0,0 +1,194 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'numo/libsvm'
4
+ require 'rumale/base/base_estimator'
5
+ require 'rumale/base/classifier'
6
+
7
+ module Rumale
8
+ module SVM
9
+ # SVC is a class that provides Kernel C-Support Vector Classifier in LIBSVM with Rumale interface.
10
+ #
11
+ # @example
12
+ # estimator = Rumale::SVM::SVC.new(reg_param: 1.0, kernel: 'rbf', gamma: 10.0, random_seed: 1)
13
+ # estimator.fit(training_samples, traininig_labels)
14
+ # results = estimator.predict(testing_samples)
15
+ class SVC
16
+ include Base::BaseEstimator
17
+ include Base::Classifier
18
+
19
+ # Create a new classifier with Kernel C-Support Vector Classifier.
20
+ #
21
+ # @param reg_param [Float] The regularization parameter.
22
+ # @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', 'sigmoid', and 'precomputed').
23
+ # @param degree [Integer] The degree parameter in polynomial kernel function.
24
+ # @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
25
+ # @param coef0 [Float] The coefficient in poly/sigmoid kernel function.
26
+ # @param shrinking [Boolean] The flag indicating whether to use the shrinking heuristics.
27
+ # @param probability [Boolean] The flag indicating whether to train the parameter for probability estimation.
28
+ # @param cache_size [Float] The cache memory size in MB.
29
+ # @param tol [Float] The tolerance of termination criterion.
30
+ # @param verbose [Boolean] The flag indicating whether to output learning process message
31
+ # @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
32
+ def initialize(reg_param: 1.0, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
33
+ shrinking: true, probability: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
34
+ check_params_float(reg_param: reg_param, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
35
+ check_params_integer(degree: degree)
36
+ check_params_boolean(shrinking: shrinking, probability: probability, verbose: verbose)
37
+ check_params_type_or_nil(Integer, random_seed: random_seed)
38
+ @params = {}
39
+ @params[:reg_param] = reg_param
40
+ @params[:kernel] = kernel
41
+ @params[:degree] = degree
42
+ @params[:gamma] = gamma
43
+ @params[:coef0] = coef0
44
+ @params[:shrinking] = shrinking
45
+ @params[:probability] = probability
46
+ @params[:cache_size] = cache_size
47
+ @params[:tol] = tol
48
+ @params[:verbose] = verbose
49
+ @params[:random_seed] = random_seed
50
+ @model = nil
51
+ end
52
+
53
+ # Fit the model with given training data.
54
+ #
55
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
56
+ # If the kernel is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
57
+ # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
58
+ # @return [SVC] The learned classifier itself.
59
+ def fit(x, y)
60
+ check_sample_array(x)
61
+ check_label_array(y)
62
+ check_sample_label_size(x, y)
63
+ xx = precomputed_kernel? ? add_index_col(x) : x
64
+ @model = Numo::Libsvm.train(xx, y, libsvm_params)
65
+ self
66
+ end
67
+
68
+ # Calculate confidence scores for samples.
69
+ #
70
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
71
+ # If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
72
+ # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
73
+ def decision_function(x)
74
+ check_sample_array(x)
75
+ xx = precomputed_kernel? ? add_index_col(x) : x
76
+ Numo::Libsvm.decision_function(xx, libsvm_params, @model)
77
+ end
78
+
79
+ # Predict class labels for samples.
80
+ #
81
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
82
+ # If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
83
+ # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
84
+ def predict(x)
85
+ check_sample_array(x)
86
+ xx = precomputed_kernel? ? add_index_col(x) : x
87
+ Numo::Int32.cast(Numo::Libsvm.predict(xx, libsvm_params, @model))
88
+ end
89
+
90
+ # Predict class probability for samples.
91
+ # This method works correctly only if the probability parameter is true.
92
+ #
93
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
94
+ # If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
95
+ # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
96
+ def predict_proba(x)
97
+ check_sample_array(x)
98
+ xx = precomputed_kernel? ? add_index_col(x) : x
99
+ Numo::Libsvm.predict_proba(xx, libsvm_params, @model)
100
+ end
101
+
102
+ # Dump marshal data.
103
+ # @return [Hash] The marshal data about SVC.
104
+ def marshal_dump
105
+ { params: @params,
106
+ model: @model }
107
+ end
108
+
109
+ # Load marshal data.
110
+ # @return [nil]
111
+ def marshal_load(obj)
112
+ @params = obj[:params]
113
+ @model = obj[:model]
114
+ nil
115
+ end
116
+
117
+ # Return the indices of support vectors.
118
+ # @return [Numo::Int32] (shape: [n_support_vectors])
119
+ def support
120
+ @model[:sv_indices]
121
+ end
122
+
123
+ # Return the support_vectors.
124
+ # @return [Numo::DFloat] (shape: [n_support_vectors, n_features])
125
+ def support_vectors
126
+ precomputed_kernel? ? del_index_col(@model[:SV]) : @model[:SV]
127
+ end
128
+
129
+ # Return the number of support vectors for each class.
130
+ # @return [Numo::Int32] (shape: [n_classes])
131
+ def n_support
132
+ @model[:nSV]
133
+ end
134
+
135
+ # Return the coefficients of the support vector in decision function.
136
+ # @return [Numo::DFloat] (shape: [n_classes - 1, n_support_vectors])
137
+ def duel_coef
138
+ @model[:sv_coef]
139
+ end
140
+
141
+ # Return the intercepts in decision function.
142
+ # @return [Numo::DFloat] (shape: [n_classes * (n_classes - 1) / 2])
143
+ def intercept
144
+ @model[:rho]
145
+ end
146
+
147
+ # Return the probability parameter alpha.
148
+ # @return [Numo::DFloat] (shape: [n_classes * (n_classes - 1) / 2])
149
+ def prob_a
150
+ @model[:probA]
151
+ end
152
+
153
+ # Return the probability parameter beta.
154
+ # @return [Numo::DFloat] (shape: [n_classes * (n_classes - 1) / 2])
155
+ def prob_b
156
+ @model[:probB]
157
+ end
158
+
159
+ private
160
+
161
+ def add_index_col(x)
162
+ idx = Numo::Int32.new(x.shape[0]).seq + 1
163
+ Numo::NArray.hstack([idx.expand_dims(1), x])
164
+ end
165
+
166
+ def del_index_col(x)
167
+ x[true, 1..-1].dup
168
+ end
169
+
170
+ def precomputed_kernel?
171
+ @params[:kernel] == 'precomputed'
172
+ end
173
+
174
+ def libsvm_params
175
+ res = @params.merge(svm_type: Numo::Libsvm::SvmType::C_SVC)
176
+ res[:kernel_type] = case res.delete(:kernel)
177
+ when 'linear'
178
+ Numo::Libsvm::KernelType::LINEAR
179
+ when 'poly'
180
+ Numo::Libsvm::KernelType::POLY
181
+ when 'sigmoid'
182
+ Numo::Libsvm::KernelType::SIGMOID
183
+ when 'precomputed'
184
+ Numo::Libsvm::KernelType::PRECOMPUTED
185
+ else
186
+ Numo::Libsvm::KernelType::RBF
187
+ end
188
+ res[:C] = res.delete(:reg_param)
189
+ res[:eps] = res.delete(:tol)
190
+ res
191
+ end
192
+ end
193
+ end
194
+ end