rumale-svm 0.1.0 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.github/workflows/build.yml +24 -0
- data/CHANGELOG.md +7 -0
- data/lib/rumale/svm/linear_svc.rb +12 -13
- data/lib/rumale/svm/linear_svr.rb +10 -10
- data/lib/rumale/svm/logistic_regression.rb +12 -13
- data/lib/rumale/svm/nu_svc.rb +15 -15
- data/lib/rumale/svm/nu_svr.rb +13 -13
- data/lib/rumale/svm/one_class_svm.rb +13 -13
- data/lib/rumale/svm/svc.rb +15 -15
- data/lib/rumale/svm/svr.rb +15 -14
- data/lib/rumale/svm/version.rb +1 -1
- data/rumale-svm.gemspec +2 -1
- metadata +10 -7
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 94a681354e720d47b0efe86bb2833b4ecdb1c3ff
|
4
|
+
data.tar.gz: 050ae3bb322c3a89ebbceb1b5e114988738a9404
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 3fe3c396ce596b589b508ecbce62258f14ef3733eb26d9d5829bad81c4bba2380fbf143178e1daabf0d9f523118099a0d56ed285bc5407da1c6af10e56283e23
|
7
|
+
data.tar.gz: fa78aa2cb873c8246b9ddc3c75063ae00ba9acf8c644d87b33900e16a813b870f2cffde7159625e695a1c0a3874d48a9302dca93e3670e25d05ba0caa180656c
|
@@ -0,0 +1,24 @@
|
|
1
|
+
name: build
|
2
|
+
|
3
|
+
on: [push]
|
4
|
+
|
5
|
+
jobs:
|
6
|
+
build:
|
7
|
+
|
8
|
+
runs-on: ubuntu-latest
|
9
|
+
|
10
|
+
strategy:
|
11
|
+
matrix:
|
12
|
+
ruby: ['2.4.x', '2.5.x', '2.6.x']
|
13
|
+
|
14
|
+
steps:
|
15
|
+
- uses: actions/checkout@master
|
16
|
+
- name: Set up Ruby
|
17
|
+
uses: actions/setup-ruby@master
|
18
|
+
with:
|
19
|
+
ruby-version: ${{ matrix.ruby }}
|
20
|
+
- name: Build and test with Rake
|
21
|
+
run: |
|
22
|
+
gem install bundler
|
23
|
+
bundle install --jobs 4 --retry 3
|
24
|
+
bundle exec rake
|
data/CHANGELOG.md
ADDED
@@ -42,23 +42,22 @@ module Rumale
|
|
42
42
|
# @param verbose [Boolean] The flag indicating whether to output learning process message
|
43
43
|
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
44
44
|
def initialize(penalty: 'l2', loss: 'squared_hinge', dual: true, reg_param: 1.0,
|
45
|
-
fit_bias: true, bias_scale: 1.0, probability: false,
|
46
|
-
tol: 1e-3, verbose: false, random_seed: nil)
|
45
|
+
fit_bias: true, bias_scale: 1.0, probability: false, tol: 1e-3, verbose: false, random_seed: nil)
|
47
46
|
check_params_string(penalty: penalty, loss: loss)
|
48
|
-
|
47
|
+
check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, tol: tol)
|
49
48
|
check_params_boolean(dual: dual, fit_bias: fit_bias, probability: probability, verbose: verbose)
|
50
|
-
|
49
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
51
50
|
@params = {}
|
52
51
|
@params[:penalty] = penalty == 'l1' ? 'l1' : 'l2'
|
53
52
|
@params[:loss] = loss == 'hinge' ? 'hinge' : 'squared_hinge'
|
54
53
|
@params[:dual] = dual
|
55
|
-
@params[:reg_param] = reg_param
|
54
|
+
@params[:reg_param] = reg_param.to_f
|
56
55
|
@params[:fit_bias] = fit_bias
|
57
|
-
@params[:bias_scale] = bias_scale
|
56
|
+
@params[:bias_scale] = bias_scale.to_f
|
58
57
|
@params[:probability] = probability
|
59
|
-
@params[:tol] = tol
|
58
|
+
@params[:tol] = tol.to_f
|
60
59
|
@params[:verbose] = verbose
|
61
|
-
@params[:random_seed] = random_seed
|
60
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
62
61
|
@model = nil
|
63
62
|
@weight_vec = nil
|
64
63
|
@bias_term = nil
|
@@ -71,8 +70,8 @@ module Rumale
|
|
71
70
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
72
71
|
# @return [LinearSVC] The learned classifier itself.
|
73
72
|
def fit(x, y)
|
74
|
-
|
75
|
-
|
73
|
+
x = check_convert_sample_array(x)
|
74
|
+
y = check_convert_label_array(y)
|
76
75
|
check_sample_label_size(x, y)
|
77
76
|
xx = fit_bias? ? expand_feature(x) : x
|
78
77
|
@model = Numo::Liblinear.train(xx, y, liblinear_params)
|
@@ -86,7 +85,7 @@ module Rumale
|
|
86
85
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
87
86
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
88
87
|
def decision_function(x)
|
89
|
-
|
88
|
+
x = check_convert_sample_array(x)
|
90
89
|
xx = fit_bias? ? expand_feature(x) : x
|
91
90
|
Numo::Liblinear.decision_function(xx, liblinear_params, @model)
|
92
91
|
end
|
@@ -96,7 +95,7 @@ module Rumale
|
|
96
95
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
97
96
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
98
97
|
def predict(x)
|
99
|
-
|
98
|
+
x = check_convert_sample_array(x)
|
100
99
|
xx = fit_bias? ? expand_feature(x) : x
|
101
100
|
Numo::Int32.cast(Numo::Liblinear.predict(xx, liblinear_params, @model))
|
102
101
|
end
|
@@ -107,7 +106,7 @@ module Rumale
|
|
107
106
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
108
107
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
109
108
|
def predict_proba(x)
|
110
|
-
|
109
|
+
x = check_convert_sample_array(x)
|
111
110
|
if binary_class?
|
112
111
|
probs = Numo::DFloat.zeros(x.shape[0], 2)
|
113
112
|
probs[true, 0] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
|
@@ -41,19 +41,19 @@ module Rumale
|
|
41
41
|
def initialize(loss: 'squared_epsilon_insensitive', dual: true, reg_param: 1.0, epsilon: 0.1,
|
42
42
|
fit_bias: true, bias_scale: 1.0, tol: 1e-3, verbose: false, random_seed: nil)
|
43
43
|
check_params_string(loss: loss)
|
44
|
-
|
44
|
+
check_params_numeric(reg_param: reg_param, epsilon: epsilon, bias_scale: bias_scale, tol: tol)
|
45
45
|
check_params_boolean(dual: dual, fit_bias: fit_bias, verbose: verbose)
|
46
|
-
|
46
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
47
47
|
@params = {}
|
48
48
|
@params[:loss] = loss == 'epsilon_insensitive' ? 'epsilon_insensitive' : 'squared_epsilon_insensitive'
|
49
49
|
@params[:dual] = dual
|
50
|
-
@params[:reg_param] = reg_param
|
51
|
-
@params[:epsilon] = epsilon
|
50
|
+
@params[:reg_param] = reg_param.to_f
|
51
|
+
@params[:epsilon] = epsilon.to_f
|
52
52
|
@params[:fit_bias] = fit_bias
|
53
|
-
@params[:bias_scale] = bias_scale
|
54
|
-
@params[:tol] = tol
|
53
|
+
@params[:bias_scale] = bias_scale.to_f
|
54
|
+
@params[:tol] = tol.to_f
|
55
55
|
@params[:verbose] = verbose
|
56
|
-
@params[:random_seed] = random_seed
|
56
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
57
57
|
@model = nil
|
58
58
|
@weight_vec = nil
|
59
59
|
@bias_term = nil
|
@@ -65,8 +65,8 @@ module Rumale
|
|
65
65
|
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
66
66
|
# @return [LinearSVR] The learned regressor itself.
|
67
67
|
def fit(x, y)
|
68
|
-
|
69
|
-
|
68
|
+
x = check_convert_sample_array(x)
|
69
|
+
y = check_convert_tvalue_array(y)
|
70
70
|
check_sample_tvalue_size(x, y)
|
71
71
|
xx = fit_bias? ? expand_feature(x) : x
|
72
72
|
@model = Numo::Liblinear.train(xx, y, liblinear_params)
|
@@ -79,7 +79,7 @@ module Rumale
|
|
79
79
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
80
80
|
# @return [Numo::DFloat] (shape: [n_samples]) Predicted value per sample.
|
81
81
|
def predict(x)
|
82
|
-
|
82
|
+
x = check_convert_sample_array(x)
|
83
83
|
xx = fit_bias? ? expand_feature(x) : x
|
84
84
|
Numo::Liblinear.predict(xx, liblinear_params, @model)
|
85
85
|
end
|
@@ -38,21 +38,20 @@ module Rumale
|
|
38
38
|
# @param verbose [Boolean] The flag indicating whether to output learning process message
|
39
39
|
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
40
40
|
def initialize(penalty: 'l2', dual: true, reg_param: 1.0,
|
41
|
-
fit_bias: true, bias_scale: 1.0,
|
42
|
-
tol: 1e-3, verbose: false, random_seed: nil)
|
41
|
+
fit_bias: true, bias_scale: 1.0, tol: 1e-3, verbose: false, random_seed: nil)
|
43
42
|
check_params_string(penalty: penalty)
|
44
|
-
|
43
|
+
check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, tol: tol)
|
45
44
|
check_params_boolean(dual: dual, fit_bias: fit_bias, verbose: verbose)
|
46
|
-
|
45
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
47
46
|
@params = {}
|
48
47
|
@params[:penalty] = penalty == 'l1' ? 'l1' : 'l2'
|
49
48
|
@params[:dual] = dual
|
50
|
-
@params[:reg_param] = reg_param
|
49
|
+
@params[:reg_param] = reg_param.to_f
|
51
50
|
@params[:fit_bias] = fit_bias
|
52
|
-
@params[:bias_scale] = bias_scale
|
53
|
-
@params[:tol] = tol
|
51
|
+
@params[:bias_scale] = bias_scale.to_f
|
52
|
+
@params[:tol] = tol.to_f
|
54
53
|
@params[:verbose] = verbose
|
55
|
-
@params[:random_seed] = random_seed
|
54
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
56
55
|
@model = nil
|
57
56
|
@weight_vec = nil
|
58
57
|
@bias_term = nil
|
@@ -64,8 +63,8 @@ module Rumale
|
|
64
63
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
65
64
|
# @return [LogisticRegression] The learned classifier itself.
|
66
65
|
def fit(x, y)
|
67
|
-
|
68
|
-
|
66
|
+
x = check_convert_sample_array(x)
|
67
|
+
y = check_convert_label_array(y)
|
69
68
|
check_sample_label_size(x, y)
|
70
69
|
xx = fit_bias? ? expand_feature(x) : x
|
71
70
|
@model = Numo::Liblinear.train(xx, y, liblinear_params)
|
@@ -78,7 +77,7 @@ module Rumale
|
|
78
77
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
79
78
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
80
79
|
def decision_function(x)
|
81
|
-
|
80
|
+
x = check_convert_sample_array(x)
|
82
81
|
xx = fit_bias? ? expand_feature(x) : x
|
83
82
|
Numo::Liblinear.decision_function(xx, liblinear_params, @model)
|
84
83
|
end
|
@@ -88,7 +87,7 @@ module Rumale
|
|
88
87
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
89
88
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
90
89
|
def predict(x)
|
91
|
-
|
90
|
+
x = check_convert_sample_array(x)
|
92
91
|
xx = fit_bias? ? expand_feature(x) : x
|
93
92
|
Numo::Int32.cast(Numo::Liblinear.predict(xx, liblinear_params, @model))
|
94
93
|
end
|
@@ -99,7 +98,7 @@ module Rumale
|
|
99
98
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
100
99
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
101
100
|
def predict_proba(x)
|
102
|
-
|
101
|
+
x = check_convert_sample_array(x)
|
103
102
|
xx = fit_bias? ? expand_feature(x) : x
|
104
103
|
Numo::Liblinear.predict_proba(xx, liblinear_params, @model)
|
105
104
|
end
|
data/lib/rumale/svm/nu_svc.rb
CHANGED
@@ -31,22 +31,22 @@ module Rumale
|
|
31
31
|
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
32
32
|
def initialize(nu: 0.5, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
33
33
|
shrinking: true, probability: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
34
|
-
|
35
|
-
|
34
|
+
check_params_numeric(nu: nu, degree: degree, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
|
35
|
+
check_params_string(kernel: kernel)
|
36
36
|
check_params_boolean(shrinking: shrinking, probability: probability, verbose: verbose)
|
37
|
-
|
37
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
38
38
|
@params = {}
|
39
|
-
@params[:nu] = nu
|
39
|
+
@params[:nu] = nu.to_f
|
40
40
|
@params[:kernel] = kernel
|
41
|
-
@params[:degree] = degree
|
42
|
-
@params[:gamma] = gamma
|
43
|
-
@params[:coef0] = coef0
|
41
|
+
@params[:degree] = degree.to_i
|
42
|
+
@params[:gamma] = gamma.to_f
|
43
|
+
@params[:coef0] = coef0.to_f
|
44
44
|
@params[:shrinking] = shrinking
|
45
45
|
@params[:probability] = probability
|
46
|
-
@params[:cache_size] = cache_size
|
47
|
-
@params[:tol] = tol
|
46
|
+
@params[:cache_size] = cache_size.to_f
|
47
|
+
@params[:tol] = tol.to_f
|
48
48
|
@params[:verbose] = verbose
|
49
|
-
@params[:random_seed] = random_seed
|
49
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
50
50
|
@model = nil
|
51
51
|
end
|
52
52
|
|
@@ -57,8 +57,8 @@ module Rumale
|
|
57
57
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
58
58
|
# @return [NuSVC] The learned classifier itself.
|
59
59
|
def fit(x, y)
|
60
|
-
|
61
|
-
|
60
|
+
x = check_convert_sample_array(x)
|
61
|
+
y = check_convert_label_array(y)
|
62
62
|
check_sample_label_size(x, y)
|
63
63
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
64
64
|
@model = Numo::Libsvm.train(xx, y, libsvm_params)
|
@@ -71,7 +71,7 @@ module Rumale
|
|
71
71
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
72
72
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
73
73
|
def decision_function(x)
|
74
|
-
|
74
|
+
x = check_convert_sample_array(x)
|
75
75
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
76
76
|
Numo::Libsvm.decision_function(xx, libsvm_params, @model)
|
77
77
|
end
|
@@ -82,7 +82,7 @@ module Rumale
|
|
82
82
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
83
83
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
84
84
|
def predict(x)
|
85
|
-
|
85
|
+
x = check_convert_sample_array(x)
|
86
86
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
87
87
|
Numo::Int32.cast(Numo::Libsvm.predict(xx, libsvm_params, @model))
|
88
88
|
end
|
@@ -94,7 +94,7 @@ module Rumale
|
|
94
94
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
95
95
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
96
96
|
def predict_proba(x)
|
97
|
-
|
97
|
+
x = check_convert_sample_array(x)
|
98
98
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
99
99
|
Numo::Libsvm.predict_proba(xx, libsvm_params, @model)
|
100
100
|
end
|
data/lib/rumale/svm/nu_svr.rb
CHANGED
@@ -30,21 +30,21 @@ module Rumale
|
|
30
30
|
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
31
31
|
def initialize(nu: 0.5, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
32
32
|
shrinking: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
33
|
-
|
34
|
-
|
33
|
+
check_params_numeric(nu: nu, degree: degree, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
|
34
|
+
check_params_string(kernel: kernel)
|
35
35
|
check_params_boolean(shrinking: shrinking, verbose: verbose)
|
36
|
-
|
36
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
37
37
|
@params = {}
|
38
|
-
@params[:nu] = nu
|
38
|
+
@params[:nu] = nu.to_f
|
39
39
|
@params[:kernel] = kernel
|
40
|
-
@params[:degree] = degree
|
41
|
-
@params[:gamma] = gamma
|
42
|
-
@params[:coef0] = coef0
|
40
|
+
@params[:degree] = degree.to_i
|
41
|
+
@params[:gamma] = gamma.to_f
|
42
|
+
@params[:coef0] = coef0.to_f
|
43
43
|
@params[:shrinking] = shrinking
|
44
|
-
@params[:cache_size] = cache_size
|
45
|
-
@params[:tol] = tol
|
44
|
+
@params[:cache_size] = cache_size.to_f
|
45
|
+
@params[:tol] = tol.to_f
|
46
46
|
@params[:verbose] = verbose
|
47
|
-
@params[:random_seed] = random_seed
|
47
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
48
48
|
@model = nil
|
49
49
|
end
|
50
50
|
|
@@ -55,8 +55,8 @@ module Rumale
|
|
55
55
|
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
56
56
|
# @return [NuSVR] The learned regressor itself.
|
57
57
|
def fit(x, y)
|
58
|
-
|
59
|
-
|
58
|
+
x = check_convert_sample_array(x)
|
59
|
+
y = check_convert_tvalue_array(y)
|
60
60
|
check_sample_tvalue_size(x, y)
|
61
61
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
62
62
|
@model = Numo::Libsvm.train(xx, y, libsvm_params)
|
@@ -69,7 +69,7 @@ module Rumale
|
|
69
69
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
70
70
|
# @return [Numo::DFloat] (shape: [n_samples]) Predicted value per sample.
|
71
71
|
def predict(x)
|
72
|
-
|
72
|
+
x = check_convert_sample_array(x)
|
73
73
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
74
74
|
Numo::Libsvm.predict(xx, libsvm_params, @model)
|
75
75
|
end
|
@@ -30,21 +30,21 @@ module Rumale
|
|
30
30
|
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
31
31
|
def initialize(nu: 1.0, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
32
32
|
shrinking: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
33
|
-
|
34
|
-
|
33
|
+
check_params_numeric(nu: nu, degree: degree, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
|
34
|
+
check_params_string(kernel: kernel)
|
35
35
|
check_params_boolean(shrinking: shrinking, verbose: verbose)
|
36
|
-
|
36
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
37
37
|
@params = {}
|
38
|
-
@params[:nu] = nu
|
38
|
+
@params[:nu] = nu.to_f
|
39
39
|
@params[:kernel] = kernel
|
40
|
-
@params[:degree] = degree
|
41
|
-
@params[:gamma] = gamma
|
42
|
-
@params[:coef0] = coef0
|
40
|
+
@params[:degree] = degree.to_i
|
41
|
+
@params[:gamma] = gamma.to_f
|
42
|
+
@params[:coef0] = coef0.to_f
|
43
43
|
@params[:shrinking] = shrinking
|
44
|
-
@params[:cache_size] = cache_size
|
45
|
-
@params[:tol] = tol
|
44
|
+
@params[:cache_size] = cache_size.to_f
|
45
|
+
@params[:tol] = tol.to_f
|
46
46
|
@params[:verbose] = verbose
|
47
|
-
@params[:random_seed] = random_seed
|
47
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
48
48
|
@model = nil
|
49
49
|
end
|
50
50
|
|
@@ -55,7 +55,7 @@ module Rumale
|
|
55
55
|
# If the kernel is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
|
56
56
|
# @return [OneClassSVM] The learned estimator itself.
|
57
57
|
def fit(x, _y = nil)
|
58
|
-
|
58
|
+
x = check_convert_sample_array(x)
|
59
59
|
dummy = Numo::DFloat.ones(x.shape[0])
|
60
60
|
@model = Numo::Libsvm.train(x, dummy, libsvm_params)
|
61
61
|
self
|
@@ -67,7 +67,7 @@ module Rumale
|
|
67
67
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
68
68
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
69
69
|
def decision_function(x)
|
70
|
-
|
70
|
+
x = check_convert_sample_array(x)
|
71
71
|
Numo::Libsvm.decision_function(x, libsvm_params, @model)
|
72
72
|
end
|
73
73
|
|
@@ -77,7 +77,7 @@ module Rumale
|
|
77
77
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
78
78
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted label per sample.
|
79
79
|
def predict(x)
|
80
|
-
|
80
|
+
x = check_convert_sample_array(x)
|
81
81
|
Numo::Int32.cast(Numo::Libsvm.predict(x, libsvm_params, @model))
|
82
82
|
end
|
83
83
|
|
data/lib/rumale/svm/svc.rb
CHANGED
@@ -31,22 +31,22 @@ module Rumale
|
|
31
31
|
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
32
32
|
def initialize(reg_param: 1.0, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
33
33
|
shrinking: true, probability: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
34
|
-
|
35
|
-
|
34
|
+
check_params_numeric(reg_param: reg_param, degree: degree, gamma: gamma, coef0: coef0, cache_size: cache_size, tol: tol)
|
35
|
+
check_params_string(kernel: kernel)
|
36
36
|
check_params_boolean(shrinking: shrinking, probability: probability, verbose: verbose)
|
37
|
-
|
37
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
38
38
|
@params = {}
|
39
|
-
@params[:reg_param] = reg_param
|
39
|
+
@params[:reg_param] = reg_param.to_f
|
40
40
|
@params[:kernel] = kernel
|
41
|
-
@params[:degree] = degree
|
42
|
-
@params[:gamma] = gamma
|
43
|
-
@params[:coef0] = coef0
|
41
|
+
@params[:degree] = degree.to_i
|
42
|
+
@params[:gamma] = gamma.to_f
|
43
|
+
@params[:coef0] = coef0.to_f
|
44
44
|
@params[:shrinking] = shrinking
|
45
45
|
@params[:probability] = probability
|
46
|
-
@params[:cache_size] = cache_size
|
47
|
-
@params[:tol] = tol
|
46
|
+
@params[:cache_size] = cache_size.to_f
|
47
|
+
@params[:tol] = tol.to_f
|
48
48
|
@params[:verbose] = verbose
|
49
|
-
@params[:random_seed] = random_seed
|
49
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
50
50
|
@model = nil
|
51
51
|
end
|
52
52
|
|
@@ -57,8 +57,8 @@ module Rumale
|
|
57
57
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
58
58
|
# @return [SVC] The learned classifier itself.
|
59
59
|
def fit(x, y)
|
60
|
-
|
61
|
-
|
60
|
+
x = check_convert_sample_array(x)
|
61
|
+
y = check_convert_label_array(y)
|
62
62
|
check_sample_label_size(x, y)
|
63
63
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
64
64
|
@model = Numo::Libsvm.train(xx, y, libsvm_params)
|
@@ -71,7 +71,7 @@ module Rumale
|
|
71
71
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
72
72
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
73
73
|
def decision_function(x)
|
74
|
-
|
74
|
+
x = check_convert_sample_array(x)
|
75
75
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
76
76
|
Numo::Libsvm.decision_function(xx, libsvm_params, @model)
|
77
77
|
end
|
@@ -82,7 +82,7 @@ module Rumale
|
|
82
82
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
83
83
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
84
84
|
def predict(x)
|
85
|
-
|
85
|
+
x = check_convert_sample_array(x)
|
86
86
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
87
87
|
Numo::Int32.cast(Numo::Libsvm.predict(xx, libsvm_params, @model))
|
88
88
|
end
|
@@ -94,7 +94,7 @@ module Rumale
|
|
94
94
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
95
95
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
96
96
|
def predict_proba(x)
|
97
|
-
|
97
|
+
x = check_convert_sample_array(x)
|
98
98
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
99
99
|
Numo::Libsvm.predict_proba(xx, libsvm_params, @model)
|
100
100
|
end
|
data/lib/rumale/svm/svr.rb
CHANGED
@@ -31,22 +31,23 @@ module Rumale
|
|
31
31
|
# @param random_seed [Integer/Nil] The seed value using to initialize the random generator.
|
32
32
|
def initialize(reg_param: 1.0, epsilon: 0.1, kernel: 'rbf', degree: 3, gamma: 1.0, coef0: 0.0,
|
33
33
|
shrinking: true, cache_size: 200.0, tol: 1e-3, verbose: false, random_seed: nil)
|
34
|
-
|
35
|
-
|
34
|
+
check_params_numeric(reg_param: reg_param, degree: degree, epsilon: epsilon, gamma: gamma, coef0: coef0,
|
35
|
+
cache_size: cache_size, tol: tol)
|
36
|
+
check_params_string(kernel: kernel)
|
36
37
|
check_params_boolean(shrinking: shrinking, verbose: verbose)
|
37
|
-
|
38
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
38
39
|
@params = {}
|
39
|
-
@params[:reg_param] = reg_param
|
40
|
-
@params[:epsilon] = epsilon
|
40
|
+
@params[:reg_param] = reg_param.to_f
|
41
|
+
@params[:epsilon] = epsilon.to_f
|
41
42
|
@params[:kernel] = kernel
|
42
|
-
@params[:degree] = degree
|
43
|
-
@params[:gamma] = gamma
|
44
|
-
@params[:coef0] = coef0
|
43
|
+
@params[:degree] = degree.to_i
|
44
|
+
@params[:gamma] = gamma.to_f
|
45
|
+
@params[:coef0] = coef0.to_f
|
45
46
|
@params[:shrinking] = shrinking
|
46
|
-
@params[:cache_size] = cache_size
|
47
|
-
@params[:tol] = tol
|
47
|
+
@params[:cache_size] = cache_size.to_f
|
48
|
+
@params[:tol] = tol.to_f
|
48
49
|
@params[:verbose] = verbose
|
49
|
-
@params[:random_seed] = random_seed
|
50
|
+
@params[:random_seed] = random_seed.nil? ? nil : random_seed.to_i
|
50
51
|
@model = nil
|
51
52
|
end
|
52
53
|
|
@@ -57,8 +58,8 @@ module Rumale
|
|
57
58
|
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
58
59
|
# @return [SVR] The learned regressor itself.
|
59
60
|
def fit(x, y)
|
60
|
-
|
61
|
-
|
61
|
+
x = check_convert_sample_array(x)
|
62
|
+
y = check_convert_tvalue_array(y)
|
62
63
|
check_sample_tvalue_size(x, y)
|
63
64
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
64
65
|
@model = Numo::Libsvm.train(xx, y, libsvm_params)
|
@@ -71,7 +72,7 @@ module Rumale
|
|
71
72
|
# If the kernel is 'precomputed', the shape of x must be [n_samples, n_training_samples].
|
72
73
|
# @return [Numo::DFloat] (shape: [n_samples]) Predicted value per sample.
|
73
74
|
def predict(x)
|
74
|
-
|
75
|
+
x = check_convert_sample_array(x)
|
75
76
|
xx = precomputed_kernel? ? add_index_col(x) : x
|
76
77
|
Numo::Libsvm.predict(xx, libsvm_params, @model)
|
77
78
|
end
|
data/lib/rumale/svm/version.rb
CHANGED
data/rumale-svm.gemspec
CHANGED
@@ -15,6 +15,7 @@ Gem::Specification.new do |spec|
|
|
15
15
|
Rumale-SVM provides support vector machine algorithms of LIBSVM and LIBLINEAR with Rumale interface.
|
16
16
|
MSG
|
17
17
|
spec.homepage = 'https://github.com/yoshoku/rumale-svm'
|
18
|
+
spec.license = 'BSD-3-Clause'
|
18
19
|
|
19
20
|
spec.metadata['homepage_uri'] = spec.homepage
|
20
21
|
spec.metadata['source_code_uri'] = 'https://github.com/yoshoku/rumale-svm'
|
@@ -32,7 +33,7 @@ Gem::Specification.new do |spec|
|
|
32
33
|
|
33
34
|
spec.add_runtime_dependency 'numo-liblinear', '~> 1.0'
|
34
35
|
spec.add_runtime_dependency 'numo-libsvm', '~> 1.0'
|
35
|
-
spec.add_runtime_dependency 'rumale'
|
36
|
+
spec.add_runtime_dependency 'rumale', '~> 0.14'
|
36
37
|
spec.add_development_dependency 'bundler', '~> 2.0'
|
37
38
|
spec.add_development_dependency 'coveralls', '~> 0.8'
|
38
39
|
spec.add_development_dependency 'rake', '~> 10.0'
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale-svm
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.2.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-
|
11
|
+
date: 2019-11-18 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-liblinear
|
@@ -42,16 +42,16 @@ dependencies:
|
|
42
42
|
name: rumale
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
|
-
- - "
|
45
|
+
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: '0'
|
47
|
+
version: '0.14'
|
48
48
|
type: :runtime
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
|
-
- - "
|
52
|
+
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: '0'
|
54
|
+
version: '0.14'
|
55
55
|
- !ruby/object:Gem::Dependency
|
56
56
|
name: bundler
|
57
57
|
requirement: !ruby/object:Gem::Requirement
|
@@ -119,9 +119,11 @@ extensions: []
|
|
119
119
|
extra_rdoc_files: []
|
120
120
|
files:
|
121
121
|
- ".coveralls.yml"
|
122
|
+
- ".github/workflows/build.yml"
|
122
123
|
- ".gitignore"
|
123
124
|
- ".rspec"
|
124
125
|
- ".travis.yml"
|
126
|
+
- CHANGELOG.md
|
125
127
|
- CODE_OF_CONDUCT.md
|
126
128
|
- Gemfile
|
127
129
|
- LICENSE.txt
|
@@ -141,7 +143,8 @@ files:
|
|
141
143
|
- lib/rumale/svm/version.rb
|
142
144
|
- rumale-svm.gemspec
|
143
145
|
homepage: https://github.com/yoshoku/rumale-svm
|
144
|
-
licenses:
|
146
|
+
licenses:
|
147
|
+
- BSD-3-Clause
|
145
148
|
metadata:
|
146
149
|
homepage_uri: https://github.com/yoshoku/rumale-svm
|
147
150
|
source_code_uri: https://github.com/yoshoku/rumale-svm
|