rumale-preprocessing 0.24.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: 5e6ea7b493b3ea7d2eaeb8e4782e0dbdb79a265691b6e26f66786e713f2ad305
4
+ data.tar.gz: 4888e8622e364a8e5f62b595e43e32f72d41ed39ef2abb8b3fe79d0063191dc3
5
+ SHA512:
6
+ metadata.gz: 0b9937675f98ff5f3c7cb8e16b6c56ad0613267b6383eb766ef14f26d1eeeb06539d1621a43b4391a13e54a2732f58d92fcf3212953ba170e886baa19580b7bb
7
+ data.tar.gz: eabf752b7c17d32fc075fb27d146e81efe766a33c4d12650605cebac2cbd7eefca8bb0f15324163e70432db189c20b6ef1e64867c81ed53fd1011d565e539076
data/LICENSE.txt ADDED
@@ -0,0 +1,27 @@
1
+ Copyright (c) 2022 Atsushi Tatsuma
2
+ All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+
10
+ * Redistributions in binary form must reproduce the above copyright notice,
11
+ this list of conditions and the following disclaimer in the documentation
12
+ and/or other materials provided with the distribution.
13
+
14
+ * Neither the name of the copyright holder nor the names of its
15
+ contributors may be used to endorse or promote products derived from
16
+ this software without specific prior written permission.
17
+
18
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
data/README.md ADDED
@@ -0,0 +1,34 @@
1
+ # Rumale::Preprocessing
2
+
3
+ [![Gem Version](https://badge.fury.io/rb/rumale-preprocessing.svg)](https://badge.fury.io/rb/rumale-preprocessing)
4
+ [![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-preprocessing/LICENSE.txt)
5
+ [![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing.html)
6
+
7
+ Rumale is a machine learning library in Ruby.
8
+ Rumale::Preprocessing provides preprocessing techniques,
9
+ such as L2 normalization, standard scaling, and one-hot encoding,
10
+ with Rumale interface.
11
+
12
+ ## Installation
13
+
14
+ Add this line to your application's Gemfile:
15
+
16
+ ```ruby
17
+ gem 'rumale-preprocessing'
18
+ ```
19
+
20
+ And then execute:
21
+
22
+ $ bundle install
23
+
24
+ Or install it yourself as:
25
+
26
+ $ gem install rumale-preprocessing
27
+
28
+ ## Documentation
29
+
30
+ - [Rumale API Documentation - Preprocessing](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing.html)
31
+
32
+ ## License
33
+
34
+ The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
@@ -0,0 +1,97 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/validation'
6
+
7
+ module Rumale
8
+ module Preprocessing
9
+ # Discretizes features with a given number of bins.
10
+ # In some cases, discretizing features may accelerate decision tree training.
11
+ #
12
+ # @example
13
+ # require 'rumale/preprocessing/bin_discretizer'
14
+ #
15
+ # discretizer = Rumale::Preprocessing::BinDiscretizer.new(n_bins: 4)
16
+ # samples = Numo::DFloat.new(5, 2).rand - 0.5
17
+ # transformed = discretizer.fit_transform(samples)
18
+ # # > pp samples
19
+ # # Numo::DFloat#shape=[5,2]
20
+ # # [[-0.438246, -0.126933],
21
+ # # [ 0.294815, -0.298958],
22
+ # # [-0.383959, -0.155968],
23
+ # # [ 0.039948, 0.237815],
24
+ # # [-0.334911, -0.449117]]
25
+ # # > pp transformed
26
+ # # Numo::DFloat#shape=[5,2]
27
+ # # [[0, 1],
28
+ # # [3, 0],
29
+ # # [0, 1],
30
+ # # [2, 3],
31
+ # # [0, 0]]
32
+ class BinDiscretizer < ::Rumale::Base::Estimator
33
+ include ::Rumale::Base::Transformer
34
+
35
+ # Return the feature steps to be used discretizing.
36
+ # @return [Array<Numo::DFloat>] (shape: [n_features, n_bins])
37
+ attr_reader :feature_steps
38
+
39
+ # Create a new discretizer for features with given number of bins.
40
+ #
41
+ # @param n_bins [Integer] The number of bins to be used disretizing feature values.
42
+ def initialize(n_bins: 32)
43
+ super()
44
+ @params = { n_bins: n_bins }
45
+ end
46
+
47
+ # Fit feature ranges to be discretized.
48
+ #
49
+ # @overload fit(x) -> BinDiscretizer
50
+ #
51
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the feature ranges.
52
+ # @return [BinDiscretizer]
53
+ def fit(x, _y = nil)
54
+ x = ::Rumale::Validation.check_convert_sample_array(x)
55
+
56
+ n_features = x.shape[1]
57
+ max_vals = x.max(0)
58
+ min_vals = x.min(0)
59
+ @feature_steps = Array.new(n_features) do |n|
60
+ Numo::DFloat.linspace(min_vals[n], max_vals[n], @params[:n_bins] + 1)[0...@params[:n_bins]]
61
+ end
62
+ self
63
+ end
64
+
65
+ # Fit feature ranges to be discretized, then return discretized samples.
66
+ #
67
+ # @overload fit_transform(x) -> Numo::DFloat
68
+ #
69
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be discretized.
70
+ # @return [Numo::DFloat] The discretized samples.
71
+ def fit_transform(x, _y = nil)
72
+ x = ::Rumale::Validation.check_convert_sample_array(x)
73
+
74
+ fit(x).transform(x)
75
+ end
76
+
77
+ # Peform discretizing the given samples.
78
+ #
79
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be discretized.
80
+ # @return [Numo::DFloat] The discretized samples.
81
+ def transform(x)
82
+ x = ::Rumale::Validation.check_convert_sample_array(x)
83
+
84
+ n_samples, n_features = x.shape
85
+ transformed = Numo::DFloat.zeros(n_samples, n_features)
86
+ n_features.times do |n|
87
+ steps = @feature_steps[n]
88
+ @params[:n_bins].times do |bin|
89
+ mask = x[true, n].ge(steps[bin]).where
90
+ transformed[mask, n] = bin
91
+ end
92
+ end
93
+ transformed
94
+ end
95
+ end
96
+ end
97
+ end
@@ -0,0 +1,65 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/validation'
6
+
7
+ module Rumale
8
+ module Preprocessing
9
+ # Binarize samples according to a threshold
10
+ #
11
+ # @example
12
+ # require 'rumale/preprocessing/binarizer'
13
+ #
14
+ # binarizer = Rumale::Preprocessing::Binarizer.new
15
+ # x = Numo::DFloat[[-1.2, 3.2], [2.4, -0.5], [4.5, 0.8]]
16
+ # b = binarizer.transform(x)
17
+ # p b
18
+ #
19
+ # # Numo::DFloat#shape=[3, 2]
20
+ # # [[0, 1],
21
+ # # [1, 0],
22
+ # # [1, 1]]
23
+ class Binarizer < ::Rumale::Base::Estimator
24
+ include ::Rumale::Base::Transformer
25
+
26
+ # Create a new transformer for binarization.
27
+ # @param threshold [Float] The threshold value for binarization.
28
+ def initialize(threshold: 0.0)
29
+ super()
30
+ @params = { threshold: threshold }
31
+ end
32
+
33
+ # This method does nothing and returns the object itself.
34
+ # For compatibility with other transformer, this method exists.
35
+ #
36
+ # @overload fit() -> Binarizer
37
+ #
38
+ # @return [Binarizer]
39
+ def fit(_x = nil, _y = nil)
40
+ self
41
+ end
42
+
43
+ # Binarize each sample.
44
+ #
45
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be binarized.
46
+ # @return [Numo::DFloat] The binarized samples.
47
+ def transform(x)
48
+ x = ::Rumale::Validation.check_convert_sample_array(x)
49
+
50
+ x.class.cast(x.gt(@params[:threshold]))
51
+ end
52
+
53
+ # The output of this method is the same as that of the transform method.
54
+ # For compatibility with other transformer, this method exists.
55
+ #
56
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be binarized.
57
+ # @return [Numo::DFloat] The binarized samples.
58
+ def fit_transform(x, _y = nil)
59
+ x = ::Rumale::Validation.check_convert_sample_array(x)
60
+
61
+ fit(x).transform(x)
62
+ end
63
+ end
64
+ end
65
+ end
@@ -0,0 +1,98 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/pairwise_metric'
6
+ require 'rumale/validation'
7
+
8
+ module Rumale
9
+ module Preprocessing
10
+ # KernelCalculator is a class that calculates the kernel matrix with training data.
11
+ #
12
+ # @example
13
+ # require 'rumale/preprocessing/kernel_calculator'
14
+ # require 'rumale/kernel_machine/kernel_ridge'
15
+ # require 'rumale/pipeline/pipeline'
16
+ #
17
+ # transformer = Rumale::Preprocessing::KernelCalculator.new(kernel: 'rbf', gamma: 0.5)
18
+ # regressor = Rumale::KernelMachine::KernelRidge.new
19
+ # pipeline = Rumale::Pipeline::Pipeline.new(
20
+ # steps: { trs: transfomer, est: regressor }
21
+ # )
22
+ # pipeline.fit(x_train, y_train)
23
+ # results = pipeline.predict(x_test)
24
+ class KernelCalculator < ::Rumale::Base::Estimator
25
+ include ::Rumale::Base::Transformer
26
+
27
+ # Returns the training data for calculating kernel matrix.
28
+ # @return [Numo::DFloat] (shape: n_components, n_features)
29
+ attr_reader :components
30
+
31
+ # Create a new transformer that transforms feature vectors into a kernel matrix.
32
+ #
33
+ # @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', and 'sigmoid').
34
+ # @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
35
+ # @param degree [Integer] The degree parameter in polynomial kernel function.
36
+ # @param coef [Float] The coefficient in poly/sigmoid kernel function.
37
+ def initialize(kernel: 'rbf', gamma: 1, degree: 3, coef: 1)
38
+ super()
39
+ @params = {
40
+ kernel: kernel,
41
+ gamma: gamma,
42
+ degree: degree,
43
+ coef: coef
44
+ }
45
+ end
46
+
47
+ # Fit the model with given training data.
48
+ #
49
+ # @overload fit(x) -> KernelCalculator
50
+ # @param x [Numo::NArray] (shape: [n_samples, n_features]) The training data to be used for calculating kernel matrix.
51
+ # @return [KernelCalculator] The learned transformer itself.
52
+ def fit(x, _y = nil)
53
+ x = ::Rumale::Validation.check_convert_sample_array(x)
54
+
55
+ @components = x.dup
56
+ self
57
+ end
58
+
59
+ # Fit the model with training data, and then transform them with the learned model.
60
+ #
61
+ # @overload fit_transform(x) -> Numo::DFloat
62
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for calculating kernel matrix.
63
+ # @return [Numo::DFloat] (shape: [n_samples, n_samples]) The calculated kernel matrix.
64
+ def fit_transform(x, y = nil)
65
+ x = ::Rumale::Validation.check_convert_sample_array(x)
66
+
67
+ fit(x, y).transform(x)
68
+ end
69
+
70
+ # Transform the given data with the learned model.
71
+ #
72
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be used for calculating kernel matrix with the training data.
73
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The calculated kernel matrix.
74
+ def transform(x)
75
+ x = ::Rumale::Validation.check_convert_sample_array(x)
76
+
77
+ kernel_mat(x, @components)
78
+ end
79
+
80
+ private
81
+
82
+ def kernel_mat(x, y)
83
+ case @params[:kernel]
84
+ when 'rbf'
85
+ ::Rumale::PairwiseMetric.rbf_kernel(x, y, @params[:gamma])
86
+ when 'poly'
87
+ ::Rumale::PairwiseMetric.polynomial_kernel(x, y, @params[:degree], @params[:gamma], @params[:coef])
88
+ when 'sigmoid'
89
+ ::Rumale::PairwiseMetric.sigmoid_kernel(x, y, @params[:gamma], @params[:coef])
90
+ when 'linear'
91
+ ::Rumale::PairwiseMetric.linear_kernel(x, y)
92
+ else
93
+ raise ArgumentError, "Expect kernel parameter to be given 'rbf', 'linear', 'poly', or 'sigmoid'."
94
+ end
95
+ end
96
+ end
97
+ end
98
+ end
@@ -0,0 +1,67 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/validation'
6
+
7
+ module Rumale
8
+ module Preprocessing
9
+ # Normalize samples to unit L1-norm.
10
+ #
11
+ # @example
12
+ # require 'rumale/preprocessing/l1_normalizer'
13
+ #
14
+ # normalizer = Rumale::Preprocessing::L1Normalizer.new
15
+ # new_samples = normalizer.fit_transform(samples)
16
+ class L1Normalizer < ::Rumale::Base::Estimator
17
+ include ::Rumale::Base::Transformer
18
+
19
+ # Return the vector consists of L1-norm for each sample.
20
+ # @return [Numo::DFloat] (shape: [n_samples])
21
+ attr_reader :norm_vec # :nodoc:
22
+
23
+ # Create a new normalizer for normaliing to L1-norm.
24
+ def initialize # rubocop:disable Lint/UselessMethodDefinition
25
+ super()
26
+ end
27
+
28
+ # Calculate L1-norms of each sample.
29
+ #
30
+ # @overload fit(x) -> L1Normalizer
31
+ #
32
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
33
+ # @return [L1Normalizer]
34
+ def fit(x, _y = nil)
35
+ x = ::Rumale::Validation.check_convert_sample_array(x)
36
+
37
+ @norm_vec = x.abs.sum(axis: 1)
38
+ @norm_vec[@norm_vec.eq(0)] = 1
39
+ self
40
+ end
41
+
42
+ # Calculate L1-norms of each sample, and then normalize samples to L1-norm.
43
+ #
44
+ # @overload fit_transform(x) -> Numo::DFloat
45
+ #
46
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
47
+ # @return [Numo::DFloat] The normalized samples.
48
+ def fit_transform(x, _y = nil)
49
+ x = ::Rumale::Validation.check_convert_sample_array(x)
50
+
51
+ fit(x)
52
+ x / @norm_vec.expand_dims(1)
53
+ end
54
+
55
+ # Calculate L1-norms of each sample, and then normalize samples to L1-norm.
56
+ # This method calls the fit_transform method. This method exists for the Pipeline class.
57
+ #
58
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
59
+ # @return [Numo::DFloat] The normalized samples.
60
+ def transform(x)
61
+ x = ::Rumale::Validation.check_convert_sample_array(x)
62
+
63
+ fit_transform(x)
64
+ end
65
+ end
66
+ end
67
+ end
@@ -0,0 +1,68 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/validation'
6
+
7
+ module Rumale
8
+ # This module consists of the classes that perform preprocessings.
9
+ module Preprocessing
10
+ # Normalize samples to unit L2-norm.
11
+ #
12
+ # @example
13
+ # require 'rumale/preprocessing/l2_normalizer'
14
+ #
15
+ # normalizer = Rumale::Preprocessing::L2Normalizer.new
16
+ # new_samples = normalizer.fit_transform(samples)
17
+ class L2Normalizer < ::Rumale::Base::Estimator
18
+ include ::Rumale::Base::Transformer
19
+
20
+ # Return the vector consists of L2-norm for each sample.
21
+ # @return [Numo::DFloat] (shape: [n_samples])
22
+ attr_reader :norm_vec # :nodoc:
23
+
24
+ # Create a new normalizer for normaliing to unit L2-norm.
25
+ def initialize # rubocop:disable Lint/UselessMethodDefinition
26
+ super()
27
+ end
28
+
29
+ # Calculate L2-norms of each sample.
30
+ #
31
+ # @overload fit(x) -> L2Normalizer
32
+ #
33
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
34
+ # @return [L2Normalizer]
35
+ def fit(x, _y = nil)
36
+ x = ::Rumale::Validation.check_convert_sample_array(x)
37
+
38
+ @norm_vec = Numo::NMath.sqrt((x**2).sum(axis: 1))
39
+ @norm_vec[@norm_vec.eq(0)] = 1
40
+ self
41
+ end
42
+
43
+ # Calculate L2-norms of each sample, and then normalize samples to unit L2-norm.
44
+ #
45
+ # @overload fit_transform(x) -> Numo::DFloat
46
+ #
47
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
48
+ # @return [Numo::DFloat] The normalized samples.
49
+ def fit_transform(x, _y = nil)
50
+ x = ::Rumale::Validation.check_convert_sample_array(x)
51
+
52
+ fit(x)
53
+ x / @norm_vec.expand_dims(1)
54
+ end
55
+
56
+ # Calculate L2-norms of each sample, and then normalize samples to unit L2-norm.
57
+ # This method calls the fit_transform method. This method exists for the Pipeline class.
58
+ #
59
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
60
+ # @return [Numo::DFloat] The normalized samples.
61
+ def transform(x)
62
+ x = ::Rumale::Validation.check_convert_sample_array(x)
63
+
64
+ fit_transform(x)
65
+ end
66
+ end
67
+ end
68
+ end
@@ -0,0 +1,86 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+
6
+ module Rumale
7
+ module Preprocessing
8
+ # Encode labels to binary labels with one-vs-all scheme.
9
+ #
10
+ # @example
11
+ # require 'rumale/preprocessing/label_binarizer'
12
+ #
13
+ # encoder = Rumale::Preprocessing::LabelBinarizer.new
14
+ # label = [0, -1, 3, 3, 1, 1]
15
+ # p encoder.fit_transform(label)
16
+ # # Numo::Int32#shape=[6,4]
17
+ # # [[0, 1, 0, 0],
18
+ # # [1, 0, 0, 0],
19
+ # # [0, 0, 0, 1],
20
+ # # [0, 0, 0, 1],
21
+ # # [0, 0, 1, 0],
22
+ # # [0, 0, 1, 0]]
23
+ class LabelBinarizer < ::Rumale::Base::Estimator
24
+ include ::Rumale::Base::Transformer
25
+
26
+ # Return the class labels.
27
+ # @return [Array] (size: [n_classes])
28
+ attr_reader :classes
29
+
30
+ # Create a new encoder for binarizing labels with one-vs-all scheme.
31
+ #
32
+ # @param neg_label [Integer] The value represents negative label.
33
+ # @param pos_label [Integer] The value represents positive label.
34
+ def initialize(neg_label: 0, pos_label: 1)
35
+ super()
36
+ @params = {
37
+ neg_label: neg_label,
38
+ pos_label: pos_label
39
+ }
40
+ end
41
+
42
+ # Fit encoder to labels.
43
+ #
44
+ # @overload fit(y) -> LabelBinarizer
45
+ # @param y [Numo::NArray/Array] (shape: [n_samples]) The labels to fit encoder.
46
+ # @return [LabelBinarizer]
47
+ def fit(y, _not_used = nil)
48
+ y = y.to_a if y.is_a?(Numo::NArray)
49
+ @classes = y.uniq.sort
50
+ self
51
+ end
52
+
53
+ # Fit encoder to labels, then return binarized labels.
54
+ #
55
+ # @overload fit_transform(y) -> Numo::DFloat
56
+ # @param y [Numo::NArray/Array] (shape: [n_samples]) The labels to fit encoder.
57
+ # @return [Numo::Int32] (shape: [n_samples, n_classes]) The binarized labels.
58
+ def fit_transform(y, _not_used = nil)
59
+ y = y.to_a if y.is_a?(Numo::NArray)
60
+ fit(y).transform(y)
61
+ end
62
+
63
+ # Encode labels.
64
+ #
65
+ # @param y [Array] (shape: [n_samples]) The labels to be encoded.
66
+ # @return [Numo::Int32] (shape: [n_samples, n_classes]) The binarized labels.
67
+ def transform(y)
68
+ y = y.to_a if y.is_a?(Numo::NArray)
69
+ n_classes = @classes.size
70
+ n_samples = y.size
71
+ codes = Numo::Int32.zeros(n_samples, n_classes) + @params[:neg_label]
72
+ n_samples.times { |n| codes[n, @classes.index(y[n])] = @params[:pos_label] }
73
+ codes
74
+ end
75
+
76
+ # Decode binarized labels.
77
+ #
78
+ # @param x [Numo::Int32] (shape: [n_samples, n_classes]) The binarized labels to be decoded.
79
+ # @return [Array] (shape: [n_samples]) The decoded labels.
80
+ def inverse_transform(x)
81
+ n_samples = x.shape[0]
82
+ Array.new(n_samples) { |n| @classes[x[n, true].ne(@params[:neg_label]).where[0]] }
83
+ end
84
+ end
85
+ end
86
+ end
@@ -0,0 +1,75 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+
6
+ module Rumale
7
+ module Preprocessing
8
+ # Encode labels to values between 0 and n_classes - 1.
9
+ #
10
+ # @example
11
+ # require 'rumale/preprocessing/label_encoder'
12
+ #
13
+ # encoder = Rumale::Preprocessing::LabelEncoder.new
14
+ # labels = Numo::Int32[1, 8, 8, 15, 0]
15
+ # encoded_labels = encoder.fit_transform(labels)
16
+ # # > pp encoded_labels
17
+ # # Numo::Int32#shape=[5]
18
+ # # [1, 2, 2, 3, 0]
19
+ # decoded_labels = encoder.inverse_transform(encoded_labels)
20
+ # # > pp decoded_labels
21
+ # # [1, 8, 8, 15, 0]
22
+ class LabelEncoder < ::Rumale::Base::Estimator
23
+ include ::Rumale::Base::Transformer
24
+
25
+ # Return the class labels.
26
+ # @return [Array] (size: [n_classes])
27
+ attr_reader :classes
28
+
29
+ # Create a new encoder for encoding labels to values between 0 and n_classes - 1.
30
+ def initialize # rubocop:disable Lint/UselessMethodDefinition
31
+ super()
32
+ end
33
+
34
+ # Fit label-encoder to labels.
35
+ #
36
+ # @overload fit(x) -> LabelEncoder
37
+ #
38
+ # @param x [Array] (shape: [n_samples]) The labels to fit label-encoder.
39
+ # @return [LabelEncoder]
40
+ def fit(x, _y = nil)
41
+ x = x.to_a if x.is_a?(Numo::NArray)
42
+ @classes = x.sort.uniq
43
+ self
44
+ end
45
+
46
+ # Fit label-encoder to labels, then return encoded labels.
47
+ #
48
+ # @overload fit_transform(x) -> Numo::DFloat
49
+ #
50
+ # @param x [Array] (shape: [n_samples]) The labels to fit label-encoder.
51
+ # @return [Numo::Int32] The encoded labels.
52
+ def fit_transform(x, _y = nil)
53
+ x = x.to_a if x.is_a?(Numo::NArray)
54
+ fit(x).transform(x)
55
+ end
56
+
57
+ # Encode labels.
58
+ #
59
+ # @param x [Array] (shape: [n_samples]) The labels to be encoded.
60
+ # @return [Numo::Int32] The encoded labels.
61
+ def transform(x)
62
+ x = x.to_a if x.is_a?(Numo::NArray)
63
+ Numo::Int32[*(x.map { |v| @classes.index(v) })]
64
+ end
65
+
66
+ # Decode encoded labels.
67
+ #
68
+ # @param x [Numo::Int32] (shape: [n_samples]) The labels to be decoded.
69
+ # @return [Array] The decoded labels.
70
+ def inverse_transform(x)
71
+ x.to_a.map { |n| @classes[n] }
72
+ end
73
+ end
74
+ end
75
+ end