rumale-preprocessing 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/preprocessing/bin_discretizer.rb +97 -0
- data/lib/rumale/preprocessing/binarizer.rb +65 -0
- data/lib/rumale/preprocessing/kernel_calculator.rb +98 -0
- data/lib/rumale/preprocessing/l1_normalizer.rb +67 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +68 -0
- data/lib/rumale/preprocessing/label_binarizer.rb +86 -0
- data/lib/rumale/preprocessing/label_encoder.rb +75 -0
- data/lib/rumale/preprocessing/max_abs_scaler.rb +65 -0
- data/lib/rumale/preprocessing/max_normalizer.rb +67 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +78 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +94 -0
- data/lib/rumale/preprocessing/ordinal_encoder.rb +111 -0
- data/lib/rumale/preprocessing/polynomial_features.rb +114 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +74 -0
- data/lib/rumale/preprocessing/version.rb +10 -0
- data/lib/rumale/preprocessing.rb +19 -0
- metadata +97 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 5e6ea7b493b3ea7d2eaeb8e4782e0dbdb79a265691b6e26f66786e713f2ad305
|
4
|
+
data.tar.gz: 4888e8622e364a8e5f62b595e43e32f72d41ed39ef2abb8b3fe79d0063191dc3
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 0b9937675f98ff5f3c7cb8e16b6c56ad0613267b6383eb766ef14f26d1eeeb06539d1621a43b4391a13e54a2732f58d92fcf3212953ba170e886baa19580b7bb
|
7
|
+
data.tar.gz: eabf752b7c17d32fc075fb27d146e81efe766a33c4d12650605cebac2cbd7eefca8bb0f15324163e70432db189c20b6ef1e64867c81ed53fd1011d565e539076
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Copyright (c) 2022 Atsushi Tatsuma
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
* Neither the name of the copyright holder nor the names of its
|
15
|
+
contributors may be used to endorse or promote products derived from
|
16
|
+
this software without specific prior written permission.
|
17
|
+
|
18
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
21
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
22
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
24
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
25
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
26
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
# Rumale::Preprocessing
|
2
|
+
|
3
|
+
[![Gem Version](https://badge.fury.io/rb/rumale-preprocessing.svg)](https://badge.fury.io/rb/rumale-preprocessing)
|
4
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-preprocessing/LICENSE.txt)
|
5
|
+
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing.html)
|
6
|
+
|
7
|
+
Rumale is a machine learning library in Ruby.
|
8
|
+
Rumale::Preprocessing provides preprocessing techniques,
|
9
|
+
such as L2 normalization, standard scaling, and one-hot encoding,
|
10
|
+
with Rumale interface.
|
11
|
+
|
12
|
+
## Installation
|
13
|
+
|
14
|
+
Add this line to your application's Gemfile:
|
15
|
+
|
16
|
+
```ruby
|
17
|
+
gem 'rumale-preprocessing'
|
18
|
+
```
|
19
|
+
|
20
|
+
And then execute:
|
21
|
+
|
22
|
+
$ bundle install
|
23
|
+
|
24
|
+
Or install it yourself as:
|
25
|
+
|
26
|
+
$ gem install rumale-preprocessing
|
27
|
+
|
28
|
+
## Documentation
|
29
|
+
|
30
|
+
- [Rumale API Documentation - Preprocessing](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing.html)
|
31
|
+
|
32
|
+
## License
|
33
|
+
|
34
|
+
The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
|
@@ -0,0 +1,97 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module Preprocessing
|
9
|
+
# Discretizes features with a given number of bins.
|
10
|
+
# In some cases, discretizing features may accelerate decision tree training.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'rumale/preprocessing/bin_discretizer'
|
14
|
+
#
|
15
|
+
# discretizer = Rumale::Preprocessing::BinDiscretizer.new(n_bins: 4)
|
16
|
+
# samples = Numo::DFloat.new(5, 2).rand - 0.5
|
17
|
+
# transformed = discretizer.fit_transform(samples)
|
18
|
+
# # > pp samples
|
19
|
+
# # Numo::DFloat#shape=[5,2]
|
20
|
+
# # [[-0.438246, -0.126933],
|
21
|
+
# # [ 0.294815, -0.298958],
|
22
|
+
# # [-0.383959, -0.155968],
|
23
|
+
# # [ 0.039948, 0.237815],
|
24
|
+
# # [-0.334911, -0.449117]]
|
25
|
+
# # > pp transformed
|
26
|
+
# # Numo::DFloat#shape=[5,2]
|
27
|
+
# # [[0, 1],
|
28
|
+
# # [3, 0],
|
29
|
+
# # [0, 1],
|
30
|
+
# # [2, 3],
|
31
|
+
# # [0, 0]]
|
32
|
+
class BinDiscretizer < ::Rumale::Base::Estimator
|
33
|
+
include ::Rumale::Base::Transformer
|
34
|
+
|
35
|
+
# Return the feature steps to be used discretizing.
|
36
|
+
# @return [Array<Numo::DFloat>] (shape: [n_features, n_bins])
|
37
|
+
attr_reader :feature_steps
|
38
|
+
|
39
|
+
# Create a new discretizer for features with given number of bins.
|
40
|
+
#
|
41
|
+
# @param n_bins [Integer] The number of bins to be used disretizing feature values.
|
42
|
+
def initialize(n_bins: 32)
|
43
|
+
super()
|
44
|
+
@params = { n_bins: n_bins }
|
45
|
+
end
|
46
|
+
|
47
|
+
# Fit feature ranges to be discretized.
|
48
|
+
#
|
49
|
+
# @overload fit(x) -> BinDiscretizer
|
50
|
+
#
|
51
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the feature ranges.
|
52
|
+
# @return [BinDiscretizer]
|
53
|
+
def fit(x, _y = nil)
|
54
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
55
|
+
|
56
|
+
n_features = x.shape[1]
|
57
|
+
max_vals = x.max(0)
|
58
|
+
min_vals = x.min(0)
|
59
|
+
@feature_steps = Array.new(n_features) do |n|
|
60
|
+
Numo::DFloat.linspace(min_vals[n], max_vals[n], @params[:n_bins] + 1)[0...@params[:n_bins]]
|
61
|
+
end
|
62
|
+
self
|
63
|
+
end
|
64
|
+
|
65
|
+
# Fit feature ranges to be discretized, then return discretized samples.
|
66
|
+
#
|
67
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
68
|
+
#
|
69
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be discretized.
|
70
|
+
# @return [Numo::DFloat] The discretized samples.
|
71
|
+
def fit_transform(x, _y = nil)
|
72
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
73
|
+
|
74
|
+
fit(x).transform(x)
|
75
|
+
end
|
76
|
+
|
77
|
+
# Peform discretizing the given samples.
|
78
|
+
#
|
79
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be discretized.
|
80
|
+
# @return [Numo::DFloat] The discretized samples.
|
81
|
+
def transform(x)
|
82
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
83
|
+
|
84
|
+
n_samples, n_features = x.shape
|
85
|
+
transformed = Numo::DFloat.zeros(n_samples, n_features)
|
86
|
+
n_features.times do |n|
|
87
|
+
steps = @feature_steps[n]
|
88
|
+
@params[:n_bins].times do |bin|
|
89
|
+
mask = x[true, n].ge(steps[bin]).where
|
90
|
+
transformed[mask, n] = bin
|
91
|
+
end
|
92
|
+
end
|
93
|
+
transformed
|
94
|
+
end
|
95
|
+
end
|
96
|
+
end
|
97
|
+
end
|
@@ -0,0 +1,65 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module Preprocessing
|
9
|
+
# Binarize samples according to a threshold
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'rumale/preprocessing/binarizer'
|
13
|
+
#
|
14
|
+
# binarizer = Rumale::Preprocessing::Binarizer.new
|
15
|
+
# x = Numo::DFloat[[-1.2, 3.2], [2.4, -0.5], [4.5, 0.8]]
|
16
|
+
# b = binarizer.transform(x)
|
17
|
+
# p b
|
18
|
+
#
|
19
|
+
# # Numo::DFloat#shape=[3, 2]
|
20
|
+
# # [[0, 1],
|
21
|
+
# # [1, 0],
|
22
|
+
# # [1, 1]]
|
23
|
+
class Binarizer < ::Rumale::Base::Estimator
|
24
|
+
include ::Rumale::Base::Transformer
|
25
|
+
|
26
|
+
# Create a new transformer for binarization.
|
27
|
+
# @param threshold [Float] The threshold value for binarization.
|
28
|
+
def initialize(threshold: 0.0)
|
29
|
+
super()
|
30
|
+
@params = { threshold: threshold }
|
31
|
+
end
|
32
|
+
|
33
|
+
# This method does nothing and returns the object itself.
|
34
|
+
# For compatibility with other transformer, this method exists.
|
35
|
+
#
|
36
|
+
# @overload fit() -> Binarizer
|
37
|
+
#
|
38
|
+
# @return [Binarizer]
|
39
|
+
def fit(_x = nil, _y = nil)
|
40
|
+
self
|
41
|
+
end
|
42
|
+
|
43
|
+
# Binarize each sample.
|
44
|
+
#
|
45
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be binarized.
|
46
|
+
# @return [Numo::DFloat] The binarized samples.
|
47
|
+
def transform(x)
|
48
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
49
|
+
|
50
|
+
x.class.cast(x.gt(@params[:threshold]))
|
51
|
+
end
|
52
|
+
|
53
|
+
# The output of this method is the same as that of the transform method.
|
54
|
+
# For compatibility with other transformer, this method exists.
|
55
|
+
#
|
56
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be binarized.
|
57
|
+
# @return [Numo::DFloat] The binarized samples.
|
58
|
+
def fit_transform(x, _y = nil)
|
59
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
60
|
+
|
61
|
+
fit(x).transform(x)
|
62
|
+
end
|
63
|
+
end
|
64
|
+
end
|
65
|
+
end
|
@@ -0,0 +1,98 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/pairwise_metric'
|
6
|
+
require 'rumale/validation'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Preprocessing
|
10
|
+
# KernelCalculator is a class that calculates the kernel matrix with training data.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'rumale/preprocessing/kernel_calculator'
|
14
|
+
# require 'rumale/kernel_machine/kernel_ridge'
|
15
|
+
# require 'rumale/pipeline/pipeline'
|
16
|
+
#
|
17
|
+
# transformer = Rumale::Preprocessing::KernelCalculator.new(kernel: 'rbf', gamma: 0.5)
|
18
|
+
# regressor = Rumale::KernelMachine::KernelRidge.new
|
19
|
+
# pipeline = Rumale::Pipeline::Pipeline.new(
|
20
|
+
# steps: { trs: transfomer, est: regressor }
|
21
|
+
# )
|
22
|
+
# pipeline.fit(x_train, y_train)
|
23
|
+
# results = pipeline.predict(x_test)
|
24
|
+
class KernelCalculator < ::Rumale::Base::Estimator
|
25
|
+
include ::Rumale::Base::Transformer
|
26
|
+
|
27
|
+
# Returns the training data for calculating kernel matrix.
|
28
|
+
# @return [Numo::DFloat] (shape: n_components, n_features)
|
29
|
+
attr_reader :components
|
30
|
+
|
31
|
+
# Create a new transformer that transforms feature vectors into a kernel matrix.
|
32
|
+
#
|
33
|
+
# @param kernel [String] The type of kernel function ('rbf', 'linear', 'poly', and 'sigmoid').
|
34
|
+
# @param gamma [Float] The gamma parameter in rbf/poly/sigmoid kernel function.
|
35
|
+
# @param degree [Integer] The degree parameter in polynomial kernel function.
|
36
|
+
# @param coef [Float] The coefficient in poly/sigmoid kernel function.
|
37
|
+
def initialize(kernel: 'rbf', gamma: 1, degree: 3, coef: 1)
|
38
|
+
super()
|
39
|
+
@params = {
|
40
|
+
kernel: kernel,
|
41
|
+
gamma: gamma,
|
42
|
+
degree: degree,
|
43
|
+
coef: coef
|
44
|
+
}
|
45
|
+
end
|
46
|
+
|
47
|
+
# Fit the model with given training data.
|
48
|
+
#
|
49
|
+
# @overload fit(x) -> KernelCalculator
|
50
|
+
# @param x [Numo::NArray] (shape: [n_samples, n_features]) The training data to be used for calculating kernel matrix.
|
51
|
+
# @return [KernelCalculator] The learned transformer itself.
|
52
|
+
def fit(x, _y = nil)
|
53
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
54
|
+
|
55
|
+
@components = x.dup
|
56
|
+
self
|
57
|
+
end
|
58
|
+
|
59
|
+
# Fit the model with training data, and then transform them with the learned model.
|
60
|
+
#
|
61
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
62
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for calculating kernel matrix.
|
63
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_samples]) The calculated kernel matrix.
|
64
|
+
def fit_transform(x, y = nil)
|
65
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
66
|
+
|
67
|
+
fit(x, y).transform(x)
|
68
|
+
end
|
69
|
+
|
70
|
+
# Transform the given data with the learned model.
|
71
|
+
#
|
72
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be used for calculating kernel matrix with the training data.
|
73
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The calculated kernel matrix.
|
74
|
+
def transform(x)
|
75
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
76
|
+
|
77
|
+
kernel_mat(x, @components)
|
78
|
+
end
|
79
|
+
|
80
|
+
private
|
81
|
+
|
82
|
+
def kernel_mat(x, y)
|
83
|
+
case @params[:kernel]
|
84
|
+
when 'rbf'
|
85
|
+
::Rumale::PairwiseMetric.rbf_kernel(x, y, @params[:gamma])
|
86
|
+
when 'poly'
|
87
|
+
::Rumale::PairwiseMetric.polynomial_kernel(x, y, @params[:degree], @params[:gamma], @params[:coef])
|
88
|
+
when 'sigmoid'
|
89
|
+
::Rumale::PairwiseMetric.sigmoid_kernel(x, y, @params[:gamma], @params[:coef])
|
90
|
+
when 'linear'
|
91
|
+
::Rumale::PairwiseMetric.linear_kernel(x, y)
|
92
|
+
else
|
93
|
+
raise ArgumentError, "Expect kernel parameter to be given 'rbf', 'linear', 'poly', or 'sigmoid'."
|
94
|
+
end
|
95
|
+
end
|
96
|
+
end
|
97
|
+
end
|
98
|
+
end
|
@@ -0,0 +1,67 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module Preprocessing
|
9
|
+
# Normalize samples to unit L1-norm.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'rumale/preprocessing/l1_normalizer'
|
13
|
+
#
|
14
|
+
# normalizer = Rumale::Preprocessing::L1Normalizer.new
|
15
|
+
# new_samples = normalizer.fit_transform(samples)
|
16
|
+
class L1Normalizer < ::Rumale::Base::Estimator
|
17
|
+
include ::Rumale::Base::Transformer
|
18
|
+
|
19
|
+
# Return the vector consists of L1-norm for each sample.
|
20
|
+
# @return [Numo::DFloat] (shape: [n_samples])
|
21
|
+
attr_reader :norm_vec # :nodoc:
|
22
|
+
|
23
|
+
# Create a new normalizer for normaliing to L1-norm.
|
24
|
+
def initialize # rubocop:disable Lint/UselessMethodDefinition
|
25
|
+
super()
|
26
|
+
end
|
27
|
+
|
28
|
+
# Calculate L1-norms of each sample.
|
29
|
+
#
|
30
|
+
# @overload fit(x) -> L1Normalizer
|
31
|
+
#
|
32
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
|
33
|
+
# @return [L1Normalizer]
|
34
|
+
def fit(x, _y = nil)
|
35
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
36
|
+
|
37
|
+
@norm_vec = x.abs.sum(axis: 1)
|
38
|
+
@norm_vec[@norm_vec.eq(0)] = 1
|
39
|
+
self
|
40
|
+
end
|
41
|
+
|
42
|
+
# Calculate L1-norms of each sample, and then normalize samples to L1-norm.
|
43
|
+
#
|
44
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
45
|
+
#
|
46
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
|
47
|
+
# @return [Numo::DFloat] The normalized samples.
|
48
|
+
def fit_transform(x, _y = nil)
|
49
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
50
|
+
|
51
|
+
fit(x)
|
52
|
+
x / @norm_vec.expand_dims(1)
|
53
|
+
end
|
54
|
+
|
55
|
+
# Calculate L1-norms of each sample, and then normalize samples to L1-norm.
|
56
|
+
# This method calls the fit_transform method. This method exists for the Pipeline class.
|
57
|
+
#
|
58
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
|
59
|
+
# @return [Numo::DFloat] The normalized samples.
|
60
|
+
def transform(x)
|
61
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
62
|
+
|
63
|
+
fit_transform(x)
|
64
|
+
end
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
# This module consists of the classes that perform preprocessings.
|
9
|
+
module Preprocessing
|
10
|
+
# Normalize samples to unit L2-norm.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'rumale/preprocessing/l2_normalizer'
|
14
|
+
#
|
15
|
+
# normalizer = Rumale::Preprocessing::L2Normalizer.new
|
16
|
+
# new_samples = normalizer.fit_transform(samples)
|
17
|
+
class L2Normalizer < ::Rumale::Base::Estimator
|
18
|
+
include ::Rumale::Base::Transformer
|
19
|
+
|
20
|
+
# Return the vector consists of L2-norm for each sample.
|
21
|
+
# @return [Numo::DFloat] (shape: [n_samples])
|
22
|
+
attr_reader :norm_vec # :nodoc:
|
23
|
+
|
24
|
+
# Create a new normalizer for normaliing to unit L2-norm.
|
25
|
+
def initialize # rubocop:disable Lint/UselessMethodDefinition
|
26
|
+
super()
|
27
|
+
end
|
28
|
+
|
29
|
+
# Calculate L2-norms of each sample.
|
30
|
+
#
|
31
|
+
# @overload fit(x) -> L2Normalizer
|
32
|
+
#
|
33
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
|
34
|
+
# @return [L2Normalizer]
|
35
|
+
def fit(x, _y = nil)
|
36
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
37
|
+
|
38
|
+
@norm_vec = Numo::NMath.sqrt((x**2).sum(axis: 1))
|
39
|
+
@norm_vec[@norm_vec.eq(0)] = 1
|
40
|
+
self
|
41
|
+
end
|
42
|
+
|
43
|
+
# Calculate L2-norms of each sample, and then normalize samples to unit L2-norm.
|
44
|
+
#
|
45
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
46
|
+
#
|
47
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
|
48
|
+
# @return [Numo::DFloat] The normalized samples.
|
49
|
+
def fit_transform(x, _y = nil)
|
50
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
51
|
+
|
52
|
+
fit(x)
|
53
|
+
x / @norm_vec.expand_dims(1)
|
54
|
+
end
|
55
|
+
|
56
|
+
# Calculate L2-norms of each sample, and then normalize samples to unit L2-norm.
|
57
|
+
# This method calls the fit_transform method. This method exists for the Pipeline class.
|
58
|
+
#
|
59
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
|
60
|
+
# @return [Numo::DFloat] The normalized samples.
|
61
|
+
def transform(x)
|
62
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
63
|
+
|
64
|
+
fit_transform(x)
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
68
|
+
end
|
@@ -0,0 +1,86 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Preprocessing
|
8
|
+
# Encode labels to binary labels with one-vs-all scheme.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# require 'rumale/preprocessing/label_binarizer'
|
12
|
+
#
|
13
|
+
# encoder = Rumale::Preprocessing::LabelBinarizer.new
|
14
|
+
# label = [0, -1, 3, 3, 1, 1]
|
15
|
+
# p encoder.fit_transform(label)
|
16
|
+
# # Numo::Int32#shape=[6,4]
|
17
|
+
# # [[0, 1, 0, 0],
|
18
|
+
# # [1, 0, 0, 0],
|
19
|
+
# # [0, 0, 0, 1],
|
20
|
+
# # [0, 0, 0, 1],
|
21
|
+
# # [0, 0, 1, 0],
|
22
|
+
# # [0, 0, 1, 0]]
|
23
|
+
class LabelBinarizer < ::Rumale::Base::Estimator
|
24
|
+
include ::Rumale::Base::Transformer
|
25
|
+
|
26
|
+
# Return the class labels.
|
27
|
+
# @return [Array] (size: [n_classes])
|
28
|
+
attr_reader :classes
|
29
|
+
|
30
|
+
# Create a new encoder for binarizing labels with one-vs-all scheme.
|
31
|
+
#
|
32
|
+
# @param neg_label [Integer] The value represents negative label.
|
33
|
+
# @param pos_label [Integer] The value represents positive label.
|
34
|
+
def initialize(neg_label: 0, pos_label: 1)
|
35
|
+
super()
|
36
|
+
@params = {
|
37
|
+
neg_label: neg_label,
|
38
|
+
pos_label: pos_label
|
39
|
+
}
|
40
|
+
end
|
41
|
+
|
42
|
+
# Fit encoder to labels.
|
43
|
+
#
|
44
|
+
# @overload fit(y) -> LabelBinarizer
|
45
|
+
# @param y [Numo::NArray/Array] (shape: [n_samples]) The labels to fit encoder.
|
46
|
+
# @return [LabelBinarizer]
|
47
|
+
def fit(y, _not_used = nil)
|
48
|
+
y = y.to_a if y.is_a?(Numo::NArray)
|
49
|
+
@classes = y.uniq.sort
|
50
|
+
self
|
51
|
+
end
|
52
|
+
|
53
|
+
# Fit encoder to labels, then return binarized labels.
|
54
|
+
#
|
55
|
+
# @overload fit_transform(y) -> Numo::DFloat
|
56
|
+
# @param y [Numo::NArray/Array] (shape: [n_samples]) The labels to fit encoder.
|
57
|
+
# @return [Numo::Int32] (shape: [n_samples, n_classes]) The binarized labels.
|
58
|
+
def fit_transform(y, _not_used = nil)
|
59
|
+
y = y.to_a if y.is_a?(Numo::NArray)
|
60
|
+
fit(y).transform(y)
|
61
|
+
end
|
62
|
+
|
63
|
+
# Encode labels.
|
64
|
+
#
|
65
|
+
# @param y [Array] (shape: [n_samples]) The labels to be encoded.
|
66
|
+
# @return [Numo::Int32] (shape: [n_samples, n_classes]) The binarized labels.
|
67
|
+
def transform(y)
|
68
|
+
y = y.to_a if y.is_a?(Numo::NArray)
|
69
|
+
n_classes = @classes.size
|
70
|
+
n_samples = y.size
|
71
|
+
codes = Numo::Int32.zeros(n_samples, n_classes) + @params[:neg_label]
|
72
|
+
n_samples.times { |n| codes[n, @classes.index(y[n])] = @params[:pos_label] }
|
73
|
+
codes
|
74
|
+
end
|
75
|
+
|
76
|
+
# Decode binarized labels.
|
77
|
+
#
|
78
|
+
# @param x [Numo::Int32] (shape: [n_samples, n_classes]) The binarized labels to be decoded.
|
79
|
+
# @return [Array] (shape: [n_samples]) The decoded labels.
|
80
|
+
def inverse_transform(x)
|
81
|
+
n_samples = x.shape[0]
|
82
|
+
Array.new(n_samples) { |n| @classes[x[n, true].ne(@params[:neg_label]).where[0]] }
|
83
|
+
end
|
84
|
+
end
|
85
|
+
end
|
86
|
+
end
|
@@ -0,0 +1,75 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Preprocessing
|
8
|
+
# Encode labels to values between 0 and n_classes - 1.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# require 'rumale/preprocessing/label_encoder'
|
12
|
+
#
|
13
|
+
# encoder = Rumale::Preprocessing::LabelEncoder.new
|
14
|
+
# labels = Numo::Int32[1, 8, 8, 15, 0]
|
15
|
+
# encoded_labels = encoder.fit_transform(labels)
|
16
|
+
# # > pp encoded_labels
|
17
|
+
# # Numo::Int32#shape=[5]
|
18
|
+
# # [1, 2, 2, 3, 0]
|
19
|
+
# decoded_labels = encoder.inverse_transform(encoded_labels)
|
20
|
+
# # > pp decoded_labels
|
21
|
+
# # [1, 8, 8, 15, 0]
|
22
|
+
class LabelEncoder < ::Rumale::Base::Estimator
|
23
|
+
include ::Rumale::Base::Transformer
|
24
|
+
|
25
|
+
# Return the class labels.
|
26
|
+
# @return [Array] (size: [n_classes])
|
27
|
+
attr_reader :classes
|
28
|
+
|
29
|
+
# Create a new encoder for encoding labels to values between 0 and n_classes - 1.
|
30
|
+
def initialize # rubocop:disable Lint/UselessMethodDefinition
|
31
|
+
super()
|
32
|
+
end
|
33
|
+
|
34
|
+
# Fit label-encoder to labels.
|
35
|
+
#
|
36
|
+
# @overload fit(x) -> LabelEncoder
|
37
|
+
#
|
38
|
+
# @param x [Array] (shape: [n_samples]) The labels to fit label-encoder.
|
39
|
+
# @return [LabelEncoder]
|
40
|
+
def fit(x, _y = nil)
|
41
|
+
x = x.to_a if x.is_a?(Numo::NArray)
|
42
|
+
@classes = x.sort.uniq
|
43
|
+
self
|
44
|
+
end
|
45
|
+
|
46
|
+
# Fit label-encoder to labels, then return encoded labels.
|
47
|
+
#
|
48
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
49
|
+
#
|
50
|
+
# @param x [Array] (shape: [n_samples]) The labels to fit label-encoder.
|
51
|
+
# @return [Numo::Int32] The encoded labels.
|
52
|
+
def fit_transform(x, _y = nil)
|
53
|
+
x = x.to_a if x.is_a?(Numo::NArray)
|
54
|
+
fit(x).transform(x)
|
55
|
+
end
|
56
|
+
|
57
|
+
# Encode labels.
|
58
|
+
#
|
59
|
+
# @param x [Array] (shape: [n_samples]) The labels to be encoded.
|
60
|
+
# @return [Numo::Int32] The encoded labels.
|
61
|
+
def transform(x)
|
62
|
+
x = x.to_a if x.is_a?(Numo::NArray)
|
63
|
+
Numo::Int32[*(x.map { |v| @classes.index(v) })]
|
64
|
+
end
|
65
|
+
|
66
|
+
# Decode encoded labels.
|
67
|
+
#
|
68
|
+
# @param x [Numo::Int32] (shape: [n_samples]) The labels to be decoded.
|
69
|
+
# @return [Array] The decoded labels.
|
70
|
+
def inverse_transform(x)
|
71
|
+
x.to_a.map { |n| @classes[n] }
|
72
|
+
end
|
73
|
+
end
|
74
|
+
end
|
75
|
+
end
|