rumale-pipeline 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +33 -0
- data/lib/rumale/pipeline/feature_union.rb +69 -0
- data/lib/rumale/pipeline/pipeline.rb +175 -0
- data/lib/rumale/pipeline/version.rb +10 -0
- data/lib/rumale/pipeline.rb +7 -0
- metadata +84 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: cd3ec61c4a23cd7022d5be945e4bd22dadbdb883e6800a7d5e2026b05e6c5cf0
|
4
|
+
data.tar.gz: a6be2df1a40c169dd46a5b587df6314ab438c507c5bd721d802a422dfcd66bea
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 8ebc9359645c3e8300e6eb797c9ecbb2da7f99b77522e44d8619562ad3ffcdde681e1ed9256fb7fe5882d36a6c67ccf6c6f6386ee5f0f68a801cc16208305845
|
7
|
+
data.tar.gz: 14d7861bb9e31aba0924f021f320dc1c0d44e7880f9bdd03e465f3b3bc9d26132bce259317a96f3644f1c9bf753b6896e9fcd6727882c8ad3d01078eea62f842
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Copyright (c) 2022 Atsushi Tatsuma
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
* Neither the name of the copyright holder nor the names of its
|
15
|
+
contributors may be used to endorse or promote products derived from
|
16
|
+
this software without specific prior written permission.
|
17
|
+
|
18
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
21
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
22
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
24
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
25
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
26
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,33 @@
|
|
1
|
+
# Rumale::Pipeline
|
2
|
+
|
3
|
+
[![Gem Version](https://badge.fury.io/rb/rumale-pipeline.svg)](https://badge.fury.io/rb/rumale-pipeline)
|
4
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-pipeline/LICENSE.txt)
|
5
|
+
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/Pipeline.html)
|
6
|
+
|
7
|
+
Rumale is a machine learning library in Ruby.
|
8
|
+
Rumale::Pipeline provides classes for chaining transformers and estimators
|
9
|
+
with Rumale interface.
|
10
|
+
|
11
|
+
## Installation
|
12
|
+
|
13
|
+
Add this line to your application's Gemfile:
|
14
|
+
|
15
|
+
```ruby
|
16
|
+
gem 'rumale-pipeline'
|
17
|
+
```
|
18
|
+
|
19
|
+
And then execute:
|
20
|
+
|
21
|
+
$ bundle install
|
22
|
+
|
23
|
+
Or install it yourself as:
|
24
|
+
|
25
|
+
$ gem install rumale-pipeline
|
26
|
+
|
27
|
+
## Documentation
|
28
|
+
|
29
|
+
- [Rumale API Documentation - Pipeline](https://yoshoku.github.io/rumale/doc/Rumale/Pipeline.html)
|
30
|
+
|
31
|
+
## License
|
32
|
+
|
33
|
+
The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
|
@@ -0,0 +1,69 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module Pipeline
|
7
|
+
# FeatureUnion is a class that implements the function concatenating the multi-transformer results.
|
8
|
+
#
|
9
|
+
# @example
|
10
|
+
# require 'rumale/kernel_approximation/rbf'
|
11
|
+
# require 'rumale/decomposition/pca'
|
12
|
+
# require 'rumale/pipeline/feature_union'
|
13
|
+
#
|
14
|
+
# fu = Rumale::Pipeline::FeatureUnion.new(
|
15
|
+
# transformers: {
|
16
|
+
# 'rbf': Rumale::KernelApproximation::RBF.new(gamma: 1.0, n_components: 96, random_seed: 1),
|
17
|
+
# 'pca': Rumale::Decomposition::PCA.new(n_components: 32)
|
18
|
+
# }
|
19
|
+
# )
|
20
|
+
# fu.fit(training_samples, traininig_labels)
|
21
|
+
# results = fu.predict(testing_samples)
|
22
|
+
#
|
23
|
+
# # > p results.shape[1]
|
24
|
+
# # > 128
|
25
|
+
#
|
26
|
+
class FeatureUnion < ::Rumale::Base::Estimator
|
27
|
+
# Return the transformers
|
28
|
+
# @return [Hash]
|
29
|
+
attr_reader :transformers
|
30
|
+
|
31
|
+
# Create a new feature union.
|
32
|
+
#
|
33
|
+
# @param transformers [Hash] List of transformers. The order of transforms follows the insertion order of hash keys.
|
34
|
+
def initialize(transformers:)
|
35
|
+
super()
|
36
|
+
@params = {}
|
37
|
+
@transformers = transformers
|
38
|
+
end
|
39
|
+
|
40
|
+
# Fit the model with given training data.
|
41
|
+
#
|
42
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the transformers.
|
43
|
+
# @param y [Numo::NArray/Nil] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the transformers.
|
44
|
+
# @return [FeatureUnion] The learned feature union itself.
|
45
|
+
def fit(x, y = nil)
|
46
|
+
@transformers.each { |_k, t| t.fit(x, y) }
|
47
|
+
self
|
48
|
+
end
|
49
|
+
|
50
|
+
# Fit the model with training data, and then transform them with the learned model.
|
51
|
+
#
|
52
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the transformers.
|
53
|
+
# @param y [Numo::NArray/Nil] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the transformers.
|
54
|
+
# @return [Numo::DFloat] (shape: [n_samples, sum_n_components]) The transformed and concatenated data.
|
55
|
+
def fit_transform(x, y = nil)
|
56
|
+
fit(x, y).transform(x)
|
57
|
+
end
|
58
|
+
|
59
|
+
# Transform the given data with the learned model.
|
60
|
+
#
|
61
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned transformers.
|
62
|
+
# @return [Numo::DFloat] (shape: [n_samples, sum_n_components]) The transformed and concatenated data.
|
63
|
+
def transform(x)
|
64
|
+
z = @transformers.values.map { |t| t.transform(x) }
|
65
|
+
Numo::NArray.hstack(z)
|
66
|
+
end
|
67
|
+
end
|
68
|
+
end
|
69
|
+
end
|
@@ -0,0 +1,175 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
# Module implements utilities of pipeline that cosists of a chain of transfomers and estimators.
|
7
|
+
module Pipeline
|
8
|
+
# Pipeline is a class that implements the function to perform the transformers and estimators sequencially.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# require 'rumale/kernel_approximation/rbf'
|
12
|
+
# require 'rumale/linear_model/svc'
|
13
|
+
# require 'rumale/pipeline/pipeline'
|
14
|
+
#
|
15
|
+
# rbf = Rumale::KernelApproximation::RBF.new(gamma: 1.0, n_components: 128, random_seed: 1)
|
16
|
+
# svc = Rumale::LinearModel::SVC.new(reg_param: 1.0, fit_bias: true, max_iter: 5000, random_seed: 1)
|
17
|
+
# pipeline = Rumale::Pipeline::Pipeline.new(steps: { trs: rbf, est: svc })
|
18
|
+
# pipeline.fit(training_samples, traininig_labels)
|
19
|
+
# results = pipeline.predict(testing_samples)
|
20
|
+
#
|
21
|
+
class Pipeline < ::Rumale::Base::Estimator
|
22
|
+
# Return the steps.
|
23
|
+
# @return [Hash]
|
24
|
+
attr_reader :steps
|
25
|
+
|
26
|
+
# Create a new pipeline.
|
27
|
+
#
|
28
|
+
# @param steps [Hash] List of transformers and estimators. The order of transforms follows the insertion order of hash keys.
|
29
|
+
# The last entry is considered an estimator.
|
30
|
+
def initialize(steps:)
|
31
|
+
super()
|
32
|
+
validate_steps(steps)
|
33
|
+
@params = {}
|
34
|
+
@steps = steps
|
35
|
+
end
|
36
|
+
|
37
|
+
# Fit the model with given training data.
|
38
|
+
#
|
39
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be transformed and used for fitting the model.
|
40
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the model.
|
41
|
+
# @return [Pipeline] The learned pipeline itself.
|
42
|
+
def fit(x, y)
|
43
|
+
trans_x = apply_transforms(x, y, fit: true)
|
44
|
+
last_estimator&.fit(trans_x, y)
|
45
|
+
self
|
46
|
+
end
|
47
|
+
|
48
|
+
# Call the fit_predict method of last estimator after applying all transforms.
|
49
|
+
#
|
50
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be transformed and used for fitting the model.
|
51
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs], default: nil) The target values or labels to be used for fitting the model.
|
52
|
+
# @return [Numo::NArray] The predicted results by last estimator.
|
53
|
+
def fit_predict(x, y = nil)
|
54
|
+
trans_x = apply_transforms(x, y, fit: true)
|
55
|
+
last_estimator.fit_predict(trans_x)
|
56
|
+
end
|
57
|
+
|
58
|
+
# Call the fit_transform method of last estimator after applying all transforms.
|
59
|
+
#
|
60
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be transformed and used for fitting the model.
|
61
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs], default: nil) The target values or labels to be used for fitting the model.
|
62
|
+
# @return [Numo::NArray] The predicted results by last estimator.
|
63
|
+
def fit_transform(x, y = nil)
|
64
|
+
trans_x = apply_transforms(x, y, fit: true)
|
65
|
+
last_estimator.fit_transform(trans_x, y)
|
66
|
+
end
|
67
|
+
|
68
|
+
# Call the decision_function method of last estimator after applying all transforms.
|
69
|
+
#
|
70
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
71
|
+
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
72
|
+
def decision_function(x)
|
73
|
+
trans_x = apply_transforms(x)
|
74
|
+
last_estimator.decision_function(trans_x)
|
75
|
+
end
|
76
|
+
|
77
|
+
# Call the predict method of last estimator after applying all transforms.
|
78
|
+
#
|
79
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to obtain prediction result.
|
80
|
+
# @return [Numo::NArray] The predicted results by last estimator.
|
81
|
+
def predict(x)
|
82
|
+
trans_x = apply_transforms(x)
|
83
|
+
last_estimator.predict(trans_x)
|
84
|
+
end
|
85
|
+
|
86
|
+
# Call the predict_log_proba method of last estimator after applying all transforms.
|
87
|
+
#
|
88
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
89
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
90
|
+
def predict_log_proba(x)
|
91
|
+
trans_x = apply_transforms(x)
|
92
|
+
last_estimator.predict_log_proba(trans_x)
|
93
|
+
end
|
94
|
+
|
95
|
+
# Call the predict_proba method of last estimator after applying all transforms.
|
96
|
+
#
|
97
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
98
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
99
|
+
def predict_proba(x)
|
100
|
+
trans_x = apply_transforms(x)
|
101
|
+
last_estimator.predict_proba(trans_x)
|
102
|
+
end
|
103
|
+
|
104
|
+
# Call the transform method of last estimator after applying all transforms.
|
105
|
+
#
|
106
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be transformed.
|
107
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed samples.
|
108
|
+
def transform(x)
|
109
|
+
trans_x = apply_transforms(x)
|
110
|
+
last_estimator.nil? ? trans_x : last_estimator.transform(trans_x)
|
111
|
+
end
|
112
|
+
|
113
|
+
# Call the inverse_transform method in reverse order.
|
114
|
+
#
|
115
|
+
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The transformed samples to be restored into original space.
|
116
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored samples.
|
117
|
+
def inverse_transform(z)
|
118
|
+
itrans_z = z
|
119
|
+
@steps.keys.reverse_each do |name|
|
120
|
+
transformer = @steps[name]
|
121
|
+
next if transformer.nil?
|
122
|
+
|
123
|
+
itrans_z = transformer.inverse_transform(itrans_z)
|
124
|
+
end
|
125
|
+
itrans_z
|
126
|
+
end
|
127
|
+
|
128
|
+
# Call the score method of last estimator after applying all transforms.
|
129
|
+
#
|
130
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
131
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) True target values or labels for testing data.
|
132
|
+
# @return [Float] The score of last estimator
|
133
|
+
def score(x, y)
|
134
|
+
trans_x = apply_transforms(x)
|
135
|
+
last_estimator.score(trans_x, y)
|
136
|
+
end
|
137
|
+
|
138
|
+
private
|
139
|
+
|
140
|
+
def validate_steps(steps)
|
141
|
+
steps.keys[0...-1].each do |name|
|
142
|
+
transformer = steps[name]
|
143
|
+
next if transformer.nil? || (transformer.class.method_defined?(:fit) && transformer.class.method_defined?(:transform))
|
144
|
+
|
145
|
+
raise TypeError,
|
146
|
+
'Class of intermediate step in pipeline should be implemented fit and transform methods: ' \
|
147
|
+
"#{name} => #{transformer.class}"
|
148
|
+
end
|
149
|
+
|
150
|
+
estimator = steps[steps.keys.last]
|
151
|
+
unless estimator.nil? || estimator.class.method_defined?(:fit) # rubocop:disable Style/GuardClause
|
152
|
+
raise TypeError,
|
153
|
+
'Class of last step in pipeline should be implemented fit method: ' \
|
154
|
+
"#{steps.keys.last} => #{estimator.class}"
|
155
|
+
end
|
156
|
+
end
|
157
|
+
|
158
|
+
def apply_transforms(x, y = nil, fit: false)
|
159
|
+
trans_x = x
|
160
|
+
@steps.keys[0...-1].each do |name|
|
161
|
+
transformer = @steps[name]
|
162
|
+
next if transformer.nil?
|
163
|
+
|
164
|
+
transformer.fit(trans_x, y) if fit
|
165
|
+
trans_x = transformer.transform(trans_x)
|
166
|
+
end
|
167
|
+
trans_x
|
168
|
+
end
|
169
|
+
|
170
|
+
def last_estimator
|
171
|
+
@steps[@steps.keys.last]
|
172
|
+
end
|
173
|
+
end
|
174
|
+
end
|
175
|
+
end
|
@@ -0,0 +1,10 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
# Rumale is a machine learning library in Ruby.
|
4
|
+
module Rumale
|
5
|
+
# Module implements utilities of pipeline that cosists of a chain of transfomers and estimators.
|
6
|
+
module Pipeline
|
7
|
+
# @!visibility private
|
8
|
+
VERSION = '0.24.0'
|
9
|
+
end
|
10
|
+
end
|
metadata
ADDED
@@ -0,0 +1,84 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rumale-pipeline
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.24.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2022-12-31 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: numo-narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.9.1
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.9.1
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rumale-core
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: 0.24.0
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: 0.24.0
|
41
|
+
description: Rumale::Pipeline provides classes for chaining transformers and estimators
|
42
|
+
with Rumale interface.
|
43
|
+
email:
|
44
|
+
- yoshoku@outlook.com
|
45
|
+
executables: []
|
46
|
+
extensions: []
|
47
|
+
extra_rdoc_files: []
|
48
|
+
files:
|
49
|
+
- LICENSE.txt
|
50
|
+
- README.md
|
51
|
+
- lib/rumale/pipeline.rb
|
52
|
+
- lib/rumale/pipeline/feature_union.rb
|
53
|
+
- lib/rumale/pipeline/pipeline.rb
|
54
|
+
- lib/rumale/pipeline/version.rb
|
55
|
+
homepage: https://github.com/yoshoku/rumale
|
56
|
+
licenses:
|
57
|
+
- BSD-3-Clause
|
58
|
+
metadata:
|
59
|
+
homepage_uri: https://github.com/yoshoku/rumale
|
60
|
+
source_code_uri: https://github.com/yoshoku/rumale/tree/main/rumale-pipeline
|
61
|
+
changelog_uri: https://github.com/yoshoku/rumale/blob/main/CHANGELOG.md
|
62
|
+
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
63
|
+
rubygems_mfa_required: 'true'
|
64
|
+
post_install_message:
|
65
|
+
rdoc_options: []
|
66
|
+
require_paths:
|
67
|
+
- lib
|
68
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
69
|
+
requirements:
|
70
|
+
- - ">="
|
71
|
+
- !ruby/object:Gem::Version
|
72
|
+
version: '0'
|
73
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
74
|
+
requirements:
|
75
|
+
- - ">="
|
76
|
+
- !ruby/object:Gem::Version
|
77
|
+
version: '0'
|
78
|
+
requirements: []
|
79
|
+
rubygems_version: 3.3.26
|
80
|
+
signing_key:
|
81
|
+
specification_version: 4
|
82
|
+
summary: Rumale::Pipeline provides classes for chaining transformers and estimators
|
83
|
+
with Rumale interface.
|
84
|
+
test_files: []
|