rumale-neural_network 1.0.0 → 2.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d08fbf2792b826336e7668c7f3f8c59b79e8273c428fd5a40232503225436612
4
- data.tar.gz: 87ba76cc7b4287df731b44dd466bb9f19443687b83d0db0d8f19951f52e57ec6
3
+ metadata.gz: 07e4674936bf7eec373d6eec3bf4ec3606c29705838b16cb780ea114c112c199
4
+ data.tar.gz: 9b9a847e266ac6020341822ac263f2da01e3080bade65964a199dce0a5dd7900
5
5
  SHA512:
6
- metadata.gz: 402a6bc0c83456736c297b9565645efd6bb1af023fb4d5dc78093ff5ae5da79b5a6d5c36b6bb9d5e9ba8ae65c6c8dba4bfb2b45e289efe74bacee63d3852a123
7
- data.tar.gz: 97c058c0f6e14854d20853186770b19ed2ca3355856d86f9493fd1c6976ff2a36d14fa9975c7db5f7775903604abaa02170ad0c09cfc837b2f15e3e9b1693e38
6
+ metadata.gz: af27aac567486bbb76e33af877aca996b3edef703f1bc848f706f83b176a8d0d5cbf05edfe60115f6843809f1ac1ab007e6b138f879dde88ee373bba7693e802
7
+ data.tar.gz: ea43ad45197502a991cf46bd82028104d90489ce3417325c955e9a2fbd80537be1187d3a84c6e4a17d920a59231646fe120cadf3d3c143a71ab743a0ef1fdc0d
@@ -48,7 +48,8 @@ module Rumale
48
48
  def hidden_output(x)
49
49
  sub_rng = @rng.dup
50
50
  n_features = x.shape[1]
51
- @random_weight_vec = (2.0 * Rumale::Utils.rand_uniform([n_features, @params[:hidden_units]], sub_rng) - 1.0) * @params[:scale] # rubocop:disbale Layout/LineLength
51
+ @random_weight_vec = (2.0 * Rumale::Utils.rand_uniform([n_features, @params[:hidden_units]],
52
+ sub_rng) - 1.0) * @params[:scale]
52
53
  @random_bias = Rumale::Utils.rand_uniform(@params[:hidden_units], sub_rng) * @params[:scale]
53
54
  h = 0.5 * (Numo::NMath.tanh(0.5 * (x.dot(@random_weight_vec) + @random_bias)) + 1.0)
54
55
  Numo::DFloat.hstack([x, h])
@@ -10,9 +10,7 @@ module Rumale
10
10
  # RBFClassifier is a class that implements classifier based on (k-means) radial basis function (RBF) networks.
11
11
  #
12
12
  # @example
13
- # require 'numo/tiny_linalg'
14
- # Numo::Linalg = Numo::TinyLinalg
15
- #
13
+ # require 'numo/linalg'
16
14
  # require 'rumale/neural_network/rbf_classifier'
17
15
  #
18
16
  # estimator = Rumale::NeuralNetwork::RBFClassifier.new(hidden_units: 128, reg_param: 100.0)
@@ -9,9 +9,7 @@ module Rumale
9
9
  # RBFRegressor is a class that implements regressor based on (k-means) radial basis function (RBF) networks.
10
10
  #
11
11
  # @example
12
- # require 'numo/tiny_linalg'
13
- # Numo::Linalg = Numo::TinyLinalg
14
- #
12
+ # require 'numo/linalg'
15
13
  # require 'rumale/neural_network/rbf_regressor'
16
14
  #
17
15
  # estimator = Rumale::NeuralNetwork::RBFRegressor.new(hidden_units: 128, reg_param: 100.0)
@@ -11,9 +11,7 @@ module Rumale
11
11
  # The current implementation uses sigmoid function as activation function.
12
12
  #
13
13
  # @example
14
- # require 'numo/tiny_linalg'
15
- # Numo::Linalg = Numo::TinyLinalg
16
- #
14
+ # require 'numo/linalg'
17
15
  # require 'rumale/neural_network/rvfl_classifier'
18
16
  #
19
17
  # estimator = Rumale::NeuralNetwork::RVFLClassifier.new(hidden_units: 128, reg_param: 100.0)
@@ -10,9 +10,7 @@ module Rumale
10
10
  # The current implementation uses sigmoid function as activation function.
11
11
  #
12
12
  # @example
13
- # require 'numo/tiny_linalg'
14
- # Numo::Linalg = Numo::TinyLinalg
15
- #
13
+ # require 'numo/linalg'
16
14
  # require 'rumale/neural_network/rvfl_regressor'
17
15
  #
18
16
  # estimator = Rumale::NeuralNetwork::RVFLRegressor.new(hidden_units: 128, reg_param: 100.0)
@@ -5,6 +5,6 @@ module Rumale
5
5
  # This module consists of the modules and classes for implementation multi-layer perceptron estimator.
6
6
  module NeuralNetwork
7
7
  # @!visibility private
8
- VERSION = '1.0.0'
8
+ VERSION = '2.0.0'
9
9
  end
10
10
  end
metadata CHANGED
@@ -1,42 +1,42 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale-neural_network
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.0.0
4
+ version: 2.0.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  bindir: exe
9
9
  cert_chain: []
10
- date: 2025-01-02 00:00:00.000000000 Z
10
+ date: 1980-01-02 00:00:00.000000000 Z
11
11
  dependencies:
12
12
  - !ruby/object:Gem::Dependency
13
- name: numo-narray
13
+ name: numo-narray-alt
14
14
  requirement: !ruby/object:Gem::Requirement
15
15
  requirements:
16
- - - ">="
16
+ - - "~>"
17
17
  - !ruby/object:Gem::Version
18
- version: 0.9.1
18
+ version: 0.9.4
19
19
  type: :runtime
20
20
  prerelease: false
21
21
  version_requirements: !ruby/object:Gem::Requirement
22
22
  requirements:
23
- - - ">="
23
+ - - "~>"
24
24
  - !ruby/object:Gem::Version
25
- version: 0.9.1
25
+ version: 0.9.4
26
26
  - !ruby/object:Gem::Dependency
27
27
  name: rumale-core
28
28
  requirement: !ruby/object:Gem::Requirement
29
29
  requirements:
30
30
  - - "~>"
31
31
  - !ruby/object:Gem::Version
32
- version: 1.0.0
32
+ version: 2.0.0
33
33
  type: :runtime
34
34
  prerelease: false
35
35
  version_requirements: !ruby/object:Gem::Requirement
36
36
  requirements:
37
37
  - - "~>"
38
38
  - !ruby/object:Gem::Version
39
- version: 1.0.0
39
+ version: 2.0.0
40
40
  description: |
41
41
  Rumale::NeuralNetwork provides classifiers and regression algorithms based on multi-layer perceptron,
42
42
  radial basis function network, and random vector functional link network in the Rumale interface.
@@ -82,7 +82,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
82
82
  - !ruby/object:Gem::Version
83
83
  version: '0'
84
84
  requirements: []
85
- rubygems_version: 3.6.2
85
+ rubygems_version: 3.6.9
86
86
  specification_version: 4
87
87
  summary: Rumale::NeuralNetwork provides classifiers and regression algorithms based
88
88
  on multi-layer perceptron, radial basis function network, and random vector functional