rumale-neural_network 0.29.0 → 2.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 55edcf5110054d047c1fc9cec03f97bd503e1be9635e39431eb5e0a7b316abb4
4
- data.tar.gz: 927439bbccdd5e404a5a677a08292358fefa69f15e8961e9d0ceb9467eb0f3d7
3
+ metadata.gz: 07e4674936bf7eec373d6eec3bf4ec3606c29705838b16cb780ea114c112c199
4
+ data.tar.gz: 9b9a847e266ac6020341822ac263f2da01e3080bade65964a199dce0a5dd7900
5
5
  SHA512:
6
- metadata.gz: e53ba8644599c3d2fa2beab92c6c8e6bd5dd7df27c2886e47eb0cbccfe907336d9d543322f1e7993fc4826837963726b9a5580fcdb669e9d617c0295a3070f68
7
- data.tar.gz: 03d5609d99115eb96e5d755ecfed6f7442f4417dc922ca74af1e340427605d50e9728856c5b0c136b9a9120a5080d8e0acd1304dcc382735b4d02386c8ab22e5
6
+ metadata.gz: af27aac567486bbb76e33af877aca996b3edef703f1bc848f706f83b176a8d0d5cbf05edfe60115f6843809f1ac1ab007e6b138f879dde88ee373bba7693e802
7
+ data.tar.gz: ea43ad45197502a991cf46bd82028104d90489ce3417325c955e9a2fbd80537be1187d3a84c6e4a17d920a59231646fe120cadf3d3c143a71ab743a0ef1fdc0d
@@ -48,7 +48,8 @@ module Rumale
48
48
  def hidden_output(x)
49
49
  sub_rng = @rng.dup
50
50
  n_features = x.shape[1]
51
- @random_weight_vec = (2.0 * Rumale::Utils.rand_uniform([n_features, @params[:hidden_units]], sub_rng) - 1.0) * @params[:scale] # rubocop:disbale Layout/LineLength
51
+ @random_weight_vec = (2.0 * Rumale::Utils.rand_uniform([n_features, @params[:hidden_units]],
52
+ sub_rng) - 1.0) * @params[:scale]
52
53
  @random_bias = Rumale::Utils.rand_uniform(@params[:hidden_units], sub_rng) * @params[:scale]
53
54
  h = 0.5 * (Numo::NMath.tanh(0.5 * (x.dot(@random_weight_vec) + @random_bias)) + 1.0)
54
55
  Numo::DFloat.hstack([x, h])
@@ -10,9 +10,7 @@ module Rumale
10
10
  # RBFClassifier is a class that implements classifier based on (k-means) radial basis function (RBF) networks.
11
11
  #
12
12
  # @example
13
- # require 'numo/tiny_linalg'
14
- # Numo::Linalg = Numo::TinyLinalg
15
- #
13
+ # require 'numo/linalg'
16
14
  # require 'rumale/neural_network/rbf_classifier'
17
15
  #
18
16
  # estimator = Rumale::NeuralNetwork::RBFClassifier.new(hidden_units: 128, reg_param: 100.0)
@@ -9,9 +9,7 @@ module Rumale
9
9
  # RBFRegressor is a class that implements regressor based on (k-means) radial basis function (RBF) networks.
10
10
  #
11
11
  # @example
12
- # require 'numo/tiny_linalg'
13
- # Numo::Linalg = Numo::TinyLinalg
14
- #
12
+ # require 'numo/linalg'
15
13
  # require 'rumale/neural_network/rbf_regressor'
16
14
  #
17
15
  # estimator = Rumale::NeuralNetwork::RBFRegressor.new(hidden_units: 128, reg_param: 100.0)
@@ -11,9 +11,7 @@ module Rumale
11
11
  # The current implementation uses sigmoid function as activation function.
12
12
  #
13
13
  # @example
14
- # require 'numo/tiny_linalg'
15
- # Numo::Linalg = Numo::TinyLinalg
16
- #
14
+ # require 'numo/linalg'
17
15
  # require 'rumale/neural_network/rvfl_classifier'
18
16
  #
19
17
  # estimator = Rumale::NeuralNetwork::RVFLClassifier.new(hidden_units: 128, reg_param: 100.0)
@@ -10,9 +10,7 @@ module Rumale
10
10
  # The current implementation uses sigmoid function as activation function.
11
11
  #
12
12
  # @example
13
- # require 'numo/tiny_linalg'
14
- # Numo::Linalg = Numo::TinyLinalg
15
- #
13
+ # require 'numo/linalg'
16
14
  # require 'rumale/neural_network/rvfl_regressor'
17
15
  #
18
16
  # estimator = Rumale::NeuralNetwork::RVFLRegressor.new(hidden_units: 128, reg_param: 100.0)
@@ -5,6 +5,6 @@ module Rumale
5
5
  # This module consists of the modules and classes for implementation multi-layer perceptron estimator.
6
6
  module NeuralNetwork
7
7
  # @!visibility private
8
- VERSION = '0.29.0'
8
+ VERSION = '2.0.0'
9
9
  end
10
10
  end
metadata CHANGED
@@ -1,43 +1,42 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale-neural_network
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.29.0
4
+ version: 2.0.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
- autorequire:
9
8
  bindir: exe
10
9
  cert_chain: []
11
- date: 2024-03-30 00:00:00.000000000 Z
10
+ date: 1980-01-02 00:00:00.000000000 Z
12
11
  dependencies:
13
12
  - !ruby/object:Gem::Dependency
14
- name: numo-narray
13
+ name: numo-narray-alt
15
14
  requirement: !ruby/object:Gem::Requirement
16
15
  requirements:
17
- - - ">="
16
+ - - "~>"
18
17
  - !ruby/object:Gem::Version
19
- version: 0.9.1
18
+ version: 0.9.4
20
19
  type: :runtime
21
20
  prerelease: false
22
21
  version_requirements: !ruby/object:Gem::Requirement
23
22
  requirements:
24
- - - ">="
23
+ - - "~>"
25
24
  - !ruby/object:Gem::Version
26
- version: 0.9.1
25
+ version: 0.9.4
27
26
  - !ruby/object:Gem::Dependency
28
27
  name: rumale-core
29
28
  requirement: !ruby/object:Gem::Requirement
30
29
  requirements:
31
30
  - - "~>"
32
31
  - !ruby/object:Gem::Version
33
- version: 0.29.0
32
+ version: 2.0.0
34
33
  type: :runtime
35
34
  prerelease: false
36
35
  version_requirements: !ruby/object:Gem::Requirement
37
36
  requirements:
38
37
  - - "~>"
39
38
  - !ruby/object:Gem::Version
40
- version: 0.29.0
39
+ version: 2.0.0
41
40
  description: |
42
41
  Rumale::NeuralNetwork provides classifiers and regression algorithms based on multi-layer perceptron,
43
42
  radial basis function network, and random vector functional link network in the Rumale interface.
@@ -69,7 +68,6 @@ metadata:
69
68
  changelog_uri: https://github.com/yoshoku/rumale/blob/main/CHANGELOG.md
70
69
  documentation_uri: https://yoshoku.github.io/rumale/doc/
71
70
  rubygems_mfa_required: 'true'
72
- post_install_message:
73
71
  rdoc_options: []
74
72
  require_paths:
75
73
  - lib
@@ -84,8 +82,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
84
82
  - !ruby/object:Gem::Version
85
83
  version: '0'
86
84
  requirements: []
87
- rubygems_version: 3.5.7
88
- signing_key:
85
+ rubygems_version: 3.6.9
89
86
  specification_version: 4
90
87
  summary: Rumale::NeuralNetwork provides classifiers and regression algorithms based
91
88
  on multi-layer perceptron, radial basis function network, and random vector functional