rumale-manifold 0.28.0 → 0.29.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: '018cc8a819b686d66641f8b66e0ffeb13a7f5351ab58cc7f7b2ee79bfe0d06c6'
4
- data.tar.gz: 8e53624cc56092803808adba9a5614eb7ac451b2b83ad9a5966d1fea9a694cd4
3
+ metadata.gz: 8d9fa70278c2f220eca36209fa6a29b33733826e1bacd26bfc96b6f84f2a93ff
4
+ data.tar.gz: e21890d3e97490958e5c43793d70de271c43f43386b91ecbe50703160a6305ce
5
5
  SHA512:
6
- metadata.gz: 67e828ffa83b84a7bb0cd9c910ea4f696ab94f245afa008ff94caa615cfc4e25ea4b057e52602a4e0953728f8720a70953d295935e13450dbdd44e5ee56e6be4
7
- data.tar.gz: 91d0247aa5e1366f0740cc6a86343591abfc8a555df023983c16794d2d746635bbbe4a5074cb34d8b2e41e2e689aac26632ad46d8271e375201981eb07d1a830
6
+ metadata.gz: 23d964b84ff080aada02bcab0a5aec0707023cc28318e6ea4eb49ecf656cb5cf2c5261c1a7493e1e4624039a347e3bb4f343ef82e0d8c88f73385fe9f6616980
7
+ data.tar.gz: c2c32e786fd0b57ad0b7a2ff9987b551bfc61c90bfc0dfbfb39450350fbe075815e6fc9179a0ad1dfcd8f9142af39b4f829b5f04586bf2c5b109600d25710c13
data/LICENSE.txt CHANGED
@@ -1,4 +1,4 @@
1
- Copyright (c) 2022-2023 Atsushi Tatsuma
1
+ Copyright (c) 2022-2024 Atsushi Tatsuma
2
2
  All rights reserved.
3
3
 
4
4
  Redistribution and use in source and binary forms, with or without
@@ -0,0 +1,151 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/pairwise_metric'
6
+ require 'rumale/validation'
7
+
8
+ module Rumale
9
+ module Manifold
10
+ # HessianEigenmaps is a class that implements Hessian Eigenmaps.
11
+ #
12
+ # @example
13
+ # require 'numo/linalg/autoloader'
14
+ # require 'rumale/manifold/hessian_eigenmaps'
15
+ #
16
+ # hem = Rumale::Manifold::HessianEigenmaps.new(n_components: 2, n_neighbors: 15)
17
+ # z = hem.fit_transform(x)
18
+ #
19
+ # *Reference*
20
+ # - Donoho, D. L., and Grimes, C., "Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data," Proc. Natl. Acad. Sci. USA, vol. 100, no. 10, pp. 5591--5596, 2003.
21
+ class HessianEigenmaps < Rumale::Base::Estimator
22
+ include Rumale::Base::Transformer
23
+
24
+ # Return the data in representation space.
25
+ # @return [Numo::DFloat] (shape: [n_samples, n_components])
26
+ attr_reader :embedding
27
+
28
+ # Create a new transformer with Hessian Eigenmaps.
29
+ #
30
+ # @param n_components [Integer] The number of dimensions on representation space.
31
+ # @param n_neighbors [Integer] The number of nearest neighbors for k-nearest neighbor graph construction.
32
+ # @param reg_param [Float] The reguralization parameter for local gram matrix in transform method.
33
+ def initialize(n_neighbors: 5, n_components: 2, reg_param: 1e-6)
34
+ super()
35
+ @params = {
36
+ n_neighbors: n_neighbors,
37
+ n_components: n_components,
38
+ reg_param: reg_param
39
+ }
40
+ end
41
+
42
+ # Fit the model with given training data.
43
+ #
44
+ # @overload fit(x) -> HessianEigenmaps
45
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
46
+ # @return [HessianEigenmaps] The learned transformer itself.
47
+ def fit(x, _y = nil) # rubocop:disable Metrics/AbcSize
48
+ raise 'HessianEigenmaps#fit requires Numo::Linalg but that is not loaded' unless enable_linalg?(warning: false)
49
+
50
+ x = Rumale::Validation.check_convert_sample_array(x)
51
+
52
+ n_samples = x.shape[0]
53
+ distance_mat = Rumale::PairwiseMetric.squared_error(x)
54
+ neighbor_ids = neighbor_ids(distance_mat, @params[:n_neighbors], true)
55
+
56
+ tri_n_components = @params[:n_components] * (@params[:n_components] + 1) / 2
57
+ hessian_mat = Numo::DFloat.zeros(n_samples * tri_n_components, n_samples)
58
+ ones = Numo::DFloat.ones(@params[:n_neighbors], 1)
59
+ n_samples.times do |i|
60
+ tan_coords = tangent_coordinates(x[neighbor_ids[i, true], true])
61
+ xi = Numo::DFloat.zeros(@params[:n_neighbors], tri_n_components)
62
+ @params[:n_components].times do |m|
63
+ offset = Array.new(m + 1) { |v| v }.sum
64
+ (@params[:n_components] - m).times do |n|
65
+ xi[true, m * @params[:n_components] - offset + n] = tan_coords[true, m] * tan_coords[true, m + n]
66
+ end
67
+ end
68
+
69
+ xt, = Numo::Linalg.qr(Numo::DFloat.hstack([ones, tan_coords, xi]))
70
+ pii = xt[true, (@params[:n_components] + 1)..-1]
71
+ tri_n_components.times do |j|
72
+ pj_sum = pii[true, j].sum
73
+ normalizer = pj_sum <= 1e-8 ? 1 : 1.fdiv(pj_sum)
74
+ hessian_mat[i * tri_n_components + j, neighbor_ids[i, true]] = pii[true, j] * normalizer
75
+ end
76
+ end
77
+
78
+ kernel_mat = hessian_mat.transpose.dot(hessian_mat)
79
+ _, eig_vecs = Numo::Linalg.eigh(kernel_mat, vals_range: 1...(1 + @params[:n_components]))
80
+
81
+ @embedding = @params[:n_components] == 1 ? eig_vecs[true, 0].dup : eig_vecs.dup
82
+ @x_train = x.dup
83
+
84
+ self
85
+ end
86
+
87
+ # Fit the model with training data, and then transform them with the learned model.
88
+ #
89
+ # @overload fit_transform(x) -> Numo::DFloat
90
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
91
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
92
+ def fit_transform(x, _y = nil)
93
+ unless enable_linalg?(warning: false)
94
+ raise 'HessianEigenmaps#fit_transform requires Numo::Linalg but that is not loaded'
95
+ end
96
+
97
+ fit(x)
98
+
99
+ @embedding.dup
100
+ end
101
+
102
+ # Transform the given data with the learned model.
103
+ # For out-of-sample data embedding, the same method as Locally Linear Embedding is used.
104
+ #
105
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
106
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
107
+ def transform(x)
108
+ x = Rumale::Validation.check_convert_sample_array(x)
109
+
110
+ n_samples = x.shape[0]
111
+ tol = @params[:reg_param].fdiv(@params[:n_neighbors])
112
+ distance_mat = Rumale::PairwiseMetric.squared_error(x, @x_train)
113
+ neighbor_ids = neighbor_ids(distance_mat, @params[:n_neighbors], false)
114
+ weight_mat = Numo::DFloat.zeros(n_samples, @x_train.shape[0])
115
+
116
+ n_samples.times do |n|
117
+ x_local = @x_train[neighbor_ids[n, true], true] - x[n, true]
118
+ gram_mat = x_local.dot(x_local.transpose)
119
+ gram_mat += tol * weight_mat.trace * Numo::DFloat.eye(@params[:n_neighbors])
120
+ weights = Numo::Linalg.solve(gram_mat, Numo::DFloat.ones(@params[:n_neighbors]))
121
+ weights /= weights.sum + 1e-8
122
+ weight_mat[n, neighbor_ids[n, true]] = weights
123
+ end
124
+
125
+ weight_mat.dot(@embedding)
126
+ end
127
+
128
+ private
129
+
130
+ def neighbor_ids(distance_mat, n_neighbors, contain_self)
131
+ n_samples = distance_mat.shape[0]
132
+ neighbor_ids = Numo::Int32.zeros(n_samples, n_neighbors)
133
+ if contain_self
134
+ n_samples.times { |n| neighbor_ids[n, true] = (distance_mat[n, true].sort_index.to_a - [n])[0...n_neighbors] }
135
+ else
136
+ n_samples.times { |n| neighbor_ids[n, true] = distance_mat[n, true].sort_index.to_a[0...n_neighbors] }
137
+ end
138
+ neighbor_ids
139
+ end
140
+
141
+ def tangent_coordinates(x)
142
+ m = x.mean(axis: 0)
143
+ cx = x - m
144
+ cov_mat = cx.transpose.dot(cx)
145
+ n_features = x.shape[1]
146
+ _, evecs = Numo::Linalg.eigh(cov_mat, vals_range: (n_features - @params[:n_components])...n_features)
147
+ cx.dot(evecs.reverse(1))
148
+ end
149
+ end
150
+ end
151
+ end
@@ -0,0 +1,142 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/base/estimator'
4
+ require 'rumale/base/transformer'
5
+ require 'rumale/pairwise_metric'
6
+ require 'rumale/validation'
7
+
8
+ module Rumale
9
+ module Manifold
10
+ # LocalTangentSpaceAlignment is a class that implements Local Tangent Space Alignment.
11
+ #
12
+ # @example
13
+ # require 'numo/linalg/autoloader'
14
+ # require 'rumale/manifold/local_tangent_space_alignment'
15
+ #
16
+ # lem = Rumale::Manifold::LocalTangentSpaceAlignment.new(n_components: 2, n_neighbors: 15)
17
+ # z = lem.fit_transform(x)
18
+ #
19
+ # *Reference*
20
+ # - Zhang, A., and Zha, H., "Principal Manifolds and Nonlinear Diemnsion Reduction via Local Tangent Space Alignment," SIAM Journal on Scientific Computing, vol. 26, iss. 1, pp. 313-338, 2004.
21
+ class LocalTangentSpaceAlignment < Rumale::Base::Estimator
22
+ include Rumale::Base::Transformer
23
+
24
+ # Return the data in representation space.
25
+ # @return [Numo::DFloat] (shape: [n_samples, n_components])
26
+ attr_reader :embedding
27
+
28
+ # Create a new transformer with Local Tangent Space Alignment.
29
+ #
30
+ # @param n_components [Integer] The number of dimensions on representation space.
31
+ # @param n_neighbors [Integer] The number of nearest neighbors for finding k-nearest neighbors
32
+ # @param reg_param [Float] The reguralization parameter for local gram matrix in transform method.
33
+ def initialize(n_components: 2, n_neighbors: 10, reg_param: 1e-3)
34
+ super()
35
+ @params = {
36
+ n_components: n_components,
37
+ n_neighbors: [1, n_neighbors].max,
38
+ reg_param: reg_param
39
+ }
40
+ end
41
+
42
+ # Fit the model with given training data.
43
+ #
44
+ # @overload fit(x) -> LocalTangentSpaceAlignment
45
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
46
+ # @return [LocalTangentSpaceAlignment] The learned transformer itself.
47
+ def fit(x, _y = nil)
48
+ unless enable_linalg?(warning: false)
49
+ raise 'LocalTangentSpaceAlignment#fit requires Numo::Linalg but that is not loaded'
50
+ end
51
+
52
+ x = Rumale::Validation.check_convert_sample_array(x)
53
+
54
+ n_samples = x.shape[0]
55
+ distance_mat = Rumale::PairwiseMetric.squared_error(x)
56
+ neighbor_ids = neighbor_ids(distance_mat, @params[:n_neighbors], true)
57
+
58
+ affinity_mat = Numo::DFloat.zeros(n_samples, n_samples)
59
+ x_tangent = Numo::DFloat.zeros(@params[:n_neighbors], @params[:n_components] + 1)
60
+ x_tangent[true, 0] = 1.fdiv(Math.sqrt(@params[:n_neighbors]))
61
+
62
+ n_samples.times do |n|
63
+ x_local = x[neighbor_ids[n, true], true]
64
+ x_tangent[true, 1...] = right_singular_vectors(x_local, @params[:n_components])
65
+ weight_mat = x_tangent.dot(x_tangent.transpose)
66
+ neighbor_ids[n, true].each_with_index do |m, i|
67
+ affinity_mat[m, neighbor_ids[n, true]] -= weight_mat[i, true]
68
+ affinity_mat[m, m] += 1
69
+ end
70
+ end
71
+
72
+ kernel_mat = 0.5 * (affinity_mat.transpose + affinity_mat)
73
+ _, eig_vecs = Numo::Linalg.eigh(kernel_mat, vals_range: 1...(1 + @params[:n_components]))
74
+
75
+ @embedding = @params[:n_components] == 1 ? eig_vecs[true, 0].dup : eig_vecs.dup
76
+ @x_train = x.dup
77
+
78
+ self
79
+ end
80
+
81
+ # Fit the model with training data, and then transform them with the learned model.
82
+ #
83
+ # @overload fit_transform(x) -> Numo::DFloat
84
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
85
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
86
+ def fit_transform(x, _y = nil)
87
+ unless enable_linalg?(warning: false)
88
+ raise 'LocalTangentSpaceAlignment#fit_transform requires Numo::Linalg but that is not loaded'
89
+ end
90
+
91
+ fit(x).transform(x)
92
+ end
93
+
94
+ # Transform the given data with the learned model.
95
+ # For out-of-sample data embedding, the same method as Locally Linear Embedding is used.
96
+ #
97
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
98
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
99
+ def transform(x)
100
+ x = Rumale::Validation.check_convert_sample_array(x)
101
+
102
+ n_samples = x.shape[0]
103
+ tol = @params[:reg_param].fdiv(@params[:n_neighbors])
104
+ distance_mat = Rumale::PairwiseMetric.squared_error(x, @x_train)
105
+ neighbor_ids = neighbor_ids(distance_mat, @params[:n_neighbors], false)
106
+ weight_mat = Numo::DFloat.zeros(n_samples, @x_train.shape[0])
107
+
108
+ n_samples.times do |n|
109
+ x_local = @x_train[neighbor_ids[n, true], true] - x[n, true]
110
+ gram_mat = x_local.dot(x_local.transpose)
111
+ gram_mat += tol * weight_mat.trace * Numo::DFloat.eye(@params[:n_neighbors])
112
+ weights = Numo::Linalg.solve(gram_mat, Numo::DFloat.ones(@params[:n_neighbors]))
113
+ weights /= weights.sum + 1e-8
114
+ weight_mat[n, neighbor_ids[n, true]] = weights
115
+ end
116
+
117
+ weight_mat.dot(@embedding)
118
+ end
119
+
120
+ private
121
+
122
+ def neighbor_ids(distance_mat, n_neighbors, contain_self)
123
+ n_samples = distance_mat.shape[0]
124
+ neighbor_ids = Numo::Int32.zeros(n_samples, n_neighbors)
125
+ if contain_self
126
+ n_samples.times { |n| neighbor_ids[n, true] = (distance_mat[n, true].sort_index.to_a - [n])[0...n_neighbors] }
127
+ else
128
+ n_samples.times { |n| neighbor_ids[n, true] = distance_mat[n, true].sort_index.to_a[0...n_neighbors] }
129
+ end
130
+ neighbor_ids
131
+ end
132
+
133
+ def right_singular_vectors(x_local, n_singulars)
134
+ n_samples = x_local.shape[0]
135
+ x_local -= x_local.mean(0)
136
+ gram_mat = x_local.dot(x_local.transpose)
137
+ _, evecs = Numo::Linalg.eigh(gram_mat, vals_range: (n_samples - n_singulars)...n_samples)
138
+ evecs.reverse(1).dup
139
+ end
140
+ end
141
+ end
142
+ end
@@ -7,7 +7,7 @@ require 'rumale/validation'
7
7
 
8
8
  module Rumale
9
9
  module Manifold
10
- # LocallyLinearEmbedding is a class that implements Loccaly Linear Embedding.
10
+ # LocallyLinearEmbedding is a class that implements Locally Linear Embedding.
11
11
  #
12
12
  # @example
13
13
  # require 'numo/linalg/autoloader'
@@ -5,6 +5,6 @@ module Rumale
5
5
  # Module for data embedding algorithms.
6
6
  module Manifold
7
7
  # @!visibility private
8
- VERSION = '0.28.0'
8
+ VERSION = '0.29.0'
9
9
  end
10
10
  end
@@ -4,6 +4,8 @@ require 'numo/narray'
4
4
 
5
5
  require_relative 'manifold/laplacian_eigenmaps'
6
6
  require_relative 'manifold/locally_linear_embedding'
7
+ require_relative 'manifold/hessian_eigenmaps'
8
+ require_relative 'manifold/local_tangent_space_alignment'
7
9
  require_relative 'manifold/mds'
8
10
  require_relative 'manifold/tsne'
9
11
  require_relative 'manifold/version'
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale-manifold
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.28.0
4
+ version: 0.29.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2023-11-12 00:00:00.000000000 Z
11
+ date: 2024-03-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray
@@ -30,31 +30,32 @@ dependencies:
30
30
  requirements:
31
31
  - - "~>"
32
32
  - !ruby/object:Gem::Version
33
- version: 0.28.0
33
+ version: 0.29.0
34
34
  type: :runtime
35
35
  prerelease: false
36
36
  version_requirements: !ruby/object:Gem::Requirement
37
37
  requirements:
38
38
  - - "~>"
39
39
  - !ruby/object:Gem::Version
40
- version: 0.28.0
40
+ version: 0.29.0
41
41
  - !ruby/object:Gem::Dependency
42
42
  name: rumale-decomposition
43
43
  requirement: !ruby/object:Gem::Requirement
44
44
  requirements:
45
45
  - - "~>"
46
46
  - !ruby/object:Gem::Version
47
- version: 0.28.0
47
+ version: 0.29.0
48
48
  type: :runtime
49
49
  prerelease: false
50
50
  version_requirements: !ruby/object:Gem::Requirement
51
51
  requirements:
52
52
  - - "~>"
53
53
  - !ruby/object:Gem::Version
54
- version: 0.28.0
54
+ version: 0.29.0
55
55
  description: |
56
56
  Rumale::Manifold provides data embedding algorithms,
57
- such as Multi-dimensional Scaling and t-distributed Stochastic Neighbor Embedding,
57
+ such as Multi-dimensional Scaling, Locally Linear Embedding, Laplacian Eigenmaps, Hessian Eigenmaps,
58
+ and t-distributed Stochastic Neighbor Embedding,
58
59
  with Rumale interface.
59
60
  email:
60
61
  - yoshoku@outlook.com
@@ -65,7 +66,9 @@ files:
65
66
  - LICENSE.txt
66
67
  - README.md
67
68
  - lib/rumale/manifold.rb
69
+ - lib/rumale/manifold/hessian_eigenmaps.rb
68
70
  - lib/rumale/manifold/laplacian_eigenmaps.rb
71
+ - lib/rumale/manifold/local_tangent_space_alignment.rb
69
72
  - lib/rumale/manifold/locally_linear_embedding.rb
70
73
  - lib/rumale/manifold/mds.rb
71
74
  - lib/rumale/manifold/tsne.rb
@@ -93,7 +96,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
93
96
  - !ruby/object:Gem::Version
94
97
  version: '0'
95
98
  requirements: []
96
- rubygems_version: 3.4.20
99
+ rubygems_version: 3.5.7
97
100
  signing_key:
98
101
  specification_version: 4
99
102
  summary: Rumale::Manifold provides data embedding algorithms with Rumale interface.