rumale-manifold 0.24.0 → 0.26.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +1 -1
- data/README.md +1 -1
- data/lib/rumale/manifold/laplacian_eigenmaps.rb +125 -0
- data/lib/rumale/manifold/locally_linear_embedding.rb +128 -0
- data/lib/rumale/manifold/version.rb +1 -1
- data/lib/rumale/manifold.rb +2 -0
- metadata +12 -10
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a617aca87458b95ebab75cc6913fe8064c2eeb96ab002483bda708f1a40aafe1
|
4
|
+
data.tar.gz: e8e9186bbf583fc504aabd283a3b2f5bdfcff9c79cab7d52fe3b6049c2bd233b
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 30d1e6d74f61535d0285e40d98c54b15344128c8144ec9694bc76bb8d26a70f932accf3b77e7c6c4b55c7225e99b3b7ef354dba85684678e47f722a5a60a602b
|
7
|
+
data.tar.gz: b6b56afeec456babec131c9bc253ec31d9324c9b39d40b71e0825df930176cb6c8854df57f26d5cdd546aabada022c6e671abb2236ea52c8200cf9b834f449fc
|
data/LICENSE.txt
CHANGED
data/README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
# Rumale::Manifold
|
2
2
|
|
3
3
|
[![Gem Version](https://badge.fury.io/rb/rumale-manifold.svg)](https://badge.fury.io/rb/rumale-manifold)
|
4
|
-
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://
|
4
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-manifold/LICENSE.txt)
|
5
5
|
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/Manifold.html)
|
6
6
|
|
7
7
|
Rumale is a machine learning library in Ruby.
|
@@ -0,0 +1,125 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/pairwise_metric'
|
6
|
+
require 'rumale/validation'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Manifold
|
10
|
+
# LaplacianEigenmaps is a class that implements Laplacian Eigenmaps.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'numo/linalg/autoloader'
|
14
|
+
# require 'rumale/manifold/laplacian_eigenmaps'
|
15
|
+
#
|
16
|
+
# lem = Rumale::Manifold::LaplacianEigenmaps.new(n_components: 2, n_neighbors: 15)
|
17
|
+
# z = lem.fit_transform(x)
|
18
|
+
#
|
19
|
+
# *Reference*
|
20
|
+
# - Belkin, M., and Niyogi, P., "Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering," Proc. NIPS'01, pp. 585--591, 2001.
|
21
|
+
class LaplacianEigenmaps < Rumale::Base::Estimator
|
22
|
+
include Rumale::Base::Transformer
|
23
|
+
|
24
|
+
# Return the data in representation space.
|
25
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components])
|
26
|
+
attr_reader :embedding
|
27
|
+
|
28
|
+
# Create a new transformer with Laplacian Eigenmaps.
|
29
|
+
#
|
30
|
+
# @param n_components [Integer] The number of dimensions on representation space.
|
31
|
+
# @param gamma [Nil/Float] The parameter of RBF kernel. If nil is given, the weight of affinity matrix sets to 1.
|
32
|
+
# @param n_neighbors [Integer] The number of nearest neighbors for k-nearest neighbor graph construction.
|
33
|
+
def initialize(n_components: 2, gamma: nil, n_neighbors: 10)
|
34
|
+
super()
|
35
|
+
@params = {
|
36
|
+
n_components: n_components,
|
37
|
+
gamma: gamma,
|
38
|
+
n_neighbors: [1, n_neighbors].max
|
39
|
+
}
|
40
|
+
end
|
41
|
+
|
42
|
+
# Fit the model with given training data.
|
43
|
+
#
|
44
|
+
# @overload fit(x) -> LaplacianEigenmaps
|
45
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
46
|
+
# @return [LaplacianEigenmaps] The learned transformer itself.
|
47
|
+
def fit(x, _y = nil)
|
48
|
+
raise 'LaplacianEigenmaps#fit requires Numo::Linalg but that is not loaded' unless enable_linalg?(warning: false)
|
49
|
+
|
50
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
51
|
+
|
52
|
+
distance_mat = Rumale::PairwiseMetric.squared_error(x)
|
53
|
+
neighbor_graph = k_neighbor_graph(distance_mat, @params[:n_neighbors], true)
|
54
|
+
affinity_mat = if @params[:gamma].nil?
|
55
|
+
neighbor_graph
|
56
|
+
else
|
57
|
+
neighbor_graph * Numo::NMath.exp(-@params[:gamma] * distance_mat)
|
58
|
+
end
|
59
|
+
degree_mat = affinity_mat.sum(axis: 1).diag
|
60
|
+
laplacian_mat = degree_mat - affinity_mat
|
61
|
+
|
62
|
+
_, eig_vecs = Numo::Linalg.eigh(laplacian_mat, degree_mat, vals_range: 1...(1 + @params[:n_components]))
|
63
|
+
|
64
|
+
@embedding = @params[:n_components] == 1 ? eig_vecs[true, 0].dup : eig_vecs.dup
|
65
|
+
@x_train = x.dup
|
66
|
+
|
67
|
+
self
|
68
|
+
end
|
69
|
+
|
70
|
+
# Fit the model with training data, and then transform them with the learned model.
|
71
|
+
#
|
72
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
73
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
74
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
75
|
+
def fit_transform(x, _y = nil)
|
76
|
+
unless enable_linalg?(warning: false)
|
77
|
+
raise 'LaplacianEigenmaps#fit_transform requires Numo::Linalg but that is not loaded'
|
78
|
+
end
|
79
|
+
|
80
|
+
fit(x).transform(x)
|
81
|
+
end
|
82
|
+
|
83
|
+
# Transform the given data with the learned model.
|
84
|
+
#
|
85
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
86
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
87
|
+
def transform(x)
|
88
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
89
|
+
|
90
|
+
distance_mat = Rumale::PairwiseMetric.squared_error(x, @x_train)
|
91
|
+
neighbor_graph = k_neighbor_graph(distance_mat, @params[:n_neighbors], false)
|
92
|
+
affinity_mat = if @params[:gamma].nil?
|
93
|
+
neighbor_graph
|
94
|
+
else
|
95
|
+
neighbor_graph * Numo::NMath.exp(-@params[:gamma] * distance_mat)
|
96
|
+
end
|
97
|
+
normalizer = Numo::NMath.sqrt(affinity_mat.mean * affinity_mat.mean(axis: 1))
|
98
|
+
n_train_samples = @x_train.shape[0]
|
99
|
+
weight_mat = 1.fdiv(n_train_samples) * (affinity_mat.transpose / normalizer).transpose
|
100
|
+
weight_mat.dot(@embedding)
|
101
|
+
end
|
102
|
+
|
103
|
+
private
|
104
|
+
|
105
|
+
def k_neighbor_graph(distance_mat, n_neighbors, contain_self)
|
106
|
+
n_samples = distance_mat.shape[0]
|
107
|
+
if contain_self
|
108
|
+
neighbor_graph = Numo::DFloat.zeros(n_samples, n_samples)
|
109
|
+
n_samples.times do |n|
|
110
|
+
neighbor_ids = (distance_mat[n, true].sort_index.to_a - [n])[0...n_neighbors]
|
111
|
+
neighbor_graph[n, neighbor_ids] = 1
|
112
|
+
end
|
113
|
+
Numo::DFloat.maximum(neighbor_graph, neighbor_graph.transpose)
|
114
|
+
else
|
115
|
+
neighbor_graph = Numo::DFloat.zeros(distance_mat.shape)
|
116
|
+
n_samples.times do |n|
|
117
|
+
neighbor_ids = distance_mat[n, true].sort_index.to_a[0...n_neighbors]
|
118
|
+
neighbor_graph[n, neighbor_ids] = 1
|
119
|
+
end
|
120
|
+
neighbor_graph
|
121
|
+
end
|
122
|
+
end
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|
@@ -0,0 +1,128 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/pairwise_metric'
|
6
|
+
require 'rumale/validation'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Manifold
|
10
|
+
# LocallyLinearEmbedding is a class that implements Loccaly Linear Embedding.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'numo/linalg/autoloader'
|
14
|
+
# require 'rumale/manifold/locally_linear_embedding'
|
15
|
+
#
|
16
|
+
# lem = Rumale::Manifold::LocallyLinearEmbedding.new(n_components: 2, n_neighbors: 15)
|
17
|
+
# z = lem.fit_transform(x)
|
18
|
+
#
|
19
|
+
# *Reference*
|
20
|
+
# - Roweis, S., and Saul, L., "Nonlinear Dimensionality Reduction by Locally Linear Embedding," J. of Science, vol. 290, pp. 2323-2326, 2000.
|
21
|
+
class LocallyLinearEmbedding < Rumale::Base::Estimator
|
22
|
+
include Rumale::Base::Transformer
|
23
|
+
|
24
|
+
# Return the data in representation space.
|
25
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components])
|
26
|
+
attr_reader :embedding
|
27
|
+
|
28
|
+
# Create a new transformer with Locally Linear Embedding.
|
29
|
+
#
|
30
|
+
# @param n_components [Integer] The number of dimensions on representation space.
|
31
|
+
# @param n_neighbors [Integer] The number of nearest neighbors for k-nearest neighbor graph construction.
|
32
|
+
# @param reg_param [Float] The reguralization parameter for local gram matrix.
|
33
|
+
def initialize(n_components: 2, n_neighbors: 10, reg_param: 1e-3)
|
34
|
+
super()
|
35
|
+
@params = {
|
36
|
+
n_components: n_components,
|
37
|
+
n_neighbors: [1, n_neighbors].max,
|
38
|
+
reg_param: reg_param
|
39
|
+
}
|
40
|
+
end
|
41
|
+
|
42
|
+
# Fit the model with given training data.
|
43
|
+
#
|
44
|
+
# @overload fit(x) -> LocallyLinearEmbedding
|
45
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
46
|
+
# @return [LocallyLinearEmbedding] The learned transformer itself.
|
47
|
+
def fit(x, _y = nil)
|
48
|
+
raise 'LocallyLinearEmbedding#fit requires Numo::Linalg but that is not loaded' unless enable_linalg?(warning: false)
|
49
|
+
|
50
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
51
|
+
|
52
|
+
n_samples = x.shape[0]
|
53
|
+
tol = @params[:reg_param].fdiv(@params[:n_neighbors])
|
54
|
+
distance_mat = Rumale::PairwiseMetric.squared_error(x)
|
55
|
+
neighbor_ids = neighbor_ids(distance_mat, @params[:n_neighbors], true)
|
56
|
+
|
57
|
+
affinity_mat = Numo::DFloat.eye(n_samples)
|
58
|
+
n_samples.times do |n|
|
59
|
+
x_local = x[neighbor_ids[n, true], true] - x[n, true]
|
60
|
+
gram_mat = x_local.dot(x_local.transpose)
|
61
|
+
gram_mat += tol * gram_mat.trace * Numo::DFloat.eye(@params[:n_neighbors])
|
62
|
+
weights = Numo::Linalg.solve(gram_mat, Numo::DFloat.ones(@params[:n_neighbors]))
|
63
|
+
weights /= weights.sum + 1e-8
|
64
|
+
affinity_mat[n, neighbor_ids[n, true]] -= weights
|
65
|
+
end
|
66
|
+
|
67
|
+
kernel_mat = affinity_mat.transpose.dot(affinity_mat)
|
68
|
+
_, eig_vecs = Numo::Linalg.eigh(kernel_mat, vals_range: 1...(1 + @params[:n_components]))
|
69
|
+
|
70
|
+
@embedding = @params[:n_components] == 1 ? eig_vecs[true, 0].dup : eig_vecs.dup
|
71
|
+
@x_train = x.dup
|
72
|
+
|
73
|
+
self
|
74
|
+
end
|
75
|
+
|
76
|
+
# Fit the model with training data, and then transform them with the learned model.
|
77
|
+
#
|
78
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
79
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
80
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
81
|
+
def fit_transform(x, _y = nil)
|
82
|
+
unless enable_linalg?(warning: false)
|
83
|
+
raise 'LocallyLinearEmbedding#fit_transform requires Numo::Linalg but that is not loaded'
|
84
|
+
end
|
85
|
+
|
86
|
+
fit(x).transform(x)
|
87
|
+
end
|
88
|
+
|
89
|
+
# Transform the given data with the learned model.
|
90
|
+
#
|
91
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
92
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
93
|
+
def transform(x)
|
94
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
95
|
+
|
96
|
+
n_samples = x.shape[0]
|
97
|
+
tol = @params[:reg_param].fdiv(@params[:n_neighbors])
|
98
|
+
distance_mat = Rumale::PairwiseMetric.squared_error(x, @x_train)
|
99
|
+
neighbor_ids = neighbor_ids(distance_mat, @params[:n_neighbors], false)
|
100
|
+
weight_mat = Numo::DFloat.zeros(n_samples, @x_train.shape[0])
|
101
|
+
|
102
|
+
n_samples.times do |n|
|
103
|
+
x_local = @x_train[neighbor_ids[n, true], true] - x[n, true]
|
104
|
+
gram_mat = x_local.dot(x_local.transpose)
|
105
|
+
gram_mat += tol * weight_mat.trace * Numo::DFloat.eye(@params[:n_neighbors])
|
106
|
+
weights = Numo::Linalg.solve(gram_mat, Numo::DFloat.ones(@params[:n_neighbors]))
|
107
|
+
weights /= weights.sum + 1e-8
|
108
|
+
weight_mat[n, neighbor_ids[n, true]] = weights
|
109
|
+
end
|
110
|
+
|
111
|
+
weight_mat.dot(@embedding)
|
112
|
+
end
|
113
|
+
|
114
|
+
private
|
115
|
+
|
116
|
+
def neighbor_ids(distance_mat, n_neighbors, contain_self)
|
117
|
+
n_samples = distance_mat.shape[0]
|
118
|
+
neighbor_ids = Numo::Int32.zeros(n_samples, n_neighbors)
|
119
|
+
if contain_self
|
120
|
+
n_samples.times { |n| neighbor_ids[n, true] = (distance_mat[n, true].sort_index.to_a - [n])[0...n_neighbors] }
|
121
|
+
else
|
122
|
+
n_samples.times { |n| neighbor_ids[n, true] = distance_mat[n, true].sort_index.to_a[0...n_neighbors] }
|
123
|
+
end
|
124
|
+
neighbor_ids
|
125
|
+
end
|
126
|
+
end
|
127
|
+
end
|
128
|
+
end
|
data/lib/rumale/manifold.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale-manifold
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.26.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2023-02-19 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -30,28 +30,28 @@ dependencies:
|
|
30
30
|
requirements:
|
31
31
|
- - "~>"
|
32
32
|
- !ruby/object:Gem::Version
|
33
|
-
version: 0.
|
33
|
+
version: 0.26.0
|
34
34
|
type: :runtime
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
38
|
- - "~>"
|
39
39
|
- !ruby/object:Gem::Version
|
40
|
-
version: 0.
|
40
|
+
version: 0.26.0
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
42
|
name: rumale-decomposition
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
45
|
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: 0.
|
47
|
+
version: 0.26.0
|
48
48
|
type: :runtime
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: 0.
|
54
|
+
version: 0.26.0
|
55
55
|
description: |
|
56
56
|
Rumale::Manifold provides data embedding algorithms,
|
57
57
|
such as Multi-dimensional Scaling and t-distributed Stochastic Neighbor Embedding,
|
@@ -65,16 +65,18 @@ files:
|
|
65
65
|
- LICENSE.txt
|
66
66
|
- README.md
|
67
67
|
- lib/rumale/manifold.rb
|
68
|
+
- lib/rumale/manifold/laplacian_eigenmaps.rb
|
69
|
+
- lib/rumale/manifold/locally_linear_embedding.rb
|
68
70
|
- lib/rumale/manifold/mds.rb
|
69
71
|
- lib/rumale/manifold/tsne.rb
|
70
72
|
- lib/rumale/manifold/version.rb
|
71
|
-
homepage: https://
|
73
|
+
homepage: https://github.com/yoshoku/rumale
|
72
74
|
licenses:
|
73
75
|
- BSD-3-Clause
|
74
76
|
metadata:
|
75
|
-
homepage_uri: https://
|
76
|
-
source_code_uri: https://
|
77
|
-
changelog_uri: https://
|
77
|
+
homepage_uri: https://github.com/yoshoku/rumale
|
78
|
+
source_code_uri: https://github.com/yoshoku/rumale/-/tree/main/rumale-manifold
|
79
|
+
changelog_uri: https://github.com/yoshoku/rumale/-/blob/main/CHANGELOG.md
|
78
80
|
rubygems_mfa_required: 'true'
|
79
81
|
post_install_message:
|
80
82
|
rdoc_options: []
|