rumale-linear_model 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/linear_model/base_sgd.rb +275 -0
- data/lib/rumale/linear_model/elastic_net.rb +115 -0
- data/lib/rumale/linear_model/lasso.rb +111 -0
- data/lib/rumale/linear_model/linear_regression.rb +199 -0
- data/lib/rumale/linear_model/logistic_regression.rb +266 -0
- data/lib/rumale/linear_model/nnls.rb +141 -0
- data/lib/rumale/linear_model/ridge.rb +206 -0
- data/lib/rumale/linear_model/svc.rb +203 -0
- data/lib/rumale/linear_model/svr.rb +126 -0
- data/lib/rumale/linear_model/version.rb +10 -0
- data/lib/rumale/linear_model.rb +14 -0
- metadata +106 -0
@@ -0,0 +1,206 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'lbfgsb'
|
4
|
+
|
5
|
+
require 'rumale/base/regressor'
|
6
|
+
require 'rumale/validation'
|
7
|
+
require 'rumale/linear_model/base_sgd'
|
8
|
+
|
9
|
+
module Rumale
|
10
|
+
module LinearModel
|
11
|
+
# Ridge is a class that implements Ridge Regression
|
12
|
+
# with stochastic gradient descent (SGD) optimization,
|
13
|
+
# singular value decomposition (SVD), or L-BFGS optimization.
|
14
|
+
#
|
15
|
+
# @example
|
16
|
+
# require 'rumale/linear_model/ridge'
|
17
|
+
#
|
18
|
+
# estimator =
|
19
|
+
# Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
20
|
+
# estimator.fit(training_samples, traininig_values)
|
21
|
+
# results = estimator.predict(testing_samples)
|
22
|
+
#
|
23
|
+
# # If Numo::Linalg is installed, you can specify 'svd' for the solver option.
|
24
|
+
# require 'numo/linalg/autoloader'
|
25
|
+
# require 'rumale/linear_model/ridge'
|
26
|
+
#
|
27
|
+
# estimator = Rumale::LinearModel::Ridge.new(reg_param: 0.1, solver: 'svd')
|
28
|
+
# estimator.fit(training_samples, traininig_values)
|
29
|
+
# results = estimator.predict(testing_samples)
|
30
|
+
#
|
31
|
+
# *Reference*
|
32
|
+
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
33
|
+
class Ridge < BaseSGD
|
34
|
+
include ::Rumale::Base::Regressor
|
35
|
+
|
36
|
+
# Return the weight vector.
|
37
|
+
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
38
|
+
attr_reader :weight_vec
|
39
|
+
|
40
|
+
# Return the bias term (a.k.a. intercept).
|
41
|
+
# @return [Numo::DFloat] (shape: [n_outputs])
|
42
|
+
attr_reader :bias_term
|
43
|
+
|
44
|
+
# Return the random generator for random sampling.
|
45
|
+
# @return [Random]
|
46
|
+
attr_reader :rng
|
47
|
+
|
48
|
+
# Create a new Ridge regressor.
|
49
|
+
#
|
50
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
51
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
52
|
+
# If solver is not 'sgd', this parameter is ignored.
|
53
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
54
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
55
|
+
# If solver is not 'sgd', this parameter is ignored.
|
56
|
+
# @param momentum [Float] The momentum factor.
|
57
|
+
# If solver is not 'sgd', this parameter is ignored.
|
58
|
+
# @param reg_param [Float] The regularization parameter.
|
59
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
60
|
+
# @param bias_scale [Float] The scale of the bias term.
|
61
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
62
|
+
# how many times the whole data is given to the training process.
|
63
|
+
# If solver is 'svd', this parameter is ignored.
|
64
|
+
# @param batch_size [Integer] The size of the mini batches.
|
65
|
+
# If solver is not 'sgd', this parameter is ignored.
|
66
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
67
|
+
# If solver is 'svd', this parameter is ignored.
|
68
|
+
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd', 'svd', or 'lbfgs').
|
69
|
+
# 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'lbfgs' solver.
|
70
|
+
# 'sgd' uses the stochastic gradient descent optimization.
|
71
|
+
# 'svd' performs singular value decomposition of samples.
|
72
|
+
# 'lbfgs' uses the L-BFGS method for optimization.
|
73
|
+
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
74
|
+
# If nil is given, the method does not execute in parallel.
|
75
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
76
|
+
# This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'.
|
77
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
78
|
+
# If solver is 'svd', this parameter is ignored.
|
79
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
80
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
81
|
+
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
82
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
83
|
+
solver: 'auto',
|
84
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
85
|
+
super()
|
86
|
+
@params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] })
|
87
|
+
@params[:solver] = if solver == 'auto'
|
88
|
+
enable_linalg?(warning: false) ? 'svd' : 'lbfgs'
|
89
|
+
else
|
90
|
+
solver.match?(/^svd$|^sgd$|^lbfgs$/) ? solver : 'lbfgs'
|
91
|
+
end
|
92
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
93
|
+
@params[:random_seed] ||= srand
|
94
|
+
@rng = Random.new(@params[:random_seed])
|
95
|
+
@penalty_type = L2_PENALTY
|
96
|
+
@loss_func = ::Rumale::LinearModel::Loss::MeanSquaredError.new
|
97
|
+
end
|
98
|
+
|
99
|
+
# Fit the model with given training data.
|
100
|
+
#
|
101
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
102
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
103
|
+
# @return [Ridge] The learned regressor itself.
|
104
|
+
def fit(x, y)
|
105
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
106
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
107
|
+
::Rumale::Validation.check_sample_size(x, y)
|
108
|
+
|
109
|
+
if @params[:solver] == 'svd' && enable_linalg?(warning: false)
|
110
|
+
fit_svd(x, y)
|
111
|
+
elsif @params[:solver] == 'lbfgs'
|
112
|
+
fit_lbfgs(x, y)
|
113
|
+
else
|
114
|
+
fit_sgd(x, y)
|
115
|
+
end
|
116
|
+
|
117
|
+
self
|
118
|
+
end
|
119
|
+
|
120
|
+
# Predict values for samples.
|
121
|
+
#
|
122
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
123
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
124
|
+
def predict(x)
|
125
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
126
|
+
|
127
|
+
x.dot(@weight_vec.transpose) + @bias_term
|
128
|
+
end
|
129
|
+
|
130
|
+
private
|
131
|
+
|
132
|
+
def fit_svd(x, y)
|
133
|
+
x = expand_feature(x) if fit_bias?
|
134
|
+
|
135
|
+
s, u, vt = Numo::Linalg.svd(x, driver: 'sdd', job: 'S')
|
136
|
+
d = (s / (s**2 + @params[:reg_param])).diag
|
137
|
+
w = vt.transpose.dot(d).dot(u.transpose).dot(y)
|
138
|
+
|
139
|
+
@weight_vec, @bias_term = single_target?(y) ? split_weight(w) : split_weight_mult(w)
|
140
|
+
end
|
141
|
+
|
142
|
+
def fit_lbfgs(x, y)
|
143
|
+
fnc = proc do |w, x, y, a| # rubocop:disable Lint/ShadowingOuterLocalVariable
|
144
|
+
n_samples, n_features = x.shape
|
145
|
+
w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
|
146
|
+
z = x.dot(w.transpose)
|
147
|
+
d = z - y
|
148
|
+
loss = (d**2).sum.fdiv(n_samples) + a * (w * w).sum
|
149
|
+
gradient = 2.fdiv(n_samples) * d.transpose.dot(x) + 2.0 * a * w
|
150
|
+
[loss, gradient.flatten.dup]
|
151
|
+
end
|
152
|
+
|
153
|
+
x = expand_feature(x) if fit_bias?
|
154
|
+
|
155
|
+
n_features = x.shape[1]
|
156
|
+
n_outputs = single_target?(y) ? 1 : y.shape[1]
|
157
|
+
|
158
|
+
res = Lbfgsb.minimize(
|
159
|
+
fnc: fnc, jcb: true, x_init: init_weight(n_features, n_outputs), args: [x, y, @params[:reg_param]],
|
160
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
161
|
+
verbose: @params[:verbose] ? 1 : -1
|
162
|
+
)
|
163
|
+
|
164
|
+
@weight_vec, @bias_term =
|
165
|
+
if single_target?(y)
|
166
|
+
split_weight(res[:x])
|
167
|
+
else
|
168
|
+
split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose)
|
169
|
+
end
|
170
|
+
end
|
171
|
+
|
172
|
+
def fit_sgd(x, y)
|
173
|
+
if single_target?(y)
|
174
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
175
|
+
else
|
176
|
+
n_outputs = y.shape[1]
|
177
|
+
n_features = x.shape[1]
|
178
|
+
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
179
|
+
@bias_term = Numo::DFloat.zeros(n_outputs)
|
180
|
+
if enable_parallel?
|
181
|
+
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
182
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
183
|
+
else
|
184
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
185
|
+
end
|
186
|
+
end
|
187
|
+
end
|
188
|
+
|
189
|
+
def single_target?(y)
|
190
|
+
y.ndim == 1
|
191
|
+
end
|
192
|
+
|
193
|
+
def init_weight(n_features, n_outputs)
|
194
|
+
::Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
|
195
|
+
end
|
196
|
+
|
197
|
+
def split_weight_mult(w)
|
198
|
+
if fit_bias?
|
199
|
+
[w[0...-1, true].dup, w[-1, true].dup]
|
200
|
+
else
|
201
|
+
[w.dup, Numo::DFloat.zeros(w.shape[1])]
|
202
|
+
end
|
203
|
+
end
|
204
|
+
end
|
205
|
+
end
|
206
|
+
end
|
@@ -0,0 +1,203 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/classifier'
|
4
|
+
require 'rumale/linear_model/base_sgd'
|
5
|
+
require 'rumale/probabilistic_output'
|
6
|
+
require 'rumale/validation'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
# This module consists of the classes that implement generalized linear models.
|
10
|
+
module LinearModel
|
11
|
+
# SVC is a class that implements Support Vector Classifier
|
12
|
+
# with stochastic gradient descent optimization.
|
13
|
+
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
14
|
+
#
|
15
|
+
# @note
|
16
|
+
# Rumale::SVM provides linear support vector classifier based on LIBLINEAR.
|
17
|
+
# If you prefer execution speed, you should use Rumale::SVM::LinearSVC.
|
18
|
+
# https://github.com/yoshoku/rumale-svm
|
19
|
+
#
|
20
|
+
# @example
|
21
|
+
# require 'rumale/linear_model/svc'
|
22
|
+
#
|
23
|
+
# estimator =
|
24
|
+
# Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
|
25
|
+
# estimator.fit(training_samples, traininig_labels)
|
26
|
+
# results = estimator.predict(testing_samples)
|
27
|
+
#
|
28
|
+
# *Reference*
|
29
|
+
# - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
30
|
+
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
31
|
+
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
32
|
+
class SVC < BaseSGD
|
33
|
+
include ::Rumale::Base::Classifier
|
34
|
+
|
35
|
+
# Return the weight vector for SVC.
|
36
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
37
|
+
attr_reader :weight_vec
|
38
|
+
|
39
|
+
# Return the bias term (a.k.a. intercept) for SVC.
|
40
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
41
|
+
attr_reader :bias_term
|
42
|
+
|
43
|
+
# Return the class labels.
|
44
|
+
# @return [Numo::Int32] (shape: [n_classes])
|
45
|
+
attr_reader :classes
|
46
|
+
|
47
|
+
# Return the random generator for performing random sampling.
|
48
|
+
# @return [Random]
|
49
|
+
attr_reader :rng
|
50
|
+
|
51
|
+
# Create a new classifier with Support Vector Machine by the SGD optimization.
|
52
|
+
#
|
53
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
54
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
55
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
56
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
57
|
+
# @param momentum [Float] The momentum factor.
|
58
|
+
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
59
|
+
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
60
|
+
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
61
|
+
# If l1_ratio = 1, the regularization is similar to Lasso.
|
62
|
+
# If l1_ratio = 0, the regularization is similar to Ridge.
|
63
|
+
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
64
|
+
# @param reg_param [Float] The regularization parameter.
|
65
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
66
|
+
# @param bias_scale [Float] The scale of the bias term.
|
67
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
68
|
+
# how many times the whole data is given to the training process.
|
69
|
+
# @param batch_size [Integer] The size of the mini batches.
|
70
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
71
|
+
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
|
72
|
+
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
73
|
+
# If nil is given, the methods do not execute in parallel.
|
74
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
75
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
76
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
77
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
78
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
79
|
+
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
80
|
+
fit_bias: true, bias_scale: 1.0,
|
81
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
82
|
+
probability: false,
|
83
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
84
|
+
super()
|
85
|
+
@params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] })
|
86
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
87
|
+
@params[:random_seed] ||= srand
|
88
|
+
@rng = Random.new(@params[:random_seed])
|
89
|
+
@penalty_type = @params[:penalty]
|
90
|
+
@loss_func = ::Rumale::LinearModel::Loss::HingeLoss.new
|
91
|
+
end
|
92
|
+
|
93
|
+
# Fit the model with given training data.
|
94
|
+
#
|
95
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
96
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
97
|
+
# @return [SVC] The learned classifier itself.
|
98
|
+
def fit(x, y)
|
99
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
100
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
101
|
+
::Rumale::Validation.check_sample_size(x, y)
|
102
|
+
|
103
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
104
|
+
|
105
|
+
if multiclass_problem?
|
106
|
+
n_classes = @classes.size
|
107
|
+
n_features = x.shape[1]
|
108
|
+
# initialize model.
|
109
|
+
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
110
|
+
@bias_term = Numo::DFloat.zeros(n_classes)
|
111
|
+
@prob_param = Numo::DFloat.zeros(n_classes, 2)
|
112
|
+
# fit model.
|
113
|
+
models = if enable_parallel?
|
114
|
+
parallel_map(n_classes) do |n|
|
115
|
+
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
116
|
+
partial_fit(x, bin_y)
|
117
|
+
end
|
118
|
+
else
|
119
|
+
Array.new(n_classes) do |n|
|
120
|
+
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
121
|
+
partial_fit(x, bin_y)
|
122
|
+
end
|
123
|
+
end
|
124
|
+
# store model.
|
125
|
+
models.each_with_index { |model, n| @weight_vec[n, true], @bias_term[n], @prob_param[n, true] = model }
|
126
|
+
else
|
127
|
+
negative_label = @classes[0]
|
128
|
+
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
129
|
+
@weight_vec, @bias_term, @prob_param = partial_fit(x, bin_y)
|
130
|
+
end
|
131
|
+
|
132
|
+
self
|
133
|
+
end
|
134
|
+
|
135
|
+
# Calculate confidence scores for samples.
|
136
|
+
#
|
137
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
138
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
139
|
+
def decision_function(x)
|
140
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
141
|
+
|
142
|
+
x.dot(@weight_vec.transpose) + @bias_term
|
143
|
+
end
|
144
|
+
|
145
|
+
# Predict class labels for samples.
|
146
|
+
#
|
147
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
148
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
149
|
+
def predict(x)
|
150
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
151
|
+
|
152
|
+
n_samples = x.shape[0]
|
153
|
+
predicted = if multiclass_problem?
|
154
|
+
decision_values = decision_function(x)
|
155
|
+
if enable_parallel?
|
156
|
+
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
157
|
+
else
|
158
|
+
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
159
|
+
end
|
160
|
+
else
|
161
|
+
decision_values = decision_function(x).ge(0.0).to_a
|
162
|
+
Array.new(n_samples) { |n| @classes[decision_values[n]] }
|
163
|
+
end
|
164
|
+
Numo::Int32.asarray(predicted)
|
165
|
+
end
|
166
|
+
|
167
|
+
# Predict probability for samples.
|
168
|
+
#
|
169
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
170
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
171
|
+
def predict_proba(x)
|
172
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
173
|
+
|
174
|
+
if multiclass_problem?
|
175
|
+
probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
|
176
|
+
(probs.transpose / probs.sum(axis: 1)).transpose.dup
|
177
|
+
else
|
178
|
+
n_samples, = x.shape
|
179
|
+
probs = Numo::DFloat.zeros(n_samples, 2)
|
180
|
+
probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
|
181
|
+
probs[true, 0] = 1.0 - probs[true, 1]
|
182
|
+
probs
|
183
|
+
end
|
184
|
+
end
|
185
|
+
|
186
|
+
private
|
187
|
+
|
188
|
+
def partial_fit(x, bin_y)
|
189
|
+
w, b = super
|
190
|
+
p = if @params[:probability]
|
191
|
+
::Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(w.transpose) + b, bin_y)
|
192
|
+
else
|
193
|
+
Numo::DFloat[1, 0]
|
194
|
+
end
|
195
|
+
[w, b, p]
|
196
|
+
end
|
197
|
+
|
198
|
+
def multiclass_problem?
|
199
|
+
@classes.size > 2
|
200
|
+
end
|
201
|
+
end
|
202
|
+
end
|
203
|
+
end
|
@@ -0,0 +1,126 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/regressor'
|
4
|
+
require 'rumale/validation'
|
5
|
+
require 'rumale/linear_model/base_sgd'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module LinearModel
|
9
|
+
# SVR is a class that implements Support Vector Regressor
|
10
|
+
# with stochastic gradient descent optimization.
|
11
|
+
#
|
12
|
+
# @note
|
13
|
+
# Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM.
|
14
|
+
# If you prefer execution speed, you should use Rumale::SVM::LinearSVR.
|
15
|
+
# https://github.com/yoshoku/rumale-svm
|
16
|
+
#
|
17
|
+
# @example
|
18
|
+
# require 'rumale/linear_model/svr'
|
19
|
+
#
|
20
|
+
# estimator =
|
21
|
+
# Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, random_seed: 1)
|
22
|
+
# estimator.fit(training_samples, traininig_target_values)
|
23
|
+
# results = estimator.predict(testing_samples)
|
24
|
+
#
|
25
|
+
# *Reference*
|
26
|
+
# - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
27
|
+
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
28
|
+
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
29
|
+
class SVR < BaseSGD
|
30
|
+
include ::Rumale::Base::Regressor
|
31
|
+
|
32
|
+
# Return the weight vector for SVR.
|
33
|
+
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
34
|
+
attr_reader :weight_vec
|
35
|
+
|
36
|
+
# Return the bias term (a.k.a. intercept) for SVR.
|
37
|
+
# @return [Numo::DFloat] (shape: [n_outputs])
|
38
|
+
attr_reader :bias_term
|
39
|
+
|
40
|
+
# Return the random generator for performing random sampling.
|
41
|
+
# @return [Random]
|
42
|
+
attr_reader :rng
|
43
|
+
|
44
|
+
# Create a new regressor with Support Vector Machine by the SGD optimization.
|
45
|
+
#
|
46
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
47
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
48
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
49
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
50
|
+
# @param momentum [Float] The momentum factor.
|
51
|
+
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
52
|
+
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
53
|
+
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
54
|
+
# If l1_ratio = 1, the regularization is similar to Lasso.
|
55
|
+
# If l1_ratio = 0, the regularization is similar to Ridge.
|
56
|
+
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
57
|
+
# @param reg_param [Float] The regularization parameter.
|
58
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
59
|
+
# @param bias_scale [Float] The scale of the bias term.
|
60
|
+
# @param epsilon [Float] The margin of tolerance.
|
61
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
62
|
+
# how many times the whole data is given to the training process.
|
63
|
+
# @param batch_size [Integer] The size of the mini batches.
|
64
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
65
|
+
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
66
|
+
# If nil is given, the method does not execute in parallel.
|
67
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
68
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
69
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
70
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
71
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
72
|
+
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
73
|
+
fit_bias: true, bias_scale: 1.0,
|
74
|
+
epsilon: 0.1,
|
75
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
76
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
77
|
+
super()
|
78
|
+
@params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] })
|
79
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
80
|
+
@params[:random_seed] ||= srand
|
81
|
+
@rng = Random.new(@params[:random_seed])
|
82
|
+
@penalty_type = @params[:penalty]
|
83
|
+
@loss_func = ::Rumale::LinearModel::Loss::EpsilonInsensitive.new(epsilon: @params[:epsilon])
|
84
|
+
end
|
85
|
+
|
86
|
+
# Fit the model with given training data.
|
87
|
+
#
|
88
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
89
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
90
|
+
# @return [SVR] The learned regressor itself.
|
91
|
+
def fit(x, y)
|
92
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
93
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
94
|
+
::Rumale::Validation.check_sample_size(x, y)
|
95
|
+
|
96
|
+
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
97
|
+
n_features = x.shape[1]
|
98
|
+
|
99
|
+
if n_outputs > 1
|
100
|
+
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
101
|
+
@bias_term = Numo::DFloat.zeros(n_outputs)
|
102
|
+
if enable_parallel?
|
103
|
+
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
104
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
105
|
+
else
|
106
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
107
|
+
end
|
108
|
+
else
|
109
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
110
|
+
end
|
111
|
+
|
112
|
+
self
|
113
|
+
end
|
114
|
+
|
115
|
+
# Predict values for samples.
|
116
|
+
#
|
117
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
118
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
119
|
+
def predict(x)
|
120
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
121
|
+
|
122
|
+
x.dot(@weight_vec.transpose) + @bias_term
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|
126
|
+
end
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'numo/narray'
|
4
|
+
|
5
|
+
require_relative 'linear_model/base_sgd'
|
6
|
+
require_relative 'linear_model/elastic_net'
|
7
|
+
require_relative 'linear_model/lasso'
|
8
|
+
require_relative 'linear_model/linear_regression'
|
9
|
+
require_relative 'linear_model/logistic_regression'
|
10
|
+
require_relative 'linear_model/nnls'
|
11
|
+
require_relative 'linear_model/ridge'
|
12
|
+
require_relative 'linear_model/svc'
|
13
|
+
require_relative 'linear_model/svr'
|
14
|
+
require_relative 'linear_model/version'
|
metadata
ADDED
@@ -0,0 +1,106 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rumale-linear_model
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.24.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2022-12-31 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: lbfgsb
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.3.0
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.3.0
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: numo-narray
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - ">="
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: 0.9.1
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: 0.9.1
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rumale-core
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: 0.24.0
|
48
|
+
type: :runtime
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: 0.24.0
|
55
|
+
description: |
|
56
|
+
Rumale::LinearModel provides linear model algorithms,
|
57
|
+
such as Logistic Regression, Support Vector Machine, Lasso, and Ridge Regression
|
58
|
+
with Rumale interface.
|
59
|
+
email:
|
60
|
+
- yoshoku@outlook.com
|
61
|
+
executables: []
|
62
|
+
extensions: []
|
63
|
+
extra_rdoc_files: []
|
64
|
+
files:
|
65
|
+
- LICENSE.txt
|
66
|
+
- README.md
|
67
|
+
- lib/rumale/linear_model.rb
|
68
|
+
- lib/rumale/linear_model/base_sgd.rb
|
69
|
+
- lib/rumale/linear_model/elastic_net.rb
|
70
|
+
- lib/rumale/linear_model/lasso.rb
|
71
|
+
- lib/rumale/linear_model/linear_regression.rb
|
72
|
+
- lib/rumale/linear_model/logistic_regression.rb
|
73
|
+
- lib/rumale/linear_model/nnls.rb
|
74
|
+
- lib/rumale/linear_model/ridge.rb
|
75
|
+
- lib/rumale/linear_model/svc.rb
|
76
|
+
- lib/rumale/linear_model/svr.rb
|
77
|
+
- lib/rumale/linear_model/version.rb
|
78
|
+
homepage: https://github.com/yoshoku/rumale
|
79
|
+
licenses:
|
80
|
+
- BSD-3-Clause
|
81
|
+
metadata:
|
82
|
+
homepage_uri: https://github.com/yoshoku/rumale
|
83
|
+
source_code_uri: https://github.com/yoshoku/rumale/tree/main/rumale-linear_model
|
84
|
+
changelog_uri: https://github.com/yoshoku/rumale/blob/main/CHANGELOG.md
|
85
|
+
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
86
|
+
rubygems_mfa_required: 'true'
|
87
|
+
post_install_message:
|
88
|
+
rdoc_options: []
|
89
|
+
require_paths:
|
90
|
+
- lib
|
91
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
92
|
+
requirements:
|
93
|
+
- - ">="
|
94
|
+
- !ruby/object:Gem::Version
|
95
|
+
version: '0'
|
96
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
97
|
+
requirements:
|
98
|
+
- - ">="
|
99
|
+
- !ruby/object:Gem::Version
|
100
|
+
version: '0'
|
101
|
+
requirements: []
|
102
|
+
rubygems_version: 3.3.26
|
103
|
+
signing_key:
|
104
|
+
specification_version: 4
|
105
|
+
summary: Rumale::LinearModel provides linear model algorithms with Rumale interface.
|
106
|
+
test_files: []
|