rumale-linear_model 0.24.0 → 0.25.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +1 -1
- data/lib/rumale/linear_model/base_estimator.rb +46 -0
- data/lib/rumale/linear_model/elastic_net.rb +112 -61
- data/lib/rumale/linear_model/lasso.rb +107 -61
- data/lib/rumale/linear_model/linear_regression.rb +39 -104
- data/lib/rumale/linear_model/logistic_regression.rb +36 -119
- data/lib/rumale/linear_model/nnls.rb +14 -46
- data/lib/rumale/linear_model/ridge.rb +39 -108
- data/lib/rumale/linear_model/sgd_classifier.rb +262 -0
- data/lib/rumale/linear_model/{base_sgd.rb → sgd_estimator.rb} +36 -21
- data/lib/rumale/linear_model/sgd_regressor.rb +138 -0
- data/lib/rumale/linear_model/svc.rb +60 -68
- data/lib/rumale/linear_model/svr.rb +54 -52
- data/lib/rumale/linear_model/version.rb +1 -1
- data/lib/rumale/linear_model.rb +2 -1
- metadata +8 -5
@@ -2,21 +2,21 @@
|
|
2
2
|
|
3
3
|
require 'lbfgsb'
|
4
4
|
|
5
|
+
require 'rumale/base/estimator'
|
5
6
|
require 'rumale/base/regressor'
|
6
7
|
require 'rumale/validation'
|
7
|
-
|
8
|
+
|
9
|
+
require_relative 'base_estimator'
|
8
10
|
|
9
11
|
module Rumale
|
10
12
|
module LinearModel
|
11
13
|
# LinearRegression is a class that implements ordinary least square linear regression
|
12
|
-
# with
|
13
|
-
# singular value decomposition (SVD), or L-BFGS optimization.
|
14
|
+
# with singular value decomposition (SVD) or L-BFGS optimization.
|
14
15
|
#
|
15
16
|
# @example
|
16
17
|
# require 'rumale/linear_model/linear_regression'
|
17
18
|
#
|
18
|
-
# estimator =
|
19
|
-
# Rumale::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1)
|
19
|
+
# estimator = Rumale::LinearModel::LinearRegression.new
|
20
20
|
# estimator.fit(training_samples, traininig_values)
|
21
21
|
# results = estimator.predict(testing_samples)
|
22
22
|
#
|
@@ -27,70 +27,38 @@ module Rumale
|
|
27
27
|
# estimator = Rumale::LinearModel::LinearRegression.new(solver: 'svd')
|
28
28
|
# estimator.fit(training_samples, traininig_values)
|
29
29
|
# results = estimator.predict(testing_samples)
|
30
|
-
|
31
|
-
|
32
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
33
|
-
class LinearRegression < BaseSGD
|
34
|
-
include ::Rumale::Base::Regressor
|
35
|
-
|
36
|
-
# Return the weight vector.
|
37
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
38
|
-
attr_reader :weight_vec
|
39
|
-
|
40
|
-
# Return the bias term (a.k.a. intercept).
|
41
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
42
|
-
attr_reader :bias_term
|
43
|
-
|
44
|
-
# Return the random generator for random sampling.
|
45
|
-
# @return [Random]
|
46
|
-
attr_reader :rng
|
30
|
+
class LinearRegression < Rumale::LinearModel::BaseEstimator
|
31
|
+
include Rumale::Base::Regressor
|
47
32
|
|
48
33
|
# Create a new ordinary least square linear regressor.
|
49
34
|
#
|
50
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
51
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
52
|
-
# If solver is not 'sgd', this parameter is ignored.
|
53
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
54
|
-
# If nil is given, the decay sets to 'learning_rate'.
|
55
|
-
# If solver is not 'sgd', this parameter is ignored.
|
56
|
-
# @param momentum [Float] The momentum factor.
|
57
|
-
# If solver is not 'sgd', this parameter is ignored.
|
58
35
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
59
36
|
# @param bias_scale [Float] The scale of the bias term.
|
60
37
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
61
38
|
# how many times the whole data is given to the training process.
|
62
39
|
# If solver is 'svd', this parameter is ignored.
|
63
|
-
# @param batch_size [Integer] The size of the mini batches.
|
64
|
-
# If solver is not 'sgd', this parameter is ignored.
|
65
40
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
66
41
|
# If solver is 'svd', this parameter is ignored.
|
67
|
-
# @param solver [String] The algorithm to calculate weights. ('auto', '
|
42
|
+
# @param solver [String] The algorithm to calculate weights. ('auto', 'svd' or 'lbfgs').
|
68
43
|
# 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'lbfgs' solver.
|
69
|
-
# 'sgd' uses the stochastic gradient descent optimization.
|
70
44
|
# 'svd' performs singular value decomposition of samples.
|
71
45
|
# 'lbfgs' uses the L-BFGS method for optimization.
|
72
|
-
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
73
|
-
# If nil is given, the method does not execute in parallel.
|
74
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
75
|
-
# This parameter is ignored if the Parallel gem is not loaded or solver is not 'sgd'.
|
76
46
|
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
77
47
|
# If solver is 'svd', this parameter is ignored.
|
78
|
-
|
79
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
80
|
-
fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4,
|
81
|
-
solver: 'auto',
|
82
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
48
|
+
def initialize(fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, solver: 'auto', verbose: false)
|
83
49
|
super()
|
84
|
-
@params
|
50
|
+
@params = {
|
51
|
+
fit_bias: fit_bias,
|
52
|
+
bias_scale: bias_scale,
|
53
|
+
max_iter: max_iter,
|
54
|
+
tol: tol,
|
55
|
+
verbose: verbose
|
56
|
+
}
|
85
57
|
@params[:solver] = if solver == 'auto'
|
86
58
|
enable_linalg?(warning: false) ? 'svd' : 'lbfgs'
|
87
59
|
else
|
88
|
-
solver.match?(/^svd$|^
|
60
|
+
solver.match?(/^svd$|^lbfgs$/) ? solver : 'lbfgs'
|
89
61
|
end
|
90
|
-
@params[:decay] ||= @params[:learning_rate]
|
91
|
-
@params[:random_seed] ||= srand
|
92
|
-
@rng = Random.new(@params[:random_seed])
|
93
|
-
@loss_func = ::Rumale::LinearModel::Loss::MeanSquaredError.new
|
94
62
|
end
|
95
63
|
|
96
64
|
# Fit the model with given training data.
|
@@ -99,17 +67,15 @@ module Rumale
|
|
99
67
|
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
100
68
|
# @return [LinearRegression] The learned regressor itself.
|
101
69
|
def fit(x, y)
|
102
|
-
x =
|
103
|
-
y =
|
104
|
-
|
105
|
-
|
106
|
-
if @params[:solver] == 'svd' && enable_linalg?(warning: false)
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
fit_sgd(x, y)
|
112
|
-
end
|
70
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
71
|
+
y = Rumale::Validation.check_convert_target_value_array(y)
|
72
|
+
Rumale::Validation.check_sample_size(x, y)
|
73
|
+
|
74
|
+
@weight_vec, @bias_term = if @params[:solver] == 'svd' && enable_linalg?(warning: false)
|
75
|
+
partial_fit_svd(x, y)
|
76
|
+
else
|
77
|
+
partial_fit_lbfgs(x, y)
|
78
|
+
end
|
113
79
|
|
114
80
|
self
|
115
81
|
end
|
@@ -119,21 +85,22 @@ module Rumale
|
|
119
85
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
120
86
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
121
87
|
def predict(x)
|
122
|
-
x =
|
88
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
123
89
|
|
124
90
|
x.dot(@weight_vec.transpose) + @bias_term
|
125
91
|
end
|
126
92
|
|
127
93
|
private
|
128
94
|
|
129
|
-
def
|
95
|
+
def partial_fit_svd(x, y)
|
130
96
|
x = expand_feature(x) if fit_bias?
|
131
97
|
w = Numo::Linalg.pinv(x, driver: 'svd').dot(y)
|
132
|
-
|
98
|
+
w = w.transpose.dup unless single_target?(y)
|
99
|
+
split_weight(w)
|
133
100
|
end
|
134
101
|
|
135
|
-
def
|
136
|
-
fnc = proc do |w, x, y|
|
102
|
+
def partial_fit_lbfgs(base_x, base_y)
|
103
|
+
fnc = proc do |w, x, y|
|
137
104
|
n_samples, n_features = x.shape
|
138
105
|
w = w.reshape(y.shape[1], n_features) unless y.shape[1].nil?
|
139
106
|
z = x.dot(w.transpose)
|
@@ -143,57 +110,25 @@ module Rumale
|
|
143
110
|
[loss, gradient.flatten.dup]
|
144
111
|
end
|
145
112
|
|
146
|
-
|
113
|
+
base_x = expand_feature(base_x) if fit_bias?
|
147
114
|
|
148
|
-
n_features =
|
149
|
-
n_outputs = single_target?(
|
115
|
+
n_features = base_x.shape[1]
|
116
|
+
n_outputs = single_target?(base_y) ? 1 : base_y.shape[1]
|
117
|
+
w_init = Numo::DFloat.zeros(n_outputs * n_features)
|
150
118
|
|
151
119
|
res = Lbfgsb.minimize(
|
152
|
-
fnc: fnc, jcb: true, x_init:
|
120
|
+
fnc: fnc, jcb: true, x_init: w_init, args: [base_x, base_y],
|
153
121
|
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
154
122
|
verbose: @params[:verbose] ? 1 : -1
|
155
123
|
)
|
156
124
|
|
157
|
-
|
158
|
-
|
159
|
-
split_weight(res[:x])
|
160
|
-
else
|
161
|
-
split_weight_mult(res[:x].reshape(n_outputs, n_features).transpose)
|
162
|
-
end
|
163
|
-
end
|
164
|
-
|
165
|
-
def fit_sgd(x, y)
|
166
|
-
if single_target?(y)
|
167
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
168
|
-
else
|
169
|
-
n_outputs = y.shape[1]
|
170
|
-
n_features = x.shape[1]
|
171
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
172
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
173
|
-
if enable_parallel?
|
174
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
175
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
176
|
-
else
|
177
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
178
|
-
end
|
179
|
-
end
|
125
|
+
w = single_target?(base_y) ? res[:x] : res[:x].reshape(n_outputs, n_features)
|
126
|
+
split_weight(w)
|
180
127
|
end
|
181
128
|
|
182
129
|
def single_target?(y)
|
183
130
|
y.ndim == 1
|
184
131
|
end
|
185
|
-
|
186
|
-
def init_weight(n_features, n_outputs)
|
187
|
-
Rumale::Utils.rand_normal([n_outputs, n_features], @rng.dup).flatten.dup
|
188
|
-
end
|
189
|
-
|
190
|
-
def split_weight_mult(w)
|
191
|
-
if fit_bias?
|
192
|
-
[w[0...-1, true].dup, w[-1, true].dup]
|
193
|
-
else
|
194
|
-
[w.dup, Numo::DFloat.zeros(w.shape[1])]
|
195
|
-
end
|
196
|
-
end
|
197
132
|
end
|
198
133
|
end
|
199
134
|
end
|
@@ -2,16 +2,15 @@
|
|
2
2
|
|
3
3
|
require 'lbfgsb'
|
4
4
|
|
5
|
-
require 'rumale/base/classifier'
|
6
5
|
require 'rumale/utils'
|
7
6
|
require 'rumale/validation'
|
8
|
-
require 'rumale/
|
7
|
+
require 'rumale/base/classifier'
|
8
|
+
|
9
|
+
require_relative 'base_estimator'
|
9
10
|
|
10
11
|
module Rumale
|
11
12
|
module LinearModel
|
12
|
-
# LogisticRegression is a class that implements Logistic Regression.
|
13
|
-
# In multiclass classification problem, it uses one-vs-the-rest strategy for the sgd solver
|
14
|
-
# and multinomial logistic regression for the lbfgs solver.
|
13
|
+
# LogisticRegression is a class that implements (multinomial) Logistic Regression.
|
15
14
|
#
|
16
15
|
# @note
|
17
16
|
# Rumale::SVM provides Logistic Regression based on LIBLINEAR.
|
@@ -21,88 +20,42 @@ module Rumale
|
|
21
20
|
# @example
|
22
21
|
# require 'rumale/linear_model/logistic_regression'
|
23
22
|
#
|
24
|
-
# estimator =
|
25
|
-
# Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, random_seed: 1)
|
23
|
+
# estimator = Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0)
|
26
24
|
# estimator.fit(training_samples, traininig_labels)
|
27
25
|
# results = estimator.predict(testing_samples)
|
28
|
-
|
29
|
-
|
30
|
-
# - Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
31
|
-
# - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
32
|
-
# - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
33
|
-
class LogisticRegression < BaseSGD # rubocop:disable Metrics/ClassLength
|
34
|
-
include ::Rumale::Base::Classifier
|
35
|
-
|
36
|
-
# Return the weight vector for Logistic Regression.
|
37
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
38
|
-
attr_reader :weight_vec
|
39
|
-
|
40
|
-
# Return the bias term (a.k.a. intercept) for Logistic Regression.
|
41
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
42
|
-
attr_reader :bias_term
|
26
|
+
class LogisticRegression < Rumale::LinearModel::BaseEstimator
|
27
|
+
include Rumale::Base::Classifier
|
43
28
|
|
44
29
|
# Return the class labels.
|
45
30
|
# @return [Numo::Int32] (shape: [n_classes])
|
46
31
|
attr_reader :classes
|
47
32
|
|
48
|
-
# Return the random generator for performing random sampling.
|
49
|
-
# @return [Random]
|
50
|
-
attr_reader :rng
|
51
|
-
|
52
33
|
# Create a new classifier with Logisitc Regression.
|
53
34
|
#
|
54
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
55
|
-
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
56
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
57
|
-
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
58
|
-
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
59
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
60
|
-
# @param momentum [Float] The momentum factor.
|
61
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
62
|
-
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
63
|
-
# If solver = 'lbfgs', only 'l2' can be selected for this parameter.
|
64
|
-
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
65
|
-
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
66
|
-
# If l1_ratio = 1, the regularization is similar to Lasso.
|
67
|
-
# If l1_ratio = 0, the regularization is similar to Ridge.
|
68
|
-
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
69
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
70
35
|
# @param reg_param [Float] The regularization parameter.
|
71
36
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
72
37
|
# @param bias_scale [Float] The scale of the bias term.
|
73
38
|
# If fit_bias is true, the feature vector v becoms [v; bias_scale].
|
74
39
|
# @param max_iter [Integer] The maximum number of epochs that indicates
|
75
40
|
# how many times the whole data is given to the training process.
|
76
|
-
# @param batch_size [Integer] The size of the mini batches.
|
77
|
-
# If solver = 'lbfgs', this parameter is ignored.
|
78
41
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
79
|
-
#
|
80
|
-
# @param solver [String] The algorithm for optimization. ('lbfgs' or 'sgd').
|
81
|
-
# 'lbfgs' uses the L-BFGS with lbfgs.rb gem.
|
82
|
-
# 'sgd' uses the stochastic gradient descent optimization.
|
83
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
42
|
+
# @param n_jobs [Integer] The number of jobs for running the predict methods in parallel.
|
84
43
|
# If nil is given, the methods do not execute in parallel.
|
85
44
|
# If zero or less is given, it becomes equal to the number of processors.
|
86
|
-
# This parameter is ignored if the Parallel gem is not loaded
|
45
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
87
46
|
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
88
|
-
#
|
89
|
-
|
90
|
-
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
91
|
-
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
92
|
-
fit_bias: true, bias_scale: 1.0,
|
93
|
-
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
94
|
-
solver: 'lbfgs',
|
95
|
-
n_jobs: nil, verbose: false, random_seed: nil)
|
96
|
-
raise ArgumentError, "The 'lbfgs' solver supports only 'l2' penalties." if solver == 'lbfgs' && penalty != 'l2'
|
97
|
-
|
47
|
+
# 'iterate.dat' file is generated by lbfgsb.rb.
|
48
|
+
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, n_jobs: nil, verbose: false)
|
98
49
|
super()
|
99
|
-
@params
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
50
|
+
@params = {
|
51
|
+
reg_param: reg_param,
|
52
|
+
fit_bias: fit_bias,
|
53
|
+
bias_scale: bias_scale,
|
54
|
+
max_iter: max_iter,
|
55
|
+
tol: tol,
|
56
|
+
n_jobs: n_jobs,
|
57
|
+
verbose: verbose
|
58
|
+
}
|
106
59
|
end
|
107
60
|
|
108
61
|
# Fit the model with given training data.
|
@@ -111,16 +64,12 @@ module Rumale
|
|
111
64
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
112
65
|
# @return [LogisticRegression] The learned classifier itself.
|
113
66
|
def fit(x, y)
|
114
|
-
x =
|
115
|
-
y =
|
116
|
-
|
67
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
68
|
+
y = Rumale::Validation.check_convert_label_array(y)
|
69
|
+
Rumale::Validation.check_sample_size(x, y)
|
117
70
|
|
118
71
|
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
119
|
-
|
120
|
-
fit_sgd(x, y)
|
121
|
-
else
|
122
|
-
fit_lbfgs(x, y)
|
123
|
-
end
|
72
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
124
73
|
|
125
74
|
self
|
126
75
|
end
|
@@ -130,7 +79,7 @@ module Rumale
|
|
130
79
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
131
80
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
132
81
|
def decision_function(x)
|
133
|
-
x =
|
82
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
134
83
|
|
135
84
|
x.dot(@weight_vec.transpose) + @bias_term
|
136
85
|
end
|
@@ -140,7 +89,7 @@ module Rumale
|
|
140
89
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
141
90
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
142
91
|
def predict(x)
|
143
|
-
x =
|
92
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
144
93
|
|
145
94
|
n_samples, = x.shape
|
146
95
|
decision_values = predict_proba(x)
|
@@ -157,7 +106,7 @@ module Rumale
|
|
157
106
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
158
107
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
159
108
|
def predict_proba(x)
|
160
|
-
x =
|
109
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
161
110
|
|
162
111
|
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
163
112
|
return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem?
|
@@ -171,11 +120,7 @@ module Rumale
|
|
171
120
|
|
172
121
|
private
|
173
122
|
|
174
|
-
def
|
175
|
-
@classes.size > 2
|
176
|
-
end
|
177
|
-
|
178
|
-
def fit_lbfgs(base_x, base_y) # rubocop:disable Metrics/AbcSize, Metrics/MethodLength
|
123
|
+
def partial_fit(base_x, base_y) # rubocop:disable Metrics/AbcSize, Metrics/MethodLength
|
179
124
|
if multiclass_problem?
|
180
125
|
fnc = proc do |w, x, y, a|
|
181
126
|
n_features = x.shape[1]
|
@@ -199,20 +144,13 @@ module Rumale
|
|
199
144
|
n_features = base_x.shape[1]
|
200
145
|
w_init = Numo::DFloat.zeros(n_classes * n_features)
|
201
146
|
|
202
|
-
verbose = @params[:verbose] ? 1 : -1
|
203
147
|
res = Lbfgsb.minimize(
|
204
148
|
fnc: fnc, jcb: true, x_init: w_init, args: [base_x, onehot_y, @params[:reg_param]],
|
205
|
-
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
149
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
150
|
+
verbose: @params[:verbose] ? 1 : -1
|
206
151
|
)
|
207
152
|
|
208
|
-
|
209
|
-
weight = res[:x].reshape(n_classes, n_features)
|
210
|
-
@weight_vec = weight[true, 0...-1].dup
|
211
|
-
@bias_term = weight[true, -1].dup
|
212
|
-
else
|
213
|
-
@weight_vec = res[:x].reshape(n_classes, n_features)
|
214
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
215
|
-
end
|
153
|
+
split_weight(res[:x].reshape(n_classes, n_features))
|
216
154
|
else
|
217
155
|
fnc = proc do |w, x, y, a|
|
218
156
|
z = 1 + Numo::NMath.exp(-y * x.dot(w))
|
@@ -227,39 +165,18 @@ module Rumale
|
|
227
165
|
n_features = base_x.shape[1]
|
228
166
|
w_init = Numo::DFloat.zeros(n_features)
|
229
167
|
|
230
|
-
verbose = @params[:verbose] ? 1 : -1
|
231
168
|
res = Lbfgsb.minimize(
|
232
169
|
fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]],
|
233
|
-
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
170
|
+
maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
|
171
|
+
verbose: @params[:verbose] ? 1 : -1
|
234
172
|
)
|
235
173
|
|
236
|
-
|
174
|
+
split_weight(res[:x])
|
237
175
|
end
|
238
176
|
end
|
239
177
|
|
240
|
-
def
|
241
|
-
|
242
|
-
n_classes = @classes.size
|
243
|
-
n_features = x.shape[1]
|
244
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
245
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
246
|
-
if enable_parallel?
|
247
|
-
models = parallel_map(n_classes) do |n|
|
248
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
249
|
-
partial_fit(x, bin_y)
|
250
|
-
end
|
251
|
-
n_classes.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
|
252
|
-
else
|
253
|
-
n_classes.times do |n|
|
254
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
255
|
-
@weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
256
|
-
end
|
257
|
-
end
|
258
|
-
else
|
259
|
-
negative_label = @classes[0]
|
260
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
261
|
-
@weight_vec, @bias_term = partial_fit(x, bin_y)
|
262
|
-
end
|
178
|
+
def multiclass_problem?
|
179
|
+
@classes.size > 2
|
263
180
|
end
|
264
181
|
end
|
265
182
|
end
|
@@ -2,10 +2,11 @@
|
|
2
2
|
|
3
3
|
require 'lbfgsb'
|
4
4
|
|
5
|
-
require 'rumale/base/estimator'
|
6
5
|
require 'rumale/base/regressor'
|
7
6
|
require 'rumale/validation'
|
8
7
|
|
8
|
+
require_relative 'base_estimator'
|
9
|
+
|
9
10
|
module Rumale
|
10
11
|
module LinearModel
|
11
12
|
# NNLS is a class that implements non-negative least squares regression.
|
@@ -14,29 +15,17 @@ module Rumale
|
|
14
15
|
# @example
|
15
16
|
# require 'rumale/linear_model/nnls'
|
16
17
|
#
|
17
|
-
# estimator = Rumale::LinearModel::NNLS.new(reg_param: 0.01
|
18
|
+
# estimator = Rumale::LinearModel::NNLS.new(reg_param: 0.01)
|
18
19
|
# estimator.fit(training_samples, traininig_values)
|
19
20
|
# results = estimator.predict(testing_samples)
|
20
21
|
#
|
21
|
-
class NNLS <
|
22
|
-
include
|
23
|
-
|
24
|
-
# Return the weight vector.
|
25
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
26
|
-
attr_reader :weight_vec
|
27
|
-
|
28
|
-
# Return the bias term (a.k.a. intercept).
|
29
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
30
|
-
attr_reader :bias_term
|
22
|
+
class NNLS < Rumale::LinearModel::BaseEstimator
|
23
|
+
include Rumale::Base::Regressor
|
31
24
|
|
32
25
|
# Returns the number of iterations when converged.
|
33
26
|
# @return [Integer]
|
34
27
|
attr_reader :n_iter
|
35
28
|
|
36
|
-
# Return the random generator for initializing weight.
|
37
|
-
# @return [Random]
|
38
|
-
attr_reader :rng
|
39
|
-
|
40
29
|
# Create a new regressor with non-negative least squares method.
|
41
30
|
#
|
42
31
|
# @param reg_param [Float] The regularization parameter for L2 regularization term.
|
@@ -47,9 +36,7 @@ module Rumale
|
|
47
36
|
# @param tol [Float] The tolerance of loss for terminating optimization.
|
48
37
|
# If solver = 'svd', this parameter is ignored.
|
49
38
|
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
50
|
-
|
51
|
-
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
52
|
-
max_iter: 1000, tol: 1e-4, verbose: false, random_seed: nil)
|
39
|
+
def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, verbose: false)
|
53
40
|
super()
|
54
41
|
@params = {
|
55
42
|
reg_param: reg_param,
|
@@ -57,10 +44,8 @@ module Rumale
|
|
57
44
|
bias_scale: bias_scale,
|
58
45
|
max_iter: max_iter,
|
59
46
|
tol: tol,
|
60
|
-
verbose: verbose
|
61
|
-
random_seed: random_seed || srand
|
47
|
+
verbose: verbose
|
62
48
|
}
|
63
|
-
@rng = Random.new(@params[:random_seed])
|
64
49
|
end
|
65
50
|
|
66
51
|
# Fit the model with given training data.
|
@@ -69,17 +54,16 @@ module Rumale
|
|
69
54
|
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
70
55
|
# @return [NonneagtiveLeastSquare] The learned regressor itself.
|
71
56
|
def fit(x, y)
|
72
|
-
x =
|
73
|
-
y =
|
74
|
-
|
57
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
58
|
+
y = Rumale::Validation.check_convert_target_value_array(y)
|
59
|
+
Rumale::Validation.check_sample_size(x, y)
|
75
60
|
|
76
61
|
x = expand_feature(x) if fit_bias?
|
77
62
|
|
78
63
|
n_features = x.shape[1]
|
79
64
|
n_outputs = single_target?(y) ? 1 : y.shape[1]
|
80
65
|
|
81
|
-
w_init = ::
|
82
|
-
w_init[w_init.lt(0)] = 0
|
66
|
+
w_init = Numo::DFloat.zeros(n_outputs * n_features)
|
83
67
|
bounds = Numo::DFloat.zeros(n_outputs * n_features, 2)
|
84
68
|
bounds.shape[0].times { |n| bounds[n, 1] = Float::INFINITY }
|
85
69
|
|
@@ -89,15 +73,8 @@ module Rumale
|
|
89
73
|
)
|
90
74
|
|
91
75
|
@n_iter = res[:n_iter]
|
92
|
-
w = single_target?(y) ? res[:x] : res[:x].reshape(n_outputs, n_features)
|
93
|
-
|
94
|
-
if fit_bias?
|
95
|
-
@weight_vec = single_target?(y) ? w[0...-1].dup : w[0...-1, true].dup
|
96
|
-
@bias_term = single_target?(y) ? w[-1] : w[-1, true].dup
|
97
|
-
else
|
98
|
-
@weight_vec = w.dup
|
99
|
-
@bias_term = single_target?(y) ? 0 : Numo::DFloat.zeros(y.shape[1])
|
100
|
-
end
|
76
|
+
w = single_target?(y) ? res[:x] : res[:x].reshape(n_outputs, n_features)
|
77
|
+
@weight_vec, @bias_term = split_weight(w)
|
101
78
|
|
102
79
|
self
|
103
80
|
end
|
@@ -107,7 +84,7 @@ module Rumale
|
|
107
84
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
108
85
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
109
86
|
def predict(x)
|
110
|
-
x =
|
87
|
+
x = Rumale::Validation.check_convert_sample_array(x)
|
111
88
|
|
112
89
|
x.dot(@weight_vec.transpose) + @bias_term
|
113
90
|
end
|
@@ -124,15 +101,6 @@ module Rumale
|
|
124
101
|
[loss, gradient.flatten.dup]
|
125
102
|
end
|
126
103
|
|
127
|
-
def expand_feature(x)
|
128
|
-
n_samples = x.shape[0]
|
129
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
130
|
-
end
|
131
|
-
|
132
|
-
def fit_bias?
|
133
|
-
@params[:fit_bias] == true
|
134
|
-
end
|
135
|
-
|
136
104
|
def single_target?(y)
|
137
105
|
y.ndim == 1
|
138
106
|
end
|