rumale-kernel_machine 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/kernel_machine/kernel_fda.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_pca.rb +98 -0
- data/lib/rumale/kernel_machine/kernel_ridge.rb +81 -0
- data/lib/rumale/kernel_machine/kernel_ridge_classifier.rb +94 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +187 -0
- data/lib/rumale/kernel_machine/version.rb +10 -0
- data/lib/rumale/kernel_machine.rb +10 -0
- metadata +89 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 6c53bda994de48371ca60e6fb8e957a0f77e96943de0f73d989deeaa9edbcf89
|
4
|
+
data.tar.gz: 6a08ecbfd73f1e9b64a29ffd11114766bebc5b9b8cf8def6325e89528af50b82
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 7a1b192c7e8c31f769d2fef8ccf8be830bf0e129e0249269e807cd9e69f7bed06c8968612515b4d7817de59be4755e713dbf1a0e206b9dc4f6cd55308cf0111e
|
7
|
+
data.tar.gz: cd368663f5f48eca166ac8b3832df2c26e24ac09e64164886bf3815ba308f0cb64fd908768765d126d62d5103ec1edc99adf8a54f1900ee6581bbe5e17a65cb3
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Copyright (c) 2022 Atsushi Tatsuma
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
* Neither the name of the copyright holder nor the names of its
|
15
|
+
contributors may be used to endorse or promote products derived from
|
16
|
+
this software without specific prior written permission.
|
17
|
+
|
18
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
21
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
22
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
24
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
25
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
26
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
# Rumale::KernelMachine
|
2
|
+
|
3
|
+
[![Gem Version](https://badge.fury.io/rb/rumale-kernel_machine.svg)](https://badge.fury.io/rb/rumale-kernel_machine)
|
4
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-kernel_machine/LICENSE.txt)
|
5
|
+
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine.html)
|
6
|
+
|
7
|
+
Rumale is a machine learning library in Ruby.
|
8
|
+
Rumale::KernelMachine provides kernel method-based algorithms,
|
9
|
+
such as Kernel Support Vector Machine, Kernel Principal Componenet Analysis, and Kernel Ridge Regression,
|
10
|
+
with Rumale interface.
|
11
|
+
|
12
|
+
## Installation
|
13
|
+
|
14
|
+
Add this line to your application's Gemfile:
|
15
|
+
|
16
|
+
```ruby
|
17
|
+
gem 'rumale-kernel_machine'
|
18
|
+
```
|
19
|
+
|
20
|
+
And then execute:
|
21
|
+
|
22
|
+
$ bundle install
|
23
|
+
|
24
|
+
Or install it yourself as:
|
25
|
+
|
26
|
+
$ gem install rumale-kernel_machine
|
27
|
+
|
28
|
+
## Documentation
|
29
|
+
|
30
|
+
- [Rumale API Documentation - KernelMachine](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine.html)
|
31
|
+
|
32
|
+
## License
|
33
|
+
|
34
|
+
The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
|
@@ -0,0 +1,121 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module KernelMachine
|
9
|
+
# KernelFDA is a class that implements Kernel Fisher Discriminant Analysis.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'numo/linalg/autoloader'
|
13
|
+
# require 'rumale/pairwise_metric'
|
14
|
+
# require 'rumale/kernel_machine/kernel_fda'
|
15
|
+
#
|
16
|
+
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(x_train)
|
17
|
+
# kfda = Rumale::KernelMachine::KernelFDA.new
|
18
|
+
# mapped_traininig_samples = kfda.fit_transform(kernel_mat_train, y)
|
19
|
+
#
|
20
|
+
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(x_test, x_train)
|
21
|
+
# mapped_test_samples = kfda.transform(kernel_mat_test)
|
22
|
+
#
|
23
|
+
# *Reference*
|
24
|
+
# - Baudat, G., and Anouar, F., "Generalized Discriminant Analysis using a Kernel Approach," Neural Computation, vol. 12, pp. 2385--2404, 2000.
|
25
|
+
class KernelFDA < ::Rumale::Base::Estimator
|
26
|
+
include ::Rumale::Base::Transformer
|
27
|
+
|
28
|
+
# Returns the eigenvectors for embedding.
|
29
|
+
# @return [Numo::DFloat] (shape: [n_training_sampes, n_components])
|
30
|
+
attr_reader :alphas
|
31
|
+
|
32
|
+
# Create a new transformer with Kernel FDA.
|
33
|
+
#
|
34
|
+
# @param n_components [Integer] The number of components.
|
35
|
+
# @param reg_param [Float] The regularization parameter.
|
36
|
+
def initialize(n_components: nil, reg_param: 1e-8)
|
37
|
+
super()
|
38
|
+
@params = {
|
39
|
+
n_components: n_components,
|
40
|
+
reg_param: reg_param
|
41
|
+
}
|
42
|
+
end
|
43
|
+
|
44
|
+
# Fit the model with given training data.
|
45
|
+
# To execute this method, Numo::Linalg must be loaded.
|
46
|
+
#
|
47
|
+
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
48
|
+
# The kernel matrix of the training data to be used for fitting the model.
|
49
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
50
|
+
# @return [KernelFDA] The learned transformer itself.
|
51
|
+
def fit(x, y)
|
52
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
53
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
54
|
+
::Rumale::Validation.check_sample_size(x, y)
|
55
|
+
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
56
|
+
raise 'KernelFDA#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
57
|
+
|
58
|
+
# initialize some variables.
|
59
|
+
n_samples = x.shape[0]
|
60
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
61
|
+
n_classes = @classes.size
|
62
|
+
n_components = if @params[:n_components].nil?
|
63
|
+
[n_samples, n_classes - 1].min
|
64
|
+
else
|
65
|
+
[n_samples, @params[:n_components]].min
|
66
|
+
end
|
67
|
+
|
68
|
+
# centering
|
69
|
+
@row_mean = x.mean(0)
|
70
|
+
@all_mean = @row_mean.sum.fdiv(n_samples)
|
71
|
+
centered_kernel_mat = x - x.mean(1).expand_dims(1) - @row_mean + @all_mean
|
72
|
+
|
73
|
+
# calculate between and within scatter matrix.
|
74
|
+
class_mat = Numo::DFloat.zeros(n_samples, n_samples)
|
75
|
+
@classes.each do |label|
|
76
|
+
idx_vec = y.eq(label)
|
77
|
+
class_mat += Numo::DFloat.cast(idx_vec).outer(idx_vec) / idx_vec.count
|
78
|
+
end
|
79
|
+
between_mat = centered_kernel_mat.dot(class_mat).dot(centered_kernel_mat.transpose)
|
80
|
+
within_mat = centered_kernel_mat.dot(centered_kernel_mat.transpose) + @params[:reg_param] * Numo::DFloat.eye(n_samples)
|
81
|
+
|
82
|
+
# calculate projection matrix.
|
83
|
+
_, eig_vecs = Numo::Linalg.eigh(
|
84
|
+
between_mat, within_mat,
|
85
|
+
vals_range: (n_samples - n_components)...n_samples
|
86
|
+
)
|
87
|
+
@alphas = eig_vecs.reverse(1).dup
|
88
|
+
self
|
89
|
+
end
|
90
|
+
|
91
|
+
# Fit the model with training data, and then transform them with the learned model.
|
92
|
+
# To execute this method, Numo::Linalg must be loaded.
|
93
|
+
#
|
94
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_samples])
|
95
|
+
# The kernel matrix of the training data to be used for fitting the model and transformed.
|
96
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
97
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
98
|
+
def fit_transform(x, y)
|
99
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
100
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
101
|
+
::Rumale::Validation.check_sample_size(x, y)
|
102
|
+
|
103
|
+
fit(x, y).transform(x)
|
104
|
+
end
|
105
|
+
|
106
|
+
# Transform the given data with the learned model.
|
107
|
+
#
|
108
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
109
|
+
# The kernel matrix between testing samples and training samples to be transformed.
|
110
|
+
# @return [Numo::DFloat] (shape: [n_testing_samples, n_components]) The transformed data.
|
111
|
+
def transform(x)
|
112
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
113
|
+
|
114
|
+
col_mean = x.sum(axis: 1) / @row_mean.shape[0]
|
115
|
+
centered_kernel_mat = x - col_mean.expand_dims(1) - @row_mean + @all_mean
|
116
|
+
transformed = centered_kernel_mat.dot(@alphas)
|
117
|
+
@params[:n_components] == 1 ? transformed[true, 0].dup : transformed
|
118
|
+
end
|
119
|
+
end
|
120
|
+
end
|
121
|
+
end
|
@@ -0,0 +1,98 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module KernelMachine
|
9
|
+
# KernelPCA is a class that implements Kernel Principal Component Analysis.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'numo/linalg/autoloader'
|
13
|
+
# require 'rumale/pairwise_metric'
|
14
|
+
# require 'rumale/kernel_machine/kernel_pca'
|
15
|
+
#
|
16
|
+
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
17
|
+
# kpca = Rumale::KernelMachine::KernelPCA.new(n_components: 2)
|
18
|
+
# mapped_traininig_samples = kpca.fit_transform(kernel_mat_train)
|
19
|
+
#
|
20
|
+
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(test_samples, training_samples)
|
21
|
+
# mapped_test_samples = kpca.transform(kernel_mat_test)
|
22
|
+
#
|
23
|
+
# *Reference*
|
24
|
+
# - Scholkopf, B., Smola, A., and Muller, K-R., "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, Vol. 10 (5), pp. 1299--1319, 1998.
|
25
|
+
class KernelPCA < ::Rumale::Base::Estimator
|
26
|
+
include ::Rumale::Base::Transformer
|
27
|
+
|
28
|
+
# Returns the eigenvalues of the centered kernel matrix.
|
29
|
+
# @return [Numo::DFloat] (shape: [n_components])
|
30
|
+
attr_reader :lambdas
|
31
|
+
|
32
|
+
# Returns the eigenvectors of the centered kernel matrix.
|
33
|
+
# @return [Numo::DFloat] (shape: [n_training_sampes, n_components])
|
34
|
+
attr_reader :alphas
|
35
|
+
|
36
|
+
# Create a new transformer with Kernel PCA.
|
37
|
+
#
|
38
|
+
# @param n_components [Integer] The number of components.
|
39
|
+
def initialize(n_components: 2)
|
40
|
+
super()
|
41
|
+
@params = {
|
42
|
+
n_components: n_components
|
43
|
+
}
|
44
|
+
end
|
45
|
+
|
46
|
+
# Fit the model with given training data.
|
47
|
+
# To execute this method, Numo::Linalg must be loaded.
|
48
|
+
#
|
49
|
+
# @overload fit(x) -> KernelPCA
|
50
|
+
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
51
|
+
# The kernel matrix of the training data to be used for fitting the model.
|
52
|
+
# @return [KernelPCA] The learned transformer itself.
|
53
|
+
def fit(x, _y = nil)
|
54
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
55
|
+
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
56
|
+
raise 'KernelPCA#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
57
|
+
|
58
|
+
n_samples = x.shape[0]
|
59
|
+
@row_mean = x.mean(0)
|
60
|
+
@all_mean = @row_mean.sum.fdiv(n_samples)
|
61
|
+
centered_kernel_mat = x - x.mean(1).expand_dims(1) - @row_mean + @all_mean
|
62
|
+
eig_vals, eig_vecs = Numo::Linalg.eigh(centered_kernel_mat,
|
63
|
+
vals_range: (n_samples - @params[:n_components])...n_samples)
|
64
|
+
@alphas = eig_vecs.reverse(1).dup
|
65
|
+
@lambdas = eig_vals.reverse.dup
|
66
|
+
@transform_mat = @alphas.dot((1.0 / Numo::NMath.sqrt(@lambdas)).diag)
|
67
|
+
self
|
68
|
+
end
|
69
|
+
|
70
|
+
# Fit the model with training data, and then transform them with the learned model.
|
71
|
+
# To execute this method, Numo::Linalg must be loaded.
|
72
|
+
#
|
73
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
74
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_samples])
|
75
|
+
# The kernel matrix of the training data to be used for fitting the model and transformed.
|
76
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
77
|
+
def fit_transform(x, _y = nil)
|
78
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
79
|
+
|
80
|
+
fit(x).transform(x)
|
81
|
+
end
|
82
|
+
|
83
|
+
# Transform the given data with the learned model.
|
84
|
+
#
|
85
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
86
|
+
# The kernel matrix between testing samples and training samples to be transformed.
|
87
|
+
# @return [Numo::DFloat] (shape: [n_testing_samples, n_components]) The transformed data.
|
88
|
+
def transform(x)
|
89
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
90
|
+
|
91
|
+
col_mean = x.sum(axis: 1) / @row_mean.shape[0]
|
92
|
+
centered_kernel_mat = x - col_mean.expand_dims(1) - @row_mean + @all_mean
|
93
|
+
transformed = centered_kernel_mat.dot(@transform_mat)
|
94
|
+
@params[:n_components] == 1 ? transformed[true, 0].dup : transformed
|
95
|
+
end
|
96
|
+
end
|
97
|
+
end
|
98
|
+
end
|
@@ -0,0 +1,81 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/regressor'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module KernelMachine
|
9
|
+
# KernelRidge is a class that implements kernel ridge regression.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'numo/linalg/autoloader'
|
13
|
+
# require 'rumale/pairwise_metric'
|
14
|
+
# require 'rumale/kernel_machine/kernel_ridge'
|
15
|
+
#
|
16
|
+
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
17
|
+
# kridge = Rumale::KernelMachine::KernelRidge.new(reg_param: 1.0)
|
18
|
+
# kridge.fit(kernel_mat_train, traininig_values)
|
19
|
+
#
|
20
|
+
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(test_samples, training_samples)
|
21
|
+
# results = kridge.predict(kernel_mat_test)
|
22
|
+
class KernelRidge < ::Rumale::Base::Estimator
|
23
|
+
include ::Rumale::Base::Regressor
|
24
|
+
|
25
|
+
# Return the weight vector.
|
26
|
+
# @return [Numo::DFloat] (shape: [n_training_sample, n_outputs])
|
27
|
+
attr_reader :weight_vec
|
28
|
+
|
29
|
+
# Create a new regressor with kernel ridge regression.
|
30
|
+
#
|
31
|
+
# @param reg_param [Float/Numo::DFloat] The regularization parameter.
|
32
|
+
def initialize(reg_param: 1.0)
|
33
|
+
super()
|
34
|
+
@params = {
|
35
|
+
reg_param: reg_param
|
36
|
+
}
|
37
|
+
end
|
38
|
+
|
39
|
+
# Fit the model with given training data.
|
40
|
+
#
|
41
|
+
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
42
|
+
# The kernel matrix of the training data to be used for fitting the model.
|
43
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
44
|
+
# @return [KernelRidge] The learned regressor itself.
|
45
|
+
def fit(x, y)
|
46
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
47
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
48
|
+
::Rumale::Validation.check_sample_size(x, y)
|
49
|
+
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
50
|
+
raise 'KernelRidge#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
51
|
+
|
52
|
+
n_samples = x.shape[0]
|
53
|
+
|
54
|
+
if @params[:reg_param].is_a?(Float)
|
55
|
+
reg_kernel_mat = x + Numo::DFloat.eye(n_samples) * @params[:reg_param]
|
56
|
+
@weight_vec = Numo::Linalg.solve(reg_kernel_mat, y, driver: 'sym')
|
57
|
+
else
|
58
|
+
n_outputs = y.shape[1]
|
59
|
+
@weight_vec = Numo::DFloat.zeros(n_samples, n_outputs)
|
60
|
+
n_outputs.times do |n|
|
61
|
+
reg_kernel_mat = x + Numo::DFloat.eye(n_samples) * @params[:reg_param][n]
|
62
|
+
@weight_vec[true, n] = Numo::Linalg.solve(reg_kernel_mat, y[true, n], driver: 'sym')
|
63
|
+
end
|
64
|
+
end
|
65
|
+
|
66
|
+
self
|
67
|
+
end
|
68
|
+
|
69
|
+
# Predict values for samples.
|
70
|
+
#
|
71
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
72
|
+
# The kernel matrix between testing samples and training samples to predict values.
|
73
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
74
|
+
def predict(x)
|
75
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
76
|
+
|
77
|
+
x.dot(@weight_vec)
|
78
|
+
end
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
@@ -0,0 +1,94 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/utils'
|
6
|
+
require 'rumale/validation'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module KernelMachine
|
10
|
+
# KernelRidgeClassifier is a class that implements classifier based-on kernel ridge regression.
|
11
|
+
# It learns a classifier by converting labels to target values { -1, 1 } and performing kernel ridge regression.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# require 'numo/linalg/autoloader'
|
15
|
+
# require 'rumale/pairwise_metric'
|
16
|
+
# require 'rumale/kernel_machine/kernel_ridge_classifier'
|
17
|
+
#
|
18
|
+
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
19
|
+
# kridge = Rumale::KernelMachine::KernelRidgeClassifier.new(reg_param: 0.5)
|
20
|
+
# kridge.fit(kernel_mat_train, traininig_values)
|
21
|
+
#
|
22
|
+
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(test_samples, training_samples)
|
23
|
+
# results = kridge.predict(kernel_mat_test)
|
24
|
+
class KernelRidgeClassifier < ::Rumale::Base::Estimator
|
25
|
+
include ::Rumale::Base::Classifier
|
26
|
+
|
27
|
+
# Return the class labels.
|
28
|
+
# @return [Numo::Int32] (size: n_classes)
|
29
|
+
attr_reader :classes
|
30
|
+
|
31
|
+
# Return the weight vector.
|
32
|
+
# @return [Numo::DFloat] (shape: [n_training_sample, n_classes])
|
33
|
+
attr_reader :weight_vec
|
34
|
+
|
35
|
+
# Create a new regressor with kernel ridge classifier.
|
36
|
+
#
|
37
|
+
# @param reg_param [Float/Numo::DFloat] The regularization parameter.
|
38
|
+
def initialize(reg_param: 1.0)
|
39
|
+
super()
|
40
|
+
@params = {
|
41
|
+
reg_param: reg_param
|
42
|
+
}
|
43
|
+
end
|
44
|
+
|
45
|
+
# Fit the model with given training data.
|
46
|
+
#
|
47
|
+
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
48
|
+
# The kernel matrix of the training data to be used for fitting the model.
|
49
|
+
# @param y [Numo::Int32] (shape: [n_training_samples]) The labels to be used for fitting the model.
|
50
|
+
# @return [KernelRidgeClassifier] The learned classifier itself.
|
51
|
+
def fit(x, y)
|
52
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
53
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
54
|
+
::Rumale::Validation.check_sample_size(x, y)
|
55
|
+
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
56
|
+
raise 'KernelRidgeClassifier#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
57
|
+
|
58
|
+
y_encoded = Numo::DFloat.cast(::Rumale::Utils.binarize_labels(y)) * 2 - 1
|
59
|
+
@classes = Numo::NArray[*y.to_a.uniq.sort]
|
60
|
+
|
61
|
+
n_samples = x.shape[0]
|
62
|
+
reg_kernel_mat = x + Numo::DFloat.eye(n_samples) * @params[:reg_param]
|
63
|
+
@weight_vec = Numo::Linalg.solve(reg_kernel_mat, y_encoded, driver: 'sym')
|
64
|
+
|
65
|
+
self
|
66
|
+
end
|
67
|
+
|
68
|
+
# Calculate confidence scores for samples.
|
69
|
+
#
|
70
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
71
|
+
# The kernel matrix between testing samples and training samples to predict values.
|
72
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) The confidence score per sample.
|
73
|
+
def decision_function(x)
|
74
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
75
|
+
|
76
|
+
x.dot(@weight_vec)
|
77
|
+
end
|
78
|
+
|
79
|
+
# Predict class labels for samples.
|
80
|
+
#
|
81
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
82
|
+
# The kernel matrix between testing samples and training samples to predict the labels.
|
83
|
+
# @return [Numo::Int32] (shape: [n_testing_samples]) Predicted class label per sample.
|
84
|
+
def predict(x)
|
85
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
86
|
+
|
87
|
+
scores = decision_function(x)
|
88
|
+
n_samples, n_classes = scores.shape
|
89
|
+
label_ids = scores.max_index(axis: 1) - Numo::Int32.new(n_samples).seq * n_classes
|
90
|
+
@classes[label_ids].dup
|
91
|
+
end
|
92
|
+
end
|
93
|
+
end
|
94
|
+
end
|
@@ -0,0 +1,187 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/probabilistic_output'
|
6
|
+
require 'rumale/validation'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module KernelMachine
|
10
|
+
# KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier
|
11
|
+
# with stochastic gradient descent (SGD) optimization.
|
12
|
+
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
13
|
+
#
|
14
|
+
# @note
|
15
|
+
# Rumale::SVM provides kernel support vector classifier based on LIBSVM.
|
16
|
+
# If you prefer execution speed, you should use Rumale::SVM::SVC.
|
17
|
+
# https://github.com/yoshoku/rumale-svm
|
18
|
+
#
|
19
|
+
# @example
|
20
|
+
# require 'rumale/pairwise_metric'
|
21
|
+
# require 'rumale/kernel_machine/kernel_svc'
|
22
|
+
#
|
23
|
+
# training_kernel_matrix = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
24
|
+
# estimator =
|
25
|
+
# Rumale::KernelMachine::KernelSVC.new(reg_param: 1.0, max_iter: 1000, random_seed: 1)
|
26
|
+
# estimator.fit(training_kernel_matrix, traininig_labels)
|
27
|
+
# testing_kernel_matrix = Rumale::PairwiseMetric::rbf_kernel(testing_samples, training_samples)
|
28
|
+
# results = estimator.predict(testing_kernel_matrix)
|
29
|
+
#
|
30
|
+
# *Reference*
|
31
|
+
# - Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
32
|
+
class KernelSVC < ::Rumale::Base::Estimator
|
33
|
+
include ::Rumale::Base::Classifier
|
34
|
+
|
35
|
+
# Return the weight vector for Kernel SVC.
|
36
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_trainig_sample])
|
37
|
+
attr_reader :weight_vec
|
38
|
+
|
39
|
+
# Return the class labels.
|
40
|
+
# @return [Numo::Int32] (shape: [n_classes])
|
41
|
+
attr_reader :classes
|
42
|
+
|
43
|
+
# Return the random generator for performing random sampling.
|
44
|
+
# @return [Random]
|
45
|
+
attr_reader :rng
|
46
|
+
|
47
|
+
# Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
|
48
|
+
#
|
49
|
+
# @param reg_param [Float] The regularization parameter.
|
50
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
51
|
+
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
|
52
|
+
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
53
|
+
# If nil is given, the methods do not execute in parallel.
|
54
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
55
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
56
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
57
|
+
def initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil)
|
58
|
+
super()
|
59
|
+
@params = {
|
60
|
+
reg_param: reg_param,
|
61
|
+
max_iter: max_iter,
|
62
|
+
probability: probability,
|
63
|
+
n_jobs: n_jobs,
|
64
|
+
random_seed: (random_seed || srand)
|
65
|
+
}
|
66
|
+
@rng = Random.new(@params[:random_seed])
|
67
|
+
end
|
68
|
+
|
69
|
+
# Fit the model with given training data.
|
70
|
+
#
|
71
|
+
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
72
|
+
# The kernel matrix of the training data to be used for fitting the model.
|
73
|
+
# @param y [Numo::Int32] (shape: [n_training_samples]) The labels to be used for fitting the model.
|
74
|
+
# @return [KernelSVC] The learned classifier itself.
|
75
|
+
def fit(x, y)
|
76
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
77
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
78
|
+
::Rumale::Validation.check_sample_size(x, y)
|
79
|
+
|
80
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
81
|
+
n_classes = @classes.size
|
82
|
+
n_features = x.shape[1]
|
83
|
+
|
84
|
+
if n_classes > 2
|
85
|
+
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
86
|
+
@prob_param = Numo::DFloat.zeros(n_classes, 2)
|
87
|
+
models = if enable_parallel?
|
88
|
+
parallel_map(n_classes) do |n|
|
89
|
+
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
90
|
+
partial_fit(x, bin_y)
|
91
|
+
end
|
92
|
+
else
|
93
|
+
Array.new(n_classes) do |n|
|
94
|
+
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
95
|
+
partial_fit(x, bin_y)
|
96
|
+
end
|
97
|
+
end
|
98
|
+
models.each_with_index { |model, n| @weight_vec[n, true], @prob_param[n, true] = model }
|
99
|
+
else
|
100
|
+
negative_label = y.to_a.uniq.min
|
101
|
+
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
102
|
+
@weight_vec, @prob_param = partial_fit(x, bin_y)
|
103
|
+
end
|
104
|
+
|
105
|
+
self
|
106
|
+
end
|
107
|
+
|
108
|
+
# Calculate confidence scores for samples.
|
109
|
+
#
|
110
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
111
|
+
# The kernel matrix between testing samples and training samples to compute the scores.
|
112
|
+
# @return [Numo::DFloat] (shape: [n_testing_samples, n_classes]) Confidence score per sample.
|
113
|
+
def decision_function(x)
|
114
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
115
|
+
|
116
|
+
x.dot(@weight_vec.transpose)
|
117
|
+
end
|
118
|
+
|
119
|
+
# Predict class labels for samples.
|
120
|
+
#
|
121
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
122
|
+
# The kernel matrix between testing samples and training samples to predict the labels.
|
123
|
+
# @return [Numo::Int32] (shape: [n_testing_samples]) Predicted class label per sample.
|
124
|
+
def predict(x)
|
125
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
126
|
+
|
127
|
+
return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2
|
128
|
+
|
129
|
+
n_samples, = x.shape
|
130
|
+
decision_values = decision_function(x)
|
131
|
+
predicted = if enable_parallel?
|
132
|
+
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
133
|
+
else
|
134
|
+
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
135
|
+
end
|
136
|
+
Numo::Int32.asarray(predicted)
|
137
|
+
end
|
138
|
+
|
139
|
+
# Predict probability for samples.
|
140
|
+
#
|
141
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
142
|
+
# The kernel matrix between testing samples and training samples to predict the labels.
|
143
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
144
|
+
def predict_proba(x)
|
145
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
146
|
+
|
147
|
+
if @classes.size > 2
|
148
|
+
probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
|
149
|
+
return (probs.transpose / probs.sum(axis: 1)).transpose.dup
|
150
|
+
end
|
151
|
+
|
152
|
+
n_samples, = x.shape
|
153
|
+
probs = Numo::DFloat.zeros(n_samples, 2)
|
154
|
+
probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
|
155
|
+
probs[true, 0] = 1.0 - probs[true, 1]
|
156
|
+
probs
|
157
|
+
end
|
158
|
+
|
159
|
+
private
|
160
|
+
|
161
|
+
def partial_fit(x, bin_y)
|
162
|
+
# Initialize some variables.
|
163
|
+
n_training_samples = x.shape[0]
|
164
|
+
rand_ids = []
|
165
|
+
weight_vec = Numo::DFloat.zeros(n_training_samples)
|
166
|
+
sub_rng = @rng.dup
|
167
|
+
# Start optimization.
|
168
|
+
@params[:max_iter].times do |t|
|
169
|
+
# random sampling
|
170
|
+
rand_ids = Array(0...n_training_samples).shuffle(random: sub_rng) if rand_ids.empty?
|
171
|
+
target_id = rand_ids.shift
|
172
|
+
# update the weight vector
|
173
|
+
func = (weight_vec * bin_y).dot(x[target_id, true].transpose).to_f
|
174
|
+
func *= bin_y[target_id] / (@params[:reg_param] * (t + 1))
|
175
|
+
weight_vec[target_id] += 1.0 if func < 1.0
|
176
|
+
end
|
177
|
+
w = weight_vec * bin_y
|
178
|
+
p = if @params[:probability]
|
179
|
+
::Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(w), bin_y)
|
180
|
+
else
|
181
|
+
Numo::DFloat[1, 0]
|
182
|
+
end
|
183
|
+
[w, p]
|
184
|
+
end
|
185
|
+
end
|
186
|
+
end
|
187
|
+
end
|
@@ -0,0 +1,10 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
# Rumale is a machine learning library in Ruby.
|
4
|
+
module Rumale
|
5
|
+
# This module consists of the classes that implement kernel method-based estimator.
|
6
|
+
module KernelMachine
|
7
|
+
# @!visibility private
|
8
|
+
VERSION = '0.24.0'
|
9
|
+
end
|
10
|
+
end
|
@@ -0,0 +1,10 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'numo/narray'
|
4
|
+
|
5
|
+
require_relative 'kernel_machine/kernel_fda'
|
6
|
+
require_relative 'kernel_machine/kernel_pca'
|
7
|
+
require_relative 'kernel_machine/kernel_ridge'
|
8
|
+
require_relative 'kernel_machine/kernel_ridge_classifier'
|
9
|
+
require_relative 'kernel_machine/kernel_svc'
|
10
|
+
require_relative 'kernel_machine/version'
|
metadata
ADDED
@@ -0,0 +1,89 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rumale-kernel_machine
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.24.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2022-12-31 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: numo-narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.9.1
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.9.1
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rumale-core
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: 0.24.0
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: 0.24.0
|
41
|
+
description: |
|
42
|
+
Rumale::KernelMachine provides kernel method-based algorithms,
|
43
|
+
such as Kernel Support Vector Machine, Kernel Principal Componenet Analysis, and Kernel Ridge Regression,
|
44
|
+
with Rumale interface.
|
45
|
+
email:
|
46
|
+
- yoshoku@outlook.com
|
47
|
+
executables: []
|
48
|
+
extensions: []
|
49
|
+
extra_rdoc_files: []
|
50
|
+
files:
|
51
|
+
- LICENSE.txt
|
52
|
+
- README.md
|
53
|
+
- lib/rumale/kernel_machine.rb
|
54
|
+
- lib/rumale/kernel_machine/kernel_fda.rb
|
55
|
+
- lib/rumale/kernel_machine/kernel_pca.rb
|
56
|
+
- lib/rumale/kernel_machine/kernel_ridge.rb
|
57
|
+
- lib/rumale/kernel_machine/kernel_ridge_classifier.rb
|
58
|
+
- lib/rumale/kernel_machine/kernel_svc.rb
|
59
|
+
- lib/rumale/kernel_machine/version.rb
|
60
|
+
homepage: https://github.com/yoshoku/rumale
|
61
|
+
licenses:
|
62
|
+
- BSD-3-Clause
|
63
|
+
metadata:
|
64
|
+
homepage_uri: https://github.com/yoshoku/rumale
|
65
|
+
source_code_uri: https://github.com/yoshoku/rumale/tree/main/rumale-kernel_machine
|
66
|
+
changelog_uri: https://github.com/yoshoku/rumale/blob/main/CHANGELOG.md
|
67
|
+
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
68
|
+
rubygems_mfa_required: 'true'
|
69
|
+
post_install_message:
|
70
|
+
rdoc_options: []
|
71
|
+
require_paths:
|
72
|
+
- lib
|
73
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
74
|
+
requirements:
|
75
|
+
- - ">="
|
76
|
+
- !ruby/object:Gem::Version
|
77
|
+
version: '0'
|
78
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - ">="
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '0'
|
83
|
+
requirements: []
|
84
|
+
rubygems_version: 3.3.26
|
85
|
+
signing_key:
|
86
|
+
specification_version: 4
|
87
|
+
summary: Rumale::KernelMachine provides kernel method-based algorithms with Rumale
|
88
|
+
interface.
|
89
|
+
test_files: []
|