rumale-feature_extraction 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/feature_extraction/feature_hasher.rb +100 -0
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +157 -0
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +111 -0
- data/lib/rumale/feature_extraction/version.rb +10 -0
- data/lib/rumale/feature_extraction.rb +8 -0
- metadata +101 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 7927d78c3c8294fdaba1f509c5bfa0d3d5960d5813cba42aaa5c2765317064dd
|
4
|
+
data.tar.gz: 43422862894245c61da3b8973a3991cccf80d87f901fbab635077a00fe7670d8
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 9127e6789c784861dc6302cbd69b6abc6afc841e8ba22ef0e4b1b42cd0a575433fe79e37c3797eee632560cf7d0a7585aee1e2a28ee7d1df8ae770c5be2f587f
|
7
|
+
data.tar.gz: a0455a7c16fc510d2428d9476e22d883bb1377779552daba8243ce20bdd332df69be4f3143aa1d4abe2bc4b319210c06872ff6239a25565fa13da82298113b13
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Copyright (c) 2022 Atsushi Tatsuma
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
* Neither the name of the copyright holder nor the names of its
|
15
|
+
contributors may be used to endorse or promote products derived from
|
16
|
+
this software without specific prior written permission.
|
17
|
+
|
18
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
21
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
22
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
24
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
25
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
26
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
# Rumale::FeatureExtraction
|
2
|
+
|
3
|
+
[![Gem Version](https://badge.fury.io/rb/rumale-feature_extraction.svg)](https://badge.fury.io/rb/rumale-feature_extraction)
|
4
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-feature_extraction/LICENSE.txt)
|
5
|
+
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction.html)
|
6
|
+
|
7
|
+
Rumale is a machine learning library in Ruby.
|
8
|
+
Rumale::FeatureExtraction provides feature extraction methods,
|
9
|
+
such as TF-IDF and feature hashing,
|
10
|
+
with Rumale interface.
|
11
|
+
|
12
|
+
## Installation
|
13
|
+
|
14
|
+
Add this line to your application's Gemfile:
|
15
|
+
|
16
|
+
```ruby
|
17
|
+
gem 'rumale-feature_extraction'
|
18
|
+
```
|
19
|
+
|
20
|
+
And then execute:
|
21
|
+
|
22
|
+
$ bundle install
|
23
|
+
|
24
|
+
Or install it yourself as:
|
25
|
+
|
26
|
+
$ gem install rumale-feature_extraction
|
27
|
+
|
28
|
+
## Documentation
|
29
|
+
|
30
|
+
- [Rumale API Documentation - FeatureExtraction](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction.html)
|
31
|
+
|
32
|
+
## License
|
33
|
+
|
34
|
+
The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
|
@@ -0,0 +1,100 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'mmh3'
|
4
|
+
|
5
|
+
require 'rumale/base/estimator'
|
6
|
+
require 'rumale/base/transformer'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module FeatureExtraction
|
10
|
+
# Encode array of feature-value hash to vectors with feature hashing (hashing trick).
|
11
|
+
# This encoder turns array of mappings (Array<Hash>) with pairs of feature names and values into Numo::NArray.
|
12
|
+
# This encoder employs signed 32-bit Murmurhash3 as the hash function.
|
13
|
+
#
|
14
|
+
# @example
|
15
|
+
# require 'rumale/feature_extraction/feature_hasher'
|
16
|
+
#
|
17
|
+
# encoder = Rumale::FeatureExtraction::FeatureHasher.new(n_features: 10)
|
18
|
+
# x = encoder.transform([
|
19
|
+
# { dog: 1, cat: 2, elephant: 4 },
|
20
|
+
# { dog: 2, run: 5 }
|
21
|
+
# ])
|
22
|
+
#
|
23
|
+
# # > pp x
|
24
|
+
# # Numo::DFloat#shape=[2,10]
|
25
|
+
# # [[0, 0, -4, -1, 0, 0, 0, 0, 0, 2],
|
26
|
+
# # [0, 0, 0, -2, -5, 0, 0, 0, 0, 0]]
|
27
|
+
class FeatureHasher < ::Rumale::Base::Estimator
|
28
|
+
include ::Rumale::Base::Transformer
|
29
|
+
|
30
|
+
# Create a new encoder for converting array of hash consisting of feature names and values to vectors
|
31
|
+
# with feature hashing algorith.
|
32
|
+
#
|
33
|
+
# @param n_features [Integer] The number of features of encoded samples.
|
34
|
+
# @param alternate_sign [Boolean] The flag indicating whether to reflect the sign of the hash value to the feature value.
|
35
|
+
def initialize(n_features: 1024, alternate_sign: true)
|
36
|
+
super()
|
37
|
+
@params = {
|
38
|
+
n_features: n_features,
|
39
|
+
alternate_sign: alternate_sign
|
40
|
+
}
|
41
|
+
end
|
42
|
+
|
43
|
+
# This method does not do anything. The encoder does not require training.
|
44
|
+
#
|
45
|
+
# @overload fit(x) -> FeatureHasher
|
46
|
+
# @param x [Array<Hash>] (shape: [n_samples]) The array of hash consisting of feature names and values.
|
47
|
+
# @return [FeatureHasher]
|
48
|
+
def fit(_x = nil, _y = nil)
|
49
|
+
self
|
50
|
+
end
|
51
|
+
|
52
|
+
# Encode given the array of feature-value hash.
|
53
|
+
# This method has the same output as the transform method
|
54
|
+
# because the encoder does not require training.
|
55
|
+
#
|
56
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
57
|
+
# @param x [Array<Hash>] (shape: [n_samples]) The array of hash consisting of feature names and values.
|
58
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_features]) The encoded sample array.
|
59
|
+
def fit_transform(x, _y = nil)
|
60
|
+
fit(x).transform(x)
|
61
|
+
end
|
62
|
+
|
63
|
+
# Encode given the array of feature-value hash.
|
64
|
+
#
|
65
|
+
# @param x [Array<Hash>] (shape: [n_samples]) The array of hash consisting of feature names and values.
|
66
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_features]) The encoded sample array.
|
67
|
+
def transform(x)
|
68
|
+
x = [x] unless x.is_a?(Array)
|
69
|
+
n_samples = x.size
|
70
|
+
|
71
|
+
z = Numo::DFloat.zeros(n_samples, n_features)
|
72
|
+
|
73
|
+
x.each_with_index do |f, i|
|
74
|
+
f.each do |k, v|
|
75
|
+
k = "#{k}=#{v}" if v.is_a?(String)
|
76
|
+
val = v.is_a?(String) ? 1 : v
|
77
|
+
next if val.zero?
|
78
|
+
|
79
|
+
h = Mmh3.hash32(k)
|
80
|
+
fid = h.abs % n_features
|
81
|
+
val *= h >= 0 ? 1 : -1 if alternate_sign?
|
82
|
+
z[i, fid] = val
|
83
|
+
end
|
84
|
+
end
|
85
|
+
|
86
|
+
z
|
87
|
+
end
|
88
|
+
|
89
|
+
private
|
90
|
+
|
91
|
+
def n_features
|
92
|
+
@params[:n_features]
|
93
|
+
end
|
94
|
+
|
95
|
+
def alternate_sign?
|
96
|
+
@params[:alternate_sign]
|
97
|
+
end
|
98
|
+
end
|
99
|
+
end
|
100
|
+
end
|
@@ -0,0 +1,157 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module FeatureExtraction
|
8
|
+
# Encode array of feature-value hash to vectors.
|
9
|
+
# This encoder turns array of mappings (Array<Hash>) with pairs of feature names and values into Numo::NArray.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'rumale/feature_extraction/hash_vectorizer'
|
13
|
+
#
|
14
|
+
# encoder = Rumale::FeatureExtraction::HashVectorizer.new
|
15
|
+
# x = encoder.fit_transform([
|
16
|
+
# { foo: 1, bar: 2 },
|
17
|
+
# { foo: 3, baz: 1 }
|
18
|
+
# ])
|
19
|
+
#
|
20
|
+
# # > pp x
|
21
|
+
# # Numo::DFloat#shape=[2,3]
|
22
|
+
# # [[2, 0, 1],
|
23
|
+
# # [0, 1, 3]]
|
24
|
+
#
|
25
|
+
# x = encoder.fit_transform([
|
26
|
+
# { city: 'Dubai', temperature: 33 },
|
27
|
+
# { city: 'London', temperature: 12 },
|
28
|
+
# { city: 'San Francisco', temperature: 18 }
|
29
|
+
# ])
|
30
|
+
#
|
31
|
+
# # > pp x
|
32
|
+
# # Numo::DFloat#shape=[3,4]
|
33
|
+
# # [[1, 0, 0, 33],
|
34
|
+
# # [0, 1, 0, 12],
|
35
|
+
# # [0, 0, 1, 18]]
|
36
|
+
# # > pp encoder.inverse_transform(x)
|
37
|
+
# # [{:city=>"Dubai", :temperature=>33.0},
|
38
|
+
# # {:city=>"London", :temperature=>12.0},
|
39
|
+
# # {:city=>"San Francisco", :temperature=>18.0}]
|
40
|
+
class HashVectorizer < ::Rumale::Base::Estimator
|
41
|
+
include ::Rumale::Base::Transformer
|
42
|
+
|
43
|
+
# Return the list of feature names.
|
44
|
+
# @return [Array] (size: [n_features])
|
45
|
+
attr_reader :feature_names
|
46
|
+
|
47
|
+
# Return the hash consisting of pairs of feature names and indices.
|
48
|
+
# @return [Hash] (size: [n_features])
|
49
|
+
attr_reader :vocabulary
|
50
|
+
|
51
|
+
# Create a new encoder for converting array of hash consisting of feature names and values to vectors.
|
52
|
+
#
|
53
|
+
# @param separator [String] The separator string used for constructing new feature names for categorical feature.
|
54
|
+
# @param sort [Boolean] The flag indicating whether to sort feature names.
|
55
|
+
def initialize(separator: '=', sort: true)
|
56
|
+
super()
|
57
|
+
@params = {
|
58
|
+
separator: separator,
|
59
|
+
sort: sort
|
60
|
+
}
|
61
|
+
end
|
62
|
+
|
63
|
+
# Fit the encoder with given training data.
|
64
|
+
#
|
65
|
+
# @overload fit(x) -> HashVectorizer
|
66
|
+
# @param x [Array<Hash>] (shape: [n_samples]) The array of hash consisting of feature names and values.
|
67
|
+
# @return [HashVectorizer]
|
68
|
+
def fit(x, _y = nil)
|
69
|
+
@feature_names = []
|
70
|
+
@vocabulary = {}
|
71
|
+
|
72
|
+
x.each do |f|
|
73
|
+
f.each do |k, v|
|
74
|
+
k = "#{k}#{separator}#{v}".to_sym if v.is_a?(String)
|
75
|
+
next if @vocabulary.key?(k)
|
76
|
+
|
77
|
+
@feature_names.push(k)
|
78
|
+
@vocabulary[k] = @vocabulary.size
|
79
|
+
end
|
80
|
+
end
|
81
|
+
|
82
|
+
if sort_feature?
|
83
|
+
@feature_names.sort!
|
84
|
+
@feature_names.each_with_index { |k, i| @vocabulary[k] = i }
|
85
|
+
end
|
86
|
+
|
87
|
+
self
|
88
|
+
end
|
89
|
+
|
90
|
+
# Fit the encoder with given training data, then return encoded data.
|
91
|
+
#
|
92
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
93
|
+
# @param x [Array<Hash>] (shape: [n_samples]) The array of hash consisting of feature names and values.
|
94
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_features]) The encoded sample array.
|
95
|
+
def fit_transform(x, _y = nil)
|
96
|
+
fit(x).transform(x)
|
97
|
+
end
|
98
|
+
|
99
|
+
# Encode given the array of feature-value hash.
|
100
|
+
#
|
101
|
+
# @param x [Array<Hash>] (shape: [n_samples]) The array of hash consisting of feature names and values.
|
102
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_features]) The encoded sample array.
|
103
|
+
def transform(x)
|
104
|
+
x = [x] unless x.is_a?(Array)
|
105
|
+
n_samples = x.size
|
106
|
+
n_features = @vocabulary.size
|
107
|
+
z = Numo::DFloat.zeros(n_samples, n_features)
|
108
|
+
|
109
|
+
x.each_with_index do |f, i|
|
110
|
+
f.each do |k, v|
|
111
|
+
if v.is_a?(String)
|
112
|
+
k = "#{k}#{separator}#{v}".to_sym
|
113
|
+
v = 1
|
114
|
+
end
|
115
|
+
z[i, @vocabulary[k]] = v if @vocabulary.key?(k)
|
116
|
+
end
|
117
|
+
end
|
118
|
+
|
119
|
+
z
|
120
|
+
end
|
121
|
+
|
122
|
+
# Decode sample matirx to the array of feature-value hash.
|
123
|
+
#
|
124
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The encoded sample array.
|
125
|
+
# @return [Array<Hash>] The array of hash consisting of feature names and values.
|
126
|
+
def inverse_transform(x)
|
127
|
+
n_samples = x.shape[0]
|
128
|
+
reconst = []
|
129
|
+
|
130
|
+
n_samples.times do |i|
|
131
|
+
f = {}
|
132
|
+
x[i, true].each_with_index do |el, j|
|
133
|
+
feature_key_val(@feature_names[j], el).tap { |k, v| f[k.to_sym] = v } unless el.zero?
|
134
|
+
end
|
135
|
+
reconst.push(f)
|
136
|
+
end
|
137
|
+
|
138
|
+
reconst
|
139
|
+
end
|
140
|
+
|
141
|
+
private
|
142
|
+
|
143
|
+
def feature_key_val(fname, fval)
|
144
|
+
f = fname.to_s.split(separator)
|
145
|
+
f.size == 2 ? f : [fname, fval]
|
146
|
+
end
|
147
|
+
|
148
|
+
def separator
|
149
|
+
@params[:separator]
|
150
|
+
end
|
151
|
+
|
152
|
+
def sort_feature?
|
153
|
+
@params[:sort]
|
154
|
+
end
|
155
|
+
end
|
156
|
+
end
|
157
|
+
end
|
@@ -0,0 +1,111 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/utils'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module FeatureExtraction
|
9
|
+
# Transform sample matrix with term frequecy (tf) to a normalized tf-idf (inverse document frequency) reprensentation.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'rumale/feature_extraction/hash_vectorizer'
|
13
|
+
# require 'rumale/feature_extraction/tfidf_transformer'
|
14
|
+
#
|
15
|
+
# encoder = Rumale::FeatureExtraction::HashVectorizer.new
|
16
|
+
# x = encoder.fit_transform([
|
17
|
+
# { foo: 1, bar: 2 },
|
18
|
+
# { foo: 3, baz: 1 }
|
19
|
+
# ])
|
20
|
+
#
|
21
|
+
# # > pp x
|
22
|
+
# # Numo::DFloat#shape=[2,3]
|
23
|
+
# # [[2, 0, 1],
|
24
|
+
# # [0, 1, 3]]
|
25
|
+
#
|
26
|
+
# transformer = Rumale::FeatureExtraction::TfidfTransformer.new
|
27
|
+
# x_tfidf = transformer.fit_transform(x)
|
28
|
+
#
|
29
|
+
# # > pp x_tfidf
|
30
|
+
# # Numo::DFloat#shape=[2,3]
|
31
|
+
# # [[0.959056, 0, 0.283217],
|
32
|
+
# # [0, 0.491506, 0.870874]]
|
33
|
+
#
|
34
|
+
# *Reference*
|
35
|
+
# - Manning, C D., Raghavan, P., and Schutze, H., "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
36
|
+
class TfidfTransformer < ::Rumale::Base::Estimator
|
37
|
+
include ::Rumale::Base::Transformer
|
38
|
+
|
39
|
+
# Return the vector consists of inverse document frequency.
|
40
|
+
# @return [Numo::DFloat] (shape: [n_features])
|
41
|
+
attr_reader :idf
|
42
|
+
|
43
|
+
# Create a new transfomer for converting tf vectors to tf-idf vectors.
|
44
|
+
#
|
45
|
+
# @param norm [String] The normalization method to be used ('l1', 'l2' and 'none').
|
46
|
+
# @param use_idf [Boolean] The flag indicating whether to use inverse document frequency weighting.
|
47
|
+
# @param smooth_idf [Boolean] The flag indicating whether to apply idf smoothing by log((n_samples + 1) / (df + 1)) + 1.
|
48
|
+
# @param sublinear_tf [Boolean] The flag indicating whether to perform subliner tf scaling by 1 + log(tf).
|
49
|
+
def initialize(norm: 'l2', use_idf: true, smooth_idf: false, sublinear_tf: false)
|
50
|
+
super()
|
51
|
+
@params = {
|
52
|
+
norm: norm,
|
53
|
+
use_idf: use_idf,
|
54
|
+
smooth_idf: smooth_idf,
|
55
|
+
sublinear_tf: sublinear_tf
|
56
|
+
}
|
57
|
+
end
|
58
|
+
|
59
|
+
# Calculate the inverse document frequency for weighting.
|
60
|
+
#
|
61
|
+
# @overload fit(x) -> TfidfTransformer
|
62
|
+
#
|
63
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the idf values.
|
64
|
+
# @return [TfidfTransformer]
|
65
|
+
def fit(x, _y = nil)
|
66
|
+
return self unless @params[:use_idf]
|
67
|
+
|
68
|
+
n_samples = x.shape[0]
|
69
|
+
df = x.class.cast(x.gt(0.0).count(0))
|
70
|
+
|
71
|
+
if @params[:smooth_idf]
|
72
|
+
df += 1
|
73
|
+
n_samples += 1
|
74
|
+
end
|
75
|
+
|
76
|
+
@idf = Numo::NMath.log(n_samples / df) + 1
|
77
|
+
|
78
|
+
self
|
79
|
+
end
|
80
|
+
|
81
|
+
# Calculate the idf values, and then transfrom samples to the tf-idf representation.
|
82
|
+
#
|
83
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
84
|
+
#
|
85
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate idf and be transformed to tf-idf representation.
|
86
|
+
# @return [Numo::DFloat] The transformed samples.
|
87
|
+
def fit_transform(x, _y = nil)
|
88
|
+
fit(x).transform(x)
|
89
|
+
end
|
90
|
+
|
91
|
+
# Perform transforming the given samples to the tf-idf representation.
|
92
|
+
#
|
93
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be transformed.
|
94
|
+
# @return [Numo::DFloat] The transformed samples.
|
95
|
+
def transform(x)
|
96
|
+
z = x.dup
|
97
|
+
|
98
|
+
z[z.ne(0)] = Numo::NMath.log(z[z.ne(0)]) + 1 if @params[:sublinear_tf]
|
99
|
+
z *= @idf if @params[:use_idf]
|
100
|
+
case @params[:norm]
|
101
|
+
when 'l2'
|
102
|
+
::Rumale::Utils.normalize(z, 'l2')
|
103
|
+
when 'l1'
|
104
|
+
::Rumale::Utils.normalize(z, 'l1')
|
105
|
+
else
|
106
|
+
z
|
107
|
+
end
|
108
|
+
end
|
109
|
+
end
|
110
|
+
end
|
111
|
+
end
|
@@ -0,0 +1,8 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'numo/narray'
|
4
|
+
|
5
|
+
require_relative 'feature_extraction/feature_hasher'
|
6
|
+
require_relative 'feature_extraction/hash_vectorizer'
|
7
|
+
require_relative 'feature_extraction/tfidf_transformer'
|
8
|
+
require_relative 'feature_extraction/version'
|
metadata
ADDED
@@ -0,0 +1,101 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rumale-feature_extraction
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.24.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2022-12-31 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: mmh3
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '1.0'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '1.0'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: numo-narray
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - ">="
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: 0.9.1
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: 0.9.1
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rumale-core
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: 0.24.0
|
48
|
+
type: :runtime
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: 0.24.0
|
55
|
+
description: |
|
56
|
+
Rumale::FeatureExtraction provides feature extraction methods,
|
57
|
+
such as TF-IDF and feature hashing,
|
58
|
+
with Rumale interface.
|
59
|
+
email:
|
60
|
+
- yoshoku@outlook.com
|
61
|
+
executables: []
|
62
|
+
extensions: []
|
63
|
+
extra_rdoc_files: []
|
64
|
+
files:
|
65
|
+
- LICENSE.txt
|
66
|
+
- README.md
|
67
|
+
- lib/rumale/feature_extraction.rb
|
68
|
+
- lib/rumale/feature_extraction/feature_hasher.rb
|
69
|
+
- lib/rumale/feature_extraction/hash_vectorizer.rb
|
70
|
+
- lib/rumale/feature_extraction/tfidf_transformer.rb
|
71
|
+
- lib/rumale/feature_extraction/version.rb
|
72
|
+
homepage: https://github.com/yoshoku/rumale
|
73
|
+
licenses:
|
74
|
+
- BSD-3-Clause
|
75
|
+
metadata:
|
76
|
+
homepage_uri: https://github.com/yoshoku/rumale
|
77
|
+
source_code_uri: https://github.com/yoshoku/rumale/tree/main/rumale-feature_extraction
|
78
|
+
changelog_uri: https://github.com/yoshoku/rumale/blob/main/CHANGELOG.md
|
79
|
+
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
80
|
+
rubygems_mfa_required: 'true'
|
81
|
+
post_install_message:
|
82
|
+
rdoc_options: []
|
83
|
+
require_paths:
|
84
|
+
- lib
|
85
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
86
|
+
requirements:
|
87
|
+
- - ">="
|
88
|
+
- !ruby/object:Gem::Version
|
89
|
+
version: '0'
|
90
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
91
|
+
requirements:
|
92
|
+
- - ">="
|
93
|
+
- !ruby/object:Gem::Version
|
94
|
+
version: '0'
|
95
|
+
requirements: []
|
96
|
+
rubygems_version: 3.3.26
|
97
|
+
signing_key:
|
98
|
+
specification_version: 4
|
99
|
+
summary: Rumale::FeatureExtraction provides feature extraction methods with Rumale
|
100
|
+
interface.
|
101
|
+
test_files: []
|