rumale-ensemble 0.24.0 → 0.26.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/LICENSE.txt +1 -1
- data/lib/rumale/ensemble/ada_boost_classifier.rb +1 -1
- data/lib/rumale/ensemble/ada_boost_regressor.rb +1 -1
- data/lib/rumale/ensemble/extra_trees_classifier.rb +1 -1
- data/lib/rumale/ensemble/extra_trees_regressor.rb +1 -1
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +2 -2
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +2 -2
- data/lib/rumale/ensemble/random_forest_classifier.rb +1 -1
- data/lib/rumale/ensemble/random_forest_regressor.rb +1 -1
- data/lib/rumale/ensemble/stacking_classifier.rb +2 -2
- data/lib/rumale/ensemble/stacking_regressor.rb +1 -1
- data/lib/rumale/ensemble/version.rb +1 -1
- data/lib/rumale/ensemble/voting_classifier.rb +1 -1
- data/lib/rumale/ensemble/voting_regressor.rb +1 -1
- metadata +12 -12
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 8760a2022e71904e7a662c1348ec88cfc99a44adce603f6ea17851641206604d
|
4
|
+
data.tar.gz: 524cd4e6f552acc93373dd505fe03a728947d3f0b41e96a3479acd361ae009cf
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6e5b5d7544322cbfd5e461c316f585c18204d4728d2b67790a517cfba7a077b86c56ba54e17fc8c5c0a203fe4611ac7119d06d7f058c00c9bf828780f8b70462
|
7
|
+
data.tar.gz: cbd2504c15bc18c7c9641bddd52398e88b51c95692ea680ada8d524e31ec2cc8c2bcfd9593f6d37d811942e07537f8fa1dfbacb82fb3d7232f9300f34368642c
|
data/LICENSE.txt
CHANGED
@@ -86,7 +86,7 @@ module Rumale
|
|
86
86
|
@estimators = []
|
87
87
|
@feature_importances = Numo::DFloat.zeros(n_features)
|
88
88
|
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
89
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
89
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
90
90
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
91
91
|
n_classes = @classes.shape[0]
|
92
92
|
sub_rng = @rng.dup
|
@@ -93,7 +93,7 @@ module Rumale
|
|
93
93
|
# Initialize some variables.
|
94
94
|
n_samples, n_features = x.shape
|
95
95
|
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
96
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
96
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
97
97
|
observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
|
98
98
|
@estimators = []
|
99
99
|
@estimator_weights = []
|
@@ -76,7 +76,7 @@ module Rumale
|
|
76
76
|
# Initialize some variables.
|
77
77
|
n_features = x.shape[1]
|
78
78
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
79
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
79
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
80
80
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
81
81
|
sub_rng = @rng.dup
|
82
82
|
# Construct trees.
|
@@ -72,7 +72,7 @@ module Rumale
|
|
72
72
|
# Initialize some variables.
|
73
73
|
n_features = x.shape[1]
|
74
74
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
75
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
75
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
76
76
|
sub_rng = @rng.dup
|
77
77
|
# Construct forest.
|
78
78
|
rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
|
@@ -97,7 +97,7 @@ module Rumale
|
|
97
97
|
# initialize some variables.
|
98
98
|
n_features = x.shape[1]
|
99
99
|
@params[:max_features] = n_features if @params[:max_features].nil?
|
100
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
100
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
101
101
|
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
102
102
|
n_classes = @classes.size
|
103
103
|
# train estimator.
|
@@ -187,7 +187,7 @@ module Rumale
|
|
187
187
|
# initialize some variables.
|
188
188
|
estimators = []
|
189
189
|
n_samples = x.shape[0]
|
190
|
-
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
|
190
|
+
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
|
191
191
|
whole_ids = Array.new(n_samples) { |v| v }
|
192
192
|
y_pred = Numo::DFloat.ones(n_samples) * init_pred
|
193
193
|
sub_rng = @rng.dup
|
@@ -88,7 +88,7 @@ module Rumale
|
|
88
88
|
# initialize some variables.
|
89
89
|
n_features = x.shape[1]
|
90
90
|
@params[:max_features] = n_features if @params[:max_features].nil?
|
91
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
91
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
92
92
|
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
93
93
|
# train regressor.
|
94
94
|
@base_predictions = n_outputs > 1 ? y.mean(0) : y.mean
|
@@ -141,7 +141,7 @@ module Rumale
|
|
141
141
|
# initialize some variables.
|
142
142
|
estimators = []
|
143
143
|
n_samples = x.shape[0]
|
144
|
-
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
|
144
|
+
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
|
145
145
|
whole_ids = Array.new(n_samples) { |v| v }
|
146
146
|
y_pred = Numo::DFloat.ones(n_samples) * init_pred
|
147
147
|
sub_rng = @rng.dup
|
@@ -86,7 +86,7 @@ module Rumale
|
|
86
86
|
# Initialize some variables.
|
87
87
|
n_samples, n_features = x.shape
|
88
88
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
89
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
89
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
90
90
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
91
91
|
sub_rng = @rng.dup
|
92
92
|
rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
|
@@ -81,7 +81,7 @@ module Rumale
|
|
81
81
|
# Initialize some variables.
|
82
82
|
n_samples, n_features = x.shape
|
83
83
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
84
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
84
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
85
85
|
single_target = y.shape[1].nil?
|
86
86
|
sub_rng = @rng.dup
|
87
87
|
rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
|
@@ -15,11 +15,11 @@ module Rumale
|
|
15
15
|
# require 'rumale/ensemble/stacking_classifier'
|
16
16
|
#
|
17
17
|
# estimators = {
|
18
|
-
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2
|
18
|
+
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
|
19
19
|
# mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
|
20
20
|
# rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
21
21
|
# }
|
22
|
-
# meta_estimator = Rumale::LinearModel::LogisticRegression.new
|
22
|
+
# meta_estimator = Rumale::LinearModel::LogisticRegression.new
|
23
23
|
# classifier = Rumale::Ensemble::StackedClassifier.new(
|
24
24
|
# estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
|
25
25
|
# )
|
@@ -18,7 +18,7 @@ module Rumale
|
|
18
18
|
# mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
|
19
19
|
# rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
|
20
20
|
# }
|
21
|
-
# meta_estimator = Rumale::LinearModel::Ridge.new
|
21
|
+
# meta_estimator = Rumale::LinearModel::Ridge.new
|
22
22
|
# regressor = Rumale::Ensemble::StackedRegressor.new(
|
23
23
|
# estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
|
24
24
|
# )
|
@@ -13,7 +13,7 @@ module Rumale
|
|
13
13
|
# require 'rumale/ensemble/voting_classifier'
|
14
14
|
#
|
15
15
|
# estimators = {
|
16
|
-
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2
|
16
|
+
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
|
17
17
|
# mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
|
18
18
|
# rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
19
19
|
# }
|
@@ -12,7 +12,7 @@ module Rumale
|
|
12
12
|
# require 'rumale/ensemble/voting_regressor'
|
13
13
|
#
|
14
14
|
# estimators = {
|
15
|
-
# rdg: Rumale::LinearModel::Ridge.new(reg_param:
|
15
|
+
# rdg: Rumale::LinearModel::Ridge.new(reg_param: 0.1),
|
16
16
|
# mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
|
17
17
|
# rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
|
18
18
|
# }
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale-ensemble
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.26.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2023-02-19 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -30,70 +30,70 @@ dependencies:
|
|
30
30
|
requirements:
|
31
31
|
- - "~>"
|
32
32
|
- !ruby/object:Gem::Version
|
33
|
-
version: 0.
|
33
|
+
version: 0.26.0
|
34
34
|
type: :runtime
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
38
|
- - "~>"
|
39
39
|
- !ruby/object:Gem::Version
|
40
|
-
version: 0.
|
40
|
+
version: 0.26.0
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
42
|
name: rumale-linear_model
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
45
|
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: 0.
|
47
|
+
version: 0.26.0
|
48
48
|
type: :runtime
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: 0.
|
54
|
+
version: 0.26.0
|
55
55
|
- !ruby/object:Gem::Dependency
|
56
56
|
name: rumale-model_selection
|
57
57
|
requirement: !ruby/object:Gem::Requirement
|
58
58
|
requirements:
|
59
59
|
- - "~>"
|
60
60
|
- !ruby/object:Gem::Version
|
61
|
-
version: 0.
|
61
|
+
version: 0.26.0
|
62
62
|
type: :runtime
|
63
63
|
prerelease: false
|
64
64
|
version_requirements: !ruby/object:Gem::Requirement
|
65
65
|
requirements:
|
66
66
|
- - "~>"
|
67
67
|
- !ruby/object:Gem::Version
|
68
|
-
version: 0.
|
68
|
+
version: 0.26.0
|
69
69
|
- !ruby/object:Gem::Dependency
|
70
70
|
name: rumale-preprocessing
|
71
71
|
requirement: !ruby/object:Gem::Requirement
|
72
72
|
requirements:
|
73
73
|
- - "~>"
|
74
74
|
- !ruby/object:Gem::Version
|
75
|
-
version: 0.
|
75
|
+
version: 0.26.0
|
76
76
|
type: :runtime
|
77
77
|
prerelease: false
|
78
78
|
version_requirements: !ruby/object:Gem::Requirement
|
79
79
|
requirements:
|
80
80
|
- - "~>"
|
81
81
|
- !ruby/object:Gem::Version
|
82
|
-
version: 0.
|
82
|
+
version: 0.26.0
|
83
83
|
- !ruby/object:Gem::Dependency
|
84
84
|
name: rumale-tree
|
85
85
|
requirement: !ruby/object:Gem::Requirement
|
86
86
|
requirements:
|
87
87
|
- - "~>"
|
88
88
|
- !ruby/object:Gem::Version
|
89
|
-
version: 0.
|
89
|
+
version: 0.26.0
|
90
90
|
type: :runtime
|
91
91
|
prerelease: false
|
92
92
|
version_requirements: !ruby/object:Gem::Requirement
|
93
93
|
requirements:
|
94
94
|
- - "~>"
|
95
95
|
- !ruby/object:Gem::Version
|
96
|
-
version: 0.
|
96
|
+
version: 0.26.0
|
97
97
|
description: |
|
98
98
|
Rumale::Ensemble provides ensemble learning algorithms,
|
99
99
|
such as AdaBoost, Gradient Tree Boosting, and Random Forest,
|