rumale-ensemble 0.24.0 → 0.26.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE.txt +1 -1
- data/lib/rumale/ensemble/ada_boost_classifier.rb +1 -1
- data/lib/rumale/ensemble/ada_boost_regressor.rb +1 -1
- data/lib/rumale/ensemble/extra_trees_classifier.rb +1 -1
- data/lib/rumale/ensemble/extra_trees_regressor.rb +1 -1
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +2 -2
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +2 -2
- data/lib/rumale/ensemble/random_forest_classifier.rb +1 -1
- data/lib/rumale/ensemble/random_forest_regressor.rb +1 -1
- data/lib/rumale/ensemble/stacking_classifier.rb +2 -2
- data/lib/rumale/ensemble/stacking_regressor.rb +1 -1
- data/lib/rumale/ensemble/version.rb +1 -1
- data/lib/rumale/ensemble/voting_classifier.rb +1 -1
- data/lib/rumale/ensemble/voting_regressor.rb +1 -1
- metadata +12 -12
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 8760a2022e71904e7a662c1348ec88cfc99a44adce603f6ea17851641206604d
|
4
|
+
data.tar.gz: 524cd4e6f552acc93373dd505fe03a728947d3f0b41e96a3479acd361ae009cf
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6e5b5d7544322cbfd5e461c316f585c18204d4728d2b67790a517cfba7a077b86c56ba54e17fc8c5c0a203fe4611ac7119d06d7f058c00c9bf828780f8b70462
|
7
|
+
data.tar.gz: cbd2504c15bc18c7c9641bddd52398e88b51c95692ea680ada8d524e31ec2cc8c2bcfd9593f6d37d811942e07537f8fa1dfbacb82fb3d7232f9300f34368642c
|
data/LICENSE.txt
CHANGED
@@ -86,7 +86,7 @@ module Rumale
|
|
86
86
|
@estimators = []
|
87
87
|
@feature_importances = Numo::DFloat.zeros(n_features)
|
88
88
|
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
89
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
89
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
90
90
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
91
91
|
n_classes = @classes.shape[0]
|
92
92
|
sub_rng = @rng.dup
|
@@ -93,7 +93,7 @@ module Rumale
|
|
93
93
|
# Initialize some variables.
|
94
94
|
n_samples, n_features = x.shape
|
95
95
|
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
96
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
96
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
97
97
|
observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
|
98
98
|
@estimators = []
|
99
99
|
@estimator_weights = []
|
@@ -76,7 +76,7 @@ module Rumale
|
|
76
76
|
# Initialize some variables.
|
77
77
|
n_features = x.shape[1]
|
78
78
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
79
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
79
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
80
80
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
81
81
|
sub_rng = @rng.dup
|
82
82
|
# Construct trees.
|
@@ -72,7 +72,7 @@ module Rumale
|
|
72
72
|
# Initialize some variables.
|
73
73
|
n_features = x.shape[1]
|
74
74
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
75
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
75
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
76
76
|
sub_rng = @rng.dup
|
77
77
|
# Construct forest.
|
78
78
|
rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
|
@@ -97,7 +97,7 @@ module Rumale
|
|
97
97
|
# initialize some variables.
|
98
98
|
n_features = x.shape[1]
|
99
99
|
@params[:max_features] = n_features if @params[:max_features].nil?
|
100
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
100
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
101
101
|
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
102
102
|
n_classes = @classes.size
|
103
103
|
# train estimator.
|
@@ -187,7 +187,7 @@ module Rumale
|
|
187
187
|
# initialize some variables.
|
188
188
|
estimators = []
|
189
189
|
n_samples = x.shape[0]
|
190
|
-
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
|
190
|
+
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
|
191
191
|
whole_ids = Array.new(n_samples) { |v| v }
|
192
192
|
y_pred = Numo::DFloat.ones(n_samples) * init_pred
|
193
193
|
sub_rng = @rng.dup
|
@@ -88,7 +88,7 @@ module Rumale
|
|
88
88
|
# initialize some variables.
|
89
89
|
n_features = x.shape[1]
|
90
90
|
@params[:max_features] = n_features if @params[:max_features].nil?
|
91
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
91
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
92
92
|
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
93
93
|
# train regressor.
|
94
94
|
@base_predictions = n_outputs > 1 ? y.mean(0) : y.mean
|
@@ -141,7 +141,7 @@ module Rumale
|
|
141
141
|
# initialize some variables.
|
142
142
|
estimators = []
|
143
143
|
n_samples = x.shape[0]
|
144
|
-
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
|
144
|
+
n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
|
145
145
|
whole_ids = Array.new(n_samples) { |v| v }
|
146
146
|
y_pred = Numo::DFloat.ones(n_samples) * init_pred
|
147
147
|
sub_rng = @rng.dup
|
@@ -86,7 +86,7 @@ module Rumale
|
|
86
86
|
# Initialize some variables.
|
87
87
|
n_samples, n_features = x.shape
|
88
88
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
89
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
89
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
90
90
|
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
91
91
|
sub_rng = @rng.dup
|
92
92
|
rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
|
@@ -81,7 +81,7 @@ module Rumale
|
|
81
81
|
# Initialize some variables.
|
82
82
|
n_samples, n_features = x.shape
|
83
83
|
@params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
|
84
|
-
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
84
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
|
85
85
|
single_target = y.shape[1].nil?
|
86
86
|
sub_rng = @rng.dup
|
87
87
|
rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
|
@@ -15,11 +15,11 @@ module Rumale
|
|
15
15
|
# require 'rumale/ensemble/stacking_classifier'
|
16
16
|
#
|
17
17
|
# estimators = {
|
18
|
-
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2
|
18
|
+
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
|
19
19
|
# mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
|
20
20
|
# rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
21
21
|
# }
|
22
|
-
# meta_estimator = Rumale::LinearModel::LogisticRegression.new
|
22
|
+
# meta_estimator = Rumale::LinearModel::LogisticRegression.new
|
23
23
|
# classifier = Rumale::Ensemble::StackedClassifier.new(
|
24
24
|
# estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
|
25
25
|
# )
|
@@ -18,7 +18,7 @@ module Rumale
|
|
18
18
|
# mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
|
19
19
|
# rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
|
20
20
|
# }
|
21
|
-
# meta_estimator = Rumale::LinearModel::Ridge.new
|
21
|
+
# meta_estimator = Rumale::LinearModel::Ridge.new
|
22
22
|
# regressor = Rumale::Ensemble::StackedRegressor.new(
|
23
23
|
# estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
|
24
24
|
# )
|
@@ -13,7 +13,7 @@ module Rumale
|
|
13
13
|
# require 'rumale/ensemble/voting_classifier'
|
14
14
|
#
|
15
15
|
# estimators = {
|
16
|
-
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2
|
16
|
+
# lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
|
17
17
|
# mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
|
18
18
|
# rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
19
19
|
# }
|
@@ -12,7 +12,7 @@ module Rumale
|
|
12
12
|
# require 'rumale/ensemble/voting_regressor'
|
13
13
|
#
|
14
14
|
# estimators = {
|
15
|
-
# rdg: Rumale::LinearModel::Ridge.new(reg_param:
|
15
|
+
# rdg: Rumale::LinearModel::Ridge.new(reg_param: 0.1),
|
16
16
|
# mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
|
17
17
|
# rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
|
18
18
|
# }
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale-ensemble
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.26.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2023-02-19 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -30,70 +30,70 @@ dependencies:
|
|
30
30
|
requirements:
|
31
31
|
- - "~>"
|
32
32
|
- !ruby/object:Gem::Version
|
33
|
-
version: 0.
|
33
|
+
version: 0.26.0
|
34
34
|
type: :runtime
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
38
|
- - "~>"
|
39
39
|
- !ruby/object:Gem::Version
|
40
|
-
version: 0.
|
40
|
+
version: 0.26.0
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
42
|
name: rumale-linear_model
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
45
|
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: 0.
|
47
|
+
version: 0.26.0
|
48
48
|
type: :runtime
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: 0.
|
54
|
+
version: 0.26.0
|
55
55
|
- !ruby/object:Gem::Dependency
|
56
56
|
name: rumale-model_selection
|
57
57
|
requirement: !ruby/object:Gem::Requirement
|
58
58
|
requirements:
|
59
59
|
- - "~>"
|
60
60
|
- !ruby/object:Gem::Version
|
61
|
-
version: 0.
|
61
|
+
version: 0.26.0
|
62
62
|
type: :runtime
|
63
63
|
prerelease: false
|
64
64
|
version_requirements: !ruby/object:Gem::Requirement
|
65
65
|
requirements:
|
66
66
|
- - "~>"
|
67
67
|
- !ruby/object:Gem::Version
|
68
|
-
version: 0.
|
68
|
+
version: 0.26.0
|
69
69
|
- !ruby/object:Gem::Dependency
|
70
70
|
name: rumale-preprocessing
|
71
71
|
requirement: !ruby/object:Gem::Requirement
|
72
72
|
requirements:
|
73
73
|
- - "~>"
|
74
74
|
- !ruby/object:Gem::Version
|
75
|
-
version: 0.
|
75
|
+
version: 0.26.0
|
76
76
|
type: :runtime
|
77
77
|
prerelease: false
|
78
78
|
version_requirements: !ruby/object:Gem::Requirement
|
79
79
|
requirements:
|
80
80
|
- - "~>"
|
81
81
|
- !ruby/object:Gem::Version
|
82
|
-
version: 0.
|
82
|
+
version: 0.26.0
|
83
83
|
- !ruby/object:Gem::Dependency
|
84
84
|
name: rumale-tree
|
85
85
|
requirement: !ruby/object:Gem::Requirement
|
86
86
|
requirements:
|
87
87
|
- - "~>"
|
88
88
|
- !ruby/object:Gem::Version
|
89
|
-
version: 0.
|
89
|
+
version: 0.26.0
|
90
90
|
type: :runtime
|
91
91
|
prerelease: false
|
92
92
|
version_requirements: !ruby/object:Gem::Requirement
|
93
93
|
requirements:
|
94
94
|
- - "~>"
|
95
95
|
- !ruby/object:Gem::Version
|
96
|
-
version: 0.
|
96
|
+
version: 0.26.0
|
97
97
|
description: |
|
98
98
|
Rumale::Ensemble provides ensemble learning algorithms,
|
99
99
|
such as AdaBoost, Gradient Tree Boosting, and Random Forest,
|