rumale-ensemble 0.24.0 → 0.26.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/LICENSE.txt +1 -1
- data/lib/rumale/ensemble/ada_boost_classifier.rb +1 -1
- data/lib/rumale/ensemble/ada_boost_regressor.rb +1 -1
- data/lib/rumale/ensemble/extra_trees_classifier.rb +1 -1
- data/lib/rumale/ensemble/extra_trees_regressor.rb +1 -1
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +2 -2
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +2 -2
- data/lib/rumale/ensemble/random_forest_classifier.rb +1 -1
- data/lib/rumale/ensemble/random_forest_regressor.rb +1 -1
- data/lib/rumale/ensemble/stacking_classifier.rb +2 -2
- data/lib/rumale/ensemble/stacking_regressor.rb +1 -1
- data/lib/rumale/ensemble/version.rb +1 -1
- data/lib/rumale/ensemble/voting_classifier.rb +1 -1
- data/lib/rumale/ensemble/voting_regressor.rb +1 -1
- metadata +12 -12
    
        checksums.yaml
    CHANGED
    
    | @@ -1,7 +1,7 @@ | |
| 1 1 | 
             
            ---
         | 
| 2 2 | 
             
            SHA256:
         | 
| 3 | 
            -
              metadata.gz:  | 
| 4 | 
            -
              data.tar.gz:  | 
| 3 | 
            +
              metadata.gz: 8760a2022e71904e7a662c1348ec88cfc99a44adce603f6ea17851641206604d
         | 
| 4 | 
            +
              data.tar.gz: 524cd4e6f552acc93373dd505fe03a728947d3f0b41e96a3479acd361ae009cf
         | 
| 5 5 | 
             
            SHA512:
         | 
| 6 | 
            -
              metadata.gz:  | 
| 7 | 
            -
              data.tar.gz:  | 
| 6 | 
            +
              metadata.gz: 6e5b5d7544322cbfd5e461c316f585c18204d4728d2b67790a517cfba7a077b86c56ba54e17fc8c5c0a203fe4611ac7119d06d7f058c00c9bf828780f8b70462
         | 
| 7 | 
            +
              data.tar.gz: cbd2504c15bc18c7c9641bddd52398e88b51c95692ea680ada8d524e31ec2cc8c2bcfd9593f6d37d811942e07537f8fa1dfbacb82fb3d7232f9300f34368642c
         | 
    
        data/LICENSE.txt
    CHANGED
    
    
| @@ -86,7 +86,7 @@ module Rumale | |
| 86 86 | 
             
                    @estimators = []
         | 
| 87 87 | 
             
                    @feature_importances = Numo::DFloat.zeros(n_features)
         | 
| 88 88 | 
             
                    @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
         | 
| 89 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 89 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 90 90 | 
             
                    @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
         | 
| 91 91 | 
             
                    n_classes = @classes.shape[0]
         | 
| 92 92 | 
             
                    sub_rng = @rng.dup
         | 
| @@ -93,7 +93,7 @@ module Rumale | |
| 93 93 | 
             
                    # Initialize some variables.
         | 
| 94 94 | 
             
                    n_samples, n_features = x.shape
         | 
| 95 95 | 
             
                    @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
         | 
| 96 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 96 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 97 97 | 
             
                    observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
         | 
| 98 98 | 
             
                    @estimators = []
         | 
| 99 99 | 
             
                    @estimator_weights = []
         | 
| @@ -76,7 +76,7 @@ module Rumale | |
| 76 76 | 
             
                    # Initialize some variables.
         | 
| 77 77 | 
             
                    n_features = x.shape[1]
         | 
| 78 78 | 
             
                    @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
         | 
| 79 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 79 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 80 80 | 
             
                    @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
         | 
| 81 81 | 
             
                    sub_rng = @rng.dup
         | 
| 82 82 | 
             
                    # Construct trees.
         | 
| @@ -72,7 +72,7 @@ module Rumale | |
| 72 72 | 
             
                    # Initialize some variables.
         | 
| 73 73 | 
             
                    n_features = x.shape[1]
         | 
| 74 74 | 
             
                    @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
         | 
| 75 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 75 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 76 76 | 
             
                    sub_rng = @rng.dup
         | 
| 77 77 | 
             
                    # Construct forest.
         | 
| 78 78 | 
             
                    rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
         | 
| @@ -97,7 +97,7 @@ module Rumale | |
| 97 97 | 
             
                    # initialize some variables.
         | 
| 98 98 | 
             
                    n_features = x.shape[1]
         | 
| 99 99 | 
             
                    @params[:max_features] = n_features if @params[:max_features].nil?
         | 
| 100 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 100 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 101 101 | 
             
                    @classes = Numo::Int32[*y.to_a.uniq.sort]
         | 
| 102 102 | 
             
                    n_classes = @classes.size
         | 
| 103 103 | 
             
                    # train estimator.
         | 
| @@ -187,7 +187,7 @@ module Rumale | |
| 187 187 | 
             
                    # initialize some variables.
         | 
| 188 188 | 
             
                    estimators = []
         | 
| 189 189 | 
             
                    n_samples = x.shape[0]
         | 
| 190 | 
            -
                    n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
         | 
| 190 | 
            +
                    n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
         | 
| 191 191 | 
             
                    whole_ids = Array.new(n_samples) { |v| v }
         | 
| 192 192 | 
             
                    y_pred = Numo::DFloat.ones(n_samples) * init_pred
         | 
| 193 193 | 
             
                    sub_rng = @rng.dup
         | 
| @@ -88,7 +88,7 @@ module Rumale | |
| 88 88 | 
             
                    # initialize some variables.
         | 
| 89 89 | 
             
                    n_features = x.shape[1]
         | 
| 90 90 | 
             
                    @params[:max_features] = n_features if @params[:max_features].nil?
         | 
| 91 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 91 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 92 92 | 
             
                    n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
         | 
| 93 93 | 
             
                    # train regressor.
         | 
| 94 94 | 
             
                    @base_predictions = n_outputs > 1 ? y.mean(0) : y.mean
         | 
| @@ -141,7 +141,7 @@ module Rumale | |
| 141 141 | 
             
                    # initialize some variables.
         | 
| 142 142 | 
             
                    estimators = []
         | 
| 143 143 | 
             
                    n_samples = x.shape[0]
         | 
| 144 | 
            -
                    n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
         | 
| 144 | 
            +
                    n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
         | 
| 145 145 | 
             
                    whole_ids = Array.new(n_samples) { |v| v }
         | 
| 146 146 | 
             
                    y_pred = Numo::DFloat.ones(n_samples) * init_pred
         | 
| 147 147 | 
             
                    sub_rng = @rng.dup
         | 
| @@ -86,7 +86,7 @@ module Rumale | |
| 86 86 | 
             
                    # Initialize some variables.
         | 
| 87 87 | 
             
                    n_samples, n_features = x.shape
         | 
| 88 88 | 
             
                    @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
         | 
| 89 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 89 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 90 90 | 
             
                    @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
         | 
| 91 91 | 
             
                    sub_rng = @rng.dup
         | 
| 92 92 | 
             
                    rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
         | 
| @@ -81,7 +81,7 @@ module Rumale | |
| 81 81 | 
             
                    # Initialize some variables.
         | 
| 82 82 | 
             
                    n_samples, n_features = x.shape
         | 
| 83 83 | 
             
                    @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
         | 
| 84 | 
            -
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
         | 
| 84 | 
            +
                    @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
         | 
| 85 85 | 
             
                    single_target = y.shape[1].nil?
         | 
| 86 86 | 
             
                    sub_rng = @rng.dup
         | 
| 87 87 | 
             
                    rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
         | 
| @@ -15,11 +15,11 @@ module Rumale | |
| 15 15 | 
             
                #   require 'rumale/ensemble/stacking_classifier'
         | 
| 16 16 | 
             
                #
         | 
| 17 17 | 
             
                #   estimators = {
         | 
| 18 | 
            -
                #     lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2 | 
| 18 | 
            +
                #     lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
         | 
| 19 19 | 
             
                #     mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
         | 
| 20 20 | 
             
                #     rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
         | 
| 21 21 | 
             
                #   }
         | 
| 22 | 
            -
                #   meta_estimator = Rumale::LinearModel::LogisticRegression.new | 
| 22 | 
            +
                #   meta_estimator = Rumale::LinearModel::LogisticRegression.new
         | 
| 23 23 | 
             
                #   classifier = Rumale::Ensemble::StackedClassifier.new(
         | 
| 24 24 | 
             
                #     estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
         | 
| 25 25 | 
             
                #   )
         | 
| @@ -18,7 +18,7 @@ module Rumale | |
| 18 18 | 
             
                #     mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
         | 
| 19 19 | 
             
                #     rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
         | 
| 20 20 | 
             
                #   }
         | 
| 21 | 
            -
                #   meta_estimator = Rumale::LinearModel::Ridge.new | 
| 21 | 
            +
                #   meta_estimator = Rumale::LinearModel::Ridge.new
         | 
| 22 22 | 
             
                #   regressor = Rumale::Ensemble::StackedRegressor.new(
         | 
| 23 23 | 
             
                #     estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
         | 
| 24 24 | 
             
                #   )
         | 
| @@ -13,7 +13,7 @@ module Rumale | |
| 13 13 | 
             
                #   require 'rumale/ensemble/voting_classifier'
         | 
| 14 14 | 
             
                #
         | 
| 15 15 | 
             
                #   estimators = {
         | 
| 16 | 
            -
                #     lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2 | 
| 16 | 
            +
                #     lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
         | 
| 17 17 | 
             
                #     mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
         | 
| 18 18 | 
             
                #     rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
         | 
| 19 19 | 
             
                #   }
         | 
| @@ -12,7 +12,7 @@ module Rumale | |
| 12 12 | 
             
                #   require 'rumale/ensemble/voting_regressor'
         | 
| 13 13 | 
             
                #
         | 
| 14 14 | 
             
                #   estimators = {
         | 
| 15 | 
            -
                #     rdg: Rumale::LinearModel::Ridge.new(reg_param:  | 
| 15 | 
            +
                #     rdg: Rumale::LinearModel::Ridge.new(reg_param: 0.1),
         | 
| 16 16 | 
             
                #     mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
         | 
| 17 17 | 
             
                #     rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
         | 
| 18 18 | 
             
                #   }
         | 
    
        metadata
    CHANGED
    
    | @@ -1,14 +1,14 @@ | |
| 1 1 | 
             
            --- !ruby/object:Gem::Specification
         | 
| 2 2 | 
             
            name: rumale-ensemble
         | 
| 3 3 | 
             
            version: !ruby/object:Gem::Version
         | 
| 4 | 
            -
              version: 0. | 
| 4 | 
            +
              version: 0.26.0
         | 
| 5 5 | 
             
            platform: ruby
         | 
| 6 6 | 
             
            authors:
         | 
| 7 7 | 
             
            - yoshoku
         | 
| 8 8 | 
             
            autorequire:
         | 
| 9 9 | 
             
            bindir: exe
         | 
| 10 10 | 
             
            cert_chain: []
         | 
| 11 | 
            -
            date:  | 
| 11 | 
            +
            date: 2023-02-19 00:00:00.000000000 Z
         | 
| 12 12 | 
             
            dependencies:
         | 
| 13 13 | 
             
            - !ruby/object:Gem::Dependency
         | 
| 14 14 | 
             
              name: numo-narray
         | 
| @@ -30,70 +30,70 @@ dependencies: | |
| 30 30 | 
             
                requirements:
         | 
| 31 31 | 
             
                - - "~>"
         | 
| 32 32 | 
             
                  - !ruby/object:Gem::Version
         | 
| 33 | 
            -
                    version: 0. | 
| 33 | 
            +
                    version: 0.26.0
         | 
| 34 34 | 
             
              type: :runtime
         | 
| 35 35 | 
             
              prerelease: false
         | 
| 36 36 | 
             
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 37 37 | 
             
                requirements:
         | 
| 38 38 | 
             
                - - "~>"
         | 
| 39 39 | 
             
                  - !ruby/object:Gem::Version
         | 
| 40 | 
            -
                    version: 0. | 
| 40 | 
            +
                    version: 0.26.0
         | 
| 41 41 | 
             
            - !ruby/object:Gem::Dependency
         | 
| 42 42 | 
             
              name: rumale-linear_model
         | 
| 43 43 | 
             
              requirement: !ruby/object:Gem::Requirement
         | 
| 44 44 | 
             
                requirements:
         | 
| 45 45 | 
             
                - - "~>"
         | 
| 46 46 | 
             
                  - !ruby/object:Gem::Version
         | 
| 47 | 
            -
                    version: 0. | 
| 47 | 
            +
                    version: 0.26.0
         | 
| 48 48 | 
             
              type: :runtime
         | 
| 49 49 | 
             
              prerelease: false
         | 
| 50 50 | 
             
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 51 51 | 
             
                requirements:
         | 
| 52 52 | 
             
                - - "~>"
         | 
| 53 53 | 
             
                  - !ruby/object:Gem::Version
         | 
| 54 | 
            -
                    version: 0. | 
| 54 | 
            +
                    version: 0.26.0
         | 
| 55 55 | 
             
            - !ruby/object:Gem::Dependency
         | 
| 56 56 | 
             
              name: rumale-model_selection
         | 
| 57 57 | 
             
              requirement: !ruby/object:Gem::Requirement
         | 
| 58 58 | 
             
                requirements:
         | 
| 59 59 | 
             
                - - "~>"
         | 
| 60 60 | 
             
                  - !ruby/object:Gem::Version
         | 
| 61 | 
            -
                    version: 0. | 
| 61 | 
            +
                    version: 0.26.0
         | 
| 62 62 | 
             
              type: :runtime
         | 
| 63 63 | 
             
              prerelease: false
         | 
| 64 64 | 
             
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 65 65 | 
             
                requirements:
         | 
| 66 66 | 
             
                - - "~>"
         | 
| 67 67 | 
             
                  - !ruby/object:Gem::Version
         | 
| 68 | 
            -
                    version: 0. | 
| 68 | 
            +
                    version: 0.26.0
         | 
| 69 69 | 
             
            - !ruby/object:Gem::Dependency
         | 
| 70 70 | 
             
              name: rumale-preprocessing
         | 
| 71 71 | 
             
              requirement: !ruby/object:Gem::Requirement
         | 
| 72 72 | 
             
                requirements:
         | 
| 73 73 | 
             
                - - "~>"
         | 
| 74 74 | 
             
                  - !ruby/object:Gem::Version
         | 
| 75 | 
            -
                    version: 0. | 
| 75 | 
            +
                    version: 0.26.0
         | 
| 76 76 | 
             
              type: :runtime
         | 
| 77 77 | 
             
              prerelease: false
         | 
| 78 78 | 
             
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 79 79 | 
             
                requirements:
         | 
| 80 80 | 
             
                - - "~>"
         | 
| 81 81 | 
             
                  - !ruby/object:Gem::Version
         | 
| 82 | 
            -
                    version: 0. | 
| 82 | 
            +
                    version: 0.26.0
         | 
| 83 83 | 
             
            - !ruby/object:Gem::Dependency
         | 
| 84 84 | 
             
              name: rumale-tree
         | 
| 85 85 | 
             
              requirement: !ruby/object:Gem::Requirement
         | 
| 86 86 | 
             
                requirements:
         | 
| 87 87 | 
             
                - - "~>"
         | 
| 88 88 | 
             
                  - !ruby/object:Gem::Version
         | 
| 89 | 
            -
                    version: 0. | 
| 89 | 
            +
                    version: 0.26.0
         | 
| 90 90 | 
             
              type: :runtime
         | 
| 91 91 | 
             
              prerelease: false
         | 
| 92 92 | 
             
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 93 93 | 
             
                requirements:
         | 
| 94 94 | 
             
                - - "~>"
         | 
| 95 95 | 
             
                  - !ruby/object:Gem::Version
         | 
| 96 | 
            -
                    version: 0. | 
| 96 | 
            +
                    version: 0.26.0
         | 
| 97 97 | 
             
            description: |
         | 
| 98 98 | 
             
              Rumale::Ensemble provides ensemble learning algorithms,
         | 
| 99 99 | 
             
              such as AdaBoost, Gradient Tree Boosting, and Random Forest,
         |