rumale-ensemble 0.24.0 → 0.26.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 71f67ae6338e6907a02b66affa8ad12b22254da82d6a1fdfea092844f8809a51
4
- data.tar.gz: 7b301905c59c580ace8f17edc4dd2b526af267493f60f74c294652f6e137fc12
3
+ metadata.gz: 8760a2022e71904e7a662c1348ec88cfc99a44adce603f6ea17851641206604d
4
+ data.tar.gz: 524cd4e6f552acc93373dd505fe03a728947d3f0b41e96a3479acd361ae009cf
5
5
  SHA512:
6
- metadata.gz: 65391ee173334b7b2bc41761fe4a66dd8bd0c1158c948187b9059b78b80c9343393e3a42d52e6906e54388e7e3ce86340eb479a3c443130bdf004b1954570853
7
- data.tar.gz: 7f78362e3a06aacc18f1a71a0c0340a5322fd8d78a2acd74ac7e4a8b4bfcd9396b84cfa0dc2a01ad1f872ff057b6847b7cd6c06d3bbab45f0fc9087035715d11
6
+ metadata.gz: 6e5b5d7544322cbfd5e461c316f585c18204d4728d2b67790a517cfba7a077b86c56ba54e17fc8c5c0a203fe4611ac7119d06d7f058c00c9bf828780f8b70462
7
+ data.tar.gz: cbd2504c15bc18c7c9641bddd52398e88b51c95692ea680ada8d524e31ec2cc8c2bcfd9593f6d37d811942e07537f8fa1dfbacb82fb3d7232f9300f34368642c
data/LICENSE.txt CHANGED
@@ -1,4 +1,4 @@
1
- Copyright (c) 2022 Atsushi Tatsuma
1
+ Copyright (c) 2022-2023 Atsushi Tatsuma
2
2
  All rights reserved.
3
3
 
4
4
  Redistribution and use in source and binary forms, with or without
@@ -86,7 +86,7 @@ module Rumale
86
86
  @estimators = []
87
87
  @feature_importances = Numo::DFloat.zeros(n_features)
88
88
  @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
89
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
89
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
90
90
  @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
91
91
  n_classes = @classes.shape[0]
92
92
  sub_rng = @rng.dup
@@ -93,7 +93,7 @@ module Rumale
93
93
  # Initialize some variables.
94
94
  n_samples, n_features = x.shape
95
95
  @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
96
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
96
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
97
97
  observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
98
98
  @estimators = []
99
99
  @estimator_weights = []
@@ -76,7 +76,7 @@ module Rumale
76
76
  # Initialize some variables.
77
77
  n_features = x.shape[1]
78
78
  @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
79
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
79
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
80
80
  @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
81
81
  sub_rng = @rng.dup
82
82
  # Construct trees.
@@ -72,7 +72,7 @@ module Rumale
72
72
  # Initialize some variables.
73
73
  n_features = x.shape[1]
74
74
  @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
75
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
75
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
76
76
  sub_rng = @rng.dup
77
77
  # Construct forest.
78
78
  rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
@@ -97,7 +97,7 @@ module Rumale
97
97
  # initialize some variables.
98
98
  n_features = x.shape[1]
99
99
  @params[:max_features] = n_features if @params[:max_features].nil?
100
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
100
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
101
101
  @classes = Numo::Int32[*y.to_a.uniq.sort]
102
102
  n_classes = @classes.size
103
103
  # train estimator.
@@ -187,7 +187,7 @@ module Rumale
187
187
  # initialize some variables.
188
188
  estimators = []
189
189
  n_samples = x.shape[0]
190
- n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
190
+ n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
191
191
  whole_ids = Array.new(n_samples) { |v| v }
192
192
  y_pred = Numo::DFloat.ones(n_samples) * init_pred
193
193
  sub_rng = @rng.dup
@@ -88,7 +88,7 @@ module Rumale
88
88
  # initialize some variables.
89
89
  n_features = x.shape[1]
90
90
  @params[:max_features] = n_features if @params[:max_features].nil?
91
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
91
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
92
92
  n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
93
93
  # train regressor.
94
94
  @base_predictions = n_outputs > 1 ? y.mean(0) : y.mean
@@ -141,7 +141,7 @@ module Rumale
141
141
  # initialize some variables.
142
142
  estimators = []
143
143
  n_samples = x.shape[0]
144
- n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min
144
+ n_sub_samples = [n_samples, [(n_samples * @params[:subsample]).to_i, 1].max].min # rubocop:disable Style/ComparableClamp
145
145
  whole_ids = Array.new(n_samples) { |v| v }
146
146
  y_pred = Numo::DFloat.ones(n_samples) * init_pred
147
147
  sub_rng = @rng.dup
@@ -86,7 +86,7 @@ module Rumale
86
86
  # Initialize some variables.
87
87
  n_samples, n_features = x.shape
88
88
  @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
89
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
89
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
90
90
  @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
91
91
  sub_rng = @rng.dup
92
92
  rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
@@ -81,7 +81,7 @@ module Rumale
81
81
  # Initialize some variables.
82
82
  n_samples, n_features = x.shape
83
83
  @params[:max_features] = Math.sqrt(n_features).to_i if @params[:max_features].nil?
84
- @params[:max_features] = [[1, @params[:max_features]].max, n_features].min
84
+ @params[:max_features] = [[1, @params[:max_features]].max, n_features].min # rubocop:disable Style/ComparableClamp
85
85
  single_target = y.shape[1].nil?
86
86
  sub_rng = @rng.dup
87
87
  rngs = Array.new(@params[:n_estimators]) { Random.new(sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE)) }
@@ -15,11 +15,11 @@ module Rumale
15
15
  # require 'rumale/ensemble/stacking_classifier'
16
16
  #
17
17
  # estimators = {
18
- # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2, random_seed: 1),
18
+ # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
19
19
  # mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
20
20
  # rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
21
21
  # }
22
- # meta_estimator = Rumale::LinearModel::LogisticRegression.new(random_seed: 1)
22
+ # meta_estimator = Rumale::LinearModel::LogisticRegression.new
23
23
  # classifier = Rumale::Ensemble::StackedClassifier.new(
24
24
  # estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
25
25
  # )
@@ -18,7 +18,7 @@ module Rumale
18
18
  # mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
19
19
  # rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
20
20
  # }
21
- # meta_estimator = Rumale::LinearModel::Ridge.new(random_seed: 1)
21
+ # meta_estimator = Rumale::LinearModel::Ridge.new
22
22
  # regressor = Rumale::Ensemble::StackedRegressor.new(
23
23
  # estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
24
24
  # )
@@ -5,6 +5,6 @@ module Rumale
5
5
  # This module consists of the classes that implement ensemble-based methods.
6
6
  module Ensemble
7
7
  # @!visibility private
8
- VERSION = '0.24.0'
8
+ VERSION = '0.26.0'
9
9
  end
10
10
  end
@@ -13,7 +13,7 @@ module Rumale
13
13
  # require 'rumale/ensemble/voting_classifier'
14
14
  #
15
15
  # estimators = {
16
- # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2, random_seed: 1),
16
+ # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
17
17
  # mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
18
18
  # rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
19
19
  # }
@@ -12,7 +12,7 @@ module Rumale
12
12
  # require 'rumale/ensemble/voting_regressor'
13
13
  #
14
14
  # estimators = {
15
- # rdg: Rumale::LinearModel::Ridge.new(reg_param: 1e-2, random_seed: 1),
15
+ # rdg: Rumale::LinearModel::Ridge.new(reg_param: 0.1),
16
16
  # mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
17
17
  # rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
18
18
  # }
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale-ensemble
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.24.0
4
+ version: 0.26.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2022-12-31 00:00:00.000000000 Z
11
+ date: 2023-02-19 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray
@@ -30,70 +30,70 @@ dependencies:
30
30
  requirements:
31
31
  - - "~>"
32
32
  - !ruby/object:Gem::Version
33
- version: 0.24.0
33
+ version: 0.26.0
34
34
  type: :runtime
35
35
  prerelease: false
36
36
  version_requirements: !ruby/object:Gem::Requirement
37
37
  requirements:
38
38
  - - "~>"
39
39
  - !ruby/object:Gem::Version
40
- version: 0.24.0
40
+ version: 0.26.0
41
41
  - !ruby/object:Gem::Dependency
42
42
  name: rumale-linear_model
43
43
  requirement: !ruby/object:Gem::Requirement
44
44
  requirements:
45
45
  - - "~>"
46
46
  - !ruby/object:Gem::Version
47
- version: 0.24.0
47
+ version: 0.26.0
48
48
  type: :runtime
49
49
  prerelease: false
50
50
  version_requirements: !ruby/object:Gem::Requirement
51
51
  requirements:
52
52
  - - "~>"
53
53
  - !ruby/object:Gem::Version
54
- version: 0.24.0
54
+ version: 0.26.0
55
55
  - !ruby/object:Gem::Dependency
56
56
  name: rumale-model_selection
57
57
  requirement: !ruby/object:Gem::Requirement
58
58
  requirements:
59
59
  - - "~>"
60
60
  - !ruby/object:Gem::Version
61
- version: 0.24.0
61
+ version: 0.26.0
62
62
  type: :runtime
63
63
  prerelease: false
64
64
  version_requirements: !ruby/object:Gem::Requirement
65
65
  requirements:
66
66
  - - "~>"
67
67
  - !ruby/object:Gem::Version
68
- version: 0.24.0
68
+ version: 0.26.0
69
69
  - !ruby/object:Gem::Dependency
70
70
  name: rumale-preprocessing
71
71
  requirement: !ruby/object:Gem::Requirement
72
72
  requirements:
73
73
  - - "~>"
74
74
  - !ruby/object:Gem::Version
75
- version: 0.24.0
75
+ version: 0.26.0
76
76
  type: :runtime
77
77
  prerelease: false
78
78
  version_requirements: !ruby/object:Gem::Requirement
79
79
  requirements:
80
80
  - - "~>"
81
81
  - !ruby/object:Gem::Version
82
- version: 0.24.0
82
+ version: 0.26.0
83
83
  - !ruby/object:Gem::Dependency
84
84
  name: rumale-tree
85
85
  requirement: !ruby/object:Gem::Requirement
86
86
  requirements:
87
87
  - - "~>"
88
88
  - !ruby/object:Gem::Version
89
- version: 0.24.0
89
+ version: 0.26.0
90
90
  type: :runtime
91
91
  prerelease: false
92
92
  version_requirements: !ruby/object:Gem::Requirement
93
93
  requirements:
94
94
  - - "~>"
95
95
  - !ruby/object:Gem::Version
96
- version: 0.24.0
96
+ version: 0.26.0
97
97
  description: |
98
98
  Rumale::Ensemble provides ensemble learning algorithms,
99
99
  such as AdaBoost, Gradient Tree Boosting, and Random Forest,