rumale-ensemble 0.24.0 → 0.25.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 71f67ae6338e6907a02b66affa8ad12b22254da82d6a1fdfea092844f8809a51
4
- data.tar.gz: 7b301905c59c580ace8f17edc4dd2b526af267493f60f74c294652f6e137fc12
3
+ metadata.gz: 44cea4359b18d3199caef4522e2e1877da132cea10ed0df24ba3a3d5fa77a726
4
+ data.tar.gz: d2773ea7f360aa1b0bb352e9527c99b050b1890b070af98123ac4575d67f5802
5
5
  SHA512:
6
- metadata.gz: 65391ee173334b7b2bc41761fe4a66dd8bd0c1158c948187b9059b78b80c9343393e3a42d52e6906e54388e7e3ce86340eb479a3c443130bdf004b1954570853
7
- data.tar.gz: 7f78362e3a06aacc18f1a71a0c0340a5322fd8d78a2acd74ac7e4a8b4bfcd9396b84cfa0dc2a01ad1f872ff057b6847b7cd6c06d3bbab45f0fc9087035715d11
6
+ metadata.gz: 79ba3885b8d8d54a5b26d2296ca65d08d1e64d9c59b94d0beb3015990816f85c7670b439e99b80a5b6d07a6f77dc0760368b39fd0736027808fa7244d19ed84c
7
+ data.tar.gz: b227f7dc138131281e82bea6f9fa867eac43c7795e01ab7d2f608ccef750b476c8dbd8d766f28b11d458a217216dfefb1f752f6cbd1537bdd4319c1f94e6938b
data/LICENSE.txt CHANGED
@@ -1,4 +1,4 @@
1
- Copyright (c) 2022 Atsushi Tatsuma
1
+ Copyright (c) 2022-2023 Atsushi Tatsuma
2
2
  All rights reserved.
3
3
 
4
4
  Redistribution and use in source and binary forms, with or without
@@ -15,11 +15,11 @@ module Rumale
15
15
  # require 'rumale/ensemble/stacking_classifier'
16
16
  #
17
17
  # estimators = {
18
- # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2, random_seed: 1),
18
+ # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
19
19
  # mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
20
20
  # rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
21
21
  # }
22
- # meta_estimator = Rumale::LinearModel::LogisticRegression.new(random_seed: 1)
22
+ # meta_estimator = Rumale::LinearModel::LogisticRegression.new
23
23
  # classifier = Rumale::Ensemble::StackedClassifier.new(
24
24
  # estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
25
25
  # )
@@ -18,7 +18,7 @@ module Rumale
18
18
  # mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
19
19
  # rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
20
20
  # }
21
- # meta_estimator = Rumale::LinearModel::Ridge.new(random_seed: 1)
21
+ # meta_estimator = Rumale::LinearModel::Ridge.new
22
22
  # regressor = Rumale::Ensemble::StackedRegressor.new(
23
23
  # estimators: estimators, meta_estimator: meta_estimator, random_seed: 1
24
24
  # )
@@ -5,6 +5,6 @@ module Rumale
5
5
  # This module consists of the classes that implement ensemble-based methods.
6
6
  module Ensemble
7
7
  # @!visibility private
8
- VERSION = '0.24.0'
8
+ VERSION = '0.25.0'
9
9
  end
10
10
  end
@@ -13,7 +13,7 @@ module Rumale
13
13
  # require 'rumale/ensemble/voting_classifier'
14
14
  #
15
15
  # estimators = {
16
- # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2, random_seed: 1),
16
+ # lgr: Rumale::LinearModel::LogisticRegression.new(reg_param: 1e-2),
17
17
  # mlp: Rumale::NeuralNetwork::MLPClassifier.new(hidden_units: [256], random_seed: 1),
18
18
  # rnd: Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
19
19
  # }
@@ -12,7 +12,7 @@ module Rumale
12
12
  # require 'rumale/ensemble/voting_regressor'
13
13
  #
14
14
  # estimators = {
15
- # rdg: Rumale::LinearModel::Ridge.new(reg_param: 1e-2, random_seed: 1),
15
+ # rdg: Rumale::LinearModel::Ridge.new(reg_param: 0.1),
16
16
  # mlp: Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [256], random_seed: 1),
17
17
  # rnd: Rumale::Ensemble::RandomForestRegressor.new(random_seed: 1)
18
18
  # }
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale-ensemble
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.24.0
4
+ version: 0.25.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2022-12-31 00:00:00.000000000 Z
11
+ date: 2023-01-18 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray
@@ -30,70 +30,70 @@ dependencies:
30
30
  requirements:
31
31
  - - "~>"
32
32
  - !ruby/object:Gem::Version
33
- version: 0.24.0
33
+ version: 0.25.0
34
34
  type: :runtime
35
35
  prerelease: false
36
36
  version_requirements: !ruby/object:Gem::Requirement
37
37
  requirements:
38
38
  - - "~>"
39
39
  - !ruby/object:Gem::Version
40
- version: 0.24.0
40
+ version: 0.25.0
41
41
  - !ruby/object:Gem::Dependency
42
42
  name: rumale-linear_model
43
43
  requirement: !ruby/object:Gem::Requirement
44
44
  requirements:
45
45
  - - "~>"
46
46
  - !ruby/object:Gem::Version
47
- version: 0.24.0
47
+ version: 0.25.0
48
48
  type: :runtime
49
49
  prerelease: false
50
50
  version_requirements: !ruby/object:Gem::Requirement
51
51
  requirements:
52
52
  - - "~>"
53
53
  - !ruby/object:Gem::Version
54
- version: 0.24.0
54
+ version: 0.25.0
55
55
  - !ruby/object:Gem::Dependency
56
56
  name: rumale-model_selection
57
57
  requirement: !ruby/object:Gem::Requirement
58
58
  requirements:
59
59
  - - "~>"
60
60
  - !ruby/object:Gem::Version
61
- version: 0.24.0
61
+ version: 0.25.0
62
62
  type: :runtime
63
63
  prerelease: false
64
64
  version_requirements: !ruby/object:Gem::Requirement
65
65
  requirements:
66
66
  - - "~>"
67
67
  - !ruby/object:Gem::Version
68
- version: 0.24.0
68
+ version: 0.25.0
69
69
  - !ruby/object:Gem::Dependency
70
70
  name: rumale-preprocessing
71
71
  requirement: !ruby/object:Gem::Requirement
72
72
  requirements:
73
73
  - - "~>"
74
74
  - !ruby/object:Gem::Version
75
- version: 0.24.0
75
+ version: 0.25.0
76
76
  type: :runtime
77
77
  prerelease: false
78
78
  version_requirements: !ruby/object:Gem::Requirement
79
79
  requirements:
80
80
  - - "~>"
81
81
  - !ruby/object:Gem::Version
82
- version: 0.24.0
82
+ version: 0.25.0
83
83
  - !ruby/object:Gem::Dependency
84
84
  name: rumale-tree
85
85
  requirement: !ruby/object:Gem::Requirement
86
86
  requirements:
87
87
  - - "~>"
88
88
  - !ruby/object:Gem::Version
89
- version: 0.24.0
89
+ version: 0.25.0
90
90
  type: :runtime
91
91
  prerelease: false
92
92
  version_requirements: !ruby/object:Gem::Requirement
93
93
  requirements:
94
94
  - - "~>"
95
95
  - !ruby/object:Gem::Version
96
- version: 0.24.0
96
+ version: 0.25.0
97
97
  description: |
98
98
  Rumale::Ensemble provides ensemble learning algorithms,
99
99
  such as AdaBoost, Gradient Tree Boosting, and Random Forest,