rubysl-bigdecimal 1.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (85) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +17 -0
  3. data/.travis.yml +8 -0
  4. data/Gemfile +4 -0
  5. data/LICENSE +25 -0
  6. data/README.md +29 -0
  7. data/Rakefile +1 -0
  8. data/ext/rubysl/bigdecimal/bigdecimal.c +4760 -0
  9. data/ext/rubysl/bigdecimal/bigdecimal.h +220 -0
  10. data/ext/rubysl/bigdecimal/extconf.rb +6 -0
  11. data/lib/bigdecimal.rb +1 -0
  12. data/lib/bigdecimal/README +60 -0
  13. data/lib/bigdecimal/bigdecimal_en.html +796 -0
  14. data/lib/bigdecimal/bigdecimal_ja.html +799 -0
  15. data/lib/bigdecimal/jacobian.rb +85 -0
  16. data/lib/bigdecimal/ludcmp.rb +84 -0
  17. data/lib/bigdecimal/math.rb +235 -0
  18. data/lib/bigdecimal/newton.rb +77 -0
  19. data/lib/bigdecimal/sample/linear.rb +71 -0
  20. data/lib/bigdecimal/sample/nlsolve.rb +38 -0
  21. data/lib/bigdecimal/sample/pi.rb +20 -0
  22. data/lib/bigdecimal/util.rb +65 -0
  23. data/lib/rubysl/bigdecimal.rb +2 -0
  24. data/lib/rubysl/bigdecimal/version.rb +5 -0
  25. data/rubysl-bigdecimal.gemspec +24 -0
  26. data/spec/abs_spec.rb +49 -0
  27. data/spec/add_spec.rb +178 -0
  28. data/spec/case_compare_spec.rb +6 -0
  29. data/spec/ceil_spec.rb +122 -0
  30. data/spec/coerce_spec.rb +25 -0
  31. data/spec/comparison_spec.rb +80 -0
  32. data/spec/div_spec.rb +143 -0
  33. data/spec/divide_spec.rb +6 -0
  34. data/spec/divmod_spec.rb +233 -0
  35. data/spec/double_fig_spec.rb +8 -0
  36. data/spec/eql_spec.rb +5 -0
  37. data/spec/equal_value_spec.rb +6 -0
  38. data/spec/exponent_spec.rb +37 -0
  39. data/spec/finite_spec.rb +34 -0
  40. data/spec/fix_spec.rb +56 -0
  41. data/spec/fixtures/classes.rb +17 -0
  42. data/spec/floor_spec.rb +109 -0
  43. data/spec/frac_spec.rb +47 -0
  44. data/spec/gt_spec.rb +86 -0
  45. data/spec/gte_spec.rb +90 -0
  46. data/spec/induced_from_spec.rb +36 -0
  47. data/spec/infinite_spec.rb +31 -0
  48. data/spec/inspect_spec.rb +40 -0
  49. data/spec/limit_spec.rb +29 -0
  50. data/spec/lt_spec.rb +84 -0
  51. data/spec/lte_spec.rb +90 -0
  52. data/spec/minus_spec.rb +57 -0
  53. data/spec/mode_spec.rb +64 -0
  54. data/spec/modulo_spec.rb +11 -0
  55. data/spec/mult_spec.rb +23 -0
  56. data/spec/multiply_spec.rb +25 -0
  57. data/spec/nan_spec.rb +22 -0
  58. data/spec/new_spec.rb +120 -0
  59. data/spec/nonzero_spec.rb +28 -0
  60. data/spec/plus_spec.rb +49 -0
  61. data/spec/power_spec.rb +5 -0
  62. data/spec/precs_spec.rb +48 -0
  63. data/spec/quo_spec.rb +12 -0
  64. data/spec/remainder_spec.rb +83 -0
  65. data/spec/round_spec.rb +193 -0
  66. data/spec/shared/eql.rb +65 -0
  67. data/spec/shared/modulo.rb +146 -0
  68. data/spec/shared/mult.rb +97 -0
  69. data/spec/shared/power.rb +83 -0
  70. data/spec/shared/quo.rb +59 -0
  71. data/spec/shared/to_int.rb +27 -0
  72. data/spec/sign_spec.rb +46 -0
  73. data/spec/split_spec.rb +87 -0
  74. data/spec/sqrt_spec.rb +111 -0
  75. data/spec/sub_spec.rb +52 -0
  76. data/spec/to_f_spec.rb +54 -0
  77. data/spec/to_i_spec.rb +6 -0
  78. data/spec/to_int_spec.rb +7 -0
  79. data/spec/to_s_spec.rb +71 -0
  80. data/spec/truncate_spec.rb +100 -0
  81. data/spec/uminus_spec.rb +57 -0
  82. data/spec/uplus_spec.rb +19 -0
  83. data/spec/ver_spec.rb +10 -0
  84. data/spec/zero_spec.rb +27 -0
  85. metadata +243 -0
@@ -0,0 +1,85 @@
1
+ #
2
+ # require 'bigdecimal/jacobian'
3
+ #
4
+ # Provides methods to compute the Jacobian matrix of a set of equations at a
5
+ # point x. In the methods below:
6
+ #
7
+ # f is an Object which is used to compute the Jacobian matrix of the equations.
8
+ # It must provide the following methods:
9
+ #
10
+ # f.values(x):: returns the values of all functions at x
11
+ #
12
+ # f.zero:: returns 0.0
13
+ # f.one:: returns 1.0
14
+ # f.two:: returns 1.0
15
+ # f.ten:: returns 10.0
16
+ #
17
+ # f.eps:: returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
18
+ #
19
+ # x is the point at which to compute the Jacobian.
20
+ #
21
+ # fx is f.values(x).
22
+ #
23
+ module Jacobian
24
+ #--
25
+ def isEqual(a,b,zero=0.0,e=1.0e-8)
26
+ aa = a.abs
27
+ bb = b.abs
28
+ if aa == zero && bb == zero then
29
+ true
30
+ else
31
+ if ((a-b)/(aa+bb)).abs < e then
32
+ true
33
+ else
34
+ false
35
+ end
36
+ end
37
+ end
38
+ #++
39
+
40
+ # Computes the derivative of f[i] at x[i].
41
+ # fx is the value of f at x.
42
+ def dfdxi(f,fx,x,i)
43
+ nRetry = 0
44
+ n = x.size
45
+ xSave = x[i]
46
+ ok = 0
47
+ ratio = f.ten*f.ten*f.ten
48
+ dx = x[i].abs/ratio
49
+ dx = fx[i].abs/ratio if isEqual(dx,f.zero,f.zero,f.eps)
50
+ dx = f.one/f.ten if isEqual(dx,f.zero,f.zero,f.eps)
51
+ until ok>0 do
52
+ s = f.zero
53
+ deriv = []
54
+ if(nRetry>100) then
55
+ raize "Singular Jacobian matrix. No change at x[" + i.to_s + "]"
56
+ end
57
+ dx = dx*f.two
58
+ x[i] += dx
59
+ fxNew = f.values(x)
60
+ for j in 0...n do
61
+ if !isEqual(fxNew[j],fx[j],f.zero,f.eps) then
62
+ ok += 1
63
+ deriv <<= (fxNew[j]-fx[j])/dx
64
+ else
65
+ deriv <<= f.zero
66
+ end
67
+ end
68
+ x[i] = xSave
69
+ end
70
+ deriv
71
+ end
72
+
73
+ # Computes the Jacobian of f at x. fx is the value of f at x.
74
+ def jacobian(f,fx,x)
75
+ n = x.size
76
+ dfdx = Array::new(n*n)
77
+ for i in 0...n do
78
+ df = dfdxi(f,fx,x,i)
79
+ for j in 0...n do
80
+ dfdx[j*n+i] = df[j]
81
+ end
82
+ end
83
+ dfdx
84
+ end
85
+ end
@@ -0,0 +1,84 @@
1
+ #
2
+ # Solves a*x = b for x, using LU decomposition.
3
+ #
4
+ module LUSolve
5
+ # Performs LU decomposition of the n by n matrix a.
6
+ def ludecomp(a,n,zero=0,one=1)
7
+ prec = BigDecimal.limit(nil)
8
+ ps = []
9
+ scales = []
10
+ for i in 0...n do # pick up largest(abs. val.) element in each row.
11
+ ps <<= i
12
+ nrmrow = zero
13
+ ixn = i*n
14
+ for j in 0...n do
15
+ biggst = a[ixn+j].abs
16
+ nrmrow = biggst if biggst>nrmrow
17
+ end
18
+ if nrmrow>zero then
19
+ scales <<= one.div(nrmrow,prec)
20
+ else
21
+ raise "Singular matrix"
22
+ end
23
+ end
24
+ n1 = n - 1
25
+ for k in 0...n1 do # Gaussian elimination with partial pivoting.
26
+ biggst = zero;
27
+ for i in k...n do
28
+ size = a[ps[i]*n+k].abs*scales[ps[i]]
29
+ if size>biggst then
30
+ biggst = size
31
+ pividx = i
32
+ end
33
+ end
34
+ raise "Singular matrix" if biggst<=zero
35
+ if pividx!=k then
36
+ j = ps[k]
37
+ ps[k] = ps[pividx]
38
+ ps[pividx] = j
39
+ end
40
+ pivot = a[ps[k]*n+k]
41
+ for i in (k+1)...n do
42
+ psin = ps[i]*n
43
+ a[psin+k] = mult = a[psin+k].div(pivot,prec)
44
+ if mult!=zero then
45
+ pskn = ps[k]*n
46
+ for j in (k+1)...n do
47
+ a[psin+j] -= mult.mult(a[pskn+j],prec)
48
+ end
49
+ end
50
+ end
51
+ end
52
+ raise "Singular matrix" if a[ps[n1]*n+n1] == zero
53
+ ps
54
+ end
55
+
56
+ # Solves a*x = b for x, using LU decomposition.
57
+ #
58
+ # a is a matrix, b is a constant vector, x is the solution vector.
59
+ #
60
+ # ps is the pivot, a vector which indicates the permutation of rows performed
61
+ # during LU decomposition.
62
+ def lusolve(a,b,ps,zero=0.0)
63
+ prec = BigDecimal.limit(nil)
64
+ n = ps.size
65
+ x = []
66
+ for i in 0...n do
67
+ dot = zero
68
+ psin = ps[i]*n
69
+ for j in 0...i do
70
+ dot = a[psin+j].mult(x[j],prec) + dot
71
+ end
72
+ x <<= b[ps[i]] - dot
73
+ end
74
+ (n-1).downto(0) do |i|
75
+ dot = zero
76
+ psin = ps[i]*n
77
+ for j in (i+1)...n do
78
+ dot = a[psin+j].mult(x[j],prec) + dot
79
+ end
80
+ x[i] = (x[i]-dot).div(a[psin+i],prec)
81
+ end
82
+ x
83
+ end
84
+ end
@@ -0,0 +1,235 @@
1
+ #
2
+ #--
3
+ # Contents:
4
+ # sqrt(x, prec)
5
+ # sin (x, prec)
6
+ # cos (x, prec)
7
+ # atan(x, prec) Note: |x|<1, x=0.9999 may not converge.
8
+ # exp (x, prec)
9
+ # log (x, prec)
10
+ # PI (prec)
11
+ # E (prec) == exp(1.0,prec)
12
+ #
13
+ # where:
14
+ # x ... BigDecimal number to be computed.
15
+ # |x| must be small enough to get convergence.
16
+ # prec ... Number of digits to be obtained.
17
+ #++
18
+ #
19
+ # Provides mathematical functions.
20
+ #
21
+ # Example:
22
+ #
23
+ # require "bigdecimal"
24
+ # require "bigdecimal/math"
25
+ #
26
+ # include BigMath
27
+ #
28
+ # a = BigDecimal((PI(100)/2).to_s)
29
+ # puts sin(a,100) # -> 0.10000000000000000000......E1
30
+ #
31
+ module BigMath
32
+
33
+ # Computes the square root of x to the specified number of digits of
34
+ # precision.
35
+ #
36
+ # BigDecimal.new('2').sqrt(16).to_s
37
+ # -> "0.14142135623730950488016887242096975E1"
38
+ #
39
+ def sqrt(x,prec)
40
+ x.sqrt(prec)
41
+ end
42
+
43
+ # Computes the sine of x to the specified number of digits of precision.
44
+ #
45
+ # If x is infinite or NaN, returns NaN.
46
+ def sin(x, prec)
47
+ raise ArgumentError, "Zero or negative precision for sin" if prec <= 0
48
+ return BigDecimal("NaN") if x.infinite? || x.nan?
49
+ n = prec + BigDecimal.double_fig
50
+ one = BigDecimal("1")
51
+ two = BigDecimal("2")
52
+ x1 = x
53
+ x2 = x.mult(x,n)
54
+ sign = 1
55
+ y = x
56
+ d = y
57
+ i = one
58
+ z = one
59
+ while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
60
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
61
+ sign = -sign
62
+ x1 = x2.mult(x1,n)
63
+ i += two
64
+ z *= (i-one) * i
65
+ d = sign * x1.div(z,m)
66
+ y += d
67
+ end
68
+ y
69
+ end
70
+
71
+ # Computes the cosine of x to the specified number of digits of precision.
72
+ #
73
+ # If x is infinite or NaN, returns NaN.
74
+ def cos(x, prec)
75
+ raise ArgumentError, "Zero or negative precision for cos" if prec <= 0
76
+ return BigDecimal("NaN") if x.infinite? || x.nan?
77
+ n = prec + BigDecimal.double_fig
78
+ one = BigDecimal("1")
79
+ two = BigDecimal("2")
80
+ x1 = one
81
+ x2 = x.mult(x,n)
82
+ sign = 1
83
+ y = one
84
+ d = y
85
+ i = BigDecimal("0")
86
+ z = one
87
+ while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
88
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
89
+ sign = -sign
90
+ x1 = x2.mult(x1,n)
91
+ i += two
92
+ z *= (i-one) * i
93
+ d = sign * x1.div(z,m)
94
+ y += d
95
+ end
96
+ y
97
+ end
98
+
99
+ # Computes the arctangent of x to the specified number of digits of precision.
100
+ #
101
+ # If x is infinite or NaN, returns NaN.
102
+ # Raises an argument error if x > 1.
103
+ def atan(x, prec)
104
+ raise ArgumentError, "Zero or negative precision for atan" if prec <= 0
105
+ return BigDecimal("NaN") if x.infinite? || x.nan?
106
+ raise ArgumentError, "x.abs must be less than 1.0" if x.abs>=1
107
+ n = prec + BigDecimal.double_fig
108
+ y = x
109
+ d = y
110
+ t = x
111
+ r = BigDecimal("3")
112
+ x2 = x.mult(x,n)
113
+ while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
114
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
115
+ t = -t.mult(x2,n)
116
+ d = t.div(r,m)
117
+ y += d
118
+ r += 2
119
+ end
120
+ y
121
+ end
122
+
123
+ # Computes the value of e (the base of natural logarithms) raised to the
124
+ # power of x, to the specified number of digits of precision.
125
+ #
126
+ # If x is infinite or NaN, returns NaN.
127
+ #
128
+ # BigMath::exp(BigDecimal.new('1'), 10).to_s
129
+ # -> "0.271828182845904523536028752390026306410273E1"
130
+ def exp(x, prec)
131
+ raise ArgumentError, "Zero or negative precision for exp" if prec <= 0
132
+ return BigDecimal("NaN") if x.infinite? || x.nan?
133
+ n = prec + BigDecimal.double_fig
134
+ one = BigDecimal("1")
135
+ x1 = one
136
+ y = one
137
+ d = y
138
+ z = one
139
+ i = 0
140
+ while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
141
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
142
+ x1 = x1.mult(x,n)
143
+ i += 1
144
+ z *= i
145
+ d = x1.div(z,m)
146
+ y += d
147
+ end
148
+ y
149
+ end
150
+
151
+ # Computes the natural logarithm of x to the specified number of digits
152
+ # of precision.
153
+ #
154
+ # Returns x if x is infinite or NaN.
155
+ #
156
+ def log(x, prec)
157
+ raise ArgumentError, "Zero or negative argument for log" if x <= 0 || prec <= 0
158
+ return x if x.infinite? || x.nan?
159
+ one = BigDecimal("1")
160
+ two = BigDecimal("2")
161
+ n = prec + BigDecimal.double_fig
162
+ x = (x - one).div(x + one,n)
163
+ x2 = x.mult(x,n)
164
+ y = x
165
+ d = y
166
+ i = one
167
+ while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
168
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
169
+ x = x2.mult(x,n)
170
+ i += two
171
+ d = x.div(i,m)
172
+ y += d
173
+ end
174
+ y*two
175
+ end
176
+
177
+ # Computes the value of pi to the specified number of digits of precision.
178
+ def PI(prec)
179
+ raise ArgumentError, "Zero or negative argument for PI" if prec <= 0
180
+ n = prec + BigDecimal.double_fig
181
+ zero = BigDecimal("0")
182
+ one = BigDecimal("1")
183
+ two = BigDecimal("2")
184
+
185
+ m25 = BigDecimal("-0.04")
186
+ m57121 = BigDecimal("-57121")
187
+
188
+ pi = zero
189
+
190
+ d = one
191
+ k = one
192
+ w = one
193
+ t = BigDecimal("-80")
194
+ while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
195
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
196
+ t = t*m25
197
+ d = t.div(k,m)
198
+ k = k+two
199
+ pi = pi + d
200
+ end
201
+
202
+ d = one
203
+ k = one
204
+ w = one
205
+ t = BigDecimal("956")
206
+ while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
207
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
208
+ t = t.div(m57121,n)
209
+ d = t.div(k,m)
210
+ pi = pi + d
211
+ k = k+two
212
+ end
213
+ pi
214
+ end
215
+
216
+ # Computes e (the base of natural logarithms) to the specified number of
217
+ # digits of precision.
218
+ def E(prec)
219
+ raise ArgumentError, "Zero or negative precision for E" if prec <= 0
220
+ n = prec + BigDecimal.double_fig
221
+ one = BigDecimal("1")
222
+ y = one
223
+ d = y
224
+ z = one
225
+ i = 0
226
+ while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
227
+ m = BigDecimal.double_fig if m < BigDecimal.double_fig
228
+ i += 1
229
+ z *= i
230
+ d = one.div(z,m)
231
+ y += d
232
+ end
233
+ y
234
+ end
235
+ end
@@ -0,0 +1,77 @@
1
+ #
2
+ # newton.rb
3
+ #
4
+ # Solves the nonlinear algebraic equation system f = 0 by Newton's method.
5
+ # This program is not dependent on BigDecimal.
6
+ #
7
+ # To call:
8
+ # n = nlsolve(f,x)
9
+ # where n is the number of iterations required,
10
+ # x is the initial value vector
11
+ # f is an Object which is used to compute the values of the equations to be solved.
12
+ # It must provide the following methods:
13
+ #
14
+ # f.values(x):: returns the values of all functions at x
15
+ #
16
+ # f.zero:: returns 0.0
17
+ # f.one:: returns 1.0
18
+ # f.two:: returns 1.0
19
+ # f.ten:: returns 10.0
20
+ #
21
+ # f.eps:: returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
22
+ #
23
+ # On exit, x is the solution vector.
24
+ #
25
+ require "bigdecimal/ludcmp"
26
+ require "bigdecimal/jacobian"
27
+
28
+ module Newton
29
+ include LUSolve
30
+ include Jacobian
31
+
32
+ def norm(fv,zero=0.0)
33
+ s = zero
34
+ n = fv.size
35
+ for i in 0...n do
36
+ s += fv[i]*fv[i]
37
+ end
38
+ s
39
+ end
40
+
41
+ def nlsolve(f,x)
42
+ nRetry = 0
43
+ n = x.size
44
+
45
+ f0 = f.values(x)
46
+ zero = f.zero
47
+ one = f.one
48
+ two = f.two
49
+ p5 = one/two
50
+ d = norm(f0,zero)
51
+ minfact = f.ten*f.ten*f.ten
52
+ minfact = one/minfact
53
+ e = f.eps
54
+ while d >= e do
55
+ nRetry += 1
56
+ # Not yet converged. => Compute Jacobian matrix
57
+ dfdx = jacobian(f,f0,x)
58
+ # Solve dfdx*dx = -f0 to estimate dx
59
+ dx = lusolve(dfdx,f0,ludecomp(dfdx,n,zero,one),zero)
60
+ fact = two
61
+ xs = x.dup
62
+ begin
63
+ fact *= p5
64
+ if fact < minfact then
65
+ raise "Failed to reduce function values."
66
+ end
67
+ for i in 0...n do
68
+ x[i] = xs[i] - dx[i]*fact
69
+ end
70
+ f0 = f.values(x)
71
+ dn = norm(f0,zero)
72
+ end while(dn>=d)
73
+ d = dn
74
+ end
75
+ nRetry
76
+ end
77
+ end