rubysl-bigdecimal 1.0.0 → 2.0.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.travis.yml +3 -2
- data/README.md +48 -17
- data/{lib/bigdecimal/bigdecimal_en.html → bigdecimal_en.html} +54 -58
- data/{lib/bigdecimal/bigdecimal_ja.html → bigdecimal_ja.html} +6 -6
- data/ext/rubysl/bigdecimal/bigdecimal.c +2234 -1120
- data/ext/rubysl/bigdecimal/bigdecimal.h +114 -57
- data/lib/bigdecimal/jacobian.rb +13 -11
- data/lib/bigdecimal/ludcmp.rb +24 -20
- data/lib/bigdecimal/math.rb +33 -62
- data/lib/bigdecimal/newton.rb +6 -5
- data/lib/bigdecimal/util.rb +87 -43
- data/lib/rubysl/bigdecimal/version.rb +1 -1
- data/rubysl-bigdecimal.gemspec +3 -1
- metadata +20 -23
- data/lib/bigdecimal/README +0 -60
- data/lib/bigdecimal/sample/linear.rb +0 -71
- data/lib/bigdecimal/sample/nlsolve.rb +0 -38
- data/lib/bigdecimal/sample/pi.rb +0 -20
@@ -1,25 +1,76 @@
|
|
1
1
|
/*
|
2
2
|
*
|
3
|
-
* Ruby BigDecimal(Variable decimal precision) extension library.
|
3
|
+
* Ruby BigDecimal(Variable decimal precision) extension library.
|
4
4
|
*
|
5
|
-
* Copyright(C) 2002 by Shigeo Kobayashi(shigeo@tinyforest.gr.jp)
|
5
|
+
* Copyright(C) 2002 by Shigeo Kobayashi(shigeo@tinyforest.gr.jp)
|
6
6
|
*
|
7
|
-
* You may distribute under the terms of either the GNU General Public
|
8
|
-
* License or the Artistic License, as specified in the README file
|
9
|
-
* of this BigDecimal distribution.
|
7
|
+
* You may distribute under the terms of either the GNU General Public
|
8
|
+
* License or the Artistic License, as specified in the README file
|
9
|
+
* of this BigDecimal distribution.
|
10
10
|
*
|
11
11
|
* NOTES:
|
12
12
|
* 2003-03-28 V1.0 checked in.
|
13
13
|
*
|
14
14
|
*/
|
15
15
|
|
16
|
-
#ifndef
|
17
|
-
#define
|
16
|
+
#ifndef RUBY_BIG_DECIMAL_H
|
17
|
+
#define RUBY_BIG_DECIMAL_H 1
|
18
|
+
|
19
|
+
// Use RSTRING_PTR without caching on Rubinius
|
20
|
+
#define RSTRING_NOT_MODIFIED 1
|
21
|
+
|
22
|
+
#include "ruby/ruby.h"
|
23
|
+
#include <float.h>
|
18
24
|
|
19
25
|
#if defined(__cplusplus)
|
20
26
|
extern "C" {
|
21
27
|
#endif
|
22
28
|
|
29
|
+
#ifndef HAVE_LABS
|
30
|
+
static inline long
|
31
|
+
labs(long const x)
|
32
|
+
{
|
33
|
+
if (x < 0) return -x;
|
34
|
+
return x;
|
35
|
+
}
|
36
|
+
#endif
|
37
|
+
|
38
|
+
#ifndef HAVE_LLABS
|
39
|
+
static inline LONG_LONG
|
40
|
+
llabs(LONG_LONG const x)
|
41
|
+
{
|
42
|
+
if (x < 0) return -x;
|
43
|
+
return x;
|
44
|
+
}
|
45
|
+
#endif
|
46
|
+
|
47
|
+
#ifdef vabs
|
48
|
+
# undef vabs
|
49
|
+
#endif
|
50
|
+
#if SIZEOF_VALUE <= SIZEOF_INT
|
51
|
+
# define vabs abs
|
52
|
+
#elif SIZEOF_VALUE <= SIZEOF_LONG
|
53
|
+
# define vabs labs
|
54
|
+
#elif SIZEOF_VALUE <= SIZEOF_LONG_LONG
|
55
|
+
# define vabs llabs
|
56
|
+
#endif
|
57
|
+
|
58
|
+
extern VALUE rb_cBigDecimal;
|
59
|
+
|
60
|
+
#if SIZEOF_BDIGITS >= 8
|
61
|
+
# define RMPD_COMPONENT_FIGURES 19
|
62
|
+
# define RMPD_BASE ((BDIGIT)10000000000000000000U)
|
63
|
+
#elif SIZEOF_BDIGITS >= 4
|
64
|
+
# define RMPD_COMPONENT_FIGURES 9
|
65
|
+
# define RMPD_BASE ((BDIGIT)1000000000U)
|
66
|
+
#elif SIZEOF_BDIGITS >= 2
|
67
|
+
# define RMPD_COMPONENT_FIGURES 4
|
68
|
+
# define RMPD_BASE ((BDIGIT)10000U)
|
69
|
+
#else
|
70
|
+
# define RMPD_COMPONENT_FIGURES 2
|
71
|
+
# define RMPD_BASE ((BDIGIT)100U)
|
72
|
+
#endif
|
73
|
+
|
23
74
|
/*
|
24
75
|
* NaN & Infinity
|
25
76
|
*/
|
@@ -29,15 +80,10 @@ extern "C" {
|
|
29
80
|
#define SZ_NINF "-Infinity"
|
30
81
|
|
31
82
|
/*
|
32
|
-
* #define VP_EXPORT other than static to let VP_ routines
|
83
|
+
* #define VP_EXPORT other than static to let VP_ routines
|
33
84
|
* be called from outside of this module.
|
34
85
|
*/
|
35
|
-
#define VP_EXPORT static
|
36
|
-
|
37
|
-
#define U_LONG unsigned long
|
38
|
-
#define S_LONG long
|
39
|
-
#define U_INT unsigned int
|
40
|
-
#define S_INT int
|
86
|
+
#define VP_EXPORT static
|
41
87
|
|
42
88
|
/* Exception codes */
|
43
89
|
#define VP_EXCEPTION_ALL ((unsigned short)0x00FF)
|
@@ -45,12 +91,14 @@ extern "C" {
|
|
45
91
|
#define VP_EXCEPTION_NaN ((unsigned short)0x0002)
|
46
92
|
#define VP_EXCEPTION_UNDERFLOW ((unsigned short)0x0004)
|
47
93
|
#define VP_EXCEPTION_OVERFLOW ((unsigned short)0x0001) /* 0x0008) */
|
48
|
-
#define VP_EXCEPTION_ZERODIVIDE ((unsigned short)
|
94
|
+
#define VP_EXCEPTION_ZERODIVIDE ((unsigned short)0x0010)
|
49
95
|
|
50
96
|
/* Following 2 exceptions cann't controlled by user */
|
51
97
|
#define VP_EXCEPTION_OP ((unsigned short)0x0020)
|
52
98
|
#define VP_EXCEPTION_MEMORY ((unsigned short)0x0040)
|
53
99
|
|
100
|
+
#define RMPD_EXCEPTION_MODE_DEFAULT 0U
|
101
|
+
|
54
102
|
/* Computation mode */
|
55
103
|
#define VP_ROUND_MODE ((unsigned short)0x0100)
|
56
104
|
#define VP_ROUND_UP 1
|
@@ -61,6 +109,8 @@ extern "C" {
|
|
61
109
|
#define VP_ROUND_FLOOR 6
|
62
110
|
#define VP_ROUND_HALF_EVEN 7
|
63
111
|
|
112
|
+
#define RMPD_ROUNDING_MODE_DEFAULT VP_ROUND_HALF_UP
|
113
|
+
|
64
114
|
#define VP_SIGN_NaN 0 /* NaN */
|
65
115
|
#define VP_SIGN_POSITIVE_ZERO 1 /* Positive zero */
|
66
116
|
#define VP_SIGN_NEGATIVE_ZERO -1 /* Negative zero */
|
@@ -75,13 +125,13 @@ extern "C" {
|
|
75
125
|
*/
|
76
126
|
typedef struct {
|
77
127
|
VALUE obj; /* Back pointer(VALUE) for Ruby object. */
|
78
|
-
|
128
|
+
size_t MaxPrec; /* Maximum precision size */
|
79
129
|
/* This is the actual size of pfrac[] */
|
80
130
|
/*(frac[0] to frac[MaxPrec] are available). */
|
81
|
-
|
131
|
+
size_t Prec; /* Current precision size. */
|
82
132
|
/* This indicates how much the. */
|
83
133
|
/* the array frac[] is actually used. */
|
84
|
-
|
134
|
+
SIGNED_VALUE exponent; /* Exponent part. */
|
85
135
|
short sign; /* Attributes of the value. */
|
86
136
|
/*
|
87
137
|
* ==0 : NaN
|
@@ -93,23 +143,30 @@ typedef struct {
|
|
93
143
|
* -3 : Negative infinite number
|
94
144
|
*/
|
95
145
|
short flag; /* Not used in vp_routines,space for user. */
|
96
|
-
|
146
|
+
BDIGIT frac[1]; /* Pointer to array of fraction part. */
|
97
147
|
} Real;
|
98
148
|
|
99
|
-
/*
|
149
|
+
/*
|
100
150
|
* ------------------
|
101
151
|
* EXPORTables.
|
102
152
|
* ------------------
|
103
153
|
*/
|
104
154
|
|
105
155
|
VP_EXPORT Real *
|
106
|
-
VpNewRbClass(
|
156
|
+
VpNewRbClass(size_t mx, char const *str, VALUE klass);
|
107
157
|
|
108
|
-
VP_EXPORT Real *VpCreateRbObject(
|
158
|
+
VP_EXPORT Real *VpCreateRbObject(size_t mx,const char *str);
|
109
159
|
|
110
|
-
|
111
|
-
|
112
|
-
|
160
|
+
static inline BDIGIT
|
161
|
+
rmpd_base_value(void) { return RMPD_BASE; }
|
162
|
+
static inline size_t
|
163
|
+
rmpd_component_figures(void) { return RMPD_COMPONENT_FIGURES; }
|
164
|
+
static inline size_t
|
165
|
+
rmpd_double_figures(void) { return 1+DBL_DIG; }
|
166
|
+
|
167
|
+
#define VpBaseFig() rmpd_component_figures()
|
168
|
+
#define VpDblFig() rmpd_double_figures()
|
169
|
+
#define VpBaseVal() rmpd_base_value()
|
113
170
|
|
114
171
|
/* Zero,Inf,NaN (isinf(),isnan() used to check) */
|
115
172
|
VP_EXPORT double VpGetDoubleNaN(void);
|
@@ -118,50 +175,50 @@ VP_EXPORT double VpGetDoubleNegInf(void);
|
|
118
175
|
VP_EXPORT double VpGetDoubleNegZero(void);
|
119
176
|
|
120
177
|
/* These 2 functions added at v1.1.7 */
|
121
|
-
VP_EXPORT
|
122
|
-
VP_EXPORT
|
178
|
+
VP_EXPORT size_t VpGetPrecLimit(void);
|
179
|
+
VP_EXPORT size_t VpSetPrecLimit(size_t n);
|
123
180
|
|
124
181
|
/* Round mode */
|
125
|
-
VP_EXPORT int
|
126
|
-
VP_EXPORT unsigned
|
127
|
-
VP_EXPORT unsigned
|
182
|
+
VP_EXPORT int VpIsRoundMode(unsigned short n);
|
183
|
+
VP_EXPORT unsigned short VpGetRoundMode(void);
|
184
|
+
VP_EXPORT unsigned short VpSetRoundMode(unsigned short n);
|
128
185
|
|
129
186
|
VP_EXPORT int VpException(unsigned short f,const char *str,int always);
|
130
|
-
#if 0
|
187
|
+
#if 0 /* unused */
|
131
188
|
VP_EXPORT int VpIsNegDoubleZero(double v);
|
132
189
|
#endif
|
133
|
-
VP_EXPORT
|
134
|
-
VP_EXPORT
|
135
|
-
VP_EXPORT void *VpMemAlloc(
|
190
|
+
VP_EXPORT size_t VpNumOfChars(Real *vp,const char *pszFmt);
|
191
|
+
VP_EXPORT size_t VpInit(BDIGIT BaseVal);
|
192
|
+
VP_EXPORT void *VpMemAlloc(size_t mb);
|
136
193
|
VP_EXPORT void VpFree(Real *pv);
|
137
|
-
VP_EXPORT Real *VpAlloc(
|
138
|
-
VP_EXPORT
|
139
|
-
VP_EXPORT
|
140
|
-
VP_EXPORT
|
141
|
-
VP_EXPORT
|
194
|
+
VP_EXPORT Real *VpAlloc(size_t mx, const char *szVal);
|
195
|
+
VP_EXPORT size_t VpAsgn(Real *c, Real *a, int isw);
|
196
|
+
VP_EXPORT size_t VpAddSub(Real *c,Real *a,Real *b,int operation);
|
197
|
+
VP_EXPORT size_t VpMult(Real *c,Real *a,Real *b);
|
198
|
+
VP_EXPORT size_t VpDivd(Real *c,Real *r,Real *a,Real *b);
|
142
199
|
VP_EXPORT int VpComp(Real *a,Real *b);
|
143
|
-
VP_EXPORT
|
200
|
+
VP_EXPORT ssize_t VpExponent10(Real *a);
|
144
201
|
VP_EXPORT void VpSzMantissa(Real *a,char *psz);
|
145
202
|
VP_EXPORT int VpToSpecialString(Real *a,char *psz,int fPlus);
|
146
|
-
VP_EXPORT void VpToString(Real *a,char *psz,
|
147
|
-
VP_EXPORT void VpToFString(Real *a,char *psz,
|
148
|
-
VP_EXPORT int VpCtoV(Real *a,const char *int_chr,
|
149
|
-
VP_EXPORT int VpVtoD(double *d,
|
203
|
+
VP_EXPORT void VpToString(Real *a, char *psz, size_t fFmt, int fPlus);
|
204
|
+
VP_EXPORT void VpToFString(Real *a, char *psz, size_t fFmt, int fPlus);
|
205
|
+
VP_EXPORT int VpCtoV(Real *a, const char *int_chr, size_t ni, const char *frac, size_t nf, const char *exp_chr, size_t ne);
|
206
|
+
VP_EXPORT int VpVtoD(double *d, SIGNED_VALUE *e, Real *m);
|
150
207
|
VP_EXPORT void VpDtoV(Real *m,double d);
|
151
|
-
#if 0
|
208
|
+
#if 0 /* unused */
|
152
209
|
VP_EXPORT void VpItoV(Real *m,S_INT ival);
|
153
210
|
#endif
|
154
211
|
VP_EXPORT int VpSqrt(Real *y,Real *x);
|
155
|
-
VP_EXPORT int VpActiveRound(Real *y,Real *x,
|
156
|
-
VP_EXPORT int VpMidRound(Real *y,
|
157
|
-
VP_EXPORT int VpLeftRound(Real *y,
|
158
|
-
VP_EXPORT void VpFrac(Real *y,Real *x);
|
159
|
-
VP_EXPORT int VpPower(Real *y,Real *x,
|
212
|
+
VP_EXPORT int VpActiveRound(Real *y, Real *x, unsigned short f, ssize_t il);
|
213
|
+
VP_EXPORT int VpMidRound(Real *y, unsigned short f, ssize_t nf);
|
214
|
+
VP_EXPORT int VpLeftRound(Real *y, unsigned short f, ssize_t nf);
|
215
|
+
VP_EXPORT void VpFrac(Real *y, Real *x);
|
216
|
+
VP_EXPORT int VpPower(Real *y, Real *x, SIGNED_VALUE n);
|
160
217
|
|
161
218
|
/* VP constants */
|
162
219
|
VP_EXPORT Real *VpOne(void);
|
163
220
|
|
164
|
-
/*
|
221
|
+
/*
|
165
222
|
* ------------------
|
166
223
|
* MACRO definitions.
|
167
224
|
* ------------------
|
@@ -179,12 +236,12 @@ VP_EXPORT Real *VpOne(void);
|
|
179
236
|
/* VpGetSign(a) returns 1,-1 if a>0,a<0 respectively */
|
180
237
|
#define VpGetSign(a) (((a)->sign>0)?1:(-1))
|
181
238
|
/* Change sign of a to a>0,a<0 if s = 1,-1 respectively */
|
182
|
-
#define VpChangeSign(a,s) {if((s)>0) (a)->sign=(short)Abs((
|
239
|
+
#define VpChangeSign(a,s) {if((s)>0) (a)->sign=(short)Abs((ssize_t)(a)->sign);else (a)->sign=-(short)Abs((ssize_t)(a)->sign);}
|
183
240
|
/* Sets sign of a to a>0,a<0 if s = 1,-1 respectively */
|
184
241
|
#define VpSetSign(a,s) {if((s)>0) (a)->sign=(short)VP_SIGN_POSITIVE_FINITE;else (a)->sign=(short)VP_SIGN_NEGATIVE_FINITE;}
|
185
242
|
|
186
243
|
/* 1 */
|
187
|
-
#define VpSetOne(a) {(a)->
|
244
|
+
#define VpSetOne(a) {(a)->Prec=(a)->exponent=(a)->frac[0]=1;(a)->sign=VP_SIGN_POSITIVE_FINITE;}
|
188
245
|
|
189
246
|
/* ZEROs */
|
190
247
|
#define VpIsPosZero(a) ((a)->sign==VP_SIGN_POSITIVE_ZERO)
|
@@ -209,12 +266,12 @@ VP_EXPORT Real *VpOne(void);
|
|
209
266
|
#define VpHasVal(a) (a->frac[0])
|
210
267
|
#define VpIsOne(a) ((a->Prec==1)&&(a->frac[0]==1)&&(a->exponent==1))
|
211
268
|
#define VpExponent(a) (a->exponent)
|
212
|
-
#ifdef
|
269
|
+
#ifdef BIGDECIMAL_DEBUG
|
213
270
|
int VpVarCheck(Real * v);
|
214
|
-
VP_EXPORT int VPrint(FILE *fp,char *cntl_chr,Real *a);
|
215
|
-
#endif /*
|
271
|
+
VP_EXPORT int VPrint(FILE *fp,const char *cntl_chr,Real *a);
|
272
|
+
#endif /* BIGDECIMAL_DEBUG */
|
216
273
|
|
217
274
|
#if defined(__cplusplus)
|
218
275
|
} /* extern "C" { */
|
219
276
|
#endif
|
220
|
-
#endif /*
|
277
|
+
#endif /* RUBY_BIG_DECIMAL_H */
|
data/lib/bigdecimal/jacobian.rb
CHANGED
@@ -21,18 +21,20 @@
|
|
21
21
|
# fx is f.values(x).
|
22
22
|
#
|
23
23
|
module Jacobian
|
24
|
+
module_function
|
25
|
+
|
24
26
|
#--
|
25
27
|
def isEqual(a,b,zero=0.0,e=1.0e-8)
|
26
28
|
aa = a.abs
|
27
29
|
bb = b.abs
|
28
30
|
if aa == zero && bb == zero then
|
29
|
-
|
31
|
+
true
|
30
32
|
else
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
33
|
+
if ((a-b)/(aa+bb)).abs < e then
|
34
|
+
true
|
35
|
+
else
|
36
|
+
false
|
37
|
+
end
|
36
38
|
end
|
37
39
|
end
|
38
40
|
#++
|
@@ -52,17 +54,17 @@ module Jacobian
|
|
52
54
|
s = f.zero
|
53
55
|
deriv = []
|
54
56
|
if(nRetry>100) then
|
55
|
-
|
57
|
+
raise "Singular Jacobian matrix. No change at x[" + i.to_s + "]"
|
56
58
|
end
|
57
59
|
dx = dx*f.two
|
58
60
|
x[i] += dx
|
59
61
|
fxNew = f.values(x)
|
60
62
|
for j in 0...n do
|
61
63
|
if !isEqual(fxNew[j],fx[j],f.zero,f.eps) then
|
62
|
-
|
63
|
-
|
64
|
+
ok += 1
|
65
|
+
deriv <<= (fxNew[j]-fx[j])/dx
|
64
66
|
else
|
65
|
-
|
67
|
+
deriv <<= f.zero
|
66
68
|
end
|
67
69
|
end
|
68
70
|
x[i] = xSave
|
@@ -77,7 +79,7 @@ module Jacobian
|
|
77
79
|
for i in 0...n do
|
78
80
|
df = dfdxi(f,fx,x,i)
|
79
81
|
for j in 0...n do
|
80
|
-
|
82
|
+
dfdx[j*n+i] = df[j]
|
81
83
|
end
|
82
84
|
end
|
83
85
|
dfdx
|
data/lib/bigdecimal/ludcmp.rb
CHANGED
@@ -1,7 +1,11 @@
|
|
1
|
+
require 'bigdecimal'
|
2
|
+
|
1
3
|
#
|
2
4
|
# Solves a*x = b for x, using LU decomposition.
|
3
5
|
#
|
4
6
|
module LUSolve
|
7
|
+
module_function
|
8
|
+
|
5
9
|
# Performs LU decomposition of the n by n matrix a.
|
6
10
|
def ludecomp(a,n,zero=0,one=1)
|
7
11
|
prec = BigDecimal.limit(nil)
|
@@ -12,24 +16,24 @@ module LUSolve
|
|
12
16
|
nrmrow = zero
|
13
17
|
ixn = i*n
|
14
18
|
for j in 0...n do
|
15
|
-
|
16
|
-
|
19
|
+
biggst = a[ixn+j].abs
|
20
|
+
nrmrow = biggst if biggst>nrmrow
|
17
21
|
end
|
18
22
|
if nrmrow>zero then
|
19
|
-
|
20
|
-
else
|
21
|
-
|
23
|
+
scales <<= one.div(nrmrow,prec)
|
24
|
+
else
|
25
|
+
raise "Singular matrix"
|
22
26
|
end
|
23
27
|
end
|
24
28
|
n1 = n - 1
|
25
29
|
for k in 0...n1 do # Gaussian elimination with partial pivoting.
|
26
30
|
biggst = zero;
|
27
31
|
for i in k...n do
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
32
|
+
size = a[ps[i]*n+k].abs*scales[ps[i]]
|
33
|
+
if size>biggst then
|
34
|
+
biggst = size
|
35
|
+
pividx = i
|
36
|
+
end
|
33
37
|
end
|
34
38
|
raise "Singular matrix" if biggst<=zero
|
35
39
|
if pividx!=k then
|
@@ -42,10 +46,10 @@ module LUSolve
|
|
42
46
|
psin = ps[i]*n
|
43
47
|
a[psin+k] = mult = a[psin+k].div(pivot,prec)
|
44
48
|
if mult!=zero then
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
+
pskn = ps[k]*n
|
50
|
+
for j in (k+1)...n do
|
51
|
+
a[psin+j] -= mult.mult(a[pskn+j],prec)
|
52
|
+
end
|
49
53
|
end
|
50
54
|
end
|
51
55
|
end
|
@@ -72,12 +76,12 @@ module LUSolve
|
|
72
76
|
x <<= b[ps[i]] - dot
|
73
77
|
end
|
74
78
|
(n-1).downto(0) do |i|
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
79
|
+
dot = zero
|
80
|
+
psin = ps[i]*n
|
81
|
+
for j in (i+1)...n do
|
82
|
+
dot = a[psin+j].mult(x[j],prec) + dot
|
83
|
+
end
|
84
|
+
x[i] = (x[i]-dot).div(a[psin+i],prec)
|
81
85
|
end
|
82
86
|
x
|
83
87
|
end
|
data/lib/bigdecimal/math.rb
CHANGED
@@ -1,3 +1,5 @@
|
|
1
|
+
require 'bigdecimal'
|
2
|
+
|
1
3
|
#
|
2
4
|
#--
|
3
5
|
# Contents:
|
@@ -5,7 +7,6 @@
|
|
5
7
|
# sin (x, prec)
|
6
8
|
# cos (x, prec)
|
7
9
|
# atan(x, prec) Note: |x|<1, x=0.9999 may not converge.
|
8
|
-
# exp (x, prec)
|
9
10
|
# log (x, prec)
|
10
11
|
# PI (prec)
|
11
12
|
# E (prec) == exp(1.0,prec)
|
@@ -29,11 +30,12 @@
|
|
29
30
|
# puts sin(a,100) # -> 0.10000000000000000000......E1
|
30
31
|
#
|
31
32
|
module BigMath
|
33
|
+
module_function
|
32
34
|
|
33
|
-
# Computes the square root of x to the specified number of digits of
|
35
|
+
# Computes the square root of x to the specified number of digits of
|
34
36
|
# precision.
|
35
37
|
#
|
36
|
-
# BigDecimal.new('2').sqrt(16).to_s
|
38
|
+
# BigDecimal.new('2').sqrt(16).to_s
|
37
39
|
# -> "0.14142135623730950488016887242096975E1"
|
38
40
|
#
|
39
41
|
def sqrt(x,prec)
|
@@ -49,6 +51,14 @@ module BigMath
|
|
49
51
|
n = prec + BigDecimal.double_fig
|
50
52
|
one = BigDecimal("1")
|
51
53
|
two = BigDecimal("2")
|
54
|
+
x = -x if neg = x < 0
|
55
|
+
if x > (twopi = two * BigMath.PI(prec))
|
56
|
+
if x > 30
|
57
|
+
x %= twopi
|
58
|
+
else
|
59
|
+
x -= twopi while x > twopi
|
60
|
+
end
|
61
|
+
end
|
52
62
|
x1 = x
|
53
63
|
x2 = x.mult(x,n)
|
54
64
|
sign = 1
|
@@ -65,7 +75,7 @@ module BigMath
|
|
65
75
|
d = sign * x1.div(z,m)
|
66
76
|
y += d
|
67
77
|
end
|
68
|
-
y
|
78
|
+
neg ? -y : y
|
69
79
|
end
|
70
80
|
|
71
81
|
# Computes the cosine of x to the specified number of digits of precision.
|
@@ -77,6 +87,14 @@ module BigMath
|
|
77
87
|
n = prec + BigDecimal.double_fig
|
78
88
|
one = BigDecimal("1")
|
79
89
|
two = BigDecimal("2")
|
90
|
+
x = -x if x < 0
|
91
|
+
if x > (twopi = two * BigMath.PI(prec))
|
92
|
+
if x > 30
|
93
|
+
x %= twopi
|
94
|
+
else
|
95
|
+
x -= twopi while x > twopi
|
96
|
+
end
|
97
|
+
end
|
80
98
|
x1 = one
|
81
99
|
x2 = x.mult(x,n)
|
82
100
|
sign = 1
|
@@ -98,12 +116,16 @@ module BigMath
|
|
98
116
|
|
99
117
|
# Computes the arctangent of x to the specified number of digits of precision.
|
100
118
|
#
|
101
|
-
# If x is
|
102
|
-
# Raises an argument error if x > 1.
|
119
|
+
# If x is NaN, returns NaN.
|
103
120
|
def atan(x, prec)
|
104
121
|
raise ArgumentError, "Zero or negative precision for atan" if prec <= 0
|
105
|
-
return BigDecimal("NaN") if x.
|
106
|
-
|
122
|
+
return BigDecimal("NaN") if x.nan?
|
123
|
+
pi = PI(prec)
|
124
|
+
x = -x if neg = x < 0
|
125
|
+
return pi.div(neg ? -2 : 2, prec) if x.infinite?
|
126
|
+
return pi / (neg ? -4 : 4) if x.round(prec) == 1
|
127
|
+
x = BigDecimal("1").div(x, prec) if inv = x > 1
|
128
|
+
x = (-1 + sqrt(1 + x**2, prec))/x if dbl = x > 0.5
|
107
129
|
n = prec + BigDecimal.double_fig
|
108
130
|
y = x
|
109
131
|
d = y
|
@@ -117,63 +139,12 @@ module BigMath
|
|
117
139
|
y += d
|
118
140
|
r += 2
|
119
141
|
end
|
142
|
+
y *= 2 if dbl
|
143
|
+
y = pi / 2 - y if inv
|
144
|
+
y = -y if neg
|
120
145
|
y
|
121
146
|
end
|
122
147
|
|
123
|
-
# Computes the value of e (the base of natural logarithms) raised to the
|
124
|
-
# power of x, to the specified number of digits of precision.
|
125
|
-
#
|
126
|
-
# If x is infinite or NaN, returns NaN.
|
127
|
-
#
|
128
|
-
# BigMath::exp(BigDecimal.new('1'), 10).to_s
|
129
|
-
# -> "0.271828182845904523536028752390026306410273E1"
|
130
|
-
def exp(x, prec)
|
131
|
-
raise ArgumentError, "Zero or negative precision for exp" if prec <= 0
|
132
|
-
return BigDecimal("NaN") if x.infinite? || x.nan?
|
133
|
-
n = prec + BigDecimal.double_fig
|
134
|
-
one = BigDecimal("1")
|
135
|
-
x1 = one
|
136
|
-
y = one
|
137
|
-
d = y
|
138
|
-
z = one
|
139
|
-
i = 0
|
140
|
-
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
|
141
|
-
m = BigDecimal.double_fig if m < BigDecimal.double_fig
|
142
|
-
x1 = x1.mult(x,n)
|
143
|
-
i += 1
|
144
|
-
z *= i
|
145
|
-
d = x1.div(z,m)
|
146
|
-
y += d
|
147
|
-
end
|
148
|
-
y
|
149
|
-
end
|
150
|
-
|
151
|
-
# Computes the natural logarithm of x to the specified number of digits
|
152
|
-
# of precision.
|
153
|
-
#
|
154
|
-
# Returns x if x is infinite or NaN.
|
155
|
-
#
|
156
|
-
def log(x, prec)
|
157
|
-
raise ArgumentError, "Zero or negative argument for log" if x <= 0 || prec <= 0
|
158
|
-
return x if x.infinite? || x.nan?
|
159
|
-
one = BigDecimal("1")
|
160
|
-
two = BigDecimal("2")
|
161
|
-
n = prec + BigDecimal.double_fig
|
162
|
-
x = (x - one).div(x + one,n)
|
163
|
-
x2 = x.mult(x,n)
|
164
|
-
y = x
|
165
|
-
d = y
|
166
|
-
i = one
|
167
|
-
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
|
168
|
-
m = BigDecimal.double_fig if m < BigDecimal.double_fig
|
169
|
-
x = x2.mult(x,n)
|
170
|
-
i += two
|
171
|
-
d = x.div(i,m)
|
172
|
-
y += d
|
173
|
-
end
|
174
|
-
y*two
|
175
|
-
end
|
176
|
-
|
177
148
|
# Computes the value of pi to the specified number of digits of precision.
|
178
149
|
def PI(prec)
|
179
150
|
raise ArgumentError, "Zero or negative argument for PI" if prec <= 0
|