rubysl-bigdecimal 1.0.0 → 2.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,25 +1,76 @@
1
1
  /*
2
2
  *
3
- * Ruby BigDecimal(Variable decimal precision) extension library.
3
+ * Ruby BigDecimal(Variable decimal precision) extension library.
4
4
  *
5
- * Copyright(C) 2002 by Shigeo Kobayashi(shigeo@tinyforest.gr.jp)
5
+ * Copyright(C) 2002 by Shigeo Kobayashi(shigeo@tinyforest.gr.jp)
6
6
  *
7
- * You may distribute under the terms of either the GNU General Public
8
- * License or the Artistic License, as specified in the README file
9
- * of this BigDecimal distribution.
7
+ * You may distribute under the terms of either the GNU General Public
8
+ * License or the Artistic License, as specified in the README file
9
+ * of this BigDecimal distribution.
10
10
  *
11
11
  * NOTES:
12
12
  * 2003-03-28 V1.0 checked in.
13
13
  *
14
14
  */
15
15
 
16
- #ifndef ____BIG_DECIMAL__H____
17
- #define ____BIG_DECIMAL__H____
16
+ #ifndef RUBY_BIG_DECIMAL_H
17
+ #define RUBY_BIG_DECIMAL_H 1
18
+
19
+ // Use RSTRING_PTR without caching on Rubinius
20
+ #define RSTRING_NOT_MODIFIED 1
21
+
22
+ #include "ruby/ruby.h"
23
+ #include <float.h>
18
24
 
19
25
  #if defined(__cplusplus)
20
26
  extern "C" {
21
27
  #endif
22
28
 
29
+ #ifndef HAVE_LABS
30
+ static inline long
31
+ labs(long const x)
32
+ {
33
+ if (x < 0) return -x;
34
+ return x;
35
+ }
36
+ #endif
37
+
38
+ #ifndef HAVE_LLABS
39
+ static inline LONG_LONG
40
+ llabs(LONG_LONG const x)
41
+ {
42
+ if (x < 0) return -x;
43
+ return x;
44
+ }
45
+ #endif
46
+
47
+ #ifdef vabs
48
+ # undef vabs
49
+ #endif
50
+ #if SIZEOF_VALUE <= SIZEOF_INT
51
+ # define vabs abs
52
+ #elif SIZEOF_VALUE <= SIZEOF_LONG
53
+ # define vabs labs
54
+ #elif SIZEOF_VALUE <= SIZEOF_LONG_LONG
55
+ # define vabs llabs
56
+ #endif
57
+
58
+ extern VALUE rb_cBigDecimal;
59
+
60
+ #if SIZEOF_BDIGITS >= 8
61
+ # define RMPD_COMPONENT_FIGURES 19
62
+ # define RMPD_BASE ((BDIGIT)10000000000000000000U)
63
+ #elif SIZEOF_BDIGITS >= 4
64
+ # define RMPD_COMPONENT_FIGURES 9
65
+ # define RMPD_BASE ((BDIGIT)1000000000U)
66
+ #elif SIZEOF_BDIGITS >= 2
67
+ # define RMPD_COMPONENT_FIGURES 4
68
+ # define RMPD_BASE ((BDIGIT)10000U)
69
+ #else
70
+ # define RMPD_COMPONENT_FIGURES 2
71
+ # define RMPD_BASE ((BDIGIT)100U)
72
+ #endif
73
+
23
74
  /*
24
75
  * NaN & Infinity
25
76
  */
@@ -29,15 +80,10 @@ extern "C" {
29
80
  #define SZ_NINF "-Infinity"
30
81
 
31
82
  /*
32
- * #define VP_EXPORT other than static to let VP_ routines
83
+ * #define VP_EXPORT other than static to let VP_ routines
33
84
  * be called from outside of this module.
34
85
  */
35
- #define VP_EXPORT static
36
-
37
- #define U_LONG unsigned long
38
- #define S_LONG long
39
- #define U_INT unsigned int
40
- #define S_INT int
86
+ #define VP_EXPORT static
41
87
 
42
88
  /* Exception codes */
43
89
  #define VP_EXCEPTION_ALL ((unsigned short)0x00FF)
@@ -45,12 +91,14 @@ extern "C" {
45
91
  #define VP_EXCEPTION_NaN ((unsigned short)0x0002)
46
92
  #define VP_EXCEPTION_UNDERFLOW ((unsigned short)0x0004)
47
93
  #define VP_EXCEPTION_OVERFLOW ((unsigned short)0x0001) /* 0x0008) */
48
- #define VP_EXCEPTION_ZERODIVIDE ((unsigned short)0x0001) /* 0x0010) */
94
+ #define VP_EXCEPTION_ZERODIVIDE ((unsigned short)0x0010)
49
95
 
50
96
  /* Following 2 exceptions cann't controlled by user */
51
97
  #define VP_EXCEPTION_OP ((unsigned short)0x0020)
52
98
  #define VP_EXCEPTION_MEMORY ((unsigned short)0x0040)
53
99
 
100
+ #define RMPD_EXCEPTION_MODE_DEFAULT 0U
101
+
54
102
  /* Computation mode */
55
103
  #define VP_ROUND_MODE ((unsigned short)0x0100)
56
104
  #define VP_ROUND_UP 1
@@ -61,6 +109,8 @@ extern "C" {
61
109
  #define VP_ROUND_FLOOR 6
62
110
  #define VP_ROUND_HALF_EVEN 7
63
111
 
112
+ #define RMPD_ROUNDING_MODE_DEFAULT VP_ROUND_HALF_UP
113
+
64
114
  #define VP_SIGN_NaN 0 /* NaN */
65
115
  #define VP_SIGN_POSITIVE_ZERO 1 /* Positive zero */
66
116
  #define VP_SIGN_NEGATIVE_ZERO -1 /* Negative zero */
@@ -75,13 +125,13 @@ extern "C" {
75
125
  */
76
126
  typedef struct {
77
127
  VALUE obj; /* Back pointer(VALUE) for Ruby object. */
78
- U_LONG MaxPrec; /* Maximum precision size */
128
+ size_t MaxPrec; /* Maximum precision size */
79
129
  /* This is the actual size of pfrac[] */
80
130
  /*(frac[0] to frac[MaxPrec] are available). */
81
- U_LONG Prec; /* Current precision size. */
131
+ size_t Prec; /* Current precision size. */
82
132
  /* This indicates how much the. */
83
133
  /* the array frac[] is actually used. */
84
- S_INT exponent;/* Exponent part. */
134
+ SIGNED_VALUE exponent; /* Exponent part. */
85
135
  short sign; /* Attributes of the value. */
86
136
  /*
87
137
  * ==0 : NaN
@@ -93,23 +143,30 @@ typedef struct {
93
143
  * -3 : Negative infinite number
94
144
  */
95
145
  short flag; /* Not used in vp_routines,space for user. */
96
- U_LONG frac[1]; /* Pointer to array of fraction part. */
146
+ BDIGIT frac[1]; /* Pointer to array of fraction part. */
97
147
  } Real;
98
148
 
99
- /*
149
+ /*
100
150
  * ------------------
101
151
  * EXPORTables.
102
152
  * ------------------
103
153
  */
104
154
 
105
155
  VP_EXPORT Real *
106
- VpNewRbClass(U_LONG mx,char *str,VALUE klass);
156
+ VpNewRbClass(size_t mx, char const *str, VALUE klass);
107
157
 
108
- VP_EXPORT Real *VpCreateRbObject(U_LONG mx,const char *str);
158
+ VP_EXPORT Real *VpCreateRbObject(size_t mx,const char *str);
109
159
 
110
- VP_EXPORT U_LONG VpBaseFig(void);
111
- VP_EXPORT U_LONG VpDblFig(void);
112
- VP_EXPORT U_LONG VpBaseVal(void);
160
+ static inline BDIGIT
161
+ rmpd_base_value(void) { return RMPD_BASE; }
162
+ static inline size_t
163
+ rmpd_component_figures(void) { return RMPD_COMPONENT_FIGURES; }
164
+ static inline size_t
165
+ rmpd_double_figures(void) { return 1+DBL_DIG; }
166
+
167
+ #define VpBaseFig() rmpd_component_figures()
168
+ #define VpDblFig() rmpd_double_figures()
169
+ #define VpBaseVal() rmpd_base_value()
113
170
 
114
171
  /* Zero,Inf,NaN (isinf(),isnan() used to check) */
115
172
  VP_EXPORT double VpGetDoubleNaN(void);
@@ -118,50 +175,50 @@ VP_EXPORT double VpGetDoubleNegInf(void);
118
175
  VP_EXPORT double VpGetDoubleNegZero(void);
119
176
 
120
177
  /* These 2 functions added at v1.1.7 */
121
- VP_EXPORT U_LONG VpGetPrecLimit(void);
122
- VP_EXPORT U_LONG VpSetPrecLimit(U_LONG n);
178
+ VP_EXPORT size_t VpGetPrecLimit(void);
179
+ VP_EXPORT size_t VpSetPrecLimit(size_t n);
123
180
 
124
181
  /* Round mode */
125
- VP_EXPORT int VpIsRoundMode(unsigned long n);
126
- VP_EXPORT unsigned long VpGetRoundMode(void);
127
- VP_EXPORT unsigned long VpSetRoundMode(unsigned long n);
182
+ VP_EXPORT int VpIsRoundMode(unsigned short n);
183
+ VP_EXPORT unsigned short VpGetRoundMode(void);
184
+ VP_EXPORT unsigned short VpSetRoundMode(unsigned short n);
128
185
 
129
186
  VP_EXPORT int VpException(unsigned short f,const char *str,int always);
130
- #if 0
187
+ #if 0 /* unused */
131
188
  VP_EXPORT int VpIsNegDoubleZero(double v);
132
189
  #endif
133
- VP_EXPORT U_LONG VpNumOfChars(Real *vp,const char *pszFmt);
134
- VP_EXPORT U_LONG VpInit(U_LONG BaseVal);
135
- VP_EXPORT void *VpMemAlloc(U_LONG mb);
190
+ VP_EXPORT size_t VpNumOfChars(Real *vp,const char *pszFmt);
191
+ VP_EXPORT size_t VpInit(BDIGIT BaseVal);
192
+ VP_EXPORT void *VpMemAlloc(size_t mb);
136
193
  VP_EXPORT void VpFree(Real *pv);
137
- VP_EXPORT Real *VpAlloc(U_LONG mx, const char *szVal);
138
- VP_EXPORT int VpAsgn(Real *c,Real *a,int isw);
139
- VP_EXPORT int VpAddSub(Real *c,Real *a,Real *b,int operation);
140
- VP_EXPORT int VpMult(Real *c,Real *a,Real *b);
141
- VP_EXPORT int VpDivd(Real *c,Real *r,Real *a,Real *b);
194
+ VP_EXPORT Real *VpAlloc(size_t mx, const char *szVal);
195
+ VP_EXPORT size_t VpAsgn(Real *c, Real *a, int isw);
196
+ VP_EXPORT size_t VpAddSub(Real *c,Real *a,Real *b,int operation);
197
+ VP_EXPORT size_t VpMult(Real *c,Real *a,Real *b);
198
+ VP_EXPORT size_t VpDivd(Real *c,Real *r,Real *a,Real *b);
142
199
  VP_EXPORT int VpComp(Real *a,Real *b);
143
- VP_EXPORT S_LONG VpExponent10(Real *a);
200
+ VP_EXPORT ssize_t VpExponent10(Real *a);
144
201
  VP_EXPORT void VpSzMantissa(Real *a,char *psz);
145
202
  VP_EXPORT int VpToSpecialString(Real *a,char *psz,int fPlus);
146
- VP_EXPORT void VpToString(Real *a,char *psz,int fFmt,int fPlus);
147
- VP_EXPORT void VpToFString(Real *a,char *psz,int fFmt,int fPlus);
148
- VP_EXPORT int VpCtoV(Real *a,const char *int_chr,U_LONG ni,const char *frac,U_LONG nf,const char *exp_chr,U_LONG ne);
149
- VP_EXPORT int VpVtoD(double *d,S_LONG *e,Real *m);
203
+ VP_EXPORT void VpToString(Real *a, char *psz, size_t fFmt, int fPlus);
204
+ VP_EXPORT void VpToFString(Real *a, char *psz, size_t fFmt, int fPlus);
205
+ VP_EXPORT int VpCtoV(Real *a, const char *int_chr, size_t ni, const char *frac, size_t nf, const char *exp_chr, size_t ne);
206
+ VP_EXPORT int VpVtoD(double *d, SIGNED_VALUE *e, Real *m);
150
207
  VP_EXPORT void VpDtoV(Real *m,double d);
151
- #if 0
208
+ #if 0 /* unused */
152
209
  VP_EXPORT void VpItoV(Real *m,S_INT ival);
153
210
  #endif
154
211
  VP_EXPORT int VpSqrt(Real *y,Real *x);
155
- VP_EXPORT int VpActiveRound(Real *y,Real *x,int f,int il);
156
- VP_EXPORT int VpMidRound(Real *y, int f, int nf);
157
- VP_EXPORT int VpLeftRound(Real *y, int f, int nf);
158
- VP_EXPORT void VpFrac(Real *y,Real *x);
159
- VP_EXPORT int VpPower(Real *y,Real *x,S_INT n);
212
+ VP_EXPORT int VpActiveRound(Real *y, Real *x, unsigned short f, ssize_t il);
213
+ VP_EXPORT int VpMidRound(Real *y, unsigned short f, ssize_t nf);
214
+ VP_EXPORT int VpLeftRound(Real *y, unsigned short f, ssize_t nf);
215
+ VP_EXPORT void VpFrac(Real *y, Real *x);
216
+ VP_EXPORT int VpPower(Real *y, Real *x, SIGNED_VALUE n);
160
217
 
161
218
  /* VP constants */
162
219
  VP_EXPORT Real *VpOne(void);
163
220
 
164
- /*
221
+ /*
165
222
  * ------------------
166
223
  * MACRO definitions.
167
224
  * ------------------
@@ -179,12 +236,12 @@ VP_EXPORT Real *VpOne(void);
179
236
  /* VpGetSign(a) returns 1,-1 if a>0,a<0 respectively */
180
237
  #define VpGetSign(a) (((a)->sign>0)?1:(-1))
181
238
  /* Change sign of a to a>0,a<0 if s = 1,-1 respectively */
182
- #define VpChangeSign(a,s) {if((s)>0) (a)->sign=(short)Abs((S_LONG)(a)->sign);else (a)->sign=-(short)Abs((S_LONG)(a)->sign);}
239
+ #define VpChangeSign(a,s) {if((s)>0) (a)->sign=(short)Abs((ssize_t)(a)->sign);else (a)->sign=-(short)Abs((ssize_t)(a)->sign);}
183
240
  /* Sets sign of a to a>0,a<0 if s = 1,-1 respectively */
184
241
  #define VpSetSign(a,s) {if((s)>0) (a)->sign=(short)VP_SIGN_POSITIVE_FINITE;else (a)->sign=(short)VP_SIGN_NEGATIVE_FINITE;}
185
242
 
186
243
  /* 1 */
187
- #define VpSetOne(a) {(a)->frac[0]=(a)->exponent=(a)->Prec=1;(a)->sign=VP_SIGN_POSITIVE_FINITE;}
244
+ #define VpSetOne(a) {(a)->Prec=(a)->exponent=(a)->frac[0]=1;(a)->sign=VP_SIGN_POSITIVE_FINITE;}
188
245
 
189
246
  /* ZEROs */
190
247
  #define VpIsPosZero(a) ((a)->sign==VP_SIGN_POSITIVE_ZERO)
@@ -209,12 +266,12 @@ VP_EXPORT Real *VpOne(void);
209
266
  #define VpHasVal(a) (a->frac[0])
210
267
  #define VpIsOne(a) ((a->Prec==1)&&(a->frac[0]==1)&&(a->exponent==1))
211
268
  #define VpExponent(a) (a->exponent)
212
- #ifdef _DEBUG
269
+ #ifdef BIGDECIMAL_DEBUG
213
270
  int VpVarCheck(Real * v);
214
- VP_EXPORT int VPrint(FILE *fp,char *cntl_chr,Real *a);
215
- #endif /* _DEBUG */
271
+ VP_EXPORT int VPrint(FILE *fp,const char *cntl_chr,Real *a);
272
+ #endif /* BIGDECIMAL_DEBUG */
216
273
 
217
274
  #if defined(__cplusplus)
218
275
  } /* extern "C" { */
219
276
  #endif
220
- #endif /* ____BIG_DECIMAL__H____ */
277
+ #endif /* RUBY_BIG_DECIMAL_H */
@@ -21,18 +21,20 @@
21
21
  # fx is f.values(x).
22
22
  #
23
23
  module Jacobian
24
+ module_function
25
+
24
26
  #--
25
27
  def isEqual(a,b,zero=0.0,e=1.0e-8)
26
28
  aa = a.abs
27
29
  bb = b.abs
28
30
  if aa == zero && bb == zero then
29
- true
31
+ true
30
32
  else
31
- if ((a-b)/(aa+bb)).abs < e then
32
- true
33
- else
34
- false
35
- end
33
+ if ((a-b)/(aa+bb)).abs < e then
34
+ true
35
+ else
36
+ false
37
+ end
36
38
  end
37
39
  end
38
40
  #++
@@ -52,17 +54,17 @@ module Jacobian
52
54
  s = f.zero
53
55
  deriv = []
54
56
  if(nRetry>100) then
55
- raize "Singular Jacobian matrix. No change at x[" + i.to_s + "]"
57
+ raise "Singular Jacobian matrix. No change at x[" + i.to_s + "]"
56
58
  end
57
59
  dx = dx*f.two
58
60
  x[i] += dx
59
61
  fxNew = f.values(x)
60
62
  for j in 0...n do
61
63
  if !isEqual(fxNew[j],fx[j],f.zero,f.eps) then
62
- ok += 1
63
- deriv <<= (fxNew[j]-fx[j])/dx
64
+ ok += 1
65
+ deriv <<= (fxNew[j]-fx[j])/dx
64
66
  else
65
- deriv <<= f.zero
67
+ deriv <<= f.zero
66
68
  end
67
69
  end
68
70
  x[i] = xSave
@@ -77,7 +79,7 @@ module Jacobian
77
79
  for i in 0...n do
78
80
  df = dfdxi(f,fx,x,i)
79
81
  for j in 0...n do
80
- dfdx[j*n+i] = df[j]
82
+ dfdx[j*n+i] = df[j]
81
83
  end
82
84
  end
83
85
  dfdx
@@ -1,7 +1,11 @@
1
+ require 'bigdecimal'
2
+
1
3
  #
2
4
  # Solves a*x = b for x, using LU decomposition.
3
5
  #
4
6
  module LUSolve
7
+ module_function
8
+
5
9
  # Performs LU decomposition of the n by n matrix a.
6
10
  def ludecomp(a,n,zero=0,one=1)
7
11
  prec = BigDecimal.limit(nil)
@@ -12,24 +16,24 @@ module LUSolve
12
16
  nrmrow = zero
13
17
  ixn = i*n
14
18
  for j in 0...n do
15
- biggst = a[ixn+j].abs
16
- nrmrow = biggst if biggst>nrmrow
19
+ biggst = a[ixn+j].abs
20
+ nrmrow = biggst if biggst>nrmrow
17
21
  end
18
22
  if nrmrow>zero then
19
- scales <<= one.div(nrmrow,prec)
20
- else
21
- raise "Singular matrix"
23
+ scales <<= one.div(nrmrow,prec)
24
+ else
25
+ raise "Singular matrix"
22
26
  end
23
27
  end
24
28
  n1 = n - 1
25
29
  for k in 0...n1 do # Gaussian elimination with partial pivoting.
26
30
  biggst = zero;
27
31
  for i in k...n do
28
- size = a[ps[i]*n+k].abs*scales[ps[i]]
29
- if size>biggst then
30
- biggst = size
31
- pividx = i
32
- end
32
+ size = a[ps[i]*n+k].abs*scales[ps[i]]
33
+ if size>biggst then
34
+ biggst = size
35
+ pividx = i
36
+ end
33
37
  end
34
38
  raise "Singular matrix" if biggst<=zero
35
39
  if pividx!=k then
@@ -42,10 +46,10 @@ module LUSolve
42
46
  psin = ps[i]*n
43
47
  a[psin+k] = mult = a[psin+k].div(pivot,prec)
44
48
  if mult!=zero then
45
- pskn = ps[k]*n
46
- for j in (k+1)...n do
47
- a[psin+j] -= mult.mult(a[pskn+j],prec)
48
- end
49
+ pskn = ps[k]*n
50
+ for j in (k+1)...n do
51
+ a[psin+j] -= mult.mult(a[pskn+j],prec)
52
+ end
49
53
  end
50
54
  end
51
55
  end
@@ -72,12 +76,12 @@ module LUSolve
72
76
  x <<= b[ps[i]] - dot
73
77
  end
74
78
  (n-1).downto(0) do |i|
75
- dot = zero
76
- psin = ps[i]*n
77
- for j in (i+1)...n do
78
- dot = a[psin+j].mult(x[j],prec) + dot
79
- end
80
- x[i] = (x[i]-dot).div(a[psin+i],prec)
79
+ dot = zero
80
+ psin = ps[i]*n
81
+ for j in (i+1)...n do
82
+ dot = a[psin+j].mult(x[j],prec) + dot
83
+ end
84
+ x[i] = (x[i]-dot).div(a[psin+i],prec)
81
85
  end
82
86
  x
83
87
  end
@@ -1,3 +1,5 @@
1
+ require 'bigdecimal'
2
+
1
3
  #
2
4
  #--
3
5
  # Contents:
@@ -5,7 +7,6 @@
5
7
  # sin (x, prec)
6
8
  # cos (x, prec)
7
9
  # atan(x, prec) Note: |x|<1, x=0.9999 may not converge.
8
- # exp (x, prec)
9
10
  # log (x, prec)
10
11
  # PI (prec)
11
12
  # E (prec) == exp(1.0,prec)
@@ -29,11 +30,12 @@
29
30
  # puts sin(a,100) # -> 0.10000000000000000000......E1
30
31
  #
31
32
  module BigMath
33
+ module_function
32
34
 
33
- # Computes the square root of x to the specified number of digits of
35
+ # Computes the square root of x to the specified number of digits of
34
36
  # precision.
35
37
  #
36
- # BigDecimal.new('2').sqrt(16).to_s
38
+ # BigDecimal.new('2').sqrt(16).to_s
37
39
  # -> "0.14142135623730950488016887242096975E1"
38
40
  #
39
41
  def sqrt(x,prec)
@@ -49,6 +51,14 @@ module BigMath
49
51
  n = prec + BigDecimal.double_fig
50
52
  one = BigDecimal("1")
51
53
  two = BigDecimal("2")
54
+ x = -x if neg = x < 0
55
+ if x > (twopi = two * BigMath.PI(prec))
56
+ if x > 30
57
+ x %= twopi
58
+ else
59
+ x -= twopi while x > twopi
60
+ end
61
+ end
52
62
  x1 = x
53
63
  x2 = x.mult(x,n)
54
64
  sign = 1
@@ -65,7 +75,7 @@ module BigMath
65
75
  d = sign * x1.div(z,m)
66
76
  y += d
67
77
  end
68
- y
78
+ neg ? -y : y
69
79
  end
70
80
 
71
81
  # Computes the cosine of x to the specified number of digits of precision.
@@ -77,6 +87,14 @@ module BigMath
77
87
  n = prec + BigDecimal.double_fig
78
88
  one = BigDecimal("1")
79
89
  two = BigDecimal("2")
90
+ x = -x if x < 0
91
+ if x > (twopi = two * BigMath.PI(prec))
92
+ if x > 30
93
+ x %= twopi
94
+ else
95
+ x -= twopi while x > twopi
96
+ end
97
+ end
80
98
  x1 = one
81
99
  x2 = x.mult(x,n)
82
100
  sign = 1
@@ -98,12 +116,16 @@ module BigMath
98
116
 
99
117
  # Computes the arctangent of x to the specified number of digits of precision.
100
118
  #
101
- # If x is infinite or NaN, returns NaN.
102
- # Raises an argument error if x > 1.
119
+ # If x is NaN, returns NaN.
103
120
  def atan(x, prec)
104
121
  raise ArgumentError, "Zero or negative precision for atan" if prec <= 0
105
- return BigDecimal("NaN") if x.infinite? || x.nan?
106
- raise ArgumentError, "x.abs must be less than 1.0" if x.abs>=1
122
+ return BigDecimal("NaN") if x.nan?
123
+ pi = PI(prec)
124
+ x = -x if neg = x < 0
125
+ return pi.div(neg ? -2 : 2, prec) if x.infinite?
126
+ return pi / (neg ? -4 : 4) if x.round(prec) == 1
127
+ x = BigDecimal("1").div(x, prec) if inv = x > 1
128
+ x = (-1 + sqrt(1 + x**2, prec))/x if dbl = x > 0.5
107
129
  n = prec + BigDecimal.double_fig
108
130
  y = x
109
131
  d = y
@@ -117,63 +139,12 @@ module BigMath
117
139
  y += d
118
140
  r += 2
119
141
  end
142
+ y *= 2 if dbl
143
+ y = pi / 2 - y if inv
144
+ y = -y if neg
120
145
  y
121
146
  end
122
147
 
123
- # Computes the value of e (the base of natural logarithms) raised to the
124
- # power of x, to the specified number of digits of precision.
125
- #
126
- # If x is infinite or NaN, returns NaN.
127
- #
128
- # BigMath::exp(BigDecimal.new('1'), 10).to_s
129
- # -> "0.271828182845904523536028752390026306410273E1"
130
- def exp(x, prec)
131
- raise ArgumentError, "Zero or negative precision for exp" if prec <= 0
132
- return BigDecimal("NaN") if x.infinite? || x.nan?
133
- n = prec + BigDecimal.double_fig
134
- one = BigDecimal("1")
135
- x1 = one
136
- y = one
137
- d = y
138
- z = one
139
- i = 0
140
- while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
141
- m = BigDecimal.double_fig if m < BigDecimal.double_fig
142
- x1 = x1.mult(x,n)
143
- i += 1
144
- z *= i
145
- d = x1.div(z,m)
146
- y += d
147
- end
148
- y
149
- end
150
-
151
- # Computes the natural logarithm of x to the specified number of digits
152
- # of precision.
153
- #
154
- # Returns x if x is infinite or NaN.
155
- #
156
- def log(x, prec)
157
- raise ArgumentError, "Zero or negative argument for log" if x <= 0 || prec <= 0
158
- return x if x.infinite? || x.nan?
159
- one = BigDecimal("1")
160
- two = BigDecimal("2")
161
- n = prec + BigDecimal.double_fig
162
- x = (x - one).div(x + one,n)
163
- x2 = x.mult(x,n)
164
- y = x
165
- d = y
166
- i = one
167
- while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
168
- m = BigDecimal.double_fig if m < BigDecimal.double_fig
169
- x = x2.mult(x,n)
170
- i += two
171
- d = x.div(i,m)
172
- y += d
173
- end
174
- y*two
175
- end
176
-
177
148
  # Computes the value of pi to the specified number of digits of precision.
178
149
  def PI(prec)
179
150
  raise ArgumentError, "Zero or negative argument for PI" if prec <= 0