rubyml 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/lib/rubyml.rb +85 -0
- data/lib/rubyml/linear_regression.rb +34 -0
- data/lib/rubyml/perceptron.rb +64 -0
- data/lib/rubyml/tools.rb +104 -0
- metadata +80 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 3be8f5b08589ad4973b15a9c83bc11d6522504c5
|
4
|
+
data.tar.gz: 9f1a58d71e2932417c07634b4dd4f74a2ce3dc1c
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 5b9e3d4b883391569c5006283d426fa5282c7f19b66095734186c6ddbd9ac050a17339579f213c15db9b49d461d8984fee55c1b41756662456b29a3b218c2237
|
7
|
+
data.tar.gz: 28e7a2562e961ad518e6e15b6eece272dc3d156b1dff4cf833bf535de3dc7b9ac78c8af2311632376f58a7d1c780b0aa02226151438eb04a2506b287da12299c
|
data/lib/rubyml.rb
ADDED
@@ -0,0 +1,85 @@
|
|
1
|
+
require 'rubyml/tools'
|
2
|
+
require 'rubyml/linear_regression'
|
3
|
+
require 'rubyml/perceptron'
|
4
|
+
|
5
|
+
# Monkey patching the Matrix class to
|
6
|
+
# implement matrix splicing.
|
7
|
+
class Matrix
|
8
|
+
alias old_element element
|
9
|
+
def [](i, j)
|
10
|
+
if i.class == Fixnum && j == ':'
|
11
|
+
row(i)
|
12
|
+
elsif j.class == Fixnum && i == ':'
|
13
|
+
column(j)
|
14
|
+
else
|
15
|
+
redirect(i, j)
|
16
|
+
end
|
17
|
+
end
|
18
|
+
|
19
|
+
def redirect(i, j)
|
20
|
+
if i.class == String && j.class == String
|
21
|
+
redirect2(i, j)
|
22
|
+
else
|
23
|
+
old_element(i, j)
|
24
|
+
end
|
25
|
+
end
|
26
|
+
|
27
|
+
def redirect2(i, j)
|
28
|
+
if i.include?(':') || j.include?(':')
|
29
|
+
redirect3(i, j)
|
30
|
+
else
|
31
|
+
old_element(i, j)
|
32
|
+
end
|
33
|
+
end
|
34
|
+
|
35
|
+
def redirect3(i, j)
|
36
|
+
rs, re = i.split(':').map { |e| e == '' ? 0 : Integer(e) }
|
37
|
+
cs, ce = j.split(':').map { |e| e == '' ? 0 : Integer(e) }
|
38
|
+
redirect4(rs, re, cs, ce, [i, j])
|
39
|
+
end
|
40
|
+
|
41
|
+
def redirect4(rs, re, cs, ce, orig)
|
42
|
+
if orig[0] == ':'
|
43
|
+
rs = 0
|
44
|
+
re = row_count
|
45
|
+
end
|
46
|
+
if orig[1] == ':'
|
47
|
+
cs = 0
|
48
|
+
ce = column_count
|
49
|
+
end
|
50
|
+
redirect5(rs, re, cs, ce, orig)
|
51
|
+
end
|
52
|
+
|
53
|
+
def redirect5(rs, re, cs, ce, orig)
|
54
|
+
re = rs + 1 unless orig[0].include?(':')
|
55
|
+
ce = cs + 1 unless orig[1].include?(':')
|
56
|
+
redirect6(rs, re, cs, ce)
|
57
|
+
end
|
58
|
+
|
59
|
+
def redirect6(rs, re, cs, ce)
|
60
|
+
rs = rs.nil? ? 0 : rs
|
61
|
+
cs = cs.nil? ? 0 : cs
|
62
|
+
re = re.nil? ? row_count : re
|
63
|
+
ce = ce.nil? ? column_count : ce
|
64
|
+
redirect7(rs, re, cs, ce)
|
65
|
+
end
|
66
|
+
|
67
|
+
def redirect7(rs, re, cs, ce)
|
68
|
+
return Matrix.rows([]) if rs >= re && cs >= ce
|
69
|
+
return Matrix.rows([[]] * (re - rs)) if cs == ce
|
70
|
+
return Matrix.columns([[]] * (ce - cs)) if re == rs
|
71
|
+
redirect8(rs, re, cs, ce)
|
72
|
+
end
|
73
|
+
|
74
|
+
def redirect8(rs, re, cs, ce)
|
75
|
+
rv = row_vectors[rs..re - 1].map(&:to_a)
|
76
|
+
nrv = rv.map { |e| e[cs..ce - 1] }
|
77
|
+
Matrix.rows(nrv)
|
78
|
+
end
|
79
|
+
end
|
80
|
+
|
81
|
+
# A general class to allow access to
|
82
|
+
# data manipulation tools.
|
83
|
+
class RubyML
|
84
|
+
include Tools::DataMethods
|
85
|
+
end
|
@@ -0,0 +1,34 @@
|
|
1
|
+
require 'rubyml/tools'
|
2
|
+
|
3
|
+
# The linear regression class with
|
4
|
+
# customizable number of folds for
|
5
|
+
# K-fold cross validation.
|
6
|
+
class LinearRegression
|
7
|
+
include Tools::DataMethods
|
8
|
+
include Tools::ClassifierMethods
|
9
|
+
attr_reader :theta, :accuracy, :precision, :folds
|
10
|
+
|
11
|
+
def initialize(precision = 3, folds = 5)
|
12
|
+
@precision = precision
|
13
|
+
@epsilon = 2.0
|
14
|
+
@folds = folds
|
15
|
+
end
|
16
|
+
|
17
|
+
def fit(x, y)
|
18
|
+
x_mat = bias_trick(x)
|
19
|
+
@theta = ((x_mat.t * x_mat).inv * x_mat.t) * y
|
20
|
+
@theta = @theta.collect { |e| e.round(@precision) }
|
21
|
+
end
|
22
|
+
|
23
|
+
def predict(x)
|
24
|
+
x_mat = bias_trick(x)
|
25
|
+
(x_mat * @theta).collect { |e| e.round(@precision) }
|
26
|
+
end
|
27
|
+
|
28
|
+
def visualize(x, y)
|
29
|
+
x = mat_to_array(x)
|
30
|
+
y = mat_to_array(y)
|
31
|
+
theta = mat_to_array(@theta)
|
32
|
+
plot_function(x, y, theta)
|
33
|
+
end
|
34
|
+
end
|
@@ -0,0 +1,64 @@
|
|
1
|
+
require 'rubyml/tools'
|
2
|
+
|
3
|
+
# The multiclass perceptron class with
|
4
|
+
# customizable number of iterations and folds.
|
5
|
+
class Perceptron
|
6
|
+
include Tools::DataMethods
|
7
|
+
include Tools::ClassifierMethods
|
8
|
+
|
9
|
+
attr_reader :iterations, :folds, :labels, :weights
|
10
|
+
|
11
|
+
def initialize(iterations = 100, folds = 5)
|
12
|
+
@iterations = iterations
|
13
|
+
@epsilon = nil
|
14
|
+
@folds = folds
|
15
|
+
@labels = []
|
16
|
+
@weights = {}
|
17
|
+
end
|
18
|
+
|
19
|
+
def setup_weights(y)
|
20
|
+
@labels = mat_to_array(y).uniq { |e| e }
|
21
|
+
@labels.each { |lbl| @weights[lbl] = Hash.new(0) }
|
22
|
+
end
|
23
|
+
|
24
|
+
def update_weights(guess, real, c, w)
|
25
|
+
@weights[guess][c] -= w
|
26
|
+
@weights[real][c] += w
|
27
|
+
end
|
28
|
+
|
29
|
+
def fit(x, y, cs = true)
|
30
|
+
cold_start if cs
|
31
|
+
setup_weights(y)
|
32
|
+
@iterations.times do
|
33
|
+
x.row_count.times do |r|
|
34
|
+
clbl = get_best_guess(x, r)
|
35
|
+
next unless y[r, 0] != clbl
|
36
|
+
x.column_count.times { |c| update_weights(clbl, y[r, 0], c, x[r, c]) }
|
37
|
+
end
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
def predict(x)
|
42
|
+
preds = []
|
43
|
+
x.row_count.times { |r| preds << get_best_guess(x, r) }
|
44
|
+
Matrix.columns([preds])
|
45
|
+
end
|
46
|
+
|
47
|
+
def get_best_guess(x, r)
|
48
|
+
clbl, cmax = nil
|
49
|
+
@labels.each do |lbl|
|
50
|
+
csum = 0.0
|
51
|
+
x.column_count.times { |c| csum += @weights[lbl][c] * x[r, c] }
|
52
|
+
if cmax.nil? || cmax <= csum
|
53
|
+
cmax = csum
|
54
|
+
clbl = lbl
|
55
|
+
end
|
56
|
+
end
|
57
|
+
clbl
|
58
|
+
end
|
59
|
+
|
60
|
+
def cold_start
|
61
|
+
@labels = []
|
62
|
+
@weights = {}
|
63
|
+
end
|
64
|
+
end
|
data/lib/rubyml/tools.rb
ADDED
@@ -0,0 +1,104 @@
|
|
1
|
+
require 'matrix'
|
2
|
+
require 'gruff'
|
3
|
+
|
4
|
+
module Tools
|
5
|
+
# Methods for loading and manipulating data.
|
6
|
+
module DataMethods
|
7
|
+
def load_data(file, text = false)
|
8
|
+
mat = []
|
9
|
+
File.foreach(file) do |f|
|
10
|
+
mat << f.split(',').map { |i| text ? String(i).chomp : Float(i) }
|
11
|
+
end
|
12
|
+
Matrix.rows(mat)
|
13
|
+
end
|
14
|
+
|
15
|
+
def separate_data(data)
|
16
|
+
col_vec = data.column_vectors
|
17
|
+
y = Matrix.columns([col_vec.pop])
|
18
|
+
x = Matrix.columns(col_vec).collect { |e| Float(e) }
|
19
|
+
[x, y]
|
20
|
+
end
|
21
|
+
|
22
|
+
def mat_to_array(data)
|
23
|
+
arr = []
|
24
|
+
data.each { |e| arr << e }
|
25
|
+
arr
|
26
|
+
end
|
27
|
+
|
28
|
+
def bias_trick(x)
|
29
|
+
ones = Matrix.columns([[1] * x.row_count])
|
30
|
+
x_bias = ones.hstack(x)
|
31
|
+
x_bias
|
32
|
+
end
|
33
|
+
|
34
|
+
def plot_function(px, py, theta)
|
35
|
+
fx = []
|
36
|
+
fy = []
|
37
|
+
1000.times do |i|
|
38
|
+
fx << (px[0] + (px[-1] - px[0]) * Float(i) / 1000.0)
|
39
|
+
fy << (fx[-1] * theta[1] + theta[0])
|
40
|
+
end
|
41
|
+
plot(fx, fy, px, py)
|
42
|
+
end
|
43
|
+
|
44
|
+
def plot(fx, fy, px, py)
|
45
|
+
g = Gruff::Scatter.new(800)
|
46
|
+
g.data(:data, px, py)
|
47
|
+
g.data(:fit, fx, fy)
|
48
|
+
g.write('scatter.png')
|
49
|
+
end
|
50
|
+
end
|
51
|
+
|
52
|
+
# Methods to test classifier accuracy via
|
53
|
+
# K-fold cross validation.
|
54
|
+
module ClassifierMethods
|
55
|
+
def generate_folds(x, y, num, folds)
|
56
|
+
sin = String(num * (x.row_count / folds))
|
57
|
+
ein = String([(num + 1) * (x.row_count / folds), x.row_count].min)
|
58
|
+
train = generate_train_set(x, y, sin, ein)
|
59
|
+
test = generate_test_set(x, y, sin, ein)
|
60
|
+
train + test
|
61
|
+
end
|
62
|
+
|
63
|
+
def generate_train_set(x, y, sin, ein)
|
64
|
+
xtrain = x[':' + sin, ':'].vstack(x[ein + ':', ':'])
|
65
|
+
ytrain = y[':' + sin, ':'].vstack(y[ein + ':', ':'])
|
66
|
+
[xtrain, ytrain]
|
67
|
+
end
|
68
|
+
|
69
|
+
def generate_test_set(x, y, sin, ein)
|
70
|
+
xtest = x[sin + ':' + ein, ':']
|
71
|
+
ytest = y[sin + ':' + ein, ':']
|
72
|
+
[xtest, ytest]
|
73
|
+
end
|
74
|
+
|
75
|
+
def handle_epsilon(ypred, ytest, r)
|
76
|
+
if @epsilon
|
77
|
+
((ypred[r, 0] - ytest[r, 0]).abs < @epsilon ? 1.0 : 0.0)
|
78
|
+
else
|
79
|
+
(ypred[r, 0] == ytest[r, 0] ? 1.0 : 0.0)
|
80
|
+
end
|
81
|
+
end
|
82
|
+
|
83
|
+
def correct_count(ypred, ytest, c, t, n)
|
84
|
+
count = 0.0
|
85
|
+
ypred.row_count.times do |r|
|
86
|
+
count += handle_epsilon(ypred, ytest, r)
|
87
|
+
end
|
88
|
+
p "Fold #{n} Accuracy: #{(count / ypred.row_count * 100.0).round(3)}%"
|
89
|
+
[c + count, t + ypred.row_count]
|
90
|
+
end
|
91
|
+
|
92
|
+
def training_accuracy(x, y)
|
93
|
+
correct = 0.0
|
94
|
+
total = 0.0
|
95
|
+
@folds.times do |n|
|
96
|
+
xtrain, ytrain, xtest, ytest = generate_folds(x, y, n, @folds)
|
97
|
+
fit(xtrain, ytrain)
|
98
|
+
ypred = predict(xtest)
|
99
|
+
correct, total = correct_count(ypred, ytest, correct, total, n)
|
100
|
+
end
|
101
|
+
(correct / total).round(5)
|
102
|
+
end
|
103
|
+
end
|
104
|
+
end
|
metadata
ADDED
@@ -0,0 +1,80 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rubyml
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Palimar Rao
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2016-04-29 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: gruff
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - '='
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.6.0
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - '='
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.6.0
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: coveralls
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - '='
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: 0.8.13
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - '='
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: 0.8.13
|
41
|
+
description: |-
|
42
|
+
This is a simple machine learning library
|
43
|
+
written in Ruby. It provides implementations of linear regression
|
44
|
+
and multiclass perceptron and visualization and validation methods
|
45
|
+
to verify results. Also included are helper methods to work with
|
46
|
+
training and testing data.
|
47
|
+
email:
|
48
|
+
executables: []
|
49
|
+
extensions: []
|
50
|
+
extra_rdoc_files: []
|
51
|
+
files:
|
52
|
+
- lib/rubyml.rb
|
53
|
+
- lib/rubyml/linear_regression.rb
|
54
|
+
- lib/rubyml/perceptron.rb
|
55
|
+
- lib/rubyml/tools.rb
|
56
|
+
homepage:
|
57
|
+
licenses:
|
58
|
+
- MIT
|
59
|
+
metadata: {}
|
60
|
+
post_install_message:
|
61
|
+
rdoc_options: []
|
62
|
+
require_paths:
|
63
|
+
- lib
|
64
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - ">="
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '0'
|
69
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
70
|
+
requirements:
|
71
|
+
- - ">="
|
72
|
+
- !ruby/object:Gem::Version
|
73
|
+
version: '0'
|
74
|
+
requirements: []
|
75
|
+
rubyforge_project:
|
76
|
+
rubygems_version: 2.4.8
|
77
|
+
signing_key:
|
78
|
+
specification_version: 4
|
79
|
+
summary: A simple Ruby machine learning library.
|
80
|
+
test_files: []
|