ruby_scientist_and_graphics 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: 8614de7395cbeab432fe7481fd46dc03099915f97e88e8396d089111a51f9fd8
4
+ data.tar.gz: ea200fdc2b3099ff2bc6b4652c4d0869e0819eb1689dc87a77795c44a3a811e8
5
+ SHA512:
6
+ metadata.gz: eda95e7acb3db61c1f4ad914b0ce319ba2e2370c48ee74f9d297283f540699cad28c97cdb9b24c893528585bbb54d5ae46fb0b060487e8b67396ef7cd9969932
7
+ data.tar.gz: 40db38c0e09c3d441c0e8373362a6f9dd27e30b77a6736db7fd480c443c8d194e015d690e70c9110da07ec19c25ca5130ce8182d74166e0bf2ccabb0cb093eb1
data/CHANGELOG.md ADDED
@@ -0,0 +1,5 @@
1
+ ## [Unreleased]
2
+
3
+ ## [0.1.0] - 2025-08-09
4
+
5
+ - Initial release
@@ -0,0 +1,132 @@
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ We as members, contributors, and leaders pledge to make participation in our
6
+ community a harassment-free experience for everyone, regardless of age, body
7
+ size, visible or invisible disability, ethnicity, sex characteristics, gender
8
+ identity and expression, level of experience, education, socio-economic status,
9
+ nationality, personal appearance, race, caste, color, religion, or sexual
10
+ identity and orientation.
11
+
12
+ We pledge to act and interact in ways that contribute to an open, welcoming,
13
+ diverse, inclusive, and healthy community.
14
+
15
+ ## Our Standards
16
+
17
+ Examples of behavior that contributes to a positive environment for our
18
+ community include:
19
+
20
+ * Demonstrating empathy and kindness toward other people
21
+ * Being respectful of differing opinions, viewpoints, and experiences
22
+ * Giving and gracefully accepting constructive feedback
23
+ * Accepting responsibility and apologizing to those affected by our mistakes,
24
+ and learning from the experience
25
+ * Focusing on what is best not just for us as individuals, but for the overall
26
+ community
27
+
28
+ Examples of unacceptable behavior include:
29
+
30
+ * The use of sexualized language or imagery, and sexual attention or advances of
31
+ any kind
32
+ * Trolling, insulting or derogatory comments, and personal or political attacks
33
+ * Public or private harassment
34
+ * Publishing others' private information, such as a physical or email address,
35
+ without their explicit permission
36
+ * Other conduct which could reasonably be considered inappropriate in a
37
+ professional setting
38
+
39
+ ## Enforcement Responsibilities
40
+
41
+ Community leaders are responsible for clarifying and enforcing our standards of
42
+ acceptable behavior and will take appropriate and fair corrective action in
43
+ response to any behavior that they deem inappropriate, threatening, offensive,
44
+ or harmful.
45
+
46
+ Community leaders have the right and responsibility to remove, edit, or reject
47
+ comments, commits, code, wiki edits, issues, and other contributions that are
48
+ not aligned to this Code of Conduct, and will communicate reasons for moderation
49
+ decisions when appropriate.
50
+
51
+ ## Scope
52
+
53
+ This Code of Conduct applies within all community spaces, and also applies when
54
+ an individual is officially representing the community in public spaces.
55
+ Examples of representing our community include using an official email address,
56
+ posting via an official social media account, or acting as an appointed
57
+ representative at an online or offline event.
58
+
59
+ ## Enforcement
60
+
61
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
62
+ reported to the community leaders responsible for enforcement at
63
+ [INSERT CONTACT METHOD].
64
+ All complaints will be reviewed and investigated promptly and fairly.
65
+
66
+ All community leaders are obligated to respect the privacy and security of the
67
+ reporter of any incident.
68
+
69
+ ## Enforcement Guidelines
70
+
71
+ Community leaders will follow these Community Impact Guidelines in determining
72
+ the consequences for any action they deem in violation of this Code of Conduct:
73
+
74
+ ### 1. Correction
75
+
76
+ **Community Impact**: Use of inappropriate language or other behavior deemed
77
+ unprofessional or unwelcome in the community.
78
+
79
+ **Consequence**: A private, written warning from community leaders, providing
80
+ clarity around the nature of the violation and an explanation of why the
81
+ behavior was inappropriate. A public apology may be requested.
82
+
83
+ ### 2. Warning
84
+
85
+ **Community Impact**: A violation through a single incident or series of
86
+ actions.
87
+
88
+ **Consequence**: A warning with consequences for continued behavior. No
89
+ interaction with the people involved, including unsolicited interaction with
90
+ those enforcing the Code of Conduct, for a specified period of time. This
91
+ includes avoiding interactions in community spaces as well as external channels
92
+ like social media. Violating these terms may lead to a temporary or permanent
93
+ ban.
94
+
95
+ ### 3. Temporary Ban
96
+
97
+ **Community Impact**: A serious violation of community standards, including
98
+ sustained inappropriate behavior.
99
+
100
+ **Consequence**: A temporary ban from any sort of interaction or public
101
+ communication with the community for a specified period of time. No public or
102
+ private interaction with the people involved, including unsolicited interaction
103
+ with those enforcing the Code of Conduct, is allowed during this period.
104
+ Violating these terms may lead to a permanent ban.
105
+
106
+ ### 4. Permanent Ban
107
+
108
+ **Community Impact**: Demonstrating a pattern of violation of community
109
+ standards, including sustained inappropriate behavior, harassment of an
110
+ individual, or aggression toward or disparagement of classes of individuals.
111
+
112
+ **Consequence**: A permanent ban from any sort of public interaction within the
113
+ community.
114
+
115
+ ## Attribution
116
+
117
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage],
118
+ version 2.1, available at
119
+ [https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
120
+
121
+ Community Impact Guidelines were inspired by
122
+ [Mozilla's code of conduct enforcement ladder][Mozilla CoC].
123
+
124
+ For answers to common questions about this code of conduct, see the FAQ at
125
+ [https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
126
+ [https://www.contributor-covenant.org/translations][translations].
127
+
128
+ [homepage]: https://www.contributor-covenant.org
129
+ [v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
130
+ [Mozilla CoC]: https://github.com/mozilla/diversity
131
+ [FAQ]: https://www.contributor-covenant.org/faq
132
+ [translations]: https://www.contributor-covenant.org/translations
data/LICENSE.txt ADDED
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2025 jtvaldivia
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,142 @@
1
+ # RubyScientistAndGraphics
2
+
3
+ Lightweight data science toolkit for Ruby: load/clean data, get quick stats, plot charts, and train simple ML models — all in one gem and with zero heavy dependencies.
4
+
5
+ It ships with a minimal in-house DataFrame (no Daru required), Gruff for plotting, and tiny implementations for statistics and ML (linear regression and k-means).
6
+
7
+ ## Features
8
+
9
+ - Load and save CSV/JSON, plus save/load a simple “project” (columns + rows).
10
+ - Data cleaning helpers: remove columns, fill missing values, limit rows.
11
+ - Quick stats: per-column mean/min/max and Pearson correlation.
12
+ - Plotting: bar and line charts via Gruff.
13
+ - ML: linear regression (least squares) and k-means clustering.
14
+
15
+ ## Installation
16
+
17
+ Clone and use directly, or add to your Gemfile from a git source until published to RubyGems:
18
+
19
+ ```ruby
20
+ gem 'ruby_scientist_and_graphics', git: 'https://github.com/your-user/ruby_scientist_and_graphics'
21
+ ```
22
+
23
+ Then install:
24
+
25
+ ```bash
26
+ bundle install
27
+ ```
28
+
29
+ Ruby 3.2+ is recommended.
30
+
31
+ ## Quick start
32
+
33
+ Run the demo to see the workflow end-to-end:
34
+
35
+ ```bash
36
+ ruby demo.rb
37
+ ```
38
+
39
+ Or use the API:
40
+
41
+ ```ruby
42
+ require_relative 'lib/ruby_scientist_and_graphics'
43
+
44
+ interface = RubyScientistAndGraphics::Interface.new
45
+
46
+ # 1) Load and clean
47
+ interface.load('test/fixtures/sample.csv', remove_columns: [:comentarios], limit: 5)
48
+ interface.clean(missing: 0)
49
+
50
+ # 2) Stats
51
+ interface.analyze
52
+
53
+ # 3) Plot
54
+ interface.graph(type: :bar, x: :mes, y: :ventas, file: 'output.png')
55
+
56
+ # 4) Train a model
57
+ model = interface.train_model(type: :linear_regression, features: [:mes], target: :ventas)
58
+ preds = model.predict([[1.0], [2.0], [3.0]])
59
+
60
+ # 5) Save project
61
+ interface.save_project('project.json')
62
+
63
+ # 6) Load a previously saved project and predict
64
+ interface.load_project('project.json')
65
+ interface.train_model(type: :linear_regression, features: [:mes], target: :ventas)
66
+ preds = interface.predict([[6.0], [7.0]])
67
+ ```
68
+
69
+ ## API overview
70
+
71
+ - DataFrame (internal): CSV load, indexing by column symbol, `head`, `write_csv`, `map_vectors`, `filter_rows`.
72
+ - IO: `load_csv`, `load_json`, `save_csv`, `save_json`, `save_project`, `load_project`.
73
+ - Dataset: `remove_columns`, `add_column`, `limit_rows`, `fill_missing`, `head`, `stats`, `plot`.
74
+ - Stats: `describe`, `correlation(col1, col2)`.
75
+ - Plotter: `bar(x:, y:, file:)`, `line(x:, y:, file:)`.
76
+ - Interface: `load`, `clean`, `analyze`, `graph`, `pipeline`, `train_model`, `save_project`.
77
+ - Interface: `load`, `clean`, `analyze`, `graph`, `pipeline`, `train_model`, `save_project`, `load_project`, `predict`.
78
+
79
+ ## Adapters (optional backends)
80
+
81
+ This gem includes a minimal in-house DataFrame that powers all features. If you want more performance or richer operations (group-by, joins, rolling, etc.), you can plug a third-party backend behind the same API using a simple adapter pattern.
82
+
83
+ Potential backends:
84
+
85
+ - Polars (Ruby bindings): very fast, columnar engine written in Rust.
86
+ - Rover-Df: pure Ruby DataFrame with a friendly API.
87
+
88
+ Adapter idea (sketch):
89
+
90
+ ```ruby
91
+ module RubyScientistAndGraphics
92
+ module Backends
93
+ class PolarsAdapter
94
+ def self.from_csv(path); end
95
+ def vectors; end
96
+ def [](col); end
97
+ def to_a; end
98
+ # implement methods used by Dataset/Stats/Plotter
99
+ end
100
+ end
101
+ end
102
+
103
+ # Then inject at app start:
104
+ # RubyScientistAndGraphics::DataFrame = RubyScientistAndGraphics::Backends::PolarsAdapter
105
+ ```
106
+
107
+ This keeps your app code unchanged while letting you switch engines.
108
+
109
+ ## Development
110
+
111
+ Setup and tests:
112
+
113
+ ```bash
114
+ bin/setup
115
+ bundle exec rake test
116
+ ```
117
+
118
+ Run an interactive console:
119
+
120
+ ```bash
121
+ bin/console
122
+ ```
123
+
124
+ Build and install locally:
125
+
126
+ ```bash
127
+ bundle exec rake install
128
+ ```
129
+
130
+ Release flow: bump version in `lib/ruby_scientist_and_graphics/version.rb`, then:
131
+
132
+ ```bash
133
+ bundle exec rake release
134
+ ```
135
+
136
+ ## Contributing
137
+
138
+ Pull requests are welcome. Please open an issue to discuss large changes first. See CODE_OF_CONDUCT.md.
139
+
140
+ ## License
141
+
142
+ MIT License. See LICENSE.txt.
data/Rakefile ADDED
@@ -0,0 +1,12 @@
1
+ # frozen_string_literal: true
2
+
3
+ require "bundler/gem_tasks"
4
+ require "minitest/test_task"
5
+
6
+ Minitest::TestTask.create
7
+
8
+ require "rubocop/rake_task"
9
+
10
+ RuboCop::RakeTask.new
11
+
12
+ task default: %i[test rubocop]
data/demo.rb ADDED
@@ -0,0 +1,50 @@
1
+ #!/usr/bin/env ruby
2
+ require_relative "lib/ruby_scientist_and_graphics"
3
+
4
+ puts "=== Demo RubyScientistAndGraphics ==="
5
+
6
+ interface = RubyScientistAndGraphics::Interface.new
7
+
8
+ puts "\nCargando dataset..."
9
+ interface.load("test/fixtures/sample.csv", remove_columns: [:comentarios], limit: 5)
10
+
11
+ puts "\nLimpiando datos (rellenar nils con 0)..."
12
+ interface.clean(missing: 0)
13
+
14
+ puts "\nMostrando primeras filas:"
15
+ puts interface.dataset.df.head(5)
16
+
17
+ puts "\nMostrando estadísticas descriptivas:"
18
+ interface.analyze
19
+
20
+ puts "\nGenerando gráfico de barras (ventas vs mes)..."
21
+ interface.graph(type: :bar, x: :mes, y: :ventas, file: "test/output_demo.png")
22
+
23
+ puts "\nEntrenando modelo de regresión lineal (mes -> ventas)..."
24
+ model = interface.train_model(type: :linear_regression, features: [:mes], target: :ventas)
25
+ puts "Modelo entrenado: #{model.class}"
26
+
27
+ puts "\nPredicciones con el modelo (mes = 6,7):"
28
+ preds = interface.predict([[6.0], [7.0]])
29
+ puts "Predicciones: #{preds.inspect}"
30
+
31
+ puts "\nCorrelación Pearson entre mes y ventas:"
32
+ corr = interface.dataset.stats.correlation(:mes, :ventas)
33
+ puts "correlación(mes, ventas) = #{corr.round(4)}"
34
+
35
+ puts "\nGráfico de línea (ventas vs mes)..."
36
+ interface.graph(type: :line, x: :mes, y: :ventas, file: "test/output_demo_line.png")
37
+
38
+ puts "\nEntrenando KMeans con 2 clusters sobre ventas..."
39
+ kmeans = interface.train_model(type: :kmeans, features: [:ventas], clusters: 2)
40
+ puts "Modelo KMeans con n_clusters = #{kmeans.n_clusters}"
41
+
42
+ puts "\nGuardando proyecto en 'test/project.json'..."
43
+ interface.save_project("test/project.json")
44
+
45
+ puts "\nCargando proyecto desde 'test/project.json' y mostrando primeras filas:"
46
+ interface2 = RubyScientistAndGraphics::Interface.new
47
+ interface2.load_project("test/project.json")
48
+ puts interface2.dataset.df.head(3)
49
+
50
+ puts "\nDemo terminado."
@@ -0,0 +1,102 @@
1
+ # Optional backend adapter using Rover::DataFrame
2
+ # Requires the 'rover-df' gem when activated via use_backend(:rover)
3
+
4
+ module RubyScientistAndGraphics
5
+ module Backends
6
+ class RoverAdapter
7
+ # Constructors
8
+ def self.from_csv(path)
9
+ require "rover"
10
+ ::Rover::DataFrame.read_csv(path)
11
+ end
12
+
13
+ def self.rows(rows, order: [])
14
+ require "rover"
15
+ data = order.map.with_index { |k, i| [k.to_sym, rows.map { |r| r[i] }] }.to_h
16
+ ::Rover::DataFrame.new(data)
17
+ end
18
+
19
+ def initialize(df)
20
+ @df = df
21
+ end
22
+
23
+ # Align with internal DataFrame API used in the gem
24
+ def vectors
25
+ Vectors.new(@df.keys.map(&:to_sym))
26
+ end
27
+
28
+ class Vectors
29
+ def initialize(keys)
30
+ @keys = keys
31
+ end
32
+
33
+ def to_a = @keys
34
+ def include?(key) = @keys.include?(key)
35
+ def each(&block) = @keys.each(&block)
36
+ end
37
+
38
+ class Column
39
+ def initialize(values)
40
+ @values = values
41
+ end
42
+
43
+ def to_a = @values.dup
44
+ def [](idx) = @values.[](idx)
45
+
46
+ def type
47
+ all_numeric = @values.compact.all? { |v| v.is_a?(Numeric) }
48
+ all_numeric ? :numeric : :object
49
+ end
50
+
51
+ def map(&block) = @values.map(&block)
52
+ end
53
+
54
+ def [](col)
55
+ Column.new(@df[col.to_s] || @df[col.to_sym] || [])
56
+ end
57
+
58
+ def []=(name, values)
59
+ name = name.to_s
60
+ @df[name] = values
61
+ end
62
+
63
+ def delete_vector(col)
64
+ name = col.to_s
65
+ @df.delete(name)
66
+ end
67
+
68
+ def to_a
69
+ keys = vectors.to_a
70
+ (0...size).map do |i|
71
+ keys.map { |k| (@df[k.to_s] || @df[k.to_sym])[i] }
72
+ end
73
+ end
74
+
75
+ def size
76
+ @df.size
77
+ end
78
+
79
+ def head(n = 5)
80
+ RoverAdapter.new(@df.head(n))
81
+ end
82
+
83
+ def write_csv(path)
84
+ @df.to_csv(path)
85
+ end
86
+
87
+ def map_vectors
88
+ result = {}
89
+ vectors.to_a.each do |k|
90
+ mapped = yield Column.new(@df[k.to_s] || @df[k.to_sym])
91
+ result[k.to_sym] = mapped.is_a?(Column) ? mapped.to_a : Array(mapped)
92
+ end
93
+ self.class.new(::Rover::DataFrame.new(result))
94
+ end
95
+
96
+ def filter_rows(&block)
97
+ kept = to_a.select(&block)
98
+ self.class.rows(kept, order: vectors.to_a)
99
+ end
100
+ end
101
+ end
102
+ end
@@ -0,0 +1,216 @@
1
+ module RubyScientistAndGraphics
2
+ # Minimal DataFrame to cover the API used by this gem's code and tests
3
+ class DataFrame
4
+ # Helper wrapper that mimics Daru's vectors
5
+ class Vectors
6
+ def initialize(keys)
7
+ @keys = keys
8
+ end
9
+
10
+ def to_a
11
+ @keys
12
+ end
13
+
14
+ def include?(key)
15
+ @keys.include?(key)
16
+ end
17
+
18
+ def each(&block)
19
+ @keys.each(&block)
20
+ end
21
+ end
22
+
23
+ # Column wrapper with minimal API
24
+ class Column
25
+ def initialize(values)
26
+ @values = values
27
+ end
28
+
29
+ def to_a
30
+ @values.dup
31
+ end
32
+
33
+ def [](idx)
34
+ @values[idx]
35
+ end
36
+
37
+ # Simple type inference
38
+ def type
39
+ all_numeric = @values.compact.all? { |v| v.is_a?(Numeric) }
40
+ all_numeric ? :numeric : :object
41
+ end
42
+
43
+ def map(&block)
44
+ @values.map(&block)
45
+ end
46
+ end
47
+
48
+ # Constructors
49
+ def self.from_csv(path)
50
+ require "csv"
51
+ rows = []
52
+ headers = nil
53
+ CSV.foreach(path, headers: true, header_converters: ->(h) { h&.strip&.downcase&.to_sym }) do |row|
54
+ headers ||= row.headers.map(&:to_sym)
55
+ rows << headers.map { |h| coerce_value(row[h]) }
56
+ end
57
+ DataFrame.rows(rows, order: headers || [])
58
+ end
59
+
60
+ # Accept array of hashes (keys as symbols/strings) or hash of arrays
61
+ def initialize(data)
62
+ @columns = {}
63
+ case data
64
+ when Array
65
+ if data.first.is_a?(Hash)
66
+ keys = data.map(&:keys).flatten.uniq.map { |k| k.to_sym }
67
+ keys.each { |k| @columns[k] = [] }
68
+ data.each do |row|
69
+ keys.each { |k| @columns[k] << (row.key?(k) ? row[k] : row[k.to_s]) }
70
+ end
71
+ elsif data.first.is_a?(Array)
72
+ # Assume first row is header
73
+ headers = (data.first || []).map { |h| h.to_sym }
74
+ body = data[1..] || []
75
+ @columns = headers.map.with_index { |h, i| [h, body.map { |r| r[i] }] }.to_h
76
+ else
77
+ # Single array -> make an index column
78
+ @columns[:value] = data
79
+ end
80
+ when Hash
81
+ data.each { |k, v| @columns[k.to_sym] = v.dup }
82
+ else
83
+ raise ArgumentError, "Unsupported data type for DataFrame"
84
+ end
85
+ normalize_column_lengths!
86
+ end
87
+
88
+ # Build from rows (array of arrays) and a column order
89
+ def self.rows(rows, order: [])
90
+ cols = order.map { |k| [k.to_sym, []] }.to_h
91
+ rows.each do |r|
92
+ order.each_with_index do |k, i|
93
+ cols[k.to_sym] << r[i]
94
+ end
95
+ end
96
+ new(cols)
97
+ end
98
+
99
+ # Basic accessors
100
+ def vectors
101
+ Vectors.new(@columns.keys)
102
+ end
103
+
104
+ def [](col)
105
+ Column.new(@columns[col.to_sym] || [])
106
+ end
107
+
108
+ def []=(name, values)
109
+ name = name.to_sym
110
+ # Resize to match current rows; pad with nils if needed
111
+ if values.nil?
112
+ @columns[name] = Array.new(size, nil)
113
+ else
114
+ values = values.dup
115
+ if values.size < size
116
+ values += Array.new(size - values.size, nil)
117
+ elsif values.size > size
118
+ grow_to(values.size)
119
+ end
120
+ @columns[name] = values
121
+ end
122
+ end
123
+
124
+ def delete_vector(col)
125
+ @columns.delete(col.to_sym)
126
+ end
127
+
128
+ def to_a
129
+ order = vectors.to_a
130
+ (0...size).map do |i|
131
+ order.map { |k| @columns[k][i] }
132
+ end
133
+ end
134
+
135
+ def size
136
+ @columns.values.map(&:size).max || 0
137
+ end
138
+
139
+ def head(n = 5)
140
+ DataFrame.rows(to_a.first(n), order: vectors.to_a)
141
+ end
142
+
143
+ def write_csv(path)
144
+ require "csv"
145
+ order = vectors.to_a
146
+ CSV.open(path, "w") do |csv|
147
+ csv << order
148
+ to_a.each { |row| csv << row }
149
+ end
150
+ end
151
+
152
+ # Map each column (vector) and return a new DataFrame with resulting arrays
153
+ def map_vectors
154
+ result = {}
155
+ @columns.each do |k, arr|
156
+ mapped = yield Column.new(arr)
157
+ result[k] = mapped.is_a?(Column) ? mapped.to_a : Array(mapped)
158
+ end
159
+ DataFrame.new(result)
160
+ end
161
+
162
+ # Filter rows by a predicate block that receives an Array of row values
163
+ def filter_rows(&block)
164
+ kept = to_a.select(&block)
165
+ DataFrame.rows(kept, order: vectors.to_a)
166
+ end
167
+
168
+ # Pretty print as a simple table (headers + rows)
169
+ def to_s
170
+ headers = vectors.to_a.map(&:to_s)
171
+ lines = []
172
+ lines << headers.join("\t")
173
+ to_a.each do |row|
174
+ cells = row.map { |v| v.nil? ? "" : v }
175
+ lines << cells.join("\t")
176
+ end
177
+ lines.join("\n")
178
+ end
179
+
180
+ # Compact inspect showing shape
181
+ def inspect
182
+ "#<#{self.class} rows=#{size} cols=#{vectors.to_a.size}>"
183
+ end
184
+
185
+ private
186
+
187
+ def grow_to(n)
188
+ @columns.each do |k, arr|
189
+ @columns[k] = arr + Array.new(n - arr.size, nil) if arr.size < n
190
+ end
191
+ end
192
+
193
+ def normalize_column_lengths!
194
+ max_len = size
195
+ grow_to(max_len)
196
+ end
197
+
198
+ class << self
199
+ private
200
+
201
+ def coerce_value(v)
202
+ return nil if v.nil? || v == ""
203
+
204
+ # Try numeric
205
+ if v.is_a?(String)
206
+ if v =~ /^-?\d+$/
207
+ return v.to_i
208
+ elsif v =~ /^-?\d*\.\d+$/
209
+ return v.to_f
210
+ end
211
+ end
212
+ v
213
+ end
214
+ end
215
+ end
216
+ end
@@ -0,0 +1,57 @@
1
+ module RubyScientistAndGraphics
2
+ require "csv"
3
+ require_relative "dataframe"
4
+ class Dataset
5
+ attr_accessor :df
6
+
7
+ def initialize(dataframe, options = {})
8
+ @df = dataframe
9
+ apply_options(options)
10
+ end
11
+
12
+ # Aplicar configuraciones iniciales
13
+ def apply_options(options)
14
+ remove_columns(options[:remove_columns]) if options[:remove_columns]
15
+ limit_rows(options[:limit]) if options[:limit]
16
+ end
17
+
18
+ # Eliminar columnas
19
+ def remove_columns(columns)
20
+ columns.each { |col| @df.delete_vector(col) if @df.vectors.include?(col) }
21
+ self
22
+ end
23
+
24
+ # Agregar nueva columna
25
+ def add_column(name, values)
26
+ @df[name] = values
27
+ self
28
+ end
29
+
30
+ # Limitar cantidad de filas
31
+ def limit_rows(n)
32
+ @df = DataFrame.rows(@df.to_a.first(n), order: @df.vectors.to_a)
33
+ self
34
+ end
35
+
36
+ # Reemplazar valores nulos
37
+ def fill_missing(value)
38
+ @df = @df.map_vectors { |vector| vector.map { |v| v.nil? ? value : v } }
39
+ self
40
+ end
41
+
42
+ # Mostrar primeras filas
43
+ def head(n = 5)
44
+ @df.head(n)
45
+ end
46
+
47
+ # Acceso rápido a estadísticas
48
+ def stats
49
+ Stats.new(@df)
50
+ end
51
+
52
+ # Acceso rápido a gráficos
53
+ def plot
54
+ Plotter.new(@df)
55
+ end
56
+ end
57
+ end
@@ -0,0 +1,102 @@
1
+ require_relative "ml"
2
+ require_relative "io"
3
+ require_relative "utils"
4
+ # Crear interfaz y ejecutar todo en una sola línea
5
+ module RubyScientistAndGraphics
6
+ class Interface
7
+ attr_reader :dataset, :model
8
+
9
+ def initialize
10
+ @dataset = nil
11
+ end
12
+
13
+ # 1. Cargar datos
14
+ def load(path, options = {})
15
+ @dataset = Dataset.new(DataFrame.from_csv(path), options)
16
+ self
17
+ end
18
+
19
+ # 2. Limpiar datos
20
+ def clean(missing: nil, remove_columns: nil, limit: nil)
21
+ return self unless @dataset
22
+
23
+ @dataset.fill_missing(missing) if missing
24
+ @dataset.remove_columns(remove_columns) if remove_columns
25
+ @dataset.limit_rows(limit) if limit
26
+ self
27
+ end
28
+
29
+ # 3. Analizar datos
30
+ def analyze
31
+ return self unless @dataset
32
+
33
+ @dataset.stats.describe
34
+ self
35
+ end
36
+
37
+ # 4. Graficar
38
+ def graph(x:, y:, type: :bar, file: "output.png")
39
+ return self unless @dataset
40
+
41
+ case type
42
+ when :bar
43
+ @dataset.plot.bar(x: x, y: y, file: file)
44
+ when :line
45
+ @dataset.plot.line(x: x, y: y, file: file)
46
+ else
47
+ puts "Tipo de gráfico no soportado."
48
+ end
49
+ self
50
+ end
51
+
52
+ # 5. Flujo completo
53
+ def pipeline(path:, clean_opts: {}, analysis: true, graph_opts: nil)
54
+ load(path)
55
+ clean(**clean_opts)
56
+ analyze if analysis
57
+ graph(**graph_opts) if graph_opts
58
+ end
59
+
60
+ # 6. Entrenar modelos ML sencillos
61
+ # type: :linear_regression o :kmeans
62
+ # Para :linear_regression requiere target
63
+ def train_model(type:, features:, target: nil, clusters: 3)
64
+ return nil unless @dataset
65
+
66
+ ml = ML.new(@dataset.df)
67
+ case type
68
+ when :linear_regression
69
+ raise ArgumentError, "target requerido para linear_regression" unless target
70
+
71
+ @model = ml.linear_regression(features: features, target: target)
72
+ when :kmeans
73
+ @model = ml.kmeans(features: features, clusters: clusters)
74
+ else
75
+ raise ArgumentError, "Tipo de modelo no soportado"
76
+ end
77
+ @model
78
+ end
79
+
80
+ # 7b. Cargar un proyecto y setear el dataset
81
+ def load_project(path)
82
+ df = IO.load_project(path)
83
+ @dataset = Dataset.new(df)
84
+ self
85
+ end
86
+
87
+ # 8. Predecir con el modelo actual
88
+ # data: matriz (Array<Array<Numeric>>) con filas de features
89
+ def predict(data)
90
+ raise "No model trained" unless @model
91
+
92
+ @model.predict(data)
93
+ end
94
+
95
+ # 7. Guardar proyecto (df actual a JSON estructurado)
96
+ def save_project(path)
97
+ return unless @dataset
98
+
99
+ IO.save_project(@dataset.df, path)
100
+ end
101
+ end
102
+ end
@@ -0,0 +1,49 @@
1
+ # lib/ruby_scientist_and_graphics/io.rb
2
+ require "json"
3
+ require "csv"
4
+
5
+ module RubyScientistAndGraphics
6
+ module IO
7
+ module_function
8
+
9
+ require_relative "dataframe"
10
+
11
+ # Cargar CSV
12
+ def load_csv(path)
13
+ DataFrame.from_csv(path)
14
+ end
15
+
16
+ # Cargar JSON
17
+ def load_json(path)
18
+ data = JSON.parse(File.read(path))
19
+ DataFrame.new(data)
20
+ end
21
+
22
+ # Exportar a CSV
23
+ def save_csv(df, path)
24
+ df.write_csv(path)
25
+ puts "Datos exportados a #{path}"
26
+ end
27
+
28
+ # Exportar a JSON
29
+ def save_json(df, path)
30
+ File.write(path, df.to_a.to_json)
31
+ puts "Datos exportados a #{path}"
32
+ end
33
+
34
+ # Guardar proyecto (estructura completa)
35
+ def save_project(df, path)
36
+ File.write(path, {
37
+ columns: df.vectors.to_a,
38
+ data: df.to_a
39
+ }.to_json)
40
+ puts "Proyecto guardado en #{path}"
41
+ end
42
+
43
+ # Cargar proyecto
44
+ def load_project(path)
45
+ proj = JSON.parse(File.read(path))
46
+ DataFrame.rows(proj["data"], order: proj["columns"].map(&:to_sym))
47
+ end
48
+ end
49
+ end
@@ -0,0 +1,168 @@
1
+ # lib/ruby_scientist_and_graphics/ml.rb
2
+ module RubyScientistAndGraphics
3
+ class ML
4
+ def initialize(df)
5
+ @df = df
6
+ end
7
+
8
+ # Entrenar un modelo de regresión lineal (mínimos cuadrados)
9
+ def linear_regression(features:, target:)
10
+ x = build_matrix(features)
11
+ y = @df[target].to_a.map(&:to_f)
12
+ # añadir bias (columna de 1s)
13
+ x_bias = x.map { |row| [1.0] + row }
14
+ xt = transpose(x_bias)
15
+ xtx = mat_mul(xt, x_bias)
16
+ xty = mat_vec_mul(xt, y)
17
+ w = solve_sym_posdef(xtx, xty) # vector de pesos
18
+ LinearRegressionModel.new(w)
19
+ end
20
+
21
+ # Entrenar K-Means (Lloyd)
22
+ def kmeans(features:, clusters: 3, max_iter: 100)
23
+ data = build_matrix(features)
24
+ model = KMeansModel.new(clusters)
25
+ model.fit(data, max_iter: max_iter)
26
+ model
27
+ end
28
+
29
+ private
30
+
31
+ def build_matrix(features)
32
+ feats = Array(features)
33
+ cols = feats.map { |f| @df[f].to_a.map(&:to_f) }
34
+ rows = @df.size
35
+ (0...rows).map { |i| cols.map { |c| c[i] } }
36
+ end
37
+
38
+ def transpose(m)
39
+ return [] if m.empty?
40
+
41
+ (0...m.first.size).map { |j| m.map { |row| row[j] } }
42
+ end
43
+
44
+ def mat_mul(a, b)
45
+ bt = transpose(b)
46
+ a.map { |row| bt.map { |col| dot(row, col) } }
47
+ end
48
+
49
+ def mat_vec_mul(a, v)
50
+ a.map { |row| dot(row, v) }
51
+ end
52
+
53
+ def dot(x, y)
54
+ x.each_index.reduce(0.0) { |s, i| s + x[i] * y[i] }
55
+ end
56
+
57
+ # Resolver (A w = b) para A simétrica definida positiva (Cholesky)
58
+ def solve_sym_posdef(a, b)
59
+ l = cholesky(a)
60
+ # forward substitution: L y = b
61
+ y = Array.new(b.size, 0.0)
62
+ (0...l.size).each do |i|
63
+ sum = 0.0
64
+ (0...i).each { |k| sum += l[i][k] * y[k] }
65
+ y[i] = (b[i] - sum) / l[i][i]
66
+ end
67
+ # backward substitution: L^T w = y
68
+ n = l.size
69
+ w = Array.new(n, 0.0)
70
+ (n - 1).downto(0) do |i|
71
+ sum = 0.0
72
+ (i + 1...n).each { |k| sum += l[k][i] * w[k] }
73
+ w[i] = (y[i] - sum) / l[i][i]
74
+ end
75
+ w
76
+ end
77
+
78
+ def cholesky(a)
79
+ n = a.size
80
+ l = Array.new(n) { Array.new(n, 0.0) }
81
+ n.times do |i|
82
+ (0..i).each do |j|
83
+ sum = 0.0
84
+ (0...j).each { |k| sum += l[i][k] * l[j][k] }
85
+ if i == j
86
+ val = a[i][i] - sum
87
+ l[i][j] = val > 0 ? Math.sqrt(val) : 0.0
88
+ else
89
+ l[i][j] = (a[i][j] - sum) / (l[j][j].zero? ? 1.0 : l[j][j])
90
+ end
91
+ end
92
+ end
93
+ l
94
+ end
95
+ end
96
+
97
+ class LinearRegressionModel
98
+ def initialize(weights)
99
+ @weights = weights # [bias, w1, w2, ...]
100
+ end
101
+
102
+ def predict(x)
103
+ mat = x.map { |row| [1.0] + row.map(&:to_f) }
104
+ mat.map { |row| row.each_index.reduce(0.0) { |s, i| s + row[i] * @weights[i] } }
105
+ end
106
+ end
107
+
108
+ class KMeansModel
109
+ attr_reader :n_clusters
110
+
111
+ def initialize(k)
112
+ @n_clusters = k
113
+ @centroids = []
114
+ end
115
+
116
+ def fit(data, max_iter: 100)
117
+ k = @n_clusters
118
+ # init: pick first k points (simple, deterministic for tests)
119
+ @centroids = data.first(k).map(&:dup)
120
+ max_iter.times do
121
+ clusters = Array.new(k) { [] }
122
+ data.each do |point|
123
+ idx = nearest_centroid(point)
124
+ clusters[idx] << point
125
+ end
126
+ new_centroids = clusters.map do |pts|
127
+ if pts.empty?
128
+ @centroids.sample || Array.new(data.first.size, 0.0)
129
+ else
130
+ mean_point(pts)
131
+ end
132
+ end
133
+ break if converged?(@centroids, new_centroids)
134
+
135
+ @centroids = new_centroids
136
+ end
137
+ self
138
+ end
139
+
140
+ def predict(data)
141
+ data.map { |point| nearest_centroid(point) }
142
+ end
143
+
144
+ private
145
+
146
+ def mean_point(points)
147
+ dims = points.first.size
148
+ sums = Array.new(dims, 0.0)
149
+ points.each { |p| p.each_index { |i| sums[i] += p[i].to_f } }
150
+ sums.map { |s| s / points.size }
151
+ end
152
+
153
+ def nearest_centroid(point)
154
+ dists = @centroids.map { |c| squared_distance(c, point) }
155
+ dists.each_with_index.min.last
156
+ end
157
+
158
+ def squared_distance(a, b)
159
+ a.each_index.reduce(0.0) { |s, i| s + (a[i].to_f - b[i].to_f)**2 }
160
+ end
161
+
162
+ def converged?(a, b)
163
+ a.each_with_index.all? do |cent, i|
164
+ cent.each_index.all? { |j| (cent[j] - b[i][j]).abs < 1e-9 }
165
+ end
166
+ end
167
+ end
168
+ end
@@ -0,0 +1,26 @@
1
+ module RubyScientistAndGraphics
2
+ class Plotter
3
+ def initialize(df)
4
+ @df = df
5
+ end
6
+
7
+ def bar(x:, y:, file: "plot.png")
8
+ g = Gruff::Bar.new
9
+ g.title = "#{y} por #{x}"
10
+ @df[x].to_a.each_with_index do |label, idx|
11
+ g.data(label, [@df[y][idx]])
12
+ end
13
+ g.write(file)
14
+ puts "Gráfico guardado en #{file}"
15
+ end
16
+
17
+ def line(x:, y:, file: "plot.png")
18
+ g = Gruff::Line.new
19
+ g.title = "#{y} por #{x}"
20
+ g.labels = @df[x].to_a.each_with_index.map { |v, i| [i, v.to_s] }.to_h
21
+ g.data(y.to_sym, @df[y].to_a)
22
+ g.write(file)
23
+ puts "Gráfico guardado en #{file}"
24
+ end
25
+ end
26
+ end
@@ -0,0 +1,48 @@
1
+ module RubyScientistAndGraphics
2
+ class Stats
3
+ def initialize(df)
4
+ @df = df
5
+ end
6
+
7
+ def describe
8
+ @df.vectors.each do |col|
9
+ col_data = @df[col]
10
+ next unless col_data.type == :numeric
11
+
12
+ data = col_data.to_a.compact.map(&:to_f)
13
+ next if data.empty?
14
+
15
+ mean = data.sum / data.size
16
+ min = data.min
17
+ max = data.max
18
+ puts "#{col}: Media=#{mean.round(2)}, Min=#{min}, Max=#{max}"
19
+ end
20
+ end
21
+
22
+ def correlation(col1, col2)
23
+ x = @df[col1].to_a.compact.map(&:to_f)
24
+ y = @df[col2].to_a.compact.map(&:to_f)
25
+ n = [x.size, y.size].min
26
+ x = x.first(n)
27
+ y = y.first(n)
28
+ return 0.0 if n == 0
29
+
30
+ mean_x = x.sum / n
31
+ mean_y = y.sum / n
32
+ num = 0.0
33
+ den_x = 0.0
34
+ den_y = 0.0
35
+ n.times do |i|
36
+ dx = x[i] - mean_x
37
+ dy = y[i] - mean_y
38
+ num += dx * dy
39
+ den_x += dx * dx
40
+ den_y += dy * dy
41
+ end
42
+ den = Math.sqrt(den_x * den_y)
43
+ return 0.0 if den.zero?
44
+
45
+ num / den
46
+ end
47
+ end
48
+ end
@@ -0,0 +1,31 @@
1
+ # lib/ruby_scientist_and_graphics/utils.rb
2
+ module RubyScientistAndGraphics
3
+ module Utils
4
+ module_function
5
+
6
+ # Normalizar valores a rango 0-1
7
+ def normalize(array)
8
+ min = array.min.to_f
9
+ max = array.max.to_f
10
+ array.map { |v| (v.to_f - min) / (max - min) }
11
+ end
12
+
13
+ # Estandarizar valores (media 0, desviación 1)
14
+ def standardize(array)
15
+ mean = array.sum.to_f / array.size
16
+ stddev = Math.sqrt(array.map { |v| (v.to_f - mean)**2 }.sum / array.size)
17
+ array.map { |v| (v.to_f - mean) / stddev }
18
+ end
19
+
20
+ # One-hot encoding para categóricas
21
+ def one_hot_encode(array)
22
+ categories = array.uniq
23
+ array.map { |val| categories.map { |c| val == c ? 1 : 0 } }
24
+ end
25
+
26
+ # Eliminar filas con valores nulos
27
+ def drop_na(df)
28
+ df.filter_rows { |row| !row.include?(nil) }
29
+ end
30
+ end
31
+ end
@@ -0,0 +1,5 @@
1
+ # frozen_string_literal: true
2
+
3
+ module RubyScientistAndGraphics
4
+ VERSION = "0.1.0"
5
+ end
@@ -0,0 +1,42 @@
1
+ require "gruff"
2
+
3
+ require_relative "ruby_scientist_and_graphics/dataframe"
4
+ require_relative "ruby_scientist_and_graphics/dataset"
5
+ require_relative "ruby_scientist_and_graphics/plotter"
6
+ require_relative "ruby_scientist_and_graphics/stats"
7
+ require_relative "ruby_scientist_and_graphics/interface"
8
+ require_relative "ruby_scientist_and_graphics/version"
9
+
10
+ module RubyScientistAndGraphics
11
+ def self.load_csv(path, options = {})
12
+ Dataset.new(DataFrame.from_csv(path), options)
13
+ end
14
+
15
+ # Simple configuration holder
16
+ module Config
17
+ class << self
18
+ attr_accessor :backend
19
+ end
20
+ end
21
+
22
+ # Keep a reference to the original internal DataFrame
23
+ ORIG_DATAFRAME = DataFrame unless const_defined?(:ORIG_DATAFRAME)
24
+
25
+ # Switch the backend at runtime. Supported: :internal, :rover
26
+ def self.use_backend(backend)
27
+ case backend
28
+ when :internal
29
+ remove_const(:DataFrame) if const_defined?(:DataFrame)
30
+ const_set(:DataFrame, ORIG_DATAFRAME)
31
+ Config.backend = :internal
32
+ when :rover
33
+ require_relative "ruby_scientist_and_graphics/backends/rover_adapter"
34
+ remove_const(:DataFrame) if const_defined?(:DataFrame)
35
+ const_set(:DataFrame, RubyScientistAndGraphics::Backends::RoverAdapter)
36
+ Config.backend = :rover
37
+ else
38
+ raise ArgumentError, "Unknown backend: #{backend}"
39
+ end
40
+ true
41
+ end
42
+ end
@@ -0,0 +1,4 @@
1
+ module RubyScientistAndGraphics
2
+ VERSION: String
3
+ # See the writing guide of rbs: https://github.com/ruby/rbs#guides
4
+ end
metadata ADDED
@@ -0,0 +1,106 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: ruby_scientist_and_graphics
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.1.0
5
+ platform: ruby
6
+ authors:
7
+ - jtvaldivia
8
+ autorequire:
9
+ bindir: exe
10
+ cert_chain: []
11
+ date: 2025-08-10 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: csv
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - ">="
18
+ - !ruby/object:Gem::Version
19
+ version: '0'
20
+ type: :runtime
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - ">="
25
+ - !ruby/object:Gem::Version
26
+ version: '0'
27
+ - !ruby/object:Gem::Dependency
28
+ name: gruff
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - ">="
32
+ - !ruby/object:Gem::Version
33
+ version: '0'
34
+ type: :runtime
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - ">="
39
+ - !ruby/object:Gem::Version
40
+ version: '0'
41
+ description: |2
42
+ RubyScience es una gema que integra utilidades prácticas para ciencia de datos en Ruby.
43
+ Incluye un DataFrame minimal propio para manipulación y limpieza de datos y Gruff para visualización,
44
+ todo bajo una API unificada y personalizable.
45
+
46
+ Características principales:
47
+ - Carga de datos desde CSV y otros formatos.
48
+ - Limpieza y transformación de datos (eliminar columnas, manejar valores nulos, limitar filas).
49
+ - Estadísticas descriptivas y correlaciones rápidas.
50
+ - Creación de gráficos de barras y líneas con opciones personalizables.
51
+ - API sencilla inspirada en pandas de Python, pero adaptada al estilo Ruby.
52
+
53
+ Ideal para analistas, científicos de datos y desarrolladores Ruby que necesiten explorar datos
54
+ sin depender de entornos como Python o R.
55
+ email:
56
+ - josevaldivia9@gmail.com
57
+ executables: []
58
+ extensions: []
59
+ extra_rdoc_files: []
60
+ files:
61
+ - CHANGELOG.md
62
+ - CODE_OF_CONDUCT.md
63
+ - LICENSE.txt
64
+ - README.md
65
+ - Rakefile
66
+ - demo.rb
67
+ - lib/ruby_scientist_and_graphics.rb
68
+ - lib/ruby_scientist_and_graphics/backends/rover_adapter.rb
69
+ - lib/ruby_scientist_and_graphics/dataframe.rb
70
+ - lib/ruby_scientist_and_graphics/dataset.rb
71
+ - lib/ruby_scientist_and_graphics/interface.rb
72
+ - lib/ruby_scientist_and_graphics/io.rb
73
+ - lib/ruby_scientist_and_graphics/ml.rb
74
+ - lib/ruby_scientist_and_graphics/plotter.rb
75
+ - lib/ruby_scientist_and_graphics/stats.rb
76
+ - lib/ruby_scientist_and_graphics/utils.rb
77
+ - lib/ruby_scientist_and_graphics/version.rb
78
+ - sig/ruby_scientist_and_graphics.rbs
79
+ homepage: https://github.com/jtvaldivia/Ruby_scientist_and_graphics
80
+ licenses:
81
+ - MIT
82
+ metadata:
83
+ homepage_uri: https://github.com/jtvaldivia/Ruby_scientist_and_graphics
84
+ source_code_uri: https://github.com/jtvaldivia/Ruby_scientist_and_graphics
85
+ changelog_uri: https://github.com/jtvaldivia/Ruby_scientist_and_graphics/blob/master/CHANGELOG.md
86
+ post_install_message:
87
+ rdoc_options: []
88
+ require_paths:
89
+ - lib
90
+ required_ruby_version: !ruby/object:Gem::Requirement
91
+ requirements:
92
+ - - ">="
93
+ - !ruby/object:Gem::Version
94
+ version: 3.2.0
95
+ required_rubygems_version: !ruby/object:Gem::Requirement
96
+ requirements:
97
+ - - ">="
98
+ - !ruby/object:Gem::Version
99
+ version: '0'
100
+ requirements: []
101
+ rubygems_version: 3.5.22
102
+ signing_key:
103
+ specification_version: 4
104
+ summary: 'Suite de Data Science para Ruby: limpieza, análisis y visualización de datos
105
+ en una sola gema.'
106
+ test_files: []