ruby_llm_community 0.0.6 → 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +3 -3
- data/lib/generators/ruby_llm/install/templates/create_models_migration.rb.tt +34 -0
- data/lib/generators/ruby_llm/install/templates/initializer.rb.tt +5 -0
- data/lib/generators/ruby_llm/install/templates/model_model.rb.tt +6 -0
- data/lib/generators/ruby_llm/install_generator.rb +27 -2
- data/lib/ruby_llm/active_record/acts_as.rb +163 -24
- data/lib/ruby_llm/aliases.json +58 -5
- data/lib/ruby_llm/aliases.rb +7 -25
- data/lib/ruby_llm/chat.rb +10 -17
- data/lib/ruby_llm/configuration.rb +5 -12
- data/lib/ruby_llm/connection.rb +4 -4
- data/lib/ruby_llm/connection_multipart.rb +19 -0
- data/lib/ruby_llm/content.rb +5 -2
- data/lib/ruby_llm/embedding.rb +1 -2
- data/lib/ruby_llm/error.rb +0 -8
- data/lib/ruby_llm/image.rb +23 -8
- data/lib/ruby_llm/image_attachment.rb +21 -0
- data/lib/ruby_llm/message.rb +6 -6
- data/lib/ruby_llm/model/info.rb +12 -10
- data/lib/ruby_llm/model/pricing.rb +0 -3
- data/lib/ruby_llm/model/pricing_category.rb +0 -2
- data/lib/ruby_llm/model/pricing_tier.rb +0 -1
- data/lib/ruby_llm/models.json +2147 -470
- data/lib/ruby_llm/models.rb +65 -34
- data/lib/ruby_llm/provider.rb +8 -8
- data/lib/ruby_llm/providers/anthropic/capabilities.rb +1 -46
- data/lib/ruby_llm/providers/anthropic/chat.rb +2 -2
- data/lib/ruby_llm/providers/anthropic/media.rb +0 -1
- data/lib/ruby_llm/providers/anthropic/tools.rb +1 -2
- data/lib/ruby_llm/providers/anthropic.rb +1 -2
- data/lib/ruby_llm/providers/bedrock/chat.rb +2 -4
- data/lib/ruby_llm/providers/bedrock/media.rb +0 -1
- data/lib/ruby_llm/providers/bedrock/models.rb +0 -2
- data/lib/ruby_llm/providers/bedrock/streaming/base.rb +0 -12
- data/lib/ruby_llm/providers/bedrock/streaming/content_extraction.rb +0 -7
- data/lib/ruby_llm/providers/bedrock/streaming/message_processing.rb +0 -12
- data/lib/ruby_llm/providers/bedrock/streaming/payload_processing.rb +0 -12
- data/lib/ruby_llm/providers/bedrock/streaming/prelude_handling.rb +0 -13
- data/lib/ruby_llm/providers/bedrock/streaming.rb +0 -18
- data/lib/ruby_llm/providers/bedrock.rb +1 -2
- data/lib/ruby_llm/providers/deepseek/capabilities.rb +1 -2
- data/lib/ruby_llm/providers/deepseek/chat.rb +0 -1
- data/lib/ruby_llm/providers/gemini/capabilities.rb +28 -100
- data/lib/ruby_llm/providers/gemini/chat.rb +57 -29
- data/lib/ruby_llm/providers/gemini/embeddings.rb +0 -2
- data/lib/ruby_llm/providers/gemini/images.rb +1 -2
- data/lib/ruby_llm/providers/gemini/media.rb +0 -1
- data/lib/ruby_llm/providers/gemini/models.rb +1 -2
- data/lib/ruby_llm/providers/gemini/streaming.rb +15 -1
- data/lib/ruby_llm/providers/gemini/tools.rb +0 -5
- data/lib/ruby_llm/providers/gpustack/chat.rb +11 -1
- data/lib/ruby_llm/providers/gpustack/media.rb +45 -0
- data/lib/ruby_llm/providers/gpustack/models.rb +44 -9
- data/lib/ruby_llm/providers/gpustack.rb +1 -0
- data/lib/ruby_llm/providers/mistral/capabilities.rb +2 -10
- data/lib/ruby_llm/providers/mistral/chat.rb +0 -2
- data/lib/ruby_llm/providers/mistral/embeddings.rb +0 -3
- data/lib/ruby_llm/providers/mistral/models.rb +0 -1
- data/lib/ruby_llm/providers/ollama/chat.rb +0 -1
- data/lib/ruby_llm/providers/ollama/media.rb +1 -6
- data/lib/ruby_llm/providers/ollama/models.rb +36 -0
- data/lib/ruby_llm/providers/ollama.rb +1 -0
- data/lib/ruby_llm/providers/openai/capabilities.rb +3 -16
- data/lib/ruby_llm/providers/openai/chat.rb +1 -3
- data/lib/ruby_llm/providers/openai/embeddings.rb +0 -3
- data/lib/ruby_llm/providers/openai/images.rb +73 -3
- data/lib/ruby_llm/providers/openai/media.rb +0 -1
- data/lib/ruby_llm/providers/openai/response.rb +120 -29
- data/lib/ruby_llm/providers/openai/response_media.rb +2 -2
- data/lib/ruby_llm/providers/openai/streaming.rb +107 -47
- data/lib/ruby_llm/providers/openai/tools.rb +1 -1
- data/lib/ruby_llm/providers/openai.rb +1 -3
- data/lib/ruby_llm/providers/openai_base.rb +2 -2
- data/lib/ruby_llm/providers/openrouter/models.rb +1 -16
- data/lib/ruby_llm/providers/perplexity/capabilities.rb +0 -1
- data/lib/ruby_llm/providers/perplexity/chat.rb +0 -1
- data/lib/ruby_llm/providers/perplexity.rb +1 -5
- data/lib/ruby_llm/providers/vertexai/chat.rb +14 -0
- data/lib/ruby_llm/providers/vertexai/embeddings.rb +32 -0
- data/lib/ruby_llm/providers/vertexai/models.rb +130 -0
- data/lib/ruby_llm/providers/vertexai/streaming.rb +14 -0
- data/lib/ruby_llm/providers/vertexai.rb +55 -0
- data/lib/ruby_llm/railtie.rb +0 -1
- data/lib/ruby_llm/stream_accumulator.rb +72 -10
- data/lib/ruby_llm/streaming.rb +16 -25
- data/lib/ruby_llm/tool.rb +2 -19
- data/lib/ruby_llm/tool_call.rb +0 -9
- data/lib/ruby_llm/version.rb +1 -1
- data/lib/ruby_llm_community.rb +5 -3
- data/lib/tasks/models.rake +525 -0
- data/lib/tasks/release.rake +37 -2
- data/lib/tasks/vcr.rake +0 -7
- metadata +13 -4
- data/lib/tasks/aliases.rake +0 -235
- data/lib/tasks/models_docs.rake +0 -224
- data/lib/tasks/models_update.rake +0 -108
data/lib/ruby_llm/models.json
CHANGED
@@ -1850,7 +1850,7 @@
|
|
1850
1850
|
"provider": "deepseek",
|
1851
1851
|
"family": "deepseek-chat",
|
1852
1852
|
"created_at": null,
|
1853
|
-
"context_window":
|
1853
|
+
"context_window": 128000,
|
1854
1854
|
"max_output_tokens": 8000,
|
1855
1855
|
"knowledge_cutoff": null,
|
1856
1856
|
"modalities": {
|
@@ -1885,7 +1885,7 @@
|
|
1885
1885
|
"provider": "deepseek",
|
1886
1886
|
"family": "deepseek-reasoner",
|
1887
1887
|
"created_at": null,
|
1888
|
-
"context_window":
|
1888
|
+
"context_window": null,
|
1889
1889
|
"max_output_tokens": 64000,
|
1890
1890
|
"knowledge_cutoff": null,
|
1891
1891
|
"modalities": {
|
@@ -3183,6 +3183,53 @@
|
|
3183
3183
|
},
|
3184
3184
|
"metadata": {}
|
3185
3185
|
},
|
3186
|
+
{
|
3187
|
+
"id": "gemini-2.5-flash-image-preview",
|
3188
|
+
"name": "Gemini 2.5 Flash Image Preview",
|
3189
|
+
"provider": "gemini",
|
3190
|
+
"family": "other",
|
3191
|
+
"created_at": null,
|
3192
|
+
"context_window": 32768,
|
3193
|
+
"max_output_tokens": 8192,
|
3194
|
+
"knowledge_cutoff": null,
|
3195
|
+
"modalities": {
|
3196
|
+
"input": [
|
3197
|
+
"text",
|
3198
|
+
"image",
|
3199
|
+
"pdf"
|
3200
|
+
],
|
3201
|
+
"output": [
|
3202
|
+
"text"
|
3203
|
+
]
|
3204
|
+
},
|
3205
|
+
"capabilities": [
|
3206
|
+
"streaming",
|
3207
|
+
"function_calling",
|
3208
|
+
"structured_output",
|
3209
|
+
"batch",
|
3210
|
+
"caching"
|
3211
|
+
],
|
3212
|
+
"pricing": {
|
3213
|
+
"text_tokens": {
|
3214
|
+
"standard": {
|
3215
|
+
"input_per_million": 0.075,
|
3216
|
+
"output_per_million": 0.3
|
3217
|
+
},
|
3218
|
+
"batch": {
|
3219
|
+
"input_per_million": 0.0375,
|
3220
|
+
"output_per_million": 0.15
|
3221
|
+
}
|
3222
|
+
}
|
3223
|
+
},
|
3224
|
+
"metadata": {
|
3225
|
+
"version": "2.0",
|
3226
|
+
"description": "Gemini 2.5 Flash Preview Image",
|
3227
|
+
"supported_generation_methods": [
|
3228
|
+
"generateContent",
|
3229
|
+
"countTokens"
|
3230
|
+
]
|
3231
|
+
}
|
3232
|
+
},
|
3186
3233
|
{
|
3187
3234
|
"id": "gemini-2.5-flash-lite",
|
3188
3235
|
"name": "Gemini 2.5 Flash-Lite",
|
@@ -3222,7 +3269,7 @@
|
|
3222
3269
|
},
|
3223
3270
|
"metadata": {
|
3224
3271
|
"version": "001",
|
3225
|
-
"description": "Stable
|
3272
|
+
"description": "Stable version of Gemini 2.5 Flash-Lite, released in July of 2025",
|
3226
3273
|
"supported_generation_methods": [
|
3227
3274
|
"generateContent",
|
3228
3275
|
"countTokens",
|
@@ -3400,7 +3447,7 @@
|
|
3400
3447
|
},
|
3401
3448
|
{
|
3402
3449
|
"id": "gemini-2.5-flash-preview-tts",
|
3403
|
-
"name": "Gemini 2.5 Flash Preview
|
3450
|
+
"name": "Gemini 2.5 Flash Preview Text-to-Speech",
|
3404
3451
|
"provider": "gemini",
|
3405
3452
|
"family": "gemini-2.5-flash-preview-tts",
|
3406
3453
|
"created_at": null,
|
@@ -3628,7 +3675,7 @@
|
|
3628
3675
|
},
|
3629
3676
|
{
|
3630
3677
|
"id": "gemini-2.5-pro-preview-tts",
|
3631
|
-
"name": "Gemini 2.5 Pro Preview
|
3678
|
+
"name": "Gemini 2.5 Pro Preview Text-to-Speech",
|
3632
3679
|
"provider": "gemini",
|
3633
3680
|
"family": "gemini-2.5-pro-preview-tts",
|
3634
3681
|
"created_at": null,
|
@@ -4168,37 +4215,6 @@
|
|
4168
4215
|
]
|
4169
4216
|
}
|
4170
4217
|
},
|
4171
|
-
{
|
4172
|
-
"id": "imagen-4.0-generate-001",
|
4173
|
-
"name": "Imagen 4",
|
4174
|
-
"provider": "gemini",
|
4175
|
-
"family": "other",
|
4176
|
-
"created_at": null,
|
4177
|
-
"context_window": 480,
|
4178
|
-
"max_output_tokens": 8192,
|
4179
|
-
"knowledge_cutoff": null,
|
4180
|
-
"modalities": {
|
4181
|
-
"input": [
|
4182
|
-
"text",
|
4183
|
-
"image",
|
4184
|
-
"pdf"
|
4185
|
-
],
|
4186
|
-
"output": [
|
4187
|
-
"image"
|
4188
|
-
]
|
4189
|
-
},
|
4190
|
-
"capabilities": [
|
4191
|
-
"streaming"
|
4192
|
-
],
|
4193
|
-
"pricing": {},
|
4194
|
-
"metadata": {
|
4195
|
-
"version": "001",
|
4196
|
-
"description": "Vertex served Imagen 4.0 model",
|
4197
|
-
"supported_generation_methods": [
|
4198
|
-
"predict"
|
4199
|
-
]
|
4200
|
-
}
|
4201
|
-
},
|
4202
4218
|
{
|
4203
4219
|
"id": "imagen-4.0-generate-preview-06-06",
|
4204
4220
|
"name": "Imagen 4 (Preview)",
|
@@ -7325,45 +7341,6 @@
|
|
7325
7341
|
"owned_by": "system"
|
7326
7342
|
}
|
7327
7343
|
},
|
7328
|
-
{
|
7329
|
-
"id": "gpt-4o-2023-01-01",
|
7330
|
-
"name": "GPT-4o",
|
7331
|
-
"provider": "openai",
|
7332
|
-
"family": "gpt-4o",
|
7333
|
-
"created_at": null,
|
7334
|
-
"context_window": 128000,
|
7335
|
-
"max_output_tokens": 16384,
|
7336
|
-
"knowledge_cutoff": null,
|
7337
|
-
"modalities": {
|
7338
|
-
"input": [
|
7339
|
-
"image",
|
7340
|
-
"text"
|
7341
|
-
],
|
7342
|
-
"output": [
|
7343
|
-
"embeddings",
|
7344
|
-
"text"
|
7345
|
-
]
|
7346
|
-
},
|
7347
|
-
"capabilities": [
|
7348
|
-
"batch",
|
7349
|
-
"function_calling",
|
7350
|
-
"structured_output"
|
7351
|
-
],
|
7352
|
-
"pricing": {
|
7353
|
-
"text_tokens": {
|
7354
|
-
"standard": {
|
7355
|
-
"input_per_million": 2.5,
|
7356
|
-
"cached_input_per_million": 1.25,
|
7357
|
-
"output_per_million": 10.0
|
7358
|
-
},
|
7359
|
-
"batch": {
|
7360
|
-
"input_per_million": 1.25,
|
7361
|
-
"output_per_million": 5.0
|
7362
|
-
}
|
7363
|
-
}
|
7364
|
-
},
|
7365
|
-
"metadata": {}
|
7366
|
-
},
|
7367
7344
|
{
|
7368
7345
|
"id": "gpt-4o-2024-05-13",
|
7369
7346
|
"name": "GPT-4o 20240513",
|
@@ -7403,25 +7380,25 @@
|
|
7403
7380
|
},
|
7404
7381
|
{
|
7405
7382
|
"id": "gpt-4o-2024-08-06",
|
7406
|
-
"name": "GPT-4o
|
7383
|
+
"name": "GPT-4o",
|
7407
7384
|
"provider": "openai",
|
7408
|
-
"family": "
|
7409
|
-
"created_at":
|
7385
|
+
"family": "gpt-4o",
|
7386
|
+
"created_at": null,
|
7410
7387
|
"context_window": 128000,
|
7411
7388
|
"max_output_tokens": 16384,
|
7412
7389
|
"knowledge_cutoff": null,
|
7413
7390
|
"modalities": {
|
7414
7391
|
"input": [
|
7415
|
-
"text",
|
7416
7392
|
"image",
|
7417
|
-
"
|
7393
|
+
"text"
|
7418
7394
|
],
|
7419
7395
|
"output": [
|
7396
|
+
"embeddings",
|
7420
7397
|
"text"
|
7421
7398
|
]
|
7422
7399
|
},
|
7423
7400
|
"capabilities": [
|
7424
|
-
"
|
7401
|
+
"batch",
|
7425
7402
|
"function_calling",
|
7426
7403
|
"structured_output"
|
7427
7404
|
],
|
@@ -7429,7 +7406,12 @@
|
|
7429
7406
|
"text_tokens": {
|
7430
7407
|
"standard": {
|
7431
7408
|
"input_per_million": 2.5,
|
7409
|
+
"cached_input_per_million": 1.25,
|
7432
7410
|
"output_per_million": 10.0
|
7411
|
+
},
|
7412
|
+
"batch": {
|
7413
|
+
"input_per_million": 1.25,
|
7414
|
+
"output_per_million": 5.0
|
7433
7415
|
}
|
7434
7416
|
}
|
7435
7417
|
},
|
@@ -7817,28 +7799,32 @@
|
|
7817
7799
|
},
|
7818
7800
|
{
|
7819
7801
|
"id": "gpt-4o-mini-realtime-preview-2024-12-17",
|
7820
|
-
"name": "GPT-4o
|
7802
|
+
"name": "GPT-4o mini Realtime",
|
7821
7803
|
"provider": "openai",
|
7822
|
-
"family": "
|
7823
|
-
"created_at":
|
7804
|
+
"family": "gpt-4o-mini-realtime-preview",
|
7805
|
+
"created_at": null,
|
7824
7806
|
"context_window": 128000,
|
7825
7807
|
"max_output_tokens": 4096,
|
7826
7808
|
"knowledge_cutoff": null,
|
7827
7809
|
"modalities": {
|
7828
7810
|
"input": [
|
7811
|
+
"audio",
|
7829
7812
|
"text"
|
7830
7813
|
],
|
7831
7814
|
"output": [
|
7815
|
+
"audio",
|
7816
|
+
"embeddings",
|
7832
7817
|
"text"
|
7833
7818
|
]
|
7834
7819
|
},
|
7835
7820
|
"capabilities": [
|
7836
|
-
"
|
7821
|
+
"function_calling"
|
7837
7822
|
],
|
7838
7823
|
"pricing": {
|
7839
7824
|
"text_tokens": {
|
7840
7825
|
"standard": {
|
7841
7826
|
"input_per_million": 0.6,
|
7827
|
+
"cached_input_per_million": 0.3,
|
7842
7828
|
"output_per_million": 2.4
|
7843
7829
|
}
|
7844
7830
|
}
|
@@ -10272,8 +10258,8 @@
|
|
10272
10258
|
"pricing": {
|
10273
10259
|
"text_tokens": {
|
10274
10260
|
"standard": {
|
10275
|
-
"input_per_million":
|
10276
|
-
"output_per_million":
|
10261
|
+
"input_per_million": 4.0,
|
10262
|
+
"output_per_million": 5.5
|
10277
10263
|
}
|
10278
10264
|
}
|
10279
10265
|
},
|
@@ -10562,7 +10548,7 @@
|
|
10562
10548
|
"family": "anthracite-org",
|
10563
10549
|
"created_at": "2024-10-22 02:00:00 +0200",
|
10564
10550
|
"context_window": 16384,
|
10565
|
-
"max_output_tokens":
|
10551
|
+
"max_output_tokens": 2048,
|
10566
10552
|
"knowledge_cutoff": null,
|
10567
10553
|
"modalities": {
|
10568
10554
|
"input": [
|
@@ -10579,8 +10565,8 @@
|
|
10579
10565
|
"pricing": {
|
10580
10566
|
"text_tokens": {
|
10581
10567
|
"standard": {
|
10582
|
-
"input_per_million": 2.
|
10583
|
-
"output_per_million":
|
10568
|
+
"input_per_million": 2.0,
|
10569
|
+
"output_per_million": 5.0
|
10584
10570
|
}
|
10585
10571
|
}
|
10586
10572
|
},
|
@@ -10599,7 +10585,7 @@
|
|
10599
10585
|
},
|
10600
10586
|
"top_provider": {
|
10601
10587
|
"context_length": 16384,
|
10602
|
-
"max_completion_tokens":
|
10588
|
+
"max_completion_tokens": 2048,
|
10603
10589
|
"is_moderated": false
|
10604
10590
|
},
|
10605
10591
|
"per_request_limits": null,
|
@@ -11063,70 +11049,6 @@
|
|
11063
11049
|
]
|
11064
11050
|
}
|
11065
11051
|
},
|
11066
|
-
{
|
11067
|
-
"id": "anthropic/claude-3.7-sonnet:beta",
|
11068
|
-
"name": "Anthropic: Claude 3.7 Sonnet (self-moderated)",
|
11069
|
-
"provider": "openrouter",
|
11070
|
-
"family": "anthropic",
|
11071
|
-
"created_at": "2025-02-24 19:35:10 +0100",
|
11072
|
-
"context_window": 200000,
|
11073
|
-
"max_output_tokens": 128000,
|
11074
|
-
"knowledge_cutoff": null,
|
11075
|
-
"modalities": {
|
11076
|
-
"input": [
|
11077
|
-
"text",
|
11078
|
-
"image",
|
11079
|
-
"file"
|
11080
|
-
],
|
11081
|
-
"output": [
|
11082
|
-
"text"
|
11083
|
-
]
|
11084
|
-
},
|
11085
|
-
"capabilities": [
|
11086
|
-
"streaming",
|
11087
|
-
"function_calling"
|
11088
|
-
],
|
11089
|
-
"pricing": {
|
11090
|
-
"text_tokens": {
|
11091
|
-
"standard": {
|
11092
|
-
"input_per_million": 3.0,
|
11093
|
-
"output_per_million": 15.0,
|
11094
|
-
"cached_input_per_million": 0.3
|
11095
|
-
}
|
11096
|
-
}
|
11097
|
-
},
|
11098
|
-
"metadata": {
|
11099
|
-
"description": "Claude 3.7 Sonnet is an advanced large language model with improved reasoning, coding, and problem-solving capabilities. It introduces a hybrid reasoning approach, allowing users to choose between rapid responses and extended, step-by-step processing for complex tasks. The model demonstrates notable improvements in coding, particularly in front-end development and full-stack updates, and excels in agentic workflows, where it can autonomously navigate multi-step processes. \n\nClaude 3.7 Sonnet maintains performance parity with its predecessor in standard mode while offering an extended reasoning mode for enhanced accuracy in math, coding, and instruction-following tasks.\n\nRead more at the [blog post here](https://www.anthropic.com/news/claude-3-7-sonnet)",
|
11100
|
-
"architecture": {
|
11101
|
-
"modality": "text+image->text",
|
11102
|
-
"input_modalities": [
|
11103
|
-
"text",
|
11104
|
-
"image",
|
11105
|
-
"file"
|
11106
|
-
],
|
11107
|
-
"output_modalities": [
|
11108
|
-
"text"
|
11109
|
-
],
|
11110
|
-
"tokenizer": "Claude",
|
11111
|
-
"instruct_type": null
|
11112
|
-
},
|
11113
|
-
"top_provider": {
|
11114
|
-
"context_length": 200000,
|
11115
|
-
"max_completion_tokens": 128000,
|
11116
|
-
"is_moderated": false
|
11117
|
-
},
|
11118
|
-
"per_request_limits": null,
|
11119
|
-
"supported_parameters": [
|
11120
|
-
"include_reasoning",
|
11121
|
-
"max_tokens",
|
11122
|
-
"reasoning",
|
11123
|
-
"stop",
|
11124
|
-
"temperature",
|
11125
|
-
"tool_choice",
|
11126
|
-
"tools"
|
11127
|
-
]
|
11128
|
-
}
|
11129
|
-
},
|
11130
11052
|
{
|
11131
11053
|
"id": "anthropic/claude-3.7-sonnet:thinking",
|
11132
11054
|
"name": "Anthropic: Claude 3.7 Sonnet (thinking)",
|
@@ -11894,41 +11816,42 @@
|
|
11894
11816
|
}
|
11895
11817
|
},
|
11896
11818
|
{
|
11897
|
-
"id": "
|
11898
|
-
"name": "
|
11819
|
+
"id": "baidu/ernie-4.5-vl-28b-a3b",
|
11820
|
+
"name": "Baidu: ERNIE 4.5 VL 28B A3B",
|
11899
11821
|
"provider": "openrouter",
|
11900
|
-
"family": "
|
11901
|
-
"created_at": "2025-
|
11902
|
-
"context_window":
|
11903
|
-
"max_output_tokens":
|
11822
|
+
"family": "baidu",
|
11823
|
+
"created_at": "2025-08-12 23:07:16 +0200",
|
11824
|
+
"context_window": 30000,
|
11825
|
+
"max_output_tokens": 8000,
|
11904
11826
|
"knowledge_cutoff": null,
|
11905
11827
|
"modalities": {
|
11906
11828
|
"input": [
|
11907
|
-
"
|
11908
|
-
"
|
11829
|
+
"text",
|
11830
|
+
"image"
|
11909
11831
|
],
|
11910
11832
|
"output": [
|
11911
11833
|
"text"
|
11912
11834
|
]
|
11913
11835
|
},
|
11914
11836
|
"capabilities": [
|
11915
|
-
"streaming"
|
11837
|
+
"streaming",
|
11838
|
+
"predicted_outputs"
|
11916
11839
|
],
|
11917
11840
|
"pricing": {
|
11918
11841
|
"text_tokens": {
|
11919
11842
|
"standard": {
|
11920
|
-
"input_per_million": 0.
|
11921
|
-
"output_per_million": 0.
|
11843
|
+
"input_per_million": 0.14,
|
11844
|
+
"output_per_million": 0.56
|
11922
11845
|
}
|
11923
11846
|
}
|
11924
11847
|
},
|
11925
11848
|
"metadata": {
|
11926
|
-
"description": "
|
11849
|
+
"description": "A powerful multimodal Mixture-of-Experts chat model featuring 28B total parameters with 3B activated per token, delivering exceptional text and vision understanding through its innovative heterogeneous MoE structure with modality-isolated routing. Built with scaling-efficient infrastructure for high-throughput training and inference, the model leverages advanced post-training techniques including SFT, DPO, and UPO for optimized performance, while supporting an impressive 131K context length and RLVR alignment for superior cross-modal reasoning and generation capabilities.",
|
11927
11850
|
"architecture": {
|
11928
11851
|
"modality": "text+image->text",
|
11929
11852
|
"input_modalities": [
|
11930
|
-
"
|
11931
|
-
"
|
11853
|
+
"text",
|
11854
|
+
"image"
|
11932
11855
|
],
|
11933
11856
|
"output_modalities": [
|
11934
11857
|
"text"
|
@@ -11937,16 +11860,19 @@
|
|
11937
11860
|
"instruct_type": null
|
11938
11861
|
},
|
11939
11862
|
"top_provider": {
|
11940
|
-
"context_length":
|
11941
|
-
"max_completion_tokens":
|
11863
|
+
"context_length": 30000,
|
11864
|
+
"max_completion_tokens": 8000,
|
11942
11865
|
"is_moderated": false
|
11943
11866
|
},
|
11944
11867
|
"per_request_limits": null,
|
11945
11868
|
"supported_parameters": [
|
11946
11869
|
"frequency_penalty",
|
11870
|
+
"include_reasoning",
|
11871
|
+
"logit_bias",
|
11947
11872
|
"max_tokens",
|
11948
11873
|
"min_p",
|
11949
11874
|
"presence_penalty",
|
11875
|
+
"reasoning",
|
11950
11876
|
"repetition_penalty",
|
11951
11877
|
"seed",
|
11952
11878
|
"stop",
|
@@ -11957,16 +11883,17 @@
|
|
11957
11883
|
}
|
11958
11884
|
},
|
11959
11885
|
{
|
11960
|
-
"id": "
|
11961
|
-
"name": "
|
11886
|
+
"id": "baidu/ernie-4.5-vl-424b-a47b",
|
11887
|
+
"name": "Baidu: ERNIE 4.5 VL 424B A47B ",
|
11962
11888
|
"provider": "openrouter",
|
11963
|
-
"family": "
|
11964
|
-
"created_at": "2025-
|
11965
|
-
"context_window":
|
11966
|
-
"max_output_tokens":
|
11889
|
+
"family": "baidu",
|
11890
|
+
"created_at": "2025-06-30 18:28:23 +0200",
|
11891
|
+
"context_window": 123000,
|
11892
|
+
"max_output_tokens": 16000,
|
11967
11893
|
"knowledge_cutoff": null,
|
11968
11894
|
"modalities": {
|
11969
11895
|
"input": [
|
11896
|
+
"image",
|
11970
11897
|
"text"
|
11971
11898
|
],
|
11972
11899
|
"output": [
|
@@ -11975,12 +11902,141 @@
|
|
11975
11902
|
},
|
11976
11903
|
"capabilities": [
|
11977
11904
|
"streaming",
|
11978
|
-
"
|
11905
|
+
"predicted_outputs"
|
11979
11906
|
],
|
11980
|
-
"pricing": {
|
11981
|
-
|
11982
|
-
|
11983
|
-
|
11907
|
+
"pricing": {
|
11908
|
+
"text_tokens": {
|
11909
|
+
"standard": {
|
11910
|
+
"input_per_million": 0.42,
|
11911
|
+
"output_per_million": 1.25
|
11912
|
+
}
|
11913
|
+
}
|
11914
|
+
},
|
11915
|
+
"metadata": {
|
11916
|
+
"description": "ERNIE-4.5-VL-424B-A47B is a multimodal Mixture-of-Experts (MoE) model from Baidu’s ERNIE 4.5 series, featuring 424B total parameters with 47B active per token. It is trained jointly on text and image data using a heterogeneous MoE architecture and modality-isolated routing to enable high-fidelity cross-modal reasoning, image understanding, and long-context generation (up to 131k tokens). Fine-tuned with techniques like SFT, DPO, UPO, and RLVR, this model supports both “thinking” and non-thinking inference modes. Designed for vision-language tasks in English and Chinese, it is optimized for efficient scaling and can operate under 4-bit/8-bit quantization.",
|
11917
|
+
"architecture": {
|
11918
|
+
"modality": "text+image->text",
|
11919
|
+
"input_modalities": [
|
11920
|
+
"image",
|
11921
|
+
"text"
|
11922
|
+
],
|
11923
|
+
"output_modalities": [
|
11924
|
+
"text"
|
11925
|
+
],
|
11926
|
+
"tokenizer": "Other",
|
11927
|
+
"instruct_type": null
|
11928
|
+
},
|
11929
|
+
"top_provider": {
|
11930
|
+
"context_length": 123000,
|
11931
|
+
"max_completion_tokens": 16000,
|
11932
|
+
"is_moderated": false
|
11933
|
+
},
|
11934
|
+
"per_request_limits": null,
|
11935
|
+
"supported_parameters": [
|
11936
|
+
"frequency_penalty",
|
11937
|
+
"include_reasoning",
|
11938
|
+
"logit_bias",
|
11939
|
+
"max_tokens",
|
11940
|
+
"min_p",
|
11941
|
+
"presence_penalty",
|
11942
|
+
"reasoning",
|
11943
|
+
"repetition_penalty",
|
11944
|
+
"seed",
|
11945
|
+
"stop",
|
11946
|
+
"temperature",
|
11947
|
+
"top_k",
|
11948
|
+
"top_p"
|
11949
|
+
]
|
11950
|
+
}
|
11951
|
+
},
|
11952
|
+
{
|
11953
|
+
"id": "bytedance/ui-tars-1.5-7b",
|
11954
|
+
"name": "Bytedance: UI-TARS 7B ",
|
11955
|
+
"provider": "openrouter",
|
11956
|
+
"family": "bytedance",
|
11957
|
+
"created_at": "2025-07-22 19:24:16 +0200",
|
11958
|
+
"context_window": 128000,
|
11959
|
+
"max_output_tokens": 2048,
|
11960
|
+
"knowledge_cutoff": null,
|
11961
|
+
"modalities": {
|
11962
|
+
"input": [
|
11963
|
+
"image",
|
11964
|
+
"text"
|
11965
|
+
],
|
11966
|
+
"output": [
|
11967
|
+
"text"
|
11968
|
+
]
|
11969
|
+
},
|
11970
|
+
"capabilities": [
|
11971
|
+
"streaming"
|
11972
|
+
],
|
11973
|
+
"pricing": {
|
11974
|
+
"text_tokens": {
|
11975
|
+
"standard": {
|
11976
|
+
"input_per_million": 0.09999999999999999,
|
11977
|
+
"output_per_million": 0.19999999999999998
|
11978
|
+
}
|
11979
|
+
}
|
11980
|
+
},
|
11981
|
+
"metadata": {
|
11982
|
+
"description": "UI-TARS-1.5 is a multimodal vision-language agent optimized for GUI-based environments, including desktop interfaces, web browsers, mobile systems, and games. Built by ByteDance, it builds upon the UI-TARS framework with reinforcement learning-based reasoning, enabling robust action planning and execution across virtual interfaces.\n\nThis model achieves state-of-the-art results on a range of interactive and grounding benchmarks, including OSworld, WebVoyager, AndroidWorld, and ScreenSpot. It also demonstrates perfect task completion across diverse Poki games and outperforms prior models in Minecraft agent tasks. UI-TARS-1.5 supports thought decomposition during inference and shows strong scaling across variants, with the 1.5 version notably exceeding the performance of earlier 72B and 7B checkpoints.",
|
11983
|
+
"architecture": {
|
11984
|
+
"modality": "text+image->text",
|
11985
|
+
"input_modalities": [
|
11986
|
+
"image",
|
11987
|
+
"text"
|
11988
|
+
],
|
11989
|
+
"output_modalities": [
|
11990
|
+
"text"
|
11991
|
+
],
|
11992
|
+
"tokenizer": "Other",
|
11993
|
+
"instruct_type": null
|
11994
|
+
},
|
11995
|
+
"top_provider": {
|
11996
|
+
"context_length": 128000,
|
11997
|
+
"max_completion_tokens": 2048,
|
11998
|
+
"is_moderated": false
|
11999
|
+
},
|
12000
|
+
"per_request_limits": null,
|
12001
|
+
"supported_parameters": [
|
12002
|
+
"frequency_penalty",
|
12003
|
+
"max_tokens",
|
12004
|
+
"min_p",
|
12005
|
+
"presence_penalty",
|
12006
|
+
"repetition_penalty",
|
12007
|
+
"seed",
|
12008
|
+
"stop",
|
12009
|
+
"temperature",
|
12010
|
+
"top_k",
|
12011
|
+
"top_p"
|
12012
|
+
]
|
12013
|
+
}
|
12014
|
+
},
|
12015
|
+
{
|
12016
|
+
"id": "cognitivecomputations/dolphin-mistral-24b-venice-edition:free",
|
12017
|
+
"name": "Venice: Uncensored (free)",
|
12018
|
+
"provider": "openrouter",
|
12019
|
+
"family": "cognitivecomputations",
|
12020
|
+
"created_at": "2025-07-09 23:02:46 +0200",
|
12021
|
+
"context_window": 32768,
|
12022
|
+
"max_output_tokens": null,
|
12023
|
+
"knowledge_cutoff": null,
|
12024
|
+
"modalities": {
|
12025
|
+
"input": [
|
12026
|
+
"text"
|
12027
|
+
],
|
12028
|
+
"output": [
|
12029
|
+
"text"
|
12030
|
+
]
|
12031
|
+
},
|
12032
|
+
"capabilities": [
|
12033
|
+
"streaming",
|
12034
|
+
"structured_output"
|
12035
|
+
],
|
12036
|
+
"pricing": {},
|
12037
|
+
"metadata": {
|
12038
|
+
"description": "Venice Uncensored Dolphin Mistral 24B Venice Edition is a fine-tuned variant of Mistral-Small-24B-Instruct-2501, developed by dphn.ai in collaboration with Venice.ai. This model is designed as an “uncensored” instruct-tuned LLM, preserving user control over alignment, system prompts, and behavior. Intended for advanced and unrestricted use cases, Venice Uncensored emphasizes steerability and transparent behavior, removing default safety and alignment layers typically found in mainstream assistant models.",
|
12039
|
+
"architecture": {
|
11984
12040
|
"modality": "text->text",
|
11985
12041
|
"input_modalities": [
|
11986
12042
|
"text"
|
@@ -12919,8 +12975,8 @@
|
|
12919
12975
|
"pricing": {
|
12920
12976
|
"text_tokens": {
|
12921
12977
|
"standard": {
|
12922
|
-
"input_per_million": 0.
|
12923
|
-
"output_per_million": 0.
|
12978
|
+
"input_per_million": 0.1999188,
|
12979
|
+
"output_per_million": 0.800064
|
12924
12980
|
}
|
12925
12981
|
}
|
12926
12982
|
},
|
@@ -12990,8 +13046,8 @@
|
|
12990
13046
|
"pricing": {
|
12991
13047
|
"text_tokens": {
|
12992
13048
|
"standard": {
|
12993
|
-
"input_per_million": 0.
|
12994
|
-
"output_per_million": 0.
|
13049
|
+
"input_per_million": 0.1999188,
|
13050
|
+
"output_per_million": 0.800064
|
12995
13051
|
}
|
12996
13052
|
}
|
12997
13053
|
},
|
@@ -13042,7 +13098,7 @@
|
|
13042
13098
|
"family": "deepseek",
|
13043
13099
|
"created_at": "2025-03-24 14:59:15 +0100",
|
13044
13100
|
"context_window": 163840,
|
13045
|
-
"max_output_tokens":
|
13101
|
+
"max_output_tokens": null,
|
13046
13102
|
"knowledge_cutoff": null,
|
13047
13103
|
"modalities": {
|
13048
13104
|
"input": [
|
@@ -13073,20 +13129,93 @@
|
|
13073
13129
|
},
|
13074
13130
|
"top_provider": {
|
13075
13131
|
"context_length": 163840,
|
13076
|
-
"max_completion_tokens":
|
13132
|
+
"max_completion_tokens": null,
|
13133
|
+
"is_moderated": false
|
13134
|
+
},
|
13135
|
+
"per_request_limits": null,
|
13136
|
+
"supported_parameters": [
|
13137
|
+
"frequency_penalty",
|
13138
|
+
"logit_bias",
|
13139
|
+
"logprobs",
|
13140
|
+
"max_tokens",
|
13141
|
+
"min_p",
|
13142
|
+
"presence_penalty",
|
13143
|
+
"repetition_penalty",
|
13144
|
+
"seed",
|
13145
|
+
"stop",
|
13146
|
+
"temperature",
|
13147
|
+
"tool_choice",
|
13148
|
+
"tools",
|
13149
|
+
"top_k",
|
13150
|
+
"top_logprobs",
|
13151
|
+
"top_p"
|
13152
|
+
]
|
13153
|
+
}
|
13154
|
+
},
|
13155
|
+
{
|
13156
|
+
"id": "deepseek/deepseek-chat-v3.1",
|
13157
|
+
"name": "DeepSeek: DeepSeek V3.1",
|
13158
|
+
"provider": "openrouter",
|
13159
|
+
"family": "deepseek",
|
13160
|
+
"created_at": "2025-08-21 14:33:48 +0200",
|
13161
|
+
"context_window": 163840,
|
13162
|
+
"max_output_tokens": null,
|
13163
|
+
"knowledge_cutoff": null,
|
13164
|
+
"modalities": {
|
13165
|
+
"input": [
|
13166
|
+
"text"
|
13167
|
+
],
|
13168
|
+
"output": [
|
13169
|
+
"text"
|
13170
|
+
]
|
13171
|
+
},
|
13172
|
+
"capabilities": [
|
13173
|
+
"streaming",
|
13174
|
+
"function_calling",
|
13175
|
+
"structured_output",
|
13176
|
+
"predicted_outputs"
|
13177
|
+
],
|
13178
|
+
"pricing": {
|
13179
|
+
"text_tokens": {
|
13180
|
+
"standard": {
|
13181
|
+
"input_per_million": 0.19999999999999998,
|
13182
|
+
"output_per_million": 0.7999999999999999
|
13183
|
+
}
|
13184
|
+
}
|
13185
|
+
},
|
13186
|
+
"metadata": {
|
13187
|
+
"description": "DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)\n\nThe model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. \n\nIt succeeds the [DeepSeek V3-0324](/deepseek/deepseek-chat-v3-0324) model and performs well on a variety of tasks.",
|
13188
|
+
"architecture": {
|
13189
|
+
"modality": "text->text",
|
13190
|
+
"input_modalities": [
|
13191
|
+
"text"
|
13192
|
+
],
|
13193
|
+
"output_modalities": [
|
13194
|
+
"text"
|
13195
|
+
],
|
13196
|
+
"tokenizer": "DeepSeek",
|
13197
|
+
"instruct_type": "deepseek-v3.1"
|
13198
|
+
},
|
13199
|
+
"top_provider": {
|
13200
|
+
"context_length": 163840,
|
13201
|
+
"max_completion_tokens": null,
|
13077
13202
|
"is_moderated": false
|
13078
13203
|
},
|
13079
13204
|
"per_request_limits": null,
|
13080
13205
|
"supported_parameters": [
|
13081
13206
|
"frequency_penalty",
|
13207
|
+
"include_reasoning",
|
13082
13208
|
"logit_bias",
|
13083
13209
|
"logprobs",
|
13084
13210
|
"max_tokens",
|
13085
13211
|
"min_p",
|
13086
13212
|
"presence_penalty",
|
13213
|
+
"reasoning",
|
13087
13214
|
"repetition_penalty",
|
13215
|
+
"response_format",
|
13088
13216
|
"seed",
|
13089
13217
|
"stop",
|
13218
|
+
"structured_outputs",
|
13090
13219
|
"temperature",
|
13091
13220
|
"tool_choice",
|
13092
13221
|
"tools",
|
@@ -13258,8 +13387,8 @@
|
|
13258
13387
|
"pricing": {
|
13259
13388
|
"text_tokens": {
|
13260
13389
|
"standard": {
|
13261
|
-
"input_per_million": 0.
|
13262
|
-
"output_per_million": 0.
|
13390
|
+
"input_per_million": 0.1999188,
|
13391
|
+
"output_per_million": 0.800064
|
13263
13392
|
}
|
13264
13393
|
}
|
13265
13394
|
},
|
@@ -13518,8 +13647,8 @@
|
|
13518
13647
|
"pricing": {
|
13519
13648
|
"text_tokens": {
|
13520
13649
|
"standard": {
|
13521
|
-
"input_per_million": 0.
|
13522
|
-
"output_per_million": 0.
|
13650
|
+
"input_per_million": 0.025915399999999998,
|
13651
|
+
"output_per_million": 0.103712
|
13523
13652
|
}
|
13524
13653
|
}
|
13525
13654
|
},
|
@@ -13555,7 +13684,6 @@
|
|
13555
13684
|
"response_format",
|
13556
13685
|
"seed",
|
13557
13686
|
"stop",
|
13558
|
-
"structured_outputs",
|
13559
13687
|
"temperature",
|
13560
13688
|
"tool_choice",
|
13561
13689
|
"tools",
|
@@ -13995,11 +14123,11 @@
|
|
13995
14123
|
}
|
13996
14124
|
},
|
13997
14125
|
{
|
13998
|
-
"id": "deepseek/deepseek-v3-base",
|
13999
|
-
"name": "DeepSeek: DeepSeek V3 Base",
|
14126
|
+
"id": "deepseek/deepseek-v3.1-base",
|
14127
|
+
"name": "DeepSeek: DeepSeek V3.1 Base",
|
14000
14128
|
"provider": "openrouter",
|
14001
14129
|
"family": "deepseek",
|
14002
|
-
"created_at": "2025-
|
14130
|
+
"created_at": "2025-08-20 23:56:57 +0200",
|
14003
14131
|
"context_window": 163840,
|
14004
14132
|
"max_output_tokens": null,
|
14005
14133
|
"knowledge_cutoff": null,
|
@@ -14018,13 +14146,13 @@
|
|
14018
14146
|
"pricing": {
|
14019
14147
|
"text_tokens": {
|
14020
14148
|
"standard": {
|
14021
|
-
"input_per_million": 0.
|
14022
|
-
"output_per_million": 0.
|
14149
|
+
"input_per_million": 0.19999999999999998,
|
14150
|
+
"output_per_million": 0.7999999999999999
|
14023
14151
|
}
|
14024
14152
|
}
|
14025
14153
|
},
|
14026
14154
|
"metadata": {
|
14027
|
-
"description": "
|
14155
|
+
"description": "This is a base model, trained only for raw next-token prediction. Unlike instruct/chat models, it has not been fine-tuned to follow user instructions. Prompts need to be written more like training text or examples rather than simple requests (e.g., “Translate the following sentence…” instead of just “Translate this”).\n\nDeepSeek-V3.1 Base is a 671B parameter open Mixture-of-Experts (MoE) language model with 37B active parameters per forward pass and a context length of 128K tokens. Trained on 14.8T tokens using FP8 mixed precision, it achieves high training efficiency and stability, with strong performance across language, reasoning, math, and coding tasks. \n",
|
14028
14156
|
"architecture": {
|
14029
14157
|
"modality": "text->text",
|
14030
14158
|
"input_modalities": [
|
@@ -14034,7 +14162,7 @@
|
|
14034
14162
|
"text"
|
14035
14163
|
],
|
14036
14164
|
"tokenizer": "DeepSeek",
|
14037
|
-
"instruct_type":
|
14165
|
+
"instruct_type": "none"
|
14038
14166
|
},
|
14039
14167
|
"top_provider": {
|
14040
14168
|
"context_length": 163840,
|
@@ -14121,74 +14249,87 @@
|
|
14121
14249
|
}
|
14122
14250
|
},
|
14123
14251
|
{
|
14124
|
-
"id": "
|
14125
|
-
"name": "
|
14252
|
+
"id": "google/gemini-2.0-flash-001",
|
14253
|
+
"name": "Google: Gemini 2.0 Flash",
|
14126
14254
|
"provider": "openrouter",
|
14127
|
-
"family": "
|
14128
|
-
"created_at": "2025-
|
14129
|
-
"context_window":
|
14130
|
-
"max_output_tokens":
|
14255
|
+
"family": "google",
|
14256
|
+
"created_at": "2025-02-05 16:30:13 +0100",
|
14257
|
+
"context_window": 1048576,
|
14258
|
+
"max_output_tokens": 8192,
|
14131
14259
|
"knowledge_cutoff": null,
|
14132
14260
|
"modalities": {
|
14133
14261
|
"input": [
|
14134
|
-
"text"
|
14262
|
+
"text",
|
14263
|
+
"image",
|
14264
|
+
"file",
|
14265
|
+
"audio"
|
14135
14266
|
],
|
14136
14267
|
"output": [
|
14137
14268
|
"text"
|
14138
14269
|
]
|
14139
14270
|
},
|
14140
14271
|
"capabilities": [
|
14141
|
-
"streaming"
|
14272
|
+
"streaming",
|
14273
|
+
"function_calling",
|
14274
|
+
"structured_output"
|
14142
14275
|
],
|
14143
|
-
"pricing": {
|
14276
|
+
"pricing": {
|
14277
|
+
"text_tokens": {
|
14278
|
+
"standard": {
|
14279
|
+
"input_per_million": 0.09999999999999999,
|
14280
|
+
"output_per_million": 0.39999999999999997,
|
14281
|
+
"cached_input_per_million": 0.024999999999999998
|
14282
|
+
}
|
14283
|
+
}
|
14284
|
+
},
|
14144
14285
|
"metadata": {
|
14145
|
-
"description": "
|
14286
|
+
"description": "Gemini Flash 2.0 offers a significantly faster time to first token (TTFT) compared to [Gemini Flash 1.5](/google/gemini-flash-1.5), while maintaining quality on par with larger models like [Gemini Pro 1.5](/google/gemini-pro-1.5). It introduces notable enhancements in multimodal understanding, coding capabilities, complex instruction following, and function calling. These advancements come together to deliver more seamless and robust agentic experiences.",
|
14146
14287
|
"architecture": {
|
14147
|
-
"modality": "text->text",
|
14288
|
+
"modality": "text+image->text",
|
14148
14289
|
"input_modalities": [
|
14149
|
-
"text"
|
14290
|
+
"text",
|
14291
|
+
"image",
|
14292
|
+
"file",
|
14293
|
+
"audio"
|
14150
14294
|
],
|
14151
14295
|
"output_modalities": [
|
14152
14296
|
"text"
|
14153
14297
|
],
|
14154
|
-
"tokenizer": "
|
14298
|
+
"tokenizer": "Gemini",
|
14155
14299
|
"instruct_type": null
|
14156
14300
|
},
|
14157
14301
|
"top_provider": {
|
14158
|
-
"context_length":
|
14159
|
-
"max_completion_tokens":
|
14302
|
+
"context_length": 1048576,
|
14303
|
+
"max_completion_tokens": 8192,
|
14160
14304
|
"is_moderated": false
|
14161
14305
|
},
|
14162
14306
|
"per_request_limits": null,
|
14163
14307
|
"supported_parameters": [
|
14164
|
-
"frequency_penalty",
|
14165
14308
|
"max_tokens",
|
14166
|
-
"
|
14167
|
-
"presence_penalty",
|
14168
|
-
"repetition_penalty",
|
14309
|
+
"response_format",
|
14169
14310
|
"seed",
|
14170
14311
|
"stop",
|
14312
|
+
"structured_outputs",
|
14171
14313
|
"temperature",
|
14172
|
-
"
|
14314
|
+
"tool_choice",
|
14315
|
+
"tools",
|
14173
14316
|
"top_p"
|
14174
14317
|
]
|
14175
14318
|
}
|
14176
14319
|
},
|
14177
14320
|
{
|
14178
|
-
"id": "google/gemini-2.0-flash-
|
14179
|
-
"name": "Google: Gemini 2.0 Flash",
|
14321
|
+
"id": "google/gemini-2.0-flash-exp:free",
|
14322
|
+
"name": "Google: Gemini 2.0 Flash Experimental (free)",
|
14180
14323
|
"provider": "openrouter",
|
14181
14324
|
"family": "google",
|
14182
|
-
"created_at": "
|
14325
|
+
"created_at": "2024-12-11 18:18:43 +0100",
|
14183
14326
|
"context_window": 1048576,
|
14184
14327
|
"max_output_tokens": 8192,
|
14185
14328
|
"knowledge_cutoff": null,
|
14186
14329
|
"modalities": {
|
14187
14330
|
"input": [
|
14188
14331
|
"text",
|
14189
|
-
"image"
|
14190
|
-
"file",
|
14191
|
-
"audio"
|
14332
|
+
"image"
|
14192
14333
|
],
|
14193
14334
|
"output": [
|
14194
14335
|
"text"
|
@@ -14199,24 +14340,14 @@
|
|
14199
14340
|
"function_calling",
|
14200
14341
|
"structured_output"
|
14201
14342
|
],
|
14202
|
-
"pricing": {
|
14203
|
-
"text_tokens": {
|
14204
|
-
"standard": {
|
14205
|
-
"input_per_million": 0.09999999999999999,
|
14206
|
-
"output_per_million": 0.39999999999999997,
|
14207
|
-
"cached_input_per_million": 0.024999999999999998
|
14208
|
-
}
|
14209
|
-
}
|
14210
|
-
},
|
14343
|
+
"pricing": {},
|
14211
14344
|
"metadata": {
|
14212
14345
|
"description": "Gemini Flash 2.0 offers a significantly faster time to first token (TTFT) compared to [Gemini Flash 1.5](/google/gemini-flash-1.5), while maintaining quality on par with larger models like [Gemini Pro 1.5](/google/gemini-pro-1.5). It introduces notable enhancements in multimodal understanding, coding capabilities, complex instruction following, and function calling. These advancements come together to deliver more seamless and robust agentic experiences.",
|
14213
14346
|
"architecture": {
|
14214
14347
|
"modality": "text+image->text",
|
14215
14348
|
"input_modalities": [
|
14216
14349
|
"text",
|
14217
|
-
"image"
|
14218
|
-
"file",
|
14219
|
-
"audio"
|
14350
|
+
"image"
|
14220
14351
|
],
|
14221
14352
|
"output_modalities": [
|
14222
14353
|
"text"
|
@@ -14235,7 +14366,6 @@
|
|
14235
14366
|
"response_format",
|
14236
14367
|
"seed",
|
14237
14368
|
"stop",
|
14238
|
-
"structured_outputs",
|
14239
14369
|
"temperature",
|
14240
14370
|
"tool_choice",
|
14241
14371
|
"tools",
|
@@ -14244,18 +14374,20 @@
|
|
14244
14374
|
}
|
14245
14375
|
},
|
14246
14376
|
{
|
14247
|
-
"id": "google/gemini-2.0-flash-
|
14248
|
-
"name": "Google: Gemini 2.0 Flash
|
14377
|
+
"id": "google/gemini-2.0-flash-lite-001",
|
14378
|
+
"name": "Google: Gemini 2.0 Flash Lite",
|
14249
14379
|
"provider": "openrouter",
|
14250
14380
|
"family": "google",
|
14251
|
-
"created_at": "
|
14381
|
+
"created_at": "2025-02-25 18:56:52 +0100",
|
14252
14382
|
"context_window": 1048576,
|
14253
14383
|
"max_output_tokens": 8192,
|
14254
14384
|
"knowledge_cutoff": null,
|
14255
14385
|
"modalities": {
|
14256
14386
|
"input": [
|
14257
14387
|
"text",
|
14258
|
-
"image"
|
14388
|
+
"image",
|
14389
|
+
"file",
|
14390
|
+
"audio"
|
14259
14391
|
],
|
14260
14392
|
"output": [
|
14261
14393
|
"text"
|
@@ -14266,14 +14398,23 @@
|
|
14266
14398
|
"function_calling",
|
14267
14399
|
"structured_output"
|
14268
14400
|
],
|
14269
|
-
"pricing": {
|
14401
|
+
"pricing": {
|
14402
|
+
"text_tokens": {
|
14403
|
+
"standard": {
|
14404
|
+
"input_per_million": 0.075,
|
14405
|
+
"output_per_million": 0.3
|
14406
|
+
}
|
14407
|
+
}
|
14408
|
+
},
|
14270
14409
|
"metadata": {
|
14271
|
-
"description": "Gemini
|
14410
|
+
"description": "Gemini 2.0 Flash Lite offers a significantly faster time to first token (TTFT) compared to [Gemini Flash 1.5](/google/gemini-flash-1.5), while maintaining quality on par with larger models like [Gemini Pro 1.5](/google/gemini-pro-1.5), all at extremely economical token prices.",
|
14272
14411
|
"architecture": {
|
14273
14412
|
"modality": "text+image->text",
|
14274
14413
|
"input_modalities": [
|
14275
14414
|
"text",
|
14276
|
-
"image"
|
14415
|
+
"image",
|
14416
|
+
"file",
|
14417
|
+
"audio"
|
14277
14418
|
],
|
14278
14419
|
"output_modalities": [
|
14279
14420
|
"text"
|
@@ -14292,6 +14433,7 @@
|
|
14292
14433
|
"response_format",
|
14293
14434
|
"seed",
|
14294
14435
|
"stop",
|
14436
|
+
"structured_outputs",
|
14295
14437
|
"temperature",
|
14296
14438
|
"tool_choice",
|
14297
14439
|
"tools",
|
@@ -14300,19 +14442,19 @@
|
|
14300
14442
|
}
|
14301
14443
|
},
|
14302
14444
|
{
|
14303
|
-
"id": "google/gemini-2.
|
14304
|
-
"name": "Google: Gemini 2.
|
14445
|
+
"id": "google/gemini-2.5-flash",
|
14446
|
+
"name": "Google: Gemini 2.5 Flash",
|
14305
14447
|
"provider": "openrouter",
|
14306
14448
|
"family": "google",
|
14307
|
-
"created_at": "2025-
|
14449
|
+
"created_at": "2025-06-17 17:01:28 +0200",
|
14308
14450
|
"context_window": 1048576,
|
14309
|
-
"max_output_tokens":
|
14451
|
+
"max_output_tokens": 65535,
|
14310
14452
|
"knowledge_cutoff": null,
|
14311
14453
|
"modalities": {
|
14312
14454
|
"input": [
|
14313
|
-
"text",
|
14314
|
-
"image",
|
14315
14455
|
"file",
|
14456
|
+
"image",
|
14457
|
+
"text",
|
14316
14458
|
"audio"
|
14317
14459
|
],
|
14318
14460
|
"output": [
|
@@ -14327,19 +14469,20 @@
|
|
14327
14469
|
"pricing": {
|
14328
14470
|
"text_tokens": {
|
14329
14471
|
"standard": {
|
14330
|
-
"input_per_million": 0.
|
14331
|
-
"output_per_million":
|
14472
|
+
"input_per_million": 0.3,
|
14473
|
+
"output_per_million": 2.5,
|
14474
|
+
"cached_input_per_million": 0.075
|
14332
14475
|
}
|
14333
14476
|
}
|
14334
14477
|
},
|
14335
14478
|
"metadata": {
|
14336
|
-
"description": "Gemini 2.
|
14479
|
+
"description": "Gemini 2.5 Flash is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in \"thinking\" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. \n\nAdditionally, Gemini 2.5 Flash is configurable through the \"max tokens for reasoning\" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).",
|
14337
14480
|
"architecture": {
|
14338
14481
|
"modality": "text+image->text",
|
14339
14482
|
"input_modalities": [
|
14340
|
-
"text",
|
14341
|
-
"image",
|
14342
14483
|
"file",
|
14484
|
+
"image",
|
14485
|
+
"text",
|
14343
14486
|
"audio"
|
14344
14487
|
],
|
14345
14488
|
"output_modalities": [
|
@@ -14350,12 +14493,14 @@
|
|
14350
14493
|
},
|
14351
14494
|
"top_provider": {
|
14352
14495
|
"context_length": 1048576,
|
14353
|
-
"max_completion_tokens":
|
14496
|
+
"max_completion_tokens": 65535,
|
14354
14497
|
"is_moderated": false
|
14355
14498
|
},
|
14356
14499
|
"per_request_limits": null,
|
14357
14500
|
"supported_parameters": [
|
14501
|
+
"include_reasoning",
|
14358
14502
|
"max_tokens",
|
14503
|
+
"reasoning",
|
14359
14504
|
"response_format",
|
14360
14505
|
"seed",
|
14361
14506
|
"stop",
|
@@ -14368,72 +14513,118 @@
|
|
14368
14513
|
}
|
14369
14514
|
},
|
14370
14515
|
{
|
14371
|
-
"id": "google/gemini-2.5-flash",
|
14372
|
-
"name": "Google: Gemini 2.5 Flash",
|
14516
|
+
"id": "google/gemini-2.5-flash-image-preview",
|
14517
|
+
"name": "Google: Gemini 2.5 Flash Image Preview",
|
14373
14518
|
"provider": "openrouter",
|
14374
14519
|
"family": "google",
|
14375
|
-
"created_at": "2025-
|
14376
|
-
"context_window":
|
14377
|
-
"max_output_tokens":
|
14520
|
+
"created_at": "2025-08-26 16:36:17 +0200",
|
14521
|
+
"context_window": 32768,
|
14522
|
+
"max_output_tokens": 8192,
|
14378
14523
|
"knowledge_cutoff": null,
|
14379
14524
|
"modalities": {
|
14380
14525
|
"input": [
|
14381
|
-
"file",
|
14382
14526
|
"image",
|
14383
|
-
"text"
|
14384
|
-
"audio"
|
14527
|
+
"text"
|
14385
14528
|
],
|
14386
14529
|
"output": [
|
14530
|
+
"image",
|
14387
14531
|
"text"
|
14388
14532
|
]
|
14389
14533
|
},
|
14390
14534
|
"capabilities": [
|
14391
14535
|
"streaming",
|
14392
|
-
"function_calling",
|
14393
14536
|
"structured_output"
|
14394
14537
|
],
|
14395
14538
|
"pricing": {
|
14396
14539
|
"text_tokens": {
|
14397
14540
|
"standard": {
|
14398
14541
|
"input_per_million": 0.3,
|
14399
|
-
"output_per_million": 2.5
|
14400
|
-
"cached_input_per_million": 0.075
|
14542
|
+
"output_per_million": 2.5
|
14401
14543
|
}
|
14402
14544
|
}
|
14403
14545
|
},
|
14404
14546
|
"metadata": {
|
14405
|
-
"description": "Gemini 2.5 Flash is
|
14547
|
+
"description": "Gemini 2.5 Flash Image Preview is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations.",
|
14406
14548
|
"architecture": {
|
14407
|
-
"modality": "text+image->text",
|
14549
|
+
"modality": "text+image->text+image",
|
14408
14550
|
"input_modalities": [
|
14409
|
-
"file",
|
14410
14551
|
"image",
|
14411
|
-
"text"
|
14412
|
-
"audio"
|
14552
|
+
"text"
|
14413
14553
|
],
|
14414
14554
|
"output_modalities": [
|
14555
|
+
"image",
|
14415
14556
|
"text"
|
14416
14557
|
],
|
14417
14558
|
"tokenizer": "Gemini",
|
14418
14559
|
"instruct_type": null
|
14419
14560
|
},
|
14420
14561
|
"top_provider": {
|
14421
|
-
"context_length":
|
14422
|
-
"max_completion_tokens":
|
14562
|
+
"context_length": 32768,
|
14563
|
+
"max_completion_tokens": 8192,
|
14564
|
+
"is_moderated": false
|
14565
|
+
},
|
14566
|
+
"per_request_limits": null,
|
14567
|
+
"supported_parameters": [
|
14568
|
+
"max_tokens",
|
14569
|
+
"response_format",
|
14570
|
+
"seed",
|
14571
|
+
"structured_outputs",
|
14572
|
+
"temperature",
|
14573
|
+
"top_p"
|
14574
|
+
]
|
14575
|
+
}
|
14576
|
+
},
|
14577
|
+
{
|
14578
|
+
"id": "google/gemini-2.5-flash-image-preview:free",
|
14579
|
+
"name": "Google: Gemini 2.5 Flash Image Preview (free)",
|
14580
|
+
"provider": "openrouter",
|
14581
|
+
"family": "google",
|
14582
|
+
"created_at": "2025-08-26 16:36:17 +0200",
|
14583
|
+
"context_window": 32768,
|
14584
|
+
"max_output_tokens": 8192,
|
14585
|
+
"knowledge_cutoff": null,
|
14586
|
+
"modalities": {
|
14587
|
+
"input": [
|
14588
|
+
"image",
|
14589
|
+
"text"
|
14590
|
+
],
|
14591
|
+
"output": [
|
14592
|
+
"image",
|
14593
|
+
"text"
|
14594
|
+
]
|
14595
|
+
},
|
14596
|
+
"capabilities": [
|
14597
|
+
"streaming",
|
14598
|
+
"structured_output"
|
14599
|
+
],
|
14600
|
+
"pricing": {},
|
14601
|
+
"metadata": {
|
14602
|
+
"description": "Gemini 2.5 Flash Image Preview is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations.",
|
14603
|
+
"architecture": {
|
14604
|
+
"modality": "text+image->text+image",
|
14605
|
+
"input_modalities": [
|
14606
|
+
"image",
|
14607
|
+
"text"
|
14608
|
+
],
|
14609
|
+
"output_modalities": [
|
14610
|
+
"image",
|
14611
|
+
"text"
|
14612
|
+
],
|
14613
|
+
"tokenizer": "Gemini",
|
14614
|
+
"instruct_type": null
|
14615
|
+
},
|
14616
|
+
"top_provider": {
|
14617
|
+
"context_length": 32768,
|
14618
|
+
"max_completion_tokens": 8192,
|
14423
14619
|
"is_moderated": false
|
14424
14620
|
},
|
14425
14621
|
"per_request_limits": null,
|
14426
14622
|
"supported_parameters": [
|
14427
|
-
"include_reasoning",
|
14428
14623
|
"max_tokens",
|
14429
|
-
"reasoning",
|
14430
14624
|
"response_format",
|
14431
14625
|
"seed",
|
14432
|
-
"stop",
|
14433
14626
|
"structured_outputs",
|
14434
14627
|
"temperature",
|
14435
|
-
"tool_choice",
|
14436
|
-
"tools",
|
14437
14628
|
"top_p"
|
14438
14629
|
]
|
14439
14630
|
}
|
@@ -15317,7 +15508,7 @@
|
|
15317
15508
|
"provider": "openrouter",
|
15318
15509
|
"family": "google",
|
15319
15510
|
"created_at": "2025-03-13 22:50:25 +0100",
|
15320
|
-
"context_window":
|
15511
|
+
"context_window": 32768,
|
15321
15512
|
"max_output_tokens": 8192,
|
15322
15513
|
"knowledge_cutoff": null,
|
15323
15514
|
"modalities": {
|
@@ -15331,7 +15522,6 @@
|
|
15331
15522
|
},
|
15332
15523
|
"capabilities": [
|
15333
15524
|
"streaming",
|
15334
|
-
"structured_output",
|
15335
15525
|
"predicted_outputs"
|
15336
15526
|
],
|
15337
15527
|
"pricing": {},
|
@@ -15350,7 +15540,7 @@
|
|
15350
15540
|
"instruct_type": "gemma"
|
15351
15541
|
},
|
15352
15542
|
"top_provider": {
|
15353
|
-
"context_length":
|
15543
|
+
"context_length": 32768,
|
15354
15544
|
"max_completion_tokens": 8192,
|
15355
15545
|
"is_moderated": false
|
15356
15546
|
},
|
@@ -15363,10 +15553,8 @@
|
|
15363
15553
|
"min_p",
|
15364
15554
|
"presence_penalty",
|
15365
15555
|
"repetition_penalty",
|
15366
|
-
"response_format",
|
15367
15556
|
"seed",
|
15368
15557
|
"stop",
|
15369
|
-
"structured_outputs",
|
15370
15558
|
"temperature",
|
15371
15559
|
"top_k",
|
15372
15560
|
"top_logprobs",
|
@@ -15436,6 +15624,7 @@
|
|
15436
15624
|
"response_format",
|
15437
15625
|
"seed",
|
15438
15626
|
"stop",
|
15627
|
+
"structured_outputs",
|
15439
15628
|
"temperature",
|
15440
15629
|
"top_k",
|
15441
15630
|
"top_logprobs",
|
@@ -16219,73 +16408,6 @@
|
|
16219
16408
|
]
|
16220
16409
|
}
|
16221
16410
|
},
|
16222
|
-
{
|
16223
|
-
"id": "liquid/lfm-40b",
|
16224
|
-
"name": "Liquid: LFM 40B MoE",
|
16225
|
-
"provider": "openrouter",
|
16226
|
-
"family": "liquid",
|
16227
|
-
"created_at": "2024-09-30 02:00:00 +0200",
|
16228
|
-
"context_window": 65536,
|
16229
|
-
"max_output_tokens": 65536,
|
16230
|
-
"knowledge_cutoff": null,
|
16231
|
-
"modalities": {
|
16232
|
-
"input": [
|
16233
|
-
"text"
|
16234
|
-
],
|
16235
|
-
"output": [
|
16236
|
-
"text"
|
16237
|
-
]
|
16238
|
-
},
|
16239
|
-
"capabilities": [
|
16240
|
-
"streaming",
|
16241
|
-
"structured_output",
|
16242
|
-
"predicted_outputs"
|
16243
|
-
],
|
16244
|
-
"pricing": {
|
16245
|
-
"text_tokens": {
|
16246
|
-
"standard": {
|
16247
|
-
"input_per_million": 0.15,
|
16248
|
-
"output_per_million": 0.15
|
16249
|
-
}
|
16250
|
-
}
|
16251
|
-
},
|
16252
|
-
"metadata": {
|
16253
|
-
"description": "Liquid's 40.3B Mixture of Experts (MoE) model. Liquid Foundation Models (LFMs) are large neural networks built with computational units rooted in dynamic systems.\n\nLFMs are general-purpose AI models that can be used to model any kind of sequential data, including video, audio, text, time series, and signals.\n\nSee the [launch announcement](https://www.liquid.ai/liquid-foundation-models) for benchmarks and more info.",
|
16254
|
-
"architecture": {
|
16255
|
-
"modality": "text->text",
|
16256
|
-
"input_modalities": [
|
16257
|
-
"text"
|
16258
|
-
],
|
16259
|
-
"output_modalities": [
|
16260
|
-
"text"
|
16261
|
-
],
|
16262
|
-
"tokenizer": "Other",
|
16263
|
-
"instruct_type": "chatml"
|
16264
|
-
},
|
16265
|
-
"top_provider": {
|
16266
|
-
"context_length": 65536,
|
16267
|
-
"max_completion_tokens": 65536,
|
16268
|
-
"is_moderated": false
|
16269
|
-
},
|
16270
|
-
"per_request_limits": null,
|
16271
|
-
"supported_parameters": [
|
16272
|
-
"frequency_penalty",
|
16273
|
-
"logit_bias",
|
16274
|
-
"logprobs",
|
16275
|
-
"max_tokens",
|
16276
|
-
"min_p",
|
16277
|
-
"presence_penalty",
|
16278
|
-
"repetition_penalty",
|
16279
|
-
"response_format",
|
16280
|
-
"seed",
|
16281
|
-
"stop",
|
16282
|
-
"temperature",
|
16283
|
-
"top_k",
|
16284
|
-
"top_logprobs",
|
16285
|
-
"top_p"
|
16286
|
-
]
|
16287
|
-
}
|
16288
|
-
},
|
16289
16411
|
{
|
16290
16412
|
"id": "liquid/lfm-7b",
|
16291
16413
|
"name": "Liquid: LFM 7B",
|
@@ -16360,7 +16482,7 @@
|
|
16360
16482
|
"family": "mancer",
|
16361
16483
|
"created_at": "2023-08-02 02:00:00 +0200",
|
16362
16484
|
"context_window": 8000,
|
16363
|
-
"max_output_tokens":
|
16485
|
+
"max_output_tokens": 2000,
|
16364
16486
|
"knowledge_cutoff": null,
|
16365
16487
|
"modalities": {
|
16366
16488
|
"input": [
|
@@ -16377,8 +16499,8 @@
|
|
16377
16499
|
"pricing": {
|
16378
16500
|
"text_tokens": {
|
16379
16501
|
"standard": {
|
16380
|
-
"input_per_million": 1.
|
16381
|
-
"output_per_million": 1.
|
16502
|
+
"input_per_million": 1.125,
|
16503
|
+
"output_per_million": 1.125
|
16382
16504
|
}
|
16383
16505
|
}
|
16384
16506
|
},
|
@@ -16397,7 +16519,7 @@
|
|
16397
16519
|
},
|
16398
16520
|
"top_provider": {
|
16399
16521
|
"context_length": 8000,
|
16400
|
-
"max_completion_tokens":
|
16522
|
+
"max_completion_tokens": 2000,
|
16401
16523
|
"is_moderated": false
|
16402
16524
|
},
|
16403
16525
|
"per_request_limits": null,
|
@@ -17399,18 +17521,17 @@
|
|
17399
17521
|
}
|
17400
17522
|
},
|
17401
17523
|
{
|
17402
|
-
"id": "meta-llama/llama-
|
17403
|
-
"name": "Meta: Llama
|
17524
|
+
"id": "meta-llama/llama-3.3-8b-instruct:free",
|
17525
|
+
"name": "Meta: Llama 3.3 8B Instruct (free)",
|
17404
17526
|
"provider": "openrouter",
|
17405
17527
|
"family": "meta-llama",
|
17406
|
-
"created_at": "2025-
|
17407
|
-
"context_window":
|
17408
|
-
"max_output_tokens":
|
17528
|
+
"created_at": "2025-05-14 15:42:34 +0200",
|
17529
|
+
"context_window": 128000,
|
17530
|
+
"max_output_tokens": 4028,
|
17409
17531
|
"knowledge_cutoff": null,
|
17410
17532
|
"modalities": {
|
17411
17533
|
"input": [
|
17412
|
-
"text"
|
17413
|
-
"image"
|
17534
|
+
"text"
|
17414
17535
|
],
|
17415
17536
|
"output": [
|
17416
17537
|
"text"
|
@@ -17419,8 +17540,64 @@
|
|
17419
17540
|
"capabilities": [
|
17420
17541
|
"streaming",
|
17421
17542
|
"function_calling",
|
17422
|
-
"structured_output"
|
17423
|
-
|
17543
|
+
"structured_output"
|
17544
|
+
],
|
17545
|
+
"pricing": {},
|
17546
|
+
"metadata": {
|
17547
|
+
"description": "A lightweight and ultra-fast variant of Llama 3.3 70B, for use when quick response times are needed most.",
|
17548
|
+
"architecture": {
|
17549
|
+
"modality": "text->text",
|
17550
|
+
"input_modalities": [
|
17551
|
+
"text"
|
17552
|
+
],
|
17553
|
+
"output_modalities": [
|
17554
|
+
"text"
|
17555
|
+
],
|
17556
|
+
"tokenizer": "Llama3",
|
17557
|
+
"instruct_type": null
|
17558
|
+
},
|
17559
|
+
"top_provider": {
|
17560
|
+
"context_length": 128000,
|
17561
|
+
"max_completion_tokens": 4028,
|
17562
|
+
"is_moderated": true
|
17563
|
+
},
|
17564
|
+
"per_request_limits": null,
|
17565
|
+
"supported_parameters": [
|
17566
|
+
"max_tokens",
|
17567
|
+
"repetition_penalty",
|
17568
|
+
"response_format",
|
17569
|
+
"structured_outputs",
|
17570
|
+
"temperature",
|
17571
|
+
"tool_choice",
|
17572
|
+
"tools",
|
17573
|
+
"top_k",
|
17574
|
+
"top_p"
|
17575
|
+
]
|
17576
|
+
}
|
17577
|
+
},
|
17578
|
+
{
|
17579
|
+
"id": "meta-llama/llama-4-maverick",
|
17580
|
+
"name": "Meta: Llama 4 Maverick",
|
17581
|
+
"provider": "openrouter",
|
17582
|
+
"family": "meta-llama",
|
17583
|
+
"created_at": "2025-04-05 21:37:02 +0200",
|
17584
|
+
"context_window": 1048576,
|
17585
|
+
"max_output_tokens": 16384,
|
17586
|
+
"knowledge_cutoff": null,
|
17587
|
+
"modalities": {
|
17588
|
+
"input": [
|
17589
|
+
"text",
|
17590
|
+
"image"
|
17591
|
+
],
|
17592
|
+
"output": [
|
17593
|
+
"text"
|
17594
|
+
]
|
17595
|
+
},
|
17596
|
+
"capabilities": [
|
17597
|
+
"streaming",
|
17598
|
+
"function_calling",
|
17599
|
+
"structured_output",
|
17600
|
+
"predicted_outputs"
|
17424
17601
|
],
|
17425
17602
|
"pricing": {
|
17426
17603
|
"text_tokens": {
|
@@ -17471,6 +17648,63 @@
|
|
17471
17648
|
]
|
17472
17649
|
}
|
17473
17650
|
},
|
17651
|
+
{
|
17652
|
+
"id": "meta-llama/llama-4-maverick:free",
|
17653
|
+
"name": "Meta: Llama 4 Maverick (free)",
|
17654
|
+
"provider": "openrouter",
|
17655
|
+
"family": "meta-llama",
|
17656
|
+
"created_at": "2025-04-05 21:37:02 +0200",
|
17657
|
+
"context_window": 128000,
|
17658
|
+
"max_output_tokens": 4028,
|
17659
|
+
"knowledge_cutoff": null,
|
17660
|
+
"modalities": {
|
17661
|
+
"input": [
|
17662
|
+
"text",
|
17663
|
+
"image"
|
17664
|
+
],
|
17665
|
+
"output": [
|
17666
|
+
"text"
|
17667
|
+
]
|
17668
|
+
},
|
17669
|
+
"capabilities": [
|
17670
|
+
"streaming",
|
17671
|
+
"function_calling",
|
17672
|
+
"structured_output"
|
17673
|
+
],
|
17674
|
+
"pricing": {},
|
17675
|
+
"metadata": {
|
17676
|
+
"description": "Llama 4 Maverick 17B Instruct (128E) is a high-capacity multimodal language model from Meta, built on a mixture-of-experts (MoE) architecture with 128 experts and 17 billion active parameters per forward pass (400B total). It supports multilingual text and image input, and produces multilingual text and code output across 12 supported languages. Optimized for vision-language tasks, Maverick is instruction-tuned for assistant-like behavior, image reasoning, and general-purpose multimodal interaction.\n\nMaverick features early fusion for native multimodality and a 1 million token context window. It was trained on a curated mixture of public, licensed, and Meta-platform data, covering ~22 trillion tokens, with a knowledge cutoff in August 2024. Released on April 5, 2025 under the Llama 4 Community License, Maverick is suited for research and commercial applications requiring advanced multimodal understanding and high model throughput.",
|
17677
|
+
"architecture": {
|
17678
|
+
"modality": "text+image->text",
|
17679
|
+
"input_modalities": [
|
17680
|
+
"text",
|
17681
|
+
"image"
|
17682
|
+
],
|
17683
|
+
"output_modalities": [
|
17684
|
+
"text"
|
17685
|
+
],
|
17686
|
+
"tokenizer": "Llama4",
|
17687
|
+
"instruct_type": null
|
17688
|
+
},
|
17689
|
+
"top_provider": {
|
17690
|
+
"context_length": 128000,
|
17691
|
+
"max_completion_tokens": 4028,
|
17692
|
+
"is_moderated": true
|
17693
|
+
},
|
17694
|
+
"per_request_limits": null,
|
17695
|
+
"supported_parameters": [
|
17696
|
+
"max_tokens",
|
17697
|
+
"repetition_penalty",
|
17698
|
+
"response_format",
|
17699
|
+
"structured_outputs",
|
17700
|
+
"temperature",
|
17701
|
+
"tool_choice",
|
17702
|
+
"tools",
|
17703
|
+
"top_k",
|
17704
|
+
"top_p"
|
17705
|
+
]
|
17706
|
+
}
|
17707
|
+
},
|
17474
17708
|
{
|
17475
17709
|
"id": "meta-llama/llama-4-scout",
|
17476
17710
|
"name": "Meta: Llama 4 Scout",
|
@@ -17544,6 +17778,63 @@
|
|
17544
17778
|
]
|
17545
17779
|
}
|
17546
17780
|
},
|
17781
|
+
{
|
17782
|
+
"id": "meta-llama/llama-4-scout:free",
|
17783
|
+
"name": "Meta: Llama 4 Scout (free)",
|
17784
|
+
"provider": "openrouter",
|
17785
|
+
"family": "meta-llama",
|
17786
|
+
"created_at": "2025-04-05 21:31:59 +0200",
|
17787
|
+
"context_window": 128000,
|
17788
|
+
"max_output_tokens": 4028,
|
17789
|
+
"knowledge_cutoff": null,
|
17790
|
+
"modalities": {
|
17791
|
+
"input": [
|
17792
|
+
"text",
|
17793
|
+
"image"
|
17794
|
+
],
|
17795
|
+
"output": [
|
17796
|
+
"text"
|
17797
|
+
]
|
17798
|
+
},
|
17799
|
+
"capabilities": [
|
17800
|
+
"streaming",
|
17801
|
+
"function_calling",
|
17802
|
+
"structured_output"
|
17803
|
+
],
|
17804
|
+
"pricing": {},
|
17805
|
+
"metadata": {
|
17806
|
+
"description": "Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens.\n\nBuilt for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.",
|
17807
|
+
"architecture": {
|
17808
|
+
"modality": "text+image->text",
|
17809
|
+
"input_modalities": [
|
17810
|
+
"text",
|
17811
|
+
"image"
|
17812
|
+
],
|
17813
|
+
"output_modalities": [
|
17814
|
+
"text"
|
17815
|
+
],
|
17816
|
+
"tokenizer": "Llama4",
|
17817
|
+
"instruct_type": null
|
17818
|
+
},
|
17819
|
+
"top_provider": {
|
17820
|
+
"context_length": 128000,
|
17821
|
+
"max_completion_tokens": 4028,
|
17822
|
+
"is_moderated": true
|
17823
|
+
},
|
17824
|
+
"per_request_limits": null,
|
17825
|
+
"supported_parameters": [
|
17826
|
+
"max_tokens",
|
17827
|
+
"repetition_penalty",
|
17828
|
+
"response_format",
|
17829
|
+
"structured_outputs",
|
17830
|
+
"temperature",
|
17831
|
+
"tool_choice",
|
17832
|
+
"tools",
|
17833
|
+
"top_k",
|
17834
|
+
"top_p"
|
17835
|
+
]
|
17836
|
+
}
|
17837
|
+
},
|
17547
17838
|
{
|
17548
17839
|
"id": "meta-llama/llama-guard-2-8b",
|
17549
17840
|
"name": "Meta: LlamaGuard 2 8B",
|
@@ -19667,7 +19958,7 @@
|
|
19667
19958
|
"provider": "openrouter",
|
19668
19959
|
"family": "mistralai",
|
19669
19960
|
"created_at": "2025-08-13 16:33:59 +0200",
|
19670
|
-
"context_window":
|
19961
|
+
"context_window": 131072,
|
19671
19962
|
"max_output_tokens": null,
|
19672
19963
|
"knowledge_cutoff": null,
|
19673
19964
|
"modalities": {
|
@@ -19707,7 +19998,7 @@
|
|
19707
19998
|
"instruct_type": null
|
19708
19999
|
},
|
19709
20000
|
"top_provider": {
|
19710
|
-
"context_length":
|
20001
|
+
"context_length": 131072,
|
19711
20002
|
"max_completion_tokens": null,
|
19712
20003
|
"is_moderated": false
|
19713
20004
|
},
|
@@ -20140,8 +20431,8 @@
|
|
20140
20431
|
"pricing": {
|
20141
20432
|
"text_tokens": {
|
20142
20433
|
"standard": {
|
20143
|
-
"input_per_million": 0.
|
20144
|
-
"output_per_million": 0.
|
20434
|
+
"input_per_million": 0.01999188,
|
20435
|
+
"output_per_million": 0.0800064
|
20145
20436
|
}
|
20146
20437
|
}
|
20147
20438
|
},
|
@@ -20258,7 +20549,7 @@
|
|
20258
20549
|
"provider": "openrouter",
|
20259
20550
|
"family": "mistralai",
|
20260
20551
|
"created_at": "2025-06-20 20:10:16 +0200",
|
20261
|
-
"context_window":
|
20552
|
+
"context_window": 128000,
|
20262
20553
|
"max_output_tokens": null,
|
20263
20554
|
"knowledge_cutoff": null,
|
20264
20555
|
"modalities": {
|
@@ -20279,8 +20570,8 @@
|
|
20279
20570
|
"pricing": {
|
20280
20571
|
"text_tokens": {
|
20281
20572
|
"standard": {
|
20282
|
-
"input_per_million": 0.
|
20283
|
-
"output_per_million": 0.
|
20573
|
+
"input_per_million": 0.049999999999999996,
|
20574
|
+
"output_per_million": 0.09999999999999999
|
20284
20575
|
}
|
20285
20576
|
}
|
20286
20577
|
},
|
@@ -20299,7 +20590,7 @@
|
|
20299
20590
|
"instruct_type": null
|
20300
20591
|
},
|
20301
20592
|
"top_provider": {
|
20302
|
-
"context_length":
|
20593
|
+
"context_length": 128000,
|
20303
20594
|
"max_completion_tokens": null,
|
20304
20595
|
"is_moderated": false
|
20305
20596
|
},
|
@@ -21228,8 +21519,8 @@
|
|
21228
21519
|
"provider": "openrouter",
|
21229
21520
|
"family": "neversleep",
|
21230
21521
|
"created_at": "2024-09-15 02:00:00 +0200",
|
21231
|
-
"context_window":
|
21232
|
-
"max_output_tokens":
|
21522
|
+
"context_window": 32768,
|
21523
|
+
"max_output_tokens": null,
|
21233
21524
|
"knowledge_cutoff": null,
|
21234
21525
|
"modalities": {
|
21235
21526
|
"input": [
|
@@ -21247,8 +21538,8 @@
|
|
21247
21538
|
"pricing": {
|
21248
21539
|
"text_tokens": {
|
21249
21540
|
"standard": {
|
21250
|
-
"input_per_million": 0.
|
21251
|
-
"output_per_million": 0.
|
21541
|
+
"input_per_million": 0.09,
|
21542
|
+
"output_per_million": 0.6
|
21252
21543
|
}
|
21253
21544
|
}
|
21254
21545
|
},
|
@@ -21266,8 +21557,8 @@
|
|
21266
21557
|
"instruct_type": "llama3"
|
21267
21558
|
},
|
21268
21559
|
"top_provider": {
|
21269
|
-
"context_length":
|
21270
|
-
"max_completion_tokens":
|
21560
|
+
"context_length": 32768,
|
21561
|
+
"max_completion_tokens": null,
|
21271
21562
|
"is_moderated": false
|
21272
21563
|
},
|
21273
21564
|
"per_request_limits": null,
|
@@ -21688,13 +21979,13 @@
|
|
21688
21979
|
}
|
21689
21980
|
},
|
21690
21981
|
{
|
21691
|
-
"id": "nousresearch/
|
21692
|
-
"name": "Nous: Hermes
|
21982
|
+
"id": "nousresearch/hermes-4-405b",
|
21983
|
+
"name": "Nous: Hermes 4 405B",
|
21693
21984
|
"provider": "openrouter",
|
21694
21985
|
"family": "nousresearch",
|
21695
|
-
"created_at": "
|
21696
|
-
"context_window":
|
21697
|
-
"max_output_tokens":
|
21986
|
+
"created_at": "2025-08-26 21:11:03 +0200",
|
21987
|
+
"context_window": 131072,
|
21988
|
+
"max_output_tokens": null,
|
21698
21989
|
"knowledge_cutoff": null,
|
21699
21990
|
"modalities": {
|
21700
21991
|
"input": [
|
@@ -21706,18 +21997,19 @@
|
|
21706
21997
|
},
|
21707
21998
|
"capabilities": [
|
21708
21999
|
"streaming",
|
22000
|
+
"function_calling",
|
21709
22001
|
"predicted_outputs"
|
21710
22002
|
],
|
21711
22003
|
"pricing": {
|
21712
22004
|
"text_tokens": {
|
21713
22005
|
"standard": {
|
21714
|
-
"input_per_million": 0.
|
21715
|
-
"output_per_million": 0.
|
22006
|
+
"input_per_million": 0.1999188,
|
22007
|
+
"output_per_million": 0.800064
|
21716
22008
|
}
|
21717
22009
|
}
|
21718
22010
|
},
|
21719
22011
|
"metadata": {
|
21720
|
-
"description": "
|
22012
|
+
"description": "Hermes 4 is a large-scale reasoning model built on Meta-Llama-3.1-405B and released by Nous Research. It introduces a hybrid reasoning mode, where the model can choose to deliberate internally with <think>...</think> traces or respond directly, offering flexibility between speed and depth. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)\n\nThe model is instruction-tuned with an expanded post-training corpus (~60B tokens) emphasizing reasoning traces, improving performance in math, code, STEM, and logical reasoning, while retaining broad assistant utility. It also supports structured outputs, including JSON mode, schema adherence, function calling, and tool use. Hermes 4 is trained for steerability, lower refusal rates, and alignment toward neutral, user-directed behavior.",
|
21721
22013
|
"architecture": {
|
21722
22014
|
"modality": "text->text",
|
21723
22015
|
"input_modalities": [
|
@@ -21726,37 +22018,44 @@
|
|
21726
22018
|
"output_modalities": [
|
21727
22019
|
"text"
|
21728
22020
|
],
|
21729
|
-
"tokenizer": "
|
21730
|
-
"instruct_type":
|
22021
|
+
"tokenizer": "Other",
|
22022
|
+
"instruct_type": null
|
21731
22023
|
},
|
21732
22024
|
"top_provider": {
|
21733
|
-
"context_length":
|
21734
|
-
"max_completion_tokens":
|
22025
|
+
"context_length": 131072,
|
22026
|
+
"max_completion_tokens": null,
|
21735
22027
|
"is_moderated": false
|
21736
22028
|
},
|
21737
22029
|
"per_request_limits": null,
|
21738
22030
|
"supported_parameters": [
|
21739
22031
|
"frequency_penalty",
|
22032
|
+
"include_reasoning",
|
21740
22033
|
"logit_bias",
|
22034
|
+
"logprobs",
|
21741
22035
|
"max_tokens",
|
21742
22036
|
"min_p",
|
21743
22037
|
"presence_penalty",
|
22038
|
+
"reasoning",
|
21744
22039
|
"repetition_penalty",
|
22040
|
+
"seed",
|
21745
22041
|
"stop",
|
21746
22042
|
"temperature",
|
22043
|
+
"tool_choice",
|
22044
|
+
"tools",
|
21747
22045
|
"top_k",
|
22046
|
+
"top_logprobs",
|
21748
22047
|
"top_p"
|
21749
22048
|
]
|
21750
22049
|
}
|
21751
22050
|
},
|
21752
22051
|
{
|
21753
|
-
"id": "
|
21754
|
-
"name": "
|
22052
|
+
"id": "nousresearch/hermes-4-70b",
|
22053
|
+
"name": "Nous: Hermes 4 70B",
|
21755
22054
|
"provider": "openrouter",
|
21756
|
-
"family": "
|
21757
|
-
"created_at": "
|
22055
|
+
"family": "nousresearch",
|
22056
|
+
"created_at": "2025-08-26 21:23:02 +0200",
|
21758
22057
|
"context_window": 131072,
|
21759
|
-
"max_output_tokens":
|
22058
|
+
"max_output_tokens": null,
|
21760
22059
|
"knowledge_cutoff": null,
|
21761
22060
|
"modalities": {
|
21762
22061
|
"input": [
|
@@ -21769,19 +22068,18 @@
|
|
21769
22068
|
"capabilities": [
|
21770
22069
|
"streaming",
|
21771
22070
|
"function_calling",
|
21772
|
-
"structured_output",
|
21773
22071
|
"predicted_outputs"
|
21774
22072
|
],
|
21775
22073
|
"pricing": {
|
21776
22074
|
"text_tokens": {
|
21777
22075
|
"standard": {
|
21778
|
-
"input_per_million": 0.
|
21779
|
-
"output_per_million": 0.
|
22076
|
+
"input_per_million": 0.09329544,
|
22077
|
+
"output_per_million": 0.3733632
|
21780
22078
|
}
|
21781
22079
|
}
|
21782
22080
|
},
|
21783
22081
|
"metadata": {
|
21784
|
-
"description": "
|
22082
|
+
"description": "Hermes 4 70B is a hybrid reasoning model from Nous Research, built on Meta-Llama-3.1-70B. It introduces the same hybrid mode as the larger 405B release, allowing the model to either respond directly or generate explicit <think>...</think> reasoning traces before answering. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)\n\nThis 70B variant is trained with the expanded post-training corpus (~60B tokens) emphasizing verified reasoning data, leading to improvements in mathematics, coding, STEM, logic, and structured outputs while maintaining general assistant performance. It supports JSON mode, schema adherence, function calling, and tool use, and is designed for greater steerability with reduced refusal rates.",
|
21785
22083
|
"architecture": {
|
21786
22084
|
"modality": "text->text",
|
21787
22085
|
"input_modalities": [
|
@@ -21791,23 +22089,24 @@
|
|
21791
22089
|
"text"
|
21792
22090
|
],
|
21793
22091
|
"tokenizer": "Llama3",
|
21794
|
-
"instruct_type":
|
22092
|
+
"instruct_type": null
|
21795
22093
|
},
|
21796
22094
|
"top_provider": {
|
21797
22095
|
"context_length": 131072,
|
21798
|
-
"max_completion_tokens":
|
22096
|
+
"max_completion_tokens": null,
|
21799
22097
|
"is_moderated": false
|
21800
22098
|
},
|
21801
22099
|
"per_request_limits": null,
|
21802
22100
|
"supported_parameters": [
|
21803
22101
|
"frequency_penalty",
|
22102
|
+
"include_reasoning",
|
21804
22103
|
"logit_bias",
|
21805
22104
|
"logprobs",
|
21806
22105
|
"max_tokens",
|
21807
22106
|
"min_p",
|
21808
22107
|
"presence_penalty",
|
22108
|
+
"reasoning",
|
21809
22109
|
"repetition_penalty",
|
21810
|
-
"response_format",
|
21811
22110
|
"seed",
|
21812
22111
|
"stop",
|
21813
22112
|
"temperature",
|
@@ -21820,13 +22119,13 @@
|
|
21820
22119
|
}
|
21821
22120
|
},
|
21822
22121
|
{
|
21823
|
-
"id": "
|
21824
|
-
"name": "
|
22122
|
+
"id": "nousresearch/nous-hermes-2-mixtral-8x7b-dpo",
|
22123
|
+
"name": "Nous: Hermes 2 Mixtral 8x7B DPO",
|
21825
22124
|
"provider": "openrouter",
|
21826
|
-
"family": "
|
21827
|
-
"created_at": "
|
21828
|
-
"context_window":
|
21829
|
-
"max_output_tokens":
|
22125
|
+
"family": "nousresearch",
|
22126
|
+
"created_at": "2024-01-16 01:00:00 +0100",
|
22127
|
+
"context_window": 32768,
|
22128
|
+
"max_output_tokens": 2048,
|
21830
22129
|
"knowledge_cutoff": null,
|
21831
22130
|
"modalities": {
|
21832
22131
|
"input": [
|
@@ -21844,12 +22143,12 @@
|
|
21844
22143
|
"text_tokens": {
|
21845
22144
|
"standard": {
|
21846
22145
|
"input_per_million": 0.6,
|
21847
|
-
"output_per_million":
|
22146
|
+
"output_per_million": 0.6
|
21848
22147
|
}
|
21849
22148
|
}
|
21850
22149
|
},
|
21851
22150
|
"metadata": {
|
21852
|
-
"description": "
|
22151
|
+
"description": "Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](/models/mistralai/mixtral-8x7b).\n\nThe model was trained on over 1,000,000 entries of primarily [GPT-4](/models/openai/gpt-4) generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks.\n\n#moe",
|
21853
22152
|
"architecture": {
|
21854
22153
|
"modality": "text->text",
|
21855
22154
|
"input_modalities": [
|
@@ -21858,11 +22157,141 @@
|
|
21858
22157
|
"output_modalities": [
|
21859
22158
|
"text"
|
21860
22159
|
],
|
21861
|
-
"tokenizer": "
|
21862
|
-
"instruct_type":
|
22160
|
+
"tokenizer": "Mistral",
|
22161
|
+
"instruct_type": "chatml"
|
21863
22162
|
},
|
21864
22163
|
"top_provider": {
|
21865
|
-
"context_length":
|
22164
|
+
"context_length": 32768,
|
22165
|
+
"max_completion_tokens": 2048,
|
22166
|
+
"is_moderated": false
|
22167
|
+
},
|
22168
|
+
"per_request_limits": null,
|
22169
|
+
"supported_parameters": [
|
22170
|
+
"frequency_penalty",
|
22171
|
+
"logit_bias",
|
22172
|
+
"max_tokens",
|
22173
|
+
"min_p",
|
22174
|
+
"presence_penalty",
|
22175
|
+
"repetition_penalty",
|
22176
|
+
"stop",
|
22177
|
+
"temperature",
|
22178
|
+
"top_k",
|
22179
|
+
"top_p"
|
22180
|
+
]
|
22181
|
+
}
|
22182
|
+
},
|
22183
|
+
{
|
22184
|
+
"id": "nvidia/llama-3.1-nemotron-70b-instruct",
|
22185
|
+
"name": "NVIDIA: Llama 3.1 Nemotron 70B Instruct",
|
22186
|
+
"provider": "openrouter",
|
22187
|
+
"family": "nvidia",
|
22188
|
+
"created_at": "2024-10-15 02:00:00 +0200",
|
22189
|
+
"context_window": 131072,
|
22190
|
+
"max_output_tokens": 16384,
|
22191
|
+
"knowledge_cutoff": null,
|
22192
|
+
"modalities": {
|
22193
|
+
"input": [
|
22194
|
+
"text"
|
22195
|
+
],
|
22196
|
+
"output": [
|
22197
|
+
"text"
|
22198
|
+
]
|
22199
|
+
},
|
22200
|
+
"capabilities": [
|
22201
|
+
"streaming",
|
22202
|
+
"function_calling",
|
22203
|
+
"structured_output",
|
22204
|
+
"predicted_outputs"
|
22205
|
+
],
|
22206
|
+
"pricing": {
|
22207
|
+
"text_tokens": {
|
22208
|
+
"standard": {
|
22209
|
+
"input_per_million": 0.12,
|
22210
|
+
"output_per_million": 0.3
|
22211
|
+
}
|
22212
|
+
}
|
22213
|
+
},
|
22214
|
+
"metadata": {
|
22215
|
+
"description": "NVIDIA's Llama 3.1 Nemotron 70B is a language model designed for generating precise and useful responses. Leveraging [Llama 3.1 70B](/models/meta-llama/llama-3.1-70b-instruct) architecture and Reinforcement Learning from Human Feedback (RLHF), it excels in automatic alignment benchmarks. This model is tailored for applications requiring high accuracy in helpfulness and response generation, suitable for diverse user queries across multiple domains.\n\nUsage of this model is subject to [Meta's Acceptable Use Policy](https://www.llama.com/llama3/use-policy/).",
|
22216
|
+
"architecture": {
|
22217
|
+
"modality": "text->text",
|
22218
|
+
"input_modalities": [
|
22219
|
+
"text"
|
22220
|
+
],
|
22221
|
+
"output_modalities": [
|
22222
|
+
"text"
|
22223
|
+
],
|
22224
|
+
"tokenizer": "Llama3",
|
22225
|
+
"instruct_type": "llama3"
|
22226
|
+
},
|
22227
|
+
"top_provider": {
|
22228
|
+
"context_length": 131072,
|
22229
|
+
"max_completion_tokens": 16384,
|
22230
|
+
"is_moderated": false
|
22231
|
+
},
|
22232
|
+
"per_request_limits": null,
|
22233
|
+
"supported_parameters": [
|
22234
|
+
"frequency_penalty",
|
22235
|
+
"logit_bias",
|
22236
|
+
"max_tokens",
|
22237
|
+
"min_p",
|
22238
|
+
"presence_penalty",
|
22239
|
+
"repetition_penalty",
|
22240
|
+
"response_format",
|
22241
|
+
"seed",
|
22242
|
+
"stop",
|
22243
|
+
"temperature",
|
22244
|
+
"tool_choice",
|
22245
|
+
"tools",
|
22246
|
+
"top_k",
|
22247
|
+
"top_p"
|
22248
|
+
]
|
22249
|
+
}
|
22250
|
+
},
|
22251
|
+
{
|
22252
|
+
"id": "nvidia/llama-3.1-nemotron-ultra-253b-v1",
|
22253
|
+
"name": "NVIDIA: Llama 3.1 Nemotron Ultra 253B v1",
|
22254
|
+
"provider": "openrouter",
|
22255
|
+
"family": "nvidia",
|
22256
|
+
"created_at": "2025-04-08 14:24:19 +0200",
|
22257
|
+
"context_window": 131072,
|
22258
|
+
"max_output_tokens": null,
|
22259
|
+
"knowledge_cutoff": null,
|
22260
|
+
"modalities": {
|
22261
|
+
"input": [
|
22262
|
+
"text"
|
22263
|
+
],
|
22264
|
+
"output": [
|
22265
|
+
"text"
|
22266
|
+
]
|
22267
|
+
},
|
22268
|
+
"capabilities": [
|
22269
|
+
"streaming",
|
22270
|
+
"predicted_outputs"
|
22271
|
+
],
|
22272
|
+
"pricing": {
|
22273
|
+
"text_tokens": {
|
22274
|
+
"standard": {
|
22275
|
+
"input_per_million": 0.6,
|
22276
|
+
"output_per_million": 1.7999999999999998
|
22277
|
+
}
|
22278
|
+
}
|
22279
|
+
},
|
22280
|
+
"metadata": {
|
22281
|
+
"description": "Llama-3.1-Nemotron-Ultra-253B-v1 is a large language model (LLM) optimized for advanced reasoning, human-interactive chat, retrieval-augmented generation (RAG), and tool-calling tasks. Derived from Meta’s Llama-3.1-405B-Instruct, it has been significantly customized using Neural Architecture Search (NAS), resulting in enhanced efficiency, reduced memory usage, and improved inference latency. The model supports a context length of up to 128K tokens and can operate efficiently on an 8x NVIDIA H100 node.\n\nNote: you must include `detailed thinking on` in the system prompt to enable reasoning. Please see [Usage Recommendations](https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1#quick-start-and-usage-recommendations) for more.",
|
22282
|
+
"architecture": {
|
22283
|
+
"modality": "text->text",
|
22284
|
+
"input_modalities": [
|
22285
|
+
"text"
|
22286
|
+
],
|
22287
|
+
"output_modalities": [
|
22288
|
+
"text"
|
22289
|
+
],
|
22290
|
+
"tokenizer": "Llama3",
|
22291
|
+
"instruct_type": null
|
22292
|
+
},
|
22293
|
+
"top_provider": {
|
22294
|
+
"context_length": 131072,
|
21866
22295
|
"max_completion_tokens": null,
|
21867
22296
|
"is_moderated": false
|
21868
22297
|
},
|
@@ -23246,6 +23675,75 @@
|
|
23246
23675
|
]
|
23247
23676
|
}
|
23248
23677
|
},
|
23678
|
+
{
|
23679
|
+
"id": "openai/gpt-4o-audio-preview",
|
23680
|
+
"name": "OpenAI: GPT-4o Audio",
|
23681
|
+
"provider": "openrouter",
|
23682
|
+
"family": "openai",
|
23683
|
+
"created_at": "2025-08-15 06:44:21 +0200",
|
23684
|
+
"context_window": 128000,
|
23685
|
+
"max_output_tokens": 16384,
|
23686
|
+
"knowledge_cutoff": null,
|
23687
|
+
"modalities": {
|
23688
|
+
"input": [
|
23689
|
+
"audio",
|
23690
|
+
"text"
|
23691
|
+
],
|
23692
|
+
"output": [
|
23693
|
+
"text"
|
23694
|
+
]
|
23695
|
+
},
|
23696
|
+
"capabilities": [
|
23697
|
+
"streaming",
|
23698
|
+
"function_calling",
|
23699
|
+
"structured_output"
|
23700
|
+
],
|
23701
|
+
"pricing": {
|
23702
|
+
"text_tokens": {
|
23703
|
+
"standard": {
|
23704
|
+
"input_per_million": 2.5,
|
23705
|
+
"output_per_million": 10.0
|
23706
|
+
}
|
23707
|
+
}
|
23708
|
+
},
|
23709
|
+
"metadata": {
|
23710
|
+
"description": "The gpt-4o-audio-preview model adds support for audio inputs as prompts. This enhancement allows the model to detect nuances within audio recordings and add depth to generated user experiences. Audio outputs are currently not supported. Audio tokens are priced at $40 per million input audio tokens.",
|
23711
|
+
"architecture": {
|
23712
|
+
"modality": "text->text",
|
23713
|
+
"input_modalities": [
|
23714
|
+
"audio",
|
23715
|
+
"text"
|
23716
|
+
],
|
23717
|
+
"output_modalities": [
|
23718
|
+
"text"
|
23719
|
+
],
|
23720
|
+
"tokenizer": "GPT",
|
23721
|
+
"instruct_type": null
|
23722
|
+
},
|
23723
|
+
"top_provider": {
|
23724
|
+
"context_length": 128000,
|
23725
|
+
"max_completion_tokens": 16384,
|
23726
|
+
"is_moderated": true
|
23727
|
+
},
|
23728
|
+
"per_request_limits": null,
|
23729
|
+
"supported_parameters": [
|
23730
|
+
"frequency_penalty",
|
23731
|
+
"logit_bias",
|
23732
|
+
"logprobs",
|
23733
|
+
"max_tokens",
|
23734
|
+
"presence_penalty",
|
23735
|
+
"response_format",
|
23736
|
+
"seed",
|
23737
|
+
"stop",
|
23738
|
+
"structured_outputs",
|
23739
|
+
"temperature",
|
23740
|
+
"tool_choice",
|
23741
|
+
"tools",
|
23742
|
+
"top_logprobs",
|
23743
|
+
"top_p"
|
23744
|
+
]
|
23745
|
+
}
|
23746
|
+
},
|
23249
23747
|
{
|
23250
23748
|
"id": "openai/gpt-4o-mini",
|
23251
23749
|
"name": "OpenAI: GPT-4o-mini",
|
@@ -23610,7 +24108,7 @@
|
|
23610
24108
|
}
|
23611
24109
|
},
|
23612
24110
|
"metadata": {
|
23613
|
-
"description": "GPT-5 is OpenAI’s most advanced model, offering major improvements in reasoning, code quality, and user experience. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like \"think hard about this.\" Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks
|
24111
|
+
"description": "GPT-5 is OpenAI’s most advanced model, offering major improvements in reasoning, code quality, and user experience. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like \"think hard about this.\" Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks.",
|
23614
24112
|
"architecture": {
|
23615
24113
|
"modality": "text+image->text",
|
23616
24114
|
"input_modalities": [
|
@@ -23843,8 +24341,8 @@
|
|
23843
24341
|
"provider": "openrouter",
|
23844
24342
|
"family": "openai",
|
23845
24343
|
"created_at": "2025-08-05 19:17:11 +0200",
|
23846
|
-
"context_window":
|
23847
|
-
"max_output_tokens":
|
24344
|
+
"context_window": 131000,
|
24345
|
+
"max_output_tokens": 131000,
|
23848
24346
|
"knowledge_cutoff": null,
|
23849
24347
|
"modalities": {
|
23850
24348
|
"input": [
|
@@ -23863,8 +24361,8 @@
|
|
23863
24361
|
"pricing": {
|
23864
24362
|
"text_tokens": {
|
23865
24363
|
"standard": {
|
23866
|
-
"input_per_million": 0.
|
23867
|
-
"output_per_million": 0.
|
24364
|
+
"input_per_million": 0.072,
|
24365
|
+
"output_per_million": 0.28
|
23868
24366
|
}
|
23869
24367
|
}
|
23870
24368
|
},
|
@@ -23882,8 +24380,8 @@
|
|
23882
24380
|
"instruct_type": null
|
23883
24381
|
},
|
23884
24382
|
"top_provider": {
|
23885
|
-
"context_length":
|
23886
|
-
"max_completion_tokens":
|
24383
|
+
"context_length": 131000,
|
24384
|
+
"max_completion_tokens": 131000,
|
23887
24385
|
"is_moderated": false
|
23888
24386
|
},
|
23889
24387
|
"per_request_limits": null,
|
@@ -23916,8 +24414,8 @@
|
|
23916
24414
|
"provider": "openrouter",
|
23917
24415
|
"family": "openai",
|
23918
24416
|
"created_at": "2025-08-05 19:17:09 +0200",
|
23919
|
-
"context_window":
|
23920
|
-
"max_output_tokens":
|
24417
|
+
"context_window": 131000,
|
24418
|
+
"max_output_tokens": 131000,
|
23921
24419
|
"knowledge_cutoff": null,
|
23922
24420
|
"modalities": {
|
23923
24421
|
"input": [
|
@@ -23937,7 +24435,7 @@
|
|
23937
24435
|
"text_tokens": {
|
23938
24436
|
"standard": {
|
23939
24437
|
"input_per_million": 0.04,
|
23940
|
-
"output_per_million": 0.
|
24438
|
+
"output_per_million": 0.15
|
23941
24439
|
}
|
23942
24440
|
}
|
23943
24441
|
},
|
@@ -23955,8 +24453,8 @@
|
|
23955
24453
|
"instruct_type": null
|
23956
24454
|
},
|
23957
24455
|
"top_provider": {
|
23958
|
-
"context_length":
|
23959
|
-
"max_completion_tokens":
|
24456
|
+
"context_length": 131000,
|
24457
|
+
"max_completion_tokens": 131000,
|
23960
24458
|
"is_moderated": false
|
23961
24459
|
},
|
23962
24460
|
"per_request_limits": null,
|
@@ -24299,7 +24797,7 @@
|
|
24299
24797
|
}
|
24300
24798
|
},
|
24301
24799
|
"metadata": {
|
24302
|
-
"description": "o3 is a well-rounded and powerful model across domains. It sets a new standard for math, science, coding, and visual reasoning tasks. It also excels at technical writing and instruction-following. Use it to think through multi-step problems that involve analysis across text, code, and images.
|
24800
|
+
"description": "o3 is a well-rounded and powerful model across domains. It sets a new standard for math, science, coding, and visual reasoning tasks. It also excels at technical writing and instruction-following. Use it to think through multi-step problems that involve analysis across text, code, and images. ",
|
24303
24801
|
"architecture": {
|
24304
24802
|
"modality": "text+image->text",
|
24305
24803
|
"input_modalities": [
|
@@ -25261,8 +25759,8 @@
|
|
25261
25759
|
"pricing": {
|
25262
25760
|
"text_tokens": {
|
25263
25761
|
"standard": {
|
25264
|
-
"input_per_million": 0.
|
25265
|
-
"output_per_million": 0.
|
25762
|
+
"input_per_million": 0.051830799999999996,
|
25763
|
+
"output_per_million": 0.207424
|
25266
25764
|
}
|
25267
25765
|
}
|
25268
25766
|
},
|
@@ -26680,8 +27178,8 @@
|
|
26680
27178
|
"provider": "openrouter",
|
26681
27179
|
"family": "qwen",
|
26682
27180
|
"created_at": "2025-07-29 18:36:05 +0200",
|
26683
|
-
"context_window":
|
26684
|
-
"max_output_tokens":
|
27181
|
+
"context_window": 262144,
|
27182
|
+
"max_output_tokens": null,
|
26685
27183
|
"knowledge_cutoff": null,
|
26686
27184
|
"modalities": {
|
26687
27185
|
"input": [
|
@@ -26693,13 +27191,15 @@
|
|
26693
27191
|
},
|
26694
27192
|
"capabilities": [
|
26695
27193
|
"streaming",
|
26696
|
-
"
|
27194
|
+
"function_calling",
|
27195
|
+
"structured_output",
|
27196
|
+
"predicted_outputs"
|
26697
27197
|
],
|
26698
27198
|
"pricing": {
|
26699
27199
|
"text_tokens": {
|
26700
27200
|
"standard": {
|
26701
|
-
"input_per_million": 0.
|
26702
|
-
"output_per_million": 0.
|
27201
|
+
"input_per_million": 0.09999999999999999,
|
27202
|
+
"output_per_million": 0.3
|
26703
27203
|
}
|
26704
27204
|
}
|
26705
27205
|
},
|
@@ -26717,17 +27217,25 @@
|
|
26717
27217
|
"instruct_type": null
|
26718
27218
|
},
|
26719
27219
|
"top_provider": {
|
26720
|
-
"context_length":
|
26721
|
-
"max_completion_tokens":
|
27220
|
+
"context_length": 262144,
|
27221
|
+
"max_completion_tokens": null,
|
26722
27222
|
"is_moderated": false
|
26723
27223
|
},
|
26724
27224
|
"per_request_limits": null,
|
26725
27225
|
"supported_parameters": [
|
27226
|
+
"frequency_penalty",
|
27227
|
+
"logit_bias",
|
27228
|
+
"logprobs",
|
26726
27229
|
"max_tokens",
|
26727
27230
|
"presence_penalty",
|
26728
27231
|
"response_format",
|
26729
27232
|
"seed",
|
27233
|
+
"stop",
|
26730
27234
|
"temperature",
|
27235
|
+
"tool_choice",
|
27236
|
+
"tools",
|
27237
|
+
"top_k",
|
27238
|
+
"top_logprobs",
|
26731
27239
|
"top_p"
|
26732
27240
|
]
|
26733
27241
|
}
|
@@ -28376,8 +28884,8 @@
|
|
28376
28884
|
"provider": "openrouter",
|
28377
28885
|
"family": "thedrummer",
|
28378
28886
|
"created_at": "2024-09-30 02:00:00 +0200",
|
28379
|
-
"context_window":
|
28380
|
-
"max_output_tokens":
|
28887
|
+
"context_window": 32768,
|
28888
|
+
"max_output_tokens": null,
|
28381
28889
|
"knowledge_cutoff": null,
|
28382
28890
|
"modalities": {
|
28383
28891
|
"input": [
|
@@ -28396,8 +28904,8 @@
|
|
28396
28904
|
"pricing": {
|
28397
28905
|
"text_tokens": {
|
28398
28906
|
"standard": {
|
28399
|
-
"input_per_million": 0.
|
28400
|
-
"output_per_million": 0.
|
28907
|
+
"input_per_million": 0.16999999999999998,
|
28908
|
+
"output_per_million": 0.43
|
28401
28909
|
}
|
28402
28910
|
}
|
28403
28911
|
},
|
@@ -28415,8 +28923,8 @@
|
|
28415
28923
|
"instruct_type": "chatml"
|
28416
28924
|
},
|
28417
28925
|
"top_provider": {
|
28418
|
-
"context_length":
|
28419
|
-
"max_completion_tokens":
|
28926
|
+
"context_length": 32768,
|
28927
|
+
"max_completion_tokens": null,
|
28420
28928
|
"is_moderated": false
|
28421
28929
|
},
|
28422
28930
|
"per_request_limits": null,
|
@@ -28602,8 +29110,8 @@
|
|
28602
29110
|
"pricing": {
|
28603
29111
|
"text_tokens": {
|
28604
29112
|
"standard": {
|
28605
|
-
"input_per_million": 0.
|
28606
|
-
"output_per_million":
|
29113
|
+
"input_per_million": 0.55,
|
29114
|
+
"output_per_million": 1.66
|
28607
29115
|
}
|
28608
29116
|
}
|
28609
29117
|
},
|
@@ -28799,8 +29307,8 @@
|
|
28799
29307
|
"pricing": {
|
28800
29308
|
"text_tokens": {
|
28801
29309
|
"standard": {
|
28802
|
-
"input_per_million": 0.
|
28803
|
-
"output_per_million": 0.
|
29310
|
+
"input_per_million": 0.1999188,
|
29311
|
+
"output_per_million": 0.800064
|
28804
29312
|
}
|
28805
29313
|
}
|
28806
29314
|
},
|
@@ -28987,8 +29495,8 @@
|
|
28987
29495
|
"pricing": {
|
28988
29496
|
"text_tokens": {
|
28989
29497
|
"standard": {
|
28990
|
-
"input_per_million": 0.
|
28991
|
-
"output_per_million":
|
29498
|
+
"input_per_million": 0.44999999999999996,
|
29499
|
+
"output_per_million": 0.65
|
28992
29500
|
}
|
28993
29501
|
}
|
28994
29502
|
},
|
@@ -29493,18 +30001,85 @@
|
|
29493
30001
|
}
|
29494
30002
|
},
|
29495
30003
|
{
|
29496
|
-
"id": "x-ai/grok-
|
29497
|
-
"name": "xAI: Grok
|
30004
|
+
"id": "x-ai/grok-code-fast-1",
|
30005
|
+
"name": "xAI: Grok Code Fast 1",
|
29498
30006
|
"provider": "openrouter",
|
29499
30007
|
"family": "x-ai",
|
29500
|
-
"created_at": "
|
29501
|
-
"context_window":
|
29502
|
-
"max_output_tokens":
|
30008
|
+
"created_at": "2025-08-26 22:08:47 +0200",
|
30009
|
+
"context_window": 256000,
|
30010
|
+
"max_output_tokens": 10000,
|
29503
30011
|
"knowledge_cutoff": null,
|
29504
30012
|
"modalities": {
|
29505
30013
|
"input": [
|
29506
|
-
"text"
|
29507
|
-
|
30014
|
+
"text"
|
30015
|
+
],
|
30016
|
+
"output": [
|
30017
|
+
"text"
|
30018
|
+
]
|
30019
|
+
},
|
30020
|
+
"capabilities": [
|
30021
|
+
"streaming",
|
30022
|
+
"function_calling",
|
30023
|
+
"structured_output"
|
30024
|
+
],
|
30025
|
+
"pricing": {
|
30026
|
+
"text_tokens": {
|
30027
|
+
"standard": {
|
30028
|
+
"input_per_million": 0.19999999999999998,
|
30029
|
+
"output_per_million": 1.5,
|
30030
|
+
"cached_input_per_million": 0.02
|
30031
|
+
}
|
30032
|
+
}
|
30033
|
+
},
|
30034
|
+
"metadata": {
|
30035
|
+
"description": "Grok Code Fast 1 is a speedy and economical reasoning model that excels at agentic coding. With reasoning traces visible in the response, developers can steer Grok Code for high-quality work flows.",
|
30036
|
+
"architecture": {
|
30037
|
+
"modality": "text->text",
|
30038
|
+
"input_modalities": [
|
30039
|
+
"text"
|
30040
|
+
],
|
30041
|
+
"output_modalities": [
|
30042
|
+
"text"
|
30043
|
+
],
|
30044
|
+
"tokenizer": "Grok",
|
30045
|
+
"instruct_type": null
|
30046
|
+
},
|
30047
|
+
"top_provider": {
|
30048
|
+
"context_length": 256000,
|
30049
|
+
"max_completion_tokens": 10000,
|
30050
|
+
"is_moderated": false
|
30051
|
+
},
|
30052
|
+
"per_request_limits": null,
|
30053
|
+
"supported_parameters": [
|
30054
|
+
"include_reasoning",
|
30055
|
+
"logprobs",
|
30056
|
+
"max_tokens",
|
30057
|
+
"reasoning",
|
30058
|
+
"response_format",
|
30059
|
+
"seed",
|
30060
|
+
"stop",
|
30061
|
+
"structured_outputs",
|
30062
|
+
"temperature",
|
30063
|
+
"tool_choice",
|
30064
|
+
"tools",
|
30065
|
+
"top_logprobs",
|
30066
|
+
"top_p"
|
30067
|
+
]
|
30068
|
+
}
|
30069
|
+
},
|
30070
|
+
{
|
30071
|
+
"id": "x-ai/grok-vision-beta",
|
30072
|
+
"name": "xAI: Grok Vision Beta",
|
30073
|
+
"provider": "openrouter",
|
30074
|
+
"family": "x-ai",
|
30075
|
+
"created_at": "2024-11-19 01:37:04 +0100",
|
30076
|
+
"context_window": 8192,
|
30077
|
+
"max_output_tokens": null,
|
30078
|
+
"knowledge_cutoff": null,
|
30079
|
+
"modalities": {
|
30080
|
+
"input": [
|
30081
|
+
"text",
|
30082
|
+
"image"
|
29508
30083
|
],
|
29509
30084
|
"output": [
|
29510
30085
|
"text"
|
@@ -29679,6 +30254,7 @@
|
|
29679
30254
|
"temperature",
|
29680
30255
|
"tool_choice",
|
29681
30256
|
"tools",
|
30257
|
+
"top_a",
|
29682
30258
|
"top_k",
|
29683
30259
|
"top_logprobs",
|
29684
30260
|
"top_p"
|
@@ -29736,21 +30312,15 @@
|
|
29736
30312
|
},
|
29737
30313
|
"per_request_limits": null,
|
29738
30314
|
"supported_parameters": [
|
29739
|
-
"frequency_penalty",
|
29740
30315
|
"include_reasoning",
|
29741
30316
|
"max_tokens",
|
29742
|
-
"min_p",
|
29743
|
-
"presence_penalty",
|
29744
30317
|
"reasoning",
|
29745
|
-
"repetition_penalty",
|
29746
30318
|
"response_format",
|
29747
30319
|
"seed",
|
29748
|
-
"stop",
|
29749
30320
|
"structured_outputs",
|
29750
30321
|
"temperature",
|
29751
30322
|
"tool_choice",
|
29752
30323
|
"tools",
|
29753
|
-
"top_k",
|
29754
30324
|
"top_p"
|
29755
30325
|
]
|
29756
30326
|
}
|
@@ -29839,14 +30409,13 @@
|
|
29839
30409
|
"capabilities": [
|
29840
30410
|
"streaming",
|
29841
30411
|
"function_calling",
|
29842
|
-
"structured_output",
|
29843
30412
|
"predicted_outputs"
|
29844
30413
|
],
|
29845
30414
|
"pricing": {
|
29846
30415
|
"text_tokens": {
|
29847
30416
|
"standard": {
|
29848
30417
|
"input_per_million": 0.5,
|
29849
|
-
"output_per_million": 1.
|
30418
|
+
"output_per_million": 1.7999999999999998
|
29850
30419
|
}
|
29851
30420
|
}
|
29852
30421
|
},
|
@@ -29879,7 +30448,6 @@
|
|
29879
30448
|
"presence_penalty",
|
29880
30449
|
"reasoning",
|
29881
30450
|
"repetition_penalty",
|
29882
|
-
"response_format",
|
29883
30451
|
"seed",
|
29884
30452
|
"stop",
|
29885
30453
|
"temperature",
|
@@ -29895,7 +30463,7 @@
|
|
29895
30463
|
"name": "Sonar",
|
29896
30464
|
"provider": "perplexity",
|
29897
30465
|
"family": "sonar",
|
29898
|
-
"created_at": "2025-08-
|
30466
|
+
"created_at": "2025-08-27 18:49:59 +0200",
|
29899
30467
|
"context_window": 128000,
|
29900
30468
|
"max_output_tokens": 4096,
|
29901
30469
|
"knowledge_cutoff": null,
|
@@ -29927,7 +30495,7 @@
|
|
29927
30495
|
"name": "Sonar Deep Research",
|
29928
30496
|
"provider": "perplexity",
|
29929
30497
|
"family": "sonar_deep_research",
|
29930
|
-
"created_at": "2025-08-
|
30498
|
+
"created_at": "2025-08-27 18:49:59 +0200",
|
29931
30499
|
"context_window": 128000,
|
29932
30500
|
"max_output_tokens": 4096,
|
29933
30501
|
"knowledge_cutoff": null,
|
@@ -29962,7 +30530,7 @@
|
|
29962
30530
|
"name": "Sonar Pro",
|
29963
30531
|
"provider": "perplexity",
|
29964
30532
|
"family": "sonar_pro",
|
29965
|
-
"created_at": "2025-08-
|
30533
|
+
"created_at": "2025-08-27 18:49:59 +0200",
|
29966
30534
|
"context_window": 200000,
|
29967
30535
|
"max_output_tokens": 8192,
|
29968
30536
|
"knowledge_cutoff": null,
|
@@ -29994,7 +30562,7 @@
|
|
29994
30562
|
"name": "Sonar Reasoning",
|
29995
30563
|
"provider": "perplexity",
|
29996
30564
|
"family": "sonar_reasoning",
|
29997
|
-
"created_at": "2025-08-
|
30565
|
+
"created_at": "2025-08-27 18:49:59 +0200",
|
29998
30566
|
"context_window": 128000,
|
29999
30567
|
"max_output_tokens": 4096,
|
30000
30568
|
"knowledge_cutoff": null,
|
@@ -30026,7 +30594,7 @@
|
|
30026
30594
|
"name": "Sonar Reasoning Pro",
|
30027
30595
|
"provider": "perplexity",
|
30028
30596
|
"family": "sonar_reasoning_pro",
|
30029
|
-
"created_at": "2025-08-
|
30597
|
+
"created_at": "2025-08-27 18:49:59 +0200",
|
30030
30598
|
"context_window": 128000,
|
30031
30599
|
"max_output_tokens": 8192,
|
30032
30600
|
"knowledge_cutoff": null,
|
@@ -30052,5 +30620,1114 @@
|
|
30052
30620
|
}
|
30053
30621
|
},
|
30054
30622
|
"metadata": {}
|
30623
|
+
},
|
30624
|
+
{
|
30625
|
+
"id": "chat-bison",
|
30626
|
+
"name": "chat-bison",
|
30627
|
+
"provider": "vertexai",
|
30628
|
+
"family": "palm",
|
30629
|
+
"created_at": null,
|
30630
|
+
"context_window": null,
|
30631
|
+
"max_output_tokens": null,
|
30632
|
+
"knowledge_cutoff": null,
|
30633
|
+
"modalities": {
|
30634
|
+
"input": [],
|
30635
|
+
"output": []
|
30636
|
+
},
|
30637
|
+
"capabilities": [
|
30638
|
+
"streaming"
|
30639
|
+
],
|
30640
|
+
"pricing": {},
|
30641
|
+
"metadata": {
|
30642
|
+
"version_id": "002",
|
30643
|
+
"open_source_category": "PROPRIETARY",
|
30644
|
+
"launch_stage": "GA",
|
30645
|
+
"supported_actions": {
|
30646
|
+
"openGenie": {
|
30647
|
+
"references": {
|
30648
|
+
"us-central1": {
|
30649
|
+
"uri": "https://console.cloud.google.com/vertex-ai/generative/language/create/chat"
|
30650
|
+
}
|
30651
|
+
},
|
30652
|
+
"title": "Open Prompt Design"
|
30653
|
+
}
|
30654
|
+
},
|
30655
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/chat-bison@002"
|
30656
|
+
}
|
30657
|
+
},
|
30658
|
+
{
|
30659
|
+
"id": "code-bison",
|
30660
|
+
"name": "code-bison",
|
30661
|
+
"provider": "vertexai",
|
30662
|
+
"family": "palm",
|
30663
|
+
"created_at": null,
|
30664
|
+
"context_window": null,
|
30665
|
+
"max_output_tokens": null,
|
30666
|
+
"knowledge_cutoff": null,
|
30667
|
+
"modalities": {
|
30668
|
+
"input": [],
|
30669
|
+
"output": []
|
30670
|
+
},
|
30671
|
+
"capabilities": [
|
30672
|
+
"streaming"
|
30673
|
+
],
|
30674
|
+
"pricing": {},
|
30675
|
+
"metadata": {
|
30676
|
+
"version_id": "002",
|
30677
|
+
"open_source_category": null,
|
30678
|
+
"launch_stage": "GA",
|
30679
|
+
"supported_actions": null,
|
30680
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/code-bison@002"
|
30681
|
+
}
|
30682
|
+
},
|
30683
|
+
{
|
30684
|
+
"id": "code-gecko",
|
30685
|
+
"name": "code-gecko",
|
30686
|
+
"provider": "vertexai",
|
30687
|
+
"family": "gemini",
|
30688
|
+
"created_at": null,
|
30689
|
+
"context_window": null,
|
30690
|
+
"max_output_tokens": null,
|
30691
|
+
"knowledge_cutoff": null,
|
30692
|
+
"modalities": {
|
30693
|
+
"input": [],
|
30694
|
+
"output": []
|
30695
|
+
},
|
30696
|
+
"capabilities": [
|
30697
|
+
"streaming"
|
30698
|
+
],
|
30699
|
+
"pricing": {},
|
30700
|
+
"metadata": {
|
30701
|
+
"version_id": "002",
|
30702
|
+
"open_source_category": null,
|
30703
|
+
"launch_stage": "GA",
|
30704
|
+
"supported_actions": null,
|
30705
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/code-gecko@002"
|
30706
|
+
}
|
30707
|
+
},
|
30708
|
+
{
|
30709
|
+
"id": "codechat-bison",
|
30710
|
+
"name": "codechat-bison",
|
30711
|
+
"provider": "vertexai",
|
30712
|
+
"family": "palm",
|
30713
|
+
"created_at": null,
|
30714
|
+
"context_window": null,
|
30715
|
+
"max_output_tokens": null,
|
30716
|
+
"knowledge_cutoff": null,
|
30717
|
+
"modalities": {
|
30718
|
+
"input": [],
|
30719
|
+
"output": []
|
30720
|
+
},
|
30721
|
+
"capabilities": [
|
30722
|
+
"streaming"
|
30723
|
+
],
|
30724
|
+
"pricing": {},
|
30725
|
+
"metadata": {
|
30726
|
+
"version_id": "002",
|
30727
|
+
"open_source_category": null,
|
30728
|
+
"launch_stage": "GA",
|
30729
|
+
"supported_actions": null,
|
30730
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/codechat-bison@002"
|
30731
|
+
}
|
30732
|
+
},
|
30733
|
+
{
|
30734
|
+
"id": "gemini-1.5-flash",
|
30735
|
+
"name": "Gemini 1.5 Flash",
|
30736
|
+
"provider": "vertexai",
|
30737
|
+
"family": "gemini-1.5-flash",
|
30738
|
+
"created_at": null,
|
30739
|
+
"context_window": 1048576,
|
30740
|
+
"max_output_tokens": 8192,
|
30741
|
+
"knowledge_cutoff": null,
|
30742
|
+
"modalities": {
|
30743
|
+
"input": [
|
30744
|
+
"audio",
|
30745
|
+
"image",
|
30746
|
+
"text"
|
30747
|
+
],
|
30748
|
+
"output": [
|
30749
|
+
"text"
|
30750
|
+
]
|
30751
|
+
},
|
30752
|
+
"capabilities": [
|
30753
|
+
"function_calling",
|
30754
|
+
"structured_output"
|
30755
|
+
],
|
30756
|
+
"pricing": {
|
30757
|
+
"text_tokens": {
|
30758
|
+
"standard": {
|
30759
|
+
"input_per_million": 0.075,
|
30760
|
+
"cached_input_per_million": 0.01875,
|
30761
|
+
"output_per_million": 0.3
|
30762
|
+
}
|
30763
|
+
}
|
30764
|
+
},
|
30765
|
+
"metadata": {
|
30766
|
+
"source": "known_models"
|
30767
|
+
}
|
30768
|
+
},
|
30769
|
+
{
|
30770
|
+
"id": "gemini-1.5-flash-002",
|
30771
|
+
"name": "Gemini 1.5 Flash",
|
30772
|
+
"provider": "vertexai",
|
30773
|
+
"family": "gemini-1.5-flash",
|
30774
|
+
"created_at": null,
|
30775
|
+
"context_window": 1048576,
|
30776
|
+
"max_output_tokens": 8192,
|
30777
|
+
"knowledge_cutoff": null,
|
30778
|
+
"modalities": {
|
30779
|
+
"input": [
|
30780
|
+
"audio",
|
30781
|
+
"image",
|
30782
|
+
"text"
|
30783
|
+
],
|
30784
|
+
"output": [
|
30785
|
+
"text"
|
30786
|
+
]
|
30787
|
+
},
|
30788
|
+
"capabilities": [
|
30789
|
+
"function_calling",
|
30790
|
+
"structured_output"
|
30791
|
+
],
|
30792
|
+
"pricing": {
|
30793
|
+
"text_tokens": {
|
30794
|
+
"standard": {
|
30795
|
+
"input_per_million": 0.075,
|
30796
|
+
"cached_input_per_million": 0.01875,
|
30797
|
+
"output_per_million": 0.3
|
30798
|
+
}
|
30799
|
+
}
|
30800
|
+
},
|
30801
|
+
"metadata": {
|
30802
|
+
"source": "known_models"
|
30803
|
+
}
|
30804
|
+
},
|
30805
|
+
{
|
30806
|
+
"id": "gemini-1.5-flash-8b",
|
30807
|
+
"name": "Gemini 1.5 Flash-8B",
|
30808
|
+
"provider": "vertexai",
|
30809
|
+
"family": "gemini-1.5-flash-8b",
|
30810
|
+
"created_at": null,
|
30811
|
+
"context_window": 1048576,
|
30812
|
+
"max_output_tokens": 8192,
|
30813
|
+
"knowledge_cutoff": null,
|
30814
|
+
"modalities": {
|
30815
|
+
"input": [
|
30816
|
+
"audio",
|
30817
|
+
"image",
|
30818
|
+
"text"
|
30819
|
+
],
|
30820
|
+
"output": [
|
30821
|
+
"text"
|
30822
|
+
]
|
30823
|
+
},
|
30824
|
+
"capabilities": [
|
30825
|
+
"function_calling",
|
30826
|
+
"structured_output"
|
30827
|
+
],
|
30828
|
+
"pricing": {
|
30829
|
+
"text_tokens": {
|
30830
|
+
"standard": {
|
30831
|
+
"input_per_million": 0.075,
|
30832
|
+
"cached_input_per_million": 0.01875,
|
30833
|
+
"output_per_million": 0.3
|
30834
|
+
}
|
30835
|
+
}
|
30836
|
+
},
|
30837
|
+
"metadata": {
|
30838
|
+
"source": "known_models"
|
30839
|
+
}
|
30840
|
+
},
|
30841
|
+
{
|
30842
|
+
"id": "gemini-1.5-pro",
|
30843
|
+
"name": "Gemini 1.5 Pro",
|
30844
|
+
"provider": "vertexai",
|
30845
|
+
"family": "gemini-1.5-pro",
|
30846
|
+
"created_at": null,
|
30847
|
+
"context_window": 2097152,
|
30848
|
+
"max_output_tokens": 8192,
|
30849
|
+
"knowledge_cutoff": null,
|
30850
|
+
"modalities": {
|
30851
|
+
"input": [
|
30852
|
+
"audio",
|
30853
|
+
"image",
|
30854
|
+
"text"
|
30855
|
+
],
|
30856
|
+
"output": [
|
30857
|
+
"text"
|
30858
|
+
]
|
30859
|
+
},
|
30860
|
+
"capabilities": [
|
30861
|
+
"function_calling",
|
30862
|
+
"structured_output"
|
30863
|
+
],
|
30864
|
+
"pricing": {
|
30865
|
+
"text_tokens": {
|
30866
|
+
"standard": {
|
30867
|
+
"input_per_million": 1.25,
|
30868
|
+
"cached_input_per_million": 0.3125,
|
30869
|
+
"output_per_million": 5.0
|
30870
|
+
}
|
30871
|
+
}
|
30872
|
+
},
|
30873
|
+
"metadata": {
|
30874
|
+
"source": "known_models"
|
30875
|
+
}
|
30876
|
+
},
|
30877
|
+
{
|
30878
|
+
"id": "gemini-1.5-pro-002",
|
30879
|
+
"name": "Gemini 1.5 Pro",
|
30880
|
+
"provider": "vertexai",
|
30881
|
+
"family": "gemini-1.5-pro",
|
30882
|
+
"created_at": null,
|
30883
|
+
"context_window": 2097152,
|
30884
|
+
"max_output_tokens": 8192,
|
30885
|
+
"knowledge_cutoff": null,
|
30886
|
+
"modalities": {
|
30887
|
+
"input": [
|
30888
|
+
"audio",
|
30889
|
+
"image",
|
30890
|
+
"text"
|
30891
|
+
],
|
30892
|
+
"output": [
|
30893
|
+
"text"
|
30894
|
+
]
|
30895
|
+
},
|
30896
|
+
"capabilities": [
|
30897
|
+
"function_calling",
|
30898
|
+
"structured_output"
|
30899
|
+
],
|
30900
|
+
"pricing": {
|
30901
|
+
"text_tokens": {
|
30902
|
+
"standard": {
|
30903
|
+
"input_per_million": 1.25,
|
30904
|
+
"cached_input_per_million": 0.3125,
|
30905
|
+
"output_per_million": 5.0
|
30906
|
+
}
|
30907
|
+
}
|
30908
|
+
},
|
30909
|
+
"metadata": {
|
30910
|
+
"source": "known_models"
|
30911
|
+
}
|
30912
|
+
},
|
30913
|
+
{
|
30914
|
+
"id": "gemini-2.0-flash",
|
30915
|
+
"name": "Gemini 2.0 Flash",
|
30916
|
+
"provider": "vertexai",
|
30917
|
+
"family": "gemini-2.0-flash",
|
30918
|
+
"created_at": null,
|
30919
|
+
"context_window": 1048576,
|
30920
|
+
"max_output_tokens": 8192,
|
30921
|
+
"knowledge_cutoff": null,
|
30922
|
+
"modalities": {
|
30923
|
+
"input": [
|
30924
|
+
"audio",
|
30925
|
+
"image",
|
30926
|
+
"text"
|
30927
|
+
],
|
30928
|
+
"output": [
|
30929
|
+
"text"
|
30930
|
+
]
|
30931
|
+
},
|
30932
|
+
"capabilities": [
|
30933
|
+
"batch",
|
30934
|
+
"function_calling",
|
30935
|
+
"structured_output"
|
30936
|
+
],
|
30937
|
+
"pricing": {
|
30938
|
+
"text_tokens": {
|
30939
|
+
"standard": {
|
30940
|
+
"input_per_million": 0.1,
|
30941
|
+
"cached_input_per_million": 0.025,
|
30942
|
+
"output_per_million": 0.4
|
30943
|
+
},
|
30944
|
+
"batch": {
|
30945
|
+
"input_per_million": 0.05,
|
30946
|
+
"output_per_million": 0.2
|
30947
|
+
}
|
30948
|
+
}
|
30949
|
+
},
|
30950
|
+
"metadata": {
|
30951
|
+
"source": "known_models"
|
30952
|
+
}
|
30953
|
+
},
|
30954
|
+
{
|
30955
|
+
"id": "gemini-2.0-flash-001",
|
30956
|
+
"name": "Gemini 2.0 Flash",
|
30957
|
+
"provider": "vertexai",
|
30958
|
+
"family": "gemini-2.0-flash",
|
30959
|
+
"created_at": null,
|
30960
|
+
"context_window": 1048576,
|
30961
|
+
"max_output_tokens": 8192,
|
30962
|
+
"knowledge_cutoff": null,
|
30963
|
+
"modalities": {
|
30964
|
+
"input": [
|
30965
|
+
"audio",
|
30966
|
+
"image",
|
30967
|
+
"text"
|
30968
|
+
],
|
30969
|
+
"output": [
|
30970
|
+
"text"
|
30971
|
+
]
|
30972
|
+
},
|
30973
|
+
"capabilities": [
|
30974
|
+
"batch",
|
30975
|
+
"function_calling",
|
30976
|
+
"structured_output"
|
30977
|
+
],
|
30978
|
+
"pricing": {
|
30979
|
+
"text_tokens": {
|
30980
|
+
"standard": {
|
30981
|
+
"input_per_million": 0.1,
|
30982
|
+
"cached_input_per_million": 0.025,
|
30983
|
+
"output_per_million": 0.4
|
30984
|
+
},
|
30985
|
+
"batch": {
|
30986
|
+
"input_per_million": 0.05,
|
30987
|
+
"output_per_million": 0.2
|
30988
|
+
}
|
30989
|
+
}
|
30990
|
+
},
|
30991
|
+
"metadata": {
|
30992
|
+
"source": "known_models"
|
30993
|
+
}
|
30994
|
+
},
|
30995
|
+
{
|
30996
|
+
"id": "gemini-2.0-flash-exp",
|
30997
|
+
"name": "Gemini 2.0 Flash",
|
30998
|
+
"provider": "vertexai",
|
30999
|
+
"family": "gemini-2.0-flash",
|
31000
|
+
"created_at": null,
|
31001
|
+
"context_window": 1048576,
|
31002
|
+
"max_output_tokens": 8192,
|
31003
|
+
"knowledge_cutoff": null,
|
31004
|
+
"modalities": {
|
31005
|
+
"input": [
|
31006
|
+
"audio",
|
31007
|
+
"image",
|
31008
|
+
"text"
|
31009
|
+
],
|
31010
|
+
"output": [
|
31011
|
+
"text"
|
31012
|
+
]
|
31013
|
+
},
|
31014
|
+
"capabilities": [
|
31015
|
+
"batch",
|
31016
|
+
"function_calling",
|
31017
|
+
"structured_output"
|
31018
|
+
],
|
31019
|
+
"pricing": {
|
31020
|
+
"text_tokens": {
|
31021
|
+
"standard": {
|
31022
|
+
"input_per_million": 0.1,
|
31023
|
+
"cached_input_per_million": 0.025,
|
31024
|
+
"output_per_million": 0.4
|
31025
|
+
},
|
31026
|
+
"batch": {
|
31027
|
+
"input_per_million": 0.05,
|
31028
|
+
"output_per_million": 0.2
|
31029
|
+
}
|
31030
|
+
}
|
31031
|
+
},
|
31032
|
+
"metadata": {
|
31033
|
+
"source": "known_models"
|
31034
|
+
}
|
31035
|
+
},
|
31036
|
+
{
|
31037
|
+
"id": "gemini-2.0-flash-lite-001",
|
31038
|
+
"name": "Gemini 2.0 Flash-Lite",
|
31039
|
+
"provider": "vertexai",
|
31040
|
+
"family": "gemini-2.0-flash-lite",
|
31041
|
+
"created_at": null,
|
31042
|
+
"context_window": 1048576,
|
31043
|
+
"max_output_tokens": 8192,
|
31044
|
+
"knowledge_cutoff": null,
|
31045
|
+
"modalities": {
|
31046
|
+
"input": [
|
31047
|
+
"audio",
|
31048
|
+
"image",
|
31049
|
+
"text"
|
31050
|
+
],
|
31051
|
+
"output": [
|
31052
|
+
"text"
|
31053
|
+
]
|
31054
|
+
},
|
31055
|
+
"capabilities": [
|
31056
|
+
"batch",
|
31057
|
+
"function_calling",
|
31058
|
+
"structured_output"
|
31059
|
+
],
|
31060
|
+
"pricing": {
|
31061
|
+
"text_tokens": {
|
31062
|
+
"standard": {
|
31063
|
+
"input_per_million": 0.1,
|
31064
|
+
"cached_input_per_million": 0.025,
|
31065
|
+
"output_per_million": 0.4
|
31066
|
+
},
|
31067
|
+
"batch": {
|
31068
|
+
"input_per_million": 0.05,
|
31069
|
+
"output_per_million": 0.2
|
31070
|
+
}
|
31071
|
+
}
|
31072
|
+
},
|
31073
|
+
"metadata": {
|
31074
|
+
"source": "known_models"
|
31075
|
+
}
|
31076
|
+
},
|
31077
|
+
{
|
31078
|
+
"id": "gemini-2.5-flash",
|
31079
|
+
"name": "Gemini 2.5 Flash",
|
31080
|
+
"provider": "vertexai",
|
31081
|
+
"family": "gemini-2.5-flash",
|
31082
|
+
"created_at": null,
|
31083
|
+
"context_window": 1048576,
|
31084
|
+
"max_output_tokens": 65536,
|
31085
|
+
"knowledge_cutoff": null,
|
31086
|
+
"modalities": {
|
31087
|
+
"input": [
|
31088
|
+
"audio",
|
31089
|
+
"image",
|
31090
|
+
"text"
|
31091
|
+
],
|
31092
|
+
"output": [
|
31093
|
+
"text"
|
31094
|
+
]
|
31095
|
+
},
|
31096
|
+
"capabilities": [
|
31097
|
+
"batch",
|
31098
|
+
"function_calling",
|
31099
|
+
"structured_output"
|
31100
|
+
],
|
31101
|
+
"pricing": {
|
31102
|
+
"text_tokens": {
|
31103
|
+
"standard": {
|
31104
|
+
"input_per_million": 0.3,
|
31105
|
+
"cached_input_per_million": 0.075,
|
31106
|
+
"output_per_million": 2.5
|
31107
|
+
},
|
31108
|
+
"batch": {
|
31109
|
+
"input_per_million": 0.15,
|
31110
|
+
"output_per_million": 1.25
|
31111
|
+
}
|
31112
|
+
}
|
31113
|
+
},
|
31114
|
+
"metadata": {
|
31115
|
+
"source": "known_models"
|
31116
|
+
}
|
31117
|
+
},
|
31118
|
+
{
|
31119
|
+
"id": "gemini-2.5-flash-lite",
|
31120
|
+
"name": "Gemini 2.5 Flash-Lite",
|
31121
|
+
"provider": "vertexai",
|
31122
|
+
"family": "gemini-2.5-flash-lite",
|
31123
|
+
"created_at": null,
|
31124
|
+
"context_window": 1048576,
|
31125
|
+
"max_output_tokens": 65536,
|
31126
|
+
"knowledge_cutoff": null,
|
31127
|
+
"modalities": {
|
31128
|
+
"input": [
|
31129
|
+
"audio",
|
31130
|
+
"image",
|
31131
|
+
"text"
|
31132
|
+
],
|
31133
|
+
"output": [
|
31134
|
+
"text"
|
31135
|
+
]
|
31136
|
+
},
|
31137
|
+
"capabilities": [
|
31138
|
+
"batch",
|
31139
|
+
"function_calling",
|
31140
|
+
"structured_output"
|
31141
|
+
],
|
31142
|
+
"pricing": {
|
31143
|
+
"text_tokens": {
|
31144
|
+
"standard": {
|
31145
|
+
"input_per_million": 0.3,
|
31146
|
+
"cached_input_per_million": 0.075,
|
31147
|
+
"output_per_million": 2.5
|
31148
|
+
},
|
31149
|
+
"batch": {
|
31150
|
+
"input_per_million": 0.15,
|
31151
|
+
"output_per_million": 1.25
|
31152
|
+
}
|
31153
|
+
}
|
31154
|
+
},
|
31155
|
+
"metadata": {
|
31156
|
+
"source": "known_models"
|
31157
|
+
}
|
31158
|
+
},
|
31159
|
+
{
|
31160
|
+
"id": "gemini-2.5-pro",
|
31161
|
+
"name": "Gemini 2.5 Pro",
|
31162
|
+
"provider": "vertexai",
|
31163
|
+
"family": "gemini-2.5-pro",
|
31164
|
+
"created_at": null,
|
31165
|
+
"context_window": 1048576,
|
31166
|
+
"max_output_tokens": 65536,
|
31167
|
+
"knowledge_cutoff": null,
|
31168
|
+
"modalities": {
|
31169
|
+
"input": [
|
31170
|
+
"audio",
|
31171
|
+
"image",
|
31172
|
+
"text"
|
31173
|
+
],
|
31174
|
+
"output": [
|
31175
|
+
"text"
|
31176
|
+
]
|
31177
|
+
},
|
31178
|
+
"capabilities": [
|
31179
|
+
"batch",
|
31180
|
+
"function_calling",
|
31181
|
+
"structured_output"
|
31182
|
+
],
|
31183
|
+
"pricing": {
|
31184
|
+
"text_tokens": {
|
31185
|
+
"standard": {
|
31186
|
+
"input_per_million": 1.25,
|
31187
|
+
"cached_input_per_million": 0.31,
|
31188
|
+
"output_per_million": 10.0
|
31189
|
+
},
|
31190
|
+
"batch": {
|
31191
|
+
"input_per_million": 0.625,
|
31192
|
+
"output_per_million": 5.0
|
31193
|
+
}
|
31194
|
+
}
|
31195
|
+
},
|
31196
|
+
"metadata": {
|
31197
|
+
"source": "known_models"
|
31198
|
+
}
|
31199
|
+
},
|
31200
|
+
{
|
31201
|
+
"id": "gemini-embedding-001",
|
31202
|
+
"name": "gemini-embedding-001",
|
31203
|
+
"provider": "vertexai",
|
31204
|
+
"family": "gemini",
|
31205
|
+
"created_at": null,
|
31206
|
+
"context_window": null,
|
31207
|
+
"max_output_tokens": null,
|
31208
|
+
"knowledge_cutoff": null,
|
31209
|
+
"modalities": {
|
31210
|
+
"input": [],
|
31211
|
+
"output": []
|
31212
|
+
},
|
31213
|
+
"capabilities": [
|
31214
|
+
"streaming",
|
31215
|
+
"function_calling"
|
31216
|
+
],
|
31217
|
+
"pricing": {},
|
31218
|
+
"metadata": {
|
31219
|
+
"source": "known_models"
|
31220
|
+
}
|
31221
|
+
},
|
31222
|
+
{
|
31223
|
+
"id": "gemini-exp-1121",
|
31224
|
+
"name": "gemini-exp-1121",
|
31225
|
+
"provider": "vertexai",
|
31226
|
+
"family": "gemini",
|
31227
|
+
"created_at": null,
|
31228
|
+
"context_window": null,
|
31229
|
+
"max_output_tokens": null,
|
31230
|
+
"knowledge_cutoff": null,
|
31231
|
+
"modalities": {
|
31232
|
+
"input": [],
|
31233
|
+
"output": []
|
31234
|
+
},
|
31235
|
+
"capabilities": [
|
31236
|
+
"streaming",
|
31237
|
+
"function_calling"
|
31238
|
+
],
|
31239
|
+
"pricing": {},
|
31240
|
+
"metadata": {
|
31241
|
+
"source": "known_models"
|
31242
|
+
}
|
31243
|
+
},
|
31244
|
+
{
|
31245
|
+
"id": "gemini-exp-1206",
|
31246
|
+
"name": "gemini-exp-1206",
|
31247
|
+
"provider": "vertexai",
|
31248
|
+
"family": "gemini",
|
31249
|
+
"created_at": null,
|
31250
|
+
"context_window": null,
|
31251
|
+
"max_output_tokens": null,
|
31252
|
+
"knowledge_cutoff": null,
|
31253
|
+
"modalities": {
|
31254
|
+
"input": [],
|
31255
|
+
"output": []
|
31256
|
+
},
|
31257
|
+
"capabilities": [
|
31258
|
+
"streaming",
|
31259
|
+
"function_calling"
|
31260
|
+
],
|
31261
|
+
"pricing": {},
|
31262
|
+
"metadata": {
|
31263
|
+
"source": "known_models"
|
31264
|
+
}
|
31265
|
+
},
|
31266
|
+
{
|
31267
|
+
"id": "gemini-pro",
|
31268
|
+
"name": "gemini-pro",
|
31269
|
+
"provider": "vertexai",
|
31270
|
+
"family": "gemini",
|
31271
|
+
"created_at": null,
|
31272
|
+
"context_window": null,
|
31273
|
+
"max_output_tokens": null,
|
31274
|
+
"knowledge_cutoff": null,
|
31275
|
+
"modalities": {
|
31276
|
+
"input": [],
|
31277
|
+
"output": []
|
31278
|
+
},
|
31279
|
+
"capabilities": [
|
31280
|
+
"streaming",
|
31281
|
+
"function_calling"
|
31282
|
+
],
|
31283
|
+
"pricing": {},
|
31284
|
+
"metadata": {
|
31285
|
+
"source": "known_models"
|
31286
|
+
}
|
31287
|
+
},
|
31288
|
+
{
|
31289
|
+
"id": "gemini-pro-vision",
|
31290
|
+
"name": "gemini-pro-vision",
|
31291
|
+
"provider": "vertexai",
|
31292
|
+
"family": "gemini",
|
31293
|
+
"created_at": null,
|
31294
|
+
"context_window": null,
|
31295
|
+
"max_output_tokens": null,
|
31296
|
+
"knowledge_cutoff": null,
|
31297
|
+
"modalities": {
|
31298
|
+
"input": [],
|
31299
|
+
"output": []
|
31300
|
+
},
|
31301
|
+
"capabilities": [
|
31302
|
+
"streaming",
|
31303
|
+
"function_calling"
|
31304
|
+
],
|
31305
|
+
"pricing": {},
|
31306
|
+
"metadata": {
|
31307
|
+
"source": "known_models"
|
31308
|
+
}
|
31309
|
+
},
|
31310
|
+
{
|
31311
|
+
"id": "image-segmentation-001",
|
31312
|
+
"name": "image-segmentation-001",
|
31313
|
+
"provider": "vertexai",
|
31314
|
+
"family": "gemini",
|
31315
|
+
"created_at": null,
|
31316
|
+
"context_window": null,
|
31317
|
+
"max_output_tokens": null,
|
31318
|
+
"knowledge_cutoff": null,
|
31319
|
+
"modalities": {
|
31320
|
+
"input": [],
|
31321
|
+
"output": []
|
31322
|
+
},
|
31323
|
+
"capabilities": [
|
31324
|
+
"streaming"
|
31325
|
+
],
|
31326
|
+
"pricing": {},
|
31327
|
+
"metadata": {
|
31328
|
+
"version_id": "default",
|
31329
|
+
"open_source_category": null,
|
31330
|
+
"launch_stage": "PUBLIC_PREVIEW",
|
31331
|
+
"supported_actions": {
|
31332
|
+
"openNotebook": {
|
31333
|
+
"references": {
|
31334
|
+
"europe-west1": {
|
31335
|
+
"uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/vision/getting-started/image_segmentation.ipynb"
|
31336
|
+
}
|
31337
|
+
},
|
31338
|
+
"title": "Open Notebook"
|
31339
|
+
},
|
31340
|
+
"requestAccess": {
|
31341
|
+
"references": {
|
31342
|
+
"europe-west1": {
|
31343
|
+
"uri": "https://docs.google.com/forms/d/e/1FAIpQLSdzIR1EeQGFcMsqd9nPip5e9ovDKSjfWRd58QVjo1zLpfdvEg/viewform?resourcekey=0-Pvqc66u-0Z1QmuzHq4wLKg"
|
31344
|
+
}
|
31345
|
+
}
|
31346
|
+
},
|
31347
|
+
"openNotebooks": {
|
31348
|
+
"notebooks": [
|
31349
|
+
{
|
31350
|
+
"references": {
|
31351
|
+
"europe-west1": {
|
31352
|
+
"uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/vision/getting-started/image_segmentation.ipynb"
|
31353
|
+
}
|
31354
|
+
},
|
31355
|
+
"title": "Open Notebook"
|
31356
|
+
}
|
31357
|
+
]
|
31358
|
+
}
|
31359
|
+
},
|
31360
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/image-segmentation-001@default"
|
31361
|
+
}
|
31362
|
+
},
|
31363
|
+
{
|
31364
|
+
"id": "imagegeneration",
|
31365
|
+
"name": "imagegeneration",
|
31366
|
+
"provider": "vertexai",
|
31367
|
+
"family": "gemini",
|
31368
|
+
"created_at": null,
|
31369
|
+
"context_window": null,
|
31370
|
+
"max_output_tokens": null,
|
31371
|
+
"knowledge_cutoff": null,
|
31372
|
+
"modalities": {
|
31373
|
+
"input": [],
|
31374
|
+
"output": []
|
31375
|
+
},
|
31376
|
+
"capabilities": [
|
31377
|
+
"streaming"
|
31378
|
+
],
|
31379
|
+
"pricing": {},
|
31380
|
+
"metadata": {
|
31381
|
+
"version_id": "006",
|
31382
|
+
"open_source_category": "PROPRIETARY",
|
31383
|
+
"launch_stage": "PUBLIC_PREVIEW",
|
31384
|
+
"supported_actions": {
|
31385
|
+
"openGenerationAiStudio": {
|
31386
|
+
"references": {
|
31387
|
+
"europe-west1": {
|
31388
|
+
"uri": "https://cloud.google.com/console/vertex-ai/generative/vision"
|
31389
|
+
}
|
31390
|
+
},
|
31391
|
+
"title": "Open Vertex AI Studio"
|
31392
|
+
}
|
31393
|
+
},
|
31394
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagegeneration@006"
|
31395
|
+
}
|
31396
|
+
},
|
31397
|
+
{
|
31398
|
+
"id": "imagen-4.0-fast-generate-001",
|
31399
|
+
"name": "imagen-4.0-fast-generate-001",
|
31400
|
+
"provider": "vertexai",
|
31401
|
+
"family": "gemini",
|
31402
|
+
"created_at": null,
|
31403
|
+
"context_window": null,
|
31404
|
+
"max_output_tokens": null,
|
31405
|
+
"knowledge_cutoff": null,
|
31406
|
+
"modalities": {
|
31407
|
+
"input": [],
|
31408
|
+
"output": []
|
31409
|
+
},
|
31410
|
+
"capabilities": [
|
31411
|
+
"streaming"
|
31412
|
+
],
|
31413
|
+
"pricing": {},
|
31414
|
+
"metadata": {
|
31415
|
+
"version_id": "default",
|
31416
|
+
"open_source_category": null,
|
31417
|
+
"launch_stage": "GA",
|
31418
|
+
"supported_actions": {
|
31419
|
+
"openGenerationAiStudio": {
|
31420
|
+
"references": {
|
31421
|
+
"europe-west1": {
|
31422
|
+
"uri": "https://console.cloud.google.com/vertex-ai/studio/media/generate"
|
31423
|
+
}
|
31424
|
+
},
|
31425
|
+
"title": "Open Vertex AI Studio"
|
31426
|
+
}
|
31427
|
+
},
|
31428
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagen-4.0-fast-generate-001@default"
|
31429
|
+
}
|
31430
|
+
},
|
31431
|
+
{
|
31432
|
+
"id": "imagen-4.0-generate-001",
|
31433
|
+
"name": "imagen-4.0-generate-001",
|
31434
|
+
"provider": "vertexai",
|
31435
|
+
"family": "gemini",
|
31436
|
+
"created_at": null,
|
31437
|
+
"context_window": null,
|
31438
|
+
"max_output_tokens": null,
|
31439
|
+
"knowledge_cutoff": null,
|
31440
|
+
"modalities": {
|
31441
|
+
"input": [],
|
31442
|
+
"output": []
|
31443
|
+
},
|
31444
|
+
"capabilities": [
|
31445
|
+
"streaming"
|
31446
|
+
],
|
31447
|
+
"pricing": {},
|
31448
|
+
"metadata": {
|
31449
|
+
"version_id": "default",
|
31450
|
+
"open_source_category": null,
|
31451
|
+
"launch_stage": "GA",
|
31452
|
+
"supported_actions": {
|
31453
|
+
"openGenerationAiStudio": {
|
31454
|
+
"references": {
|
31455
|
+
"europe-west1": {
|
31456
|
+
"uri": "https://console.cloud.google.com/vertex-ai/studio/media/generate"
|
31457
|
+
}
|
31458
|
+
},
|
31459
|
+
"title": "Open Vertex AI Studio"
|
31460
|
+
}
|
31461
|
+
},
|
31462
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagen-4.0-generate-001@default"
|
31463
|
+
}
|
31464
|
+
},
|
31465
|
+
{
|
31466
|
+
"id": "imagen-4.0-ultra-generate-001",
|
31467
|
+
"name": "imagen-4.0-ultra-generate-001",
|
31468
|
+
"provider": "vertexai",
|
31469
|
+
"family": "gemini",
|
31470
|
+
"created_at": null,
|
31471
|
+
"context_window": null,
|
31472
|
+
"max_output_tokens": null,
|
31473
|
+
"knowledge_cutoff": null,
|
31474
|
+
"modalities": {
|
31475
|
+
"input": [],
|
31476
|
+
"output": []
|
31477
|
+
},
|
31478
|
+
"capabilities": [
|
31479
|
+
"streaming"
|
31480
|
+
],
|
31481
|
+
"pricing": {},
|
31482
|
+
"metadata": {
|
31483
|
+
"version_id": "default",
|
31484
|
+
"open_source_category": null,
|
31485
|
+
"launch_stage": "GA",
|
31486
|
+
"supported_actions": {
|
31487
|
+
"openGenerationAiStudio": {
|
31488
|
+
"references": {
|
31489
|
+
"europe-west1": {
|
31490
|
+
"uri": "https://console.cloud.google.com/vertex-ai/studio/media/generate"
|
31491
|
+
}
|
31492
|
+
},
|
31493
|
+
"title": "Open Vertex AI Studio"
|
31494
|
+
}
|
31495
|
+
},
|
31496
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagen-4.0-ultra-generate-001@default"
|
31497
|
+
}
|
31498
|
+
},
|
31499
|
+
{
|
31500
|
+
"id": "imagetext",
|
31501
|
+
"name": "imagetext",
|
31502
|
+
"provider": "vertexai",
|
31503
|
+
"family": "gemini",
|
31504
|
+
"created_at": null,
|
31505
|
+
"context_window": null,
|
31506
|
+
"max_output_tokens": null,
|
31507
|
+
"knowledge_cutoff": null,
|
31508
|
+
"modalities": {
|
31509
|
+
"input": [],
|
31510
|
+
"output": []
|
31511
|
+
},
|
31512
|
+
"capabilities": [
|
31513
|
+
"streaming"
|
31514
|
+
],
|
31515
|
+
"pricing": {},
|
31516
|
+
"metadata": {
|
31517
|
+
"version_id": "001",
|
31518
|
+
"open_source_category": "PROPRIETARY",
|
31519
|
+
"launch_stage": "GA",
|
31520
|
+
"supported_actions": {
|
31521
|
+
"openGenerationAiStudio": {
|
31522
|
+
"references": {
|
31523
|
+
"us-central1": {
|
31524
|
+
"uri": "https://cloud.google.com/console/vertex-ai/generative/vision"
|
31525
|
+
}
|
31526
|
+
},
|
31527
|
+
"title": "Open Vertex AI Studio"
|
31528
|
+
}
|
31529
|
+
},
|
31530
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagetext@001"
|
31531
|
+
}
|
31532
|
+
},
|
31533
|
+
{
|
31534
|
+
"id": "multimodalembedding",
|
31535
|
+
"name": "multimodalembedding",
|
31536
|
+
"provider": "vertexai",
|
31537
|
+
"family": "gemini",
|
31538
|
+
"created_at": null,
|
31539
|
+
"context_window": null,
|
31540
|
+
"max_output_tokens": null,
|
31541
|
+
"knowledge_cutoff": null,
|
31542
|
+
"modalities": {
|
31543
|
+
"input": [],
|
31544
|
+
"output": []
|
31545
|
+
},
|
31546
|
+
"capabilities": [
|
31547
|
+
"streaming"
|
31548
|
+
],
|
31549
|
+
"pricing": {},
|
31550
|
+
"metadata": {
|
31551
|
+
"version_id": "001",
|
31552
|
+
"open_source_category": "PROPRIETARY",
|
31553
|
+
"launch_stage": "GA",
|
31554
|
+
"supported_actions": null,
|
31555
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/multimodalembedding@001"
|
31556
|
+
}
|
31557
|
+
},
|
31558
|
+
{
|
31559
|
+
"id": "text-bison",
|
31560
|
+
"name": "text-bison",
|
31561
|
+
"provider": "vertexai",
|
31562
|
+
"family": "palm",
|
31563
|
+
"created_at": null,
|
31564
|
+
"context_window": null,
|
31565
|
+
"max_output_tokens": null,
|
31566
|
+
"knowledge_cutoff": null,
|
31567
|
+
"modalities": {
|
31568
|
+
"input": [],
|
31569
|
+
"output": []
|
31570
|
+
},
|
31571
|
+
"capabilities": [
|
31572
|
+
"streaming"
|
31573
|
+
],
|
31574
|
+
"pricing": {},
|
31575
|
+
"metadata": {
|
31576
|
+
"version_id": "002",
|
31577
|
+
"open_source_category": "PROPRIETARY",
|
31578
|
+
"launch_stage": "GA",
|
31579
|
+
"supported_actions": {
|
31580
|
+
"openGenie": {
|
31581
|
+
"references": {
|
31582
|
+
"us-central1": {
|
31583
|
+
"uri": "https://console.cloud.google.com/vertex-ai/generative/language/create/text"
|
31584
|
+
}
|
31585
|
+
},
|
31586
|
+
"title": "Open Prompt Design"
|
31587
|
+
},
|
31588
|
+
"openEvaluationPipeline": {
|
31589
|
+
"references": {
|
31590
|
+
"us-central1": {
|
31591
|
+
"uri": "https://console.cloud.google.com/vertex-ai/pipelines/vertex-ai-templates/evaluation-llm-text-generation-pipeline"
|
31592
|
+
}
|
31593
|
+
},
|
31594
|
+
"title": "Evaluate"
|
31595
|
+
}
|
31596
|
+
},
|
31597
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/text-bison@002"
|
31598
|
+
}
|
31599
|
+
},
|
31600
|
+
{
|
31601
|
+
"id": "text-embedding-004",
|
31602
|
+
"name": "text-embedding-004",
|
31603
|
+
"provider": "vertexai",
|
31604
|
+
"family": "text-embedding",
|
31605
|
+
"created_at": null,
|
31606
|
+
"context_window": null,
|
31607
|
+
"max_output_tokens": null,
|
31608
|
+
"knowledge_cutoff": null,
|
31609
|
+
"modalities": {
|
31610
|
+
"input": [],
|
31611
|
+
"output": []
|
31612
|
+
},
|
31613
|
+
"capabilities": [
|
31614
|
+
"streaming",
|
31615
|
+
"function_calling"
|
31616
|
+
],
|
31617
|
+
"pricing": {},
|
31618
|
+
"metadata": {
|
31619
|
+
"source": "known_models"
|
31620
|
+
}
|
31621
|
+
},
|
31622
|
+
{
|
31623
|
+
"id": "text-embedding-005",
|
31624
|
+
"name": "text-embedding-005",
|
31625
|
+
"provider": "vertexai",
|
31626
|
+
"family": "text-embedding",
|
31627
|
+
"created_at": null,
|
31628
|
+
"context_window": null,
|
31629
|
+
"max_output_tokens": null,
|
31630
|
+
"knowledge_cutoff": null,
|
31631
|
+
"modalities": {
|
31632
|
+
"input": [],
|
31633
|
+
"output": []
|
31634
|
+
},
|
31635
|
+
"capabilities": [
|
31636
|
+
"streaming",
|
31637
|
+
"function_calling"
|
31638
|
+
],
|
31639
|
+
"pricing": {},
|
31640
|
+
"metadata": {
|
31641
|
+
"source": "known_models"
|
31642
|
+
}
|
31643
|
+
},
|
31644
|
+
{
|
31645
|
+
"id": "text-multilingual-embedding-002",
|
31646
|
+
"name": "text-multilingual-embedding-002",
|
31647
|
+
"provider": "vertexai",
|
31648
|
+
"family": "gemini",
|
31649
|
+
"created_at": null,
|
31650
|
+
"context_window": null,
|
31651
|
+
"max_output_tokens": null,
|
31652
|
+
"knowledge_cutoff": null,
|
31653
|
+
"modalities": {
|
31654
|
+
"input": [],
|
31655
|
+
"output": []
|
31656
|
+
},
|
31657
|
+
"capabilities": [
|
31658
|
+
"streaming",
|
31659
|
+
"function_calling"
|
31660
|
+
],
|
31661
|
+
"pricing": {},
|
31662
|
+
"metadata": {
|
31663
|
+
"source": "known_models"
|
31664
|
+
}
|
31665
|
+
},
|
31666
|
+
{
|
31667
|
+
"id": "text-unicorn",
|
31668
|
+
"name": "text-unicorn",
|
31669
|
+
"provider": "vertexai",
|
31670
|
+
"family": "gemini",
|
31671
|
+
"created_at": null,
|
31672
|
+
"context_window": null,
|
31673
|
+
"max_output_tokens": null,
|
31674
|
+
"knowledge_cutoff": null,
|
31675
|
+
"modalities": {
|
31676
|
+
"input": [],
|
31677
|
+
"output": []
|
31678
|
+
},
|
31679
|
+
"capabilities": [
|
31680
|
+
"streaming"
|
31681
|
+
],
|
31682
|
+
"pricing": {},
|
31683
|
+
"metadata": {
|
31684
|
+
"version_id": "001",
|
31685
|
+
"open_source_category": "PROPRIETARY",
|
31686
|
+
"launch_stage": "GA",
|
31687
|
+
"supported_actions": {
|
31688
|
+
"openGenie": {
|
31689
|
+
"references": {
|
31690
|
+
"europe-west1": {
|
31691
|
+
"uri": "https://console.cloud.google.com/vertex-ai/generative/language/create/text"
|
31692
|
+
}
|
31693
|
+
},
|
31694
|
+
"title": "Open in Vertex AI Studio"
|
31695
|
+
},
|
31696
|
+
"openEvaluationPipeline": {
|
31697
|
+
"references": {
|
31698
|
+
"europe-west1": {
|
31699
|
+
"uri": "https://console.cloud.google.com/vertex-ai/pipelines/vertex-ai-templates/evaluation-llm-text-generation-pipeline"
|
31700
|
+
}
|
31701
|
+
},
|
31702
|
+
"title": "Evaluate"
|
31703
|
+
}
|
31704
|
+
},
|
31705
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/text-unicorn@001"
|
31706
|
+
}
|
31707
|
+
},
|
31708
|
+
{
|
31709
|
+
"id": "textembedding-gecko",
|
31710
|
+
"name": "textembedding-gecko",
|
31711
|
+
"provider": "vertexai",
|
31712
|
+
"family": "gemini",
|
31713
|
+
"created_at": null,
|
31714
|
+
"context_window": null,
|
31715
|
+
"max_output_tokens": null,
|
31716
|
+
"knowledge_cutoff": null,
|
31717
|
+
"modalities": {
|
31718
|
+
"input": [],
|
31719
|
+
"output": []
|
31720
|
+
},
|
31721
|
+
"capabilities": [
|
31722
|
+
"streaming"
|
31723
|
+
],
|
31724
|
+
"pricing": {},
|
31725
|
+
"metadata": {
|
31726
|
+
"version_id": "003",
|
31727
|
+
"open_source_category": "PROPRIETARY",
|
31728
|
+
"launch_stage": "GA",
|
31729
|
+
"supported_actions": null,
|
31730
|
+
"publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/textembedding-gecko@003"
|
31731
|
+
}
|
30055
31732
|
}
|
30056
31733
|
]
|