ruby_llm 1.9.2 → 1.10.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +3 -2
  3. data/lib/generators/ruby_llm/install/templates/create_messages_migration.rb.tt +3 -0
  4. data/lib/generators/ruby_llm/install/templates/create_tool_calls_migration.rb.tt +1 -0
  5. data/lib/generators/ruby_llm/upgrade_to_v1_10/templates/add_v1_10_message_columns.rb.tt +19 -0
  6. data/lib/generators/ruby_llm/upgrade_to_v1_10/upgrade_to_v1_10_generator.rb +50 -0
  7. data/lib/ruby_llm/active_record/acts_as_legacy.rb +5 -1
  8. data/lib/ruby_llm/active_record/chat_methods.rb +12 -0
  9. data/lib/ruby_llm/active_record/message_methods.rb +41 -8
  10. data/lib/ruby_llm/aliases.json +0 -12
  11. data/lib/ruby_llm/chat.rb +10 -7
  12. data/lib/ruby_llm/configuration.rb +1 -1
  13. data/lib/ruby_llm/message.rb +37 -11
  14. data/lib/ruby_llm/models.json +1059 -857
  15. data/lib/ruby_llm/models.rb +134 -12
  16. data/lib/ruby_llm/provider.rb +4 -3
  17. data/lib/ruby_llm/providers/anthropic/chat.rb +128 -13
  18. data/lib/ruby_llm/providers/anthropic/streaming.rb +25 -1
  19. data/lib/ruby_llm/providers/bedrock/chat.rb +58 -15
  20. data/lib/ruby_llm/providers/bedrock/streaming/content_extraction.rb +59 -2
  21. data/lib/ruby_llm/providers/bedrock/streaming/payload_processing.rb +5 -0
  22. data/lib/ruby_llm/providers/gemini/chat.rb +69 -3
  23. data/lib/ruby_llm/providers/gemini/streaming.rb +32 -1
  24. data/lib/ruby_llm/providers/gemini/tools.rb +16 -3
  25. data/lib/ruby_llm/providers/gpustack/chat.rb +1 -1
  26. data/lib/ruby_llm/providers/mistral/chat.rb +58 -1
  27. data/lib/ruby_llm/providers/ollama/chat.rb +1 -1
  28. data/lib/ruby_llm/providers/openai/capabilities.rb +6 -2
  29. data/lib/ruby_llm/providers/openai/chat.rb +87 -3
  30. data/lib/ruby_llm/providers/openai/streaming.rb +11 -3
  31. data/lib/ruby_llm/providers/openai/temperature.rb +28 -0
  32. data/lib/ruby_llm/providers/openai.rb +1 -1
  33. data/lib/ruby_llm/providers/openrouter/chat.rb +154 -0
  34. data/lib/ruby_llm/providers/openrouter/streaming.rb +74 -0
  35. data/lib/ruby_llm/providers/openrouter.rb +2 -0
  36. data/lib/ruby_llm/providers/vertexai.rb +5 -1
  37. data/lib/ruby_llm/stream_accumulator.rb +111 -14
  38. data/lib/ruby_llm/streaming.rb +54 -51
  39. data/lib/ruby_llm/thinking.rb +49 -0
  40. data/lib/ruby_llm/tokens.rb +47 -0
  41. data/lib/ruby_llm/tool_call.rb +6 -3
  42. data/lib/ruby_llm/version.rb +1 -1
  43. data/lib/tasks/models.rake +19 -12
  44. metadata +12 -5
@@ -1680,12 +1680,12 @@
1680
1680
  },
1681
1681
  {
1682
1682
  "id": "anthropic.claude-3-5-sonnet-20240620-v1:0:18k",
1683
- "name": "Claude 3.5 Sonnet",
1683
+ "name": "Claude Sonnet 3.5",
1684
1684
  "provider": "bedrock",
1685
- "family": "claude3_sonnet",
1686
- "created_at": null,
1687
- "context_window": 200000,
1688
- "max_output_tokens": 4096,
1685
+ "family": "claude-sonnet",
1686
+ "created_at": "2024-06-20 00:00:00 +0200",
1687
+ "context_window": 18000,
1688
+ "max_output_tokens": 8192,
1689
1689
  "knowledge_cutoff": null,
1690
1690
  "modalities": {
1691
1691
  "input": [
@@ -1698,18 +1698,16 @@
1698
1698
  ]
1699
1699
  },
1700
1700
  "capabilities": [
1701
- "streaming",
1702
- "function_calling"
1701
+ "function_calling",
1702
+ "vision",
1703
+ "streaming"
1703
1704
  ],
1704
1705
  "pricing": {
1705
1706
  "text_tokens": {
1706
1707
  "standard": {
1707
- "input_per_million": 3.0,
1708
- "output_per_million": 15.0
1709
- },
1710
- "batch": {
1711
- "input_per_million": 1.5,
1712
- "output_per_million": 7.5
1708
+ "input_per_million": 3,
1709
+ "output_per_million": 15,
1710
+ "cached_input_per_million": 0.3
1713
1711
  }
1714
1712
  }
1715
1713
  },
@@ -1725,17 +1723,34 @@
1725
1723
  ],
1726
1724
  "output_modalities": [
1727
1725
  "TEXT"
1728
- ]
1726
+ ],
1727
+ "source": "models.dev",
1728
+ "provider_id": "amazon-bedrock",
1729
+ "open_weights": false,
1730
+ "attachment": true,
1731
+ "temperature": true,
1732
+ "last_updated": "2024-06-20",
1733
+ "cost": {
1734
+ "input": 3,
1735
+ "output": 15,
1736
+ "cache_read": 0.3,
1737
+ "cache_write": 3.75
1738
+ },
1739
+ "limit": {
1740
+ "context": 200000,
1741
+ "output": 8192
1742
+ },
1743
+ "knowledge": "2024-04"
1729
1744
  }
1730
1745
  },
1731
1746
  {
1732
1747
  "id": "anthropic.claude-3-5-sonnet-20240620-v1:0:200k",
1733
- "name": "Claude 3.5 Sonnet",
1748
+ "name": "Claude Sonnet 3.5",
1734
1749
  "provider": "bedrock",
1735
- "family": "claude3_sonnet",
1736
- "created_at": null,
1750
+ "family": "claude-sonnet",
1751
+ "created_at": "2024-06-20 00:00:00 +0200",
1737
1752
  "context_window": 200000,
1738
- "max_output_tokens": 4096,
1753
+ "max_output_tokens": 8192,
1739
1754
  "knowledge_cutoff": null,
1740
1755
  "modalities": {
1741
1756
  "input": [
@@ -1748,18 +1763,16 @@
1748
1763
  ]
1749
1764
  },
1750
1765
  "capabilities": [
1751
- "streaming",
1752
- "function_calling"
1766
+ "function_calling",
1767
+ "vision",
1768
+ "streaming"
1753
1769
  ],
1754
1770
  "pricing": {
1755
1771
  "text_tokens": {
1756
1772
  "standard": {
1757
- "input_per_million": 3.0,
1758
- "output_per_million": 15.0
1759
- },
1760
- "batch": {
1761
- "input_per_million": 1.5,
1762
- "output_per_million": 7.5
1773
+ "input_per_million": 3,
1774
+ "output_per_million": 15,
1775
+ "cached_input_per_million": 0.3
1763
1776
  }
1764
1777
  }
1765
1778
  },
@@ -1775,17 +1788,34 @@
1775
1788
  ],
1776
1789
  "output_modalities": [
1777
1790
  "TEXT"
1778
- ]
1791
+ ],
1792
+ "source": "models.dev",
1793
+ "provider_id": "amazon-bedrock",
1794
+ "open_weights": false,
1795
+ "attachment": true,
1796
+ "temperature": true,
1797
+ "last_updated": "2024-06-20",
1798
+ "cost": {
1799
+ "input": 3,
1800
+ "output": 15,
1801
+ "cache_read": 0.3,
1802
+ "cache_write": 3.75
1803
+ },
1804
+ "limit": {
1805
+ "context": 200000,
1806
+ "output": 8192
1807
+ },
1808
+ "knowledge": "2024-04"
1779
1809
  }
1780
1810
  },
1781
1811
  {
1782
1812
  "id": "anthropic.claude-3-5-sonnet-20240620-v1:0:51k",
1783
- "name": "Claude 3.5 Sonnet",
1813
+ "name": "Claude Sonnet 3.5",
1784
1814
  "provider": "bedrock",
1785
- "family": "claude3_sonnet",
1786
- "created_at": null,
1787
- "context_window": 200000,
1788
- "max_output_tokens": 4096,
1815
+ "family": "claude-sonnet",
1816
+ "created_at": "2024-06-20 00:00:00 +0200",
1817
+ "context_window": 51000,
1818
+ "max_output_tokens": 8192,
1789
1819
  "knowledge_cutoff": null,
1790
1820
  "modalities": {
1791
1821
  "input": [
@@ -1798,18 +1828,16 @@
1798
1828
  ]
1799
1829
  },
1800
1830
  "capabilities": [
1801
- "streaming",
1802
- "function_calling"
1831
+ "function_calling",
1832
+ "vision",
1833
+ "streaming"
1803
1834
  ],
1804
1835
  "pricing": {
1805
1836
  "text_tokens": {
1806
1837
  "standard": {
1807
- "input_per_million": 3.0,
1808
- "output_per_million": 15.0
1809
- },
1810
- "batch": {
1811
- "input_per_million": 1.5,
1812
- "output_per_million": 7.5
1838
+ "input_per_million": 3,
1839
+ "output_per_million": 15,
1840
+ "cached_input_per_million": 0.3
1813
1841
  }
1814
1842
  }
1815
1843
  },
@@ -1825,7 +1853,24 @@
1825
1853
  ],
1826
1854
  "output_modalities": [
1827
1855
  "TEXT"
1828
- ]
1856
+ ],
1857
+ "source": "models.dev",
1858
+ "provider_id": "amazon-bedrock",
1859
+ "open_weights": false,
1860
+ "attachment": true,
1861
+ "temperature": true,
1862
+ "last_updated": "2024-06-20",
1863
+ "cost": {
1864
+ "input": 3,
1865
+ "output": 15,
1866
+ "cache_read": 0.3,
1867
+ "cache_write": 3.75
1868
+ },
1869
+ "limit": {
1870
+ "context": 200000,
1871
+ "output": 8192
1872
+ },
1873
+ "knowledge": "2024-04"
1829
1874
  }
1830
1875
  },
1831
1876
  {
@@ -1895,12 +1940,12 @@
1895
1940
  },
1896
1941
  {
1897
1942
  "id": "anthropic.claude-3-5-sonnet-20241022-v2:0:18k",
1898
- "name": "Claude 3.5 Sonnet v2",
1943
+ "name": "Claude Sonnet 3.5 v2",
1899
1944
  "provider": "bedrock",
1900
- "family": "claude3_sonnet",
1901
- "created_at": null,
1902
- "context_window": 200000,
1903
- "max_output_tokens": 4096,
1945
+ "family": "claude-sonnet",
1946
+ "created_at": "2024-10-22 00:00:00 +0200",
1947
+ "context_window": 18000,
1948
+ "max_output_tokens": 8192,
1904
1949
  "knowledge_cutoff": null,
1905
1950
  "modalities": {
1906
1951
  "input": [
@@ -1913,18 +1958,16 @@
1913
1958
  ]
1914
1959
  },
1915
1960
  "capabilities": [
1916
- "streaming",
1917
- "function_calling"
1961
+ "function_calling",
1962
+ "vision",
1963
+ "streaming"
1918
1964
  ],
1919
1965
  "pricing": {
1920
1966
  "text_tokens": {
1921
1967
  "standard": {
1922
- "input_per_million": 3.0,
1923
- "output_per_million": 15.0
1924
- },
1925
- "batch": {
1926
- "input_per_million": 1.5,
1927
- "output_per_million": 7.5
1968
+ "input_per_million": 3,
1969
+ "output_per_million": 15,
1970
+ "cached_input_per_million": 0.3
1928
1971
  }
1929
1972
  }
1930
1973
  },
@@ -1940,17 +1983,34 @@
1940
1983
  ],
1941
1984
  "output_modalities": [
1942
1985
  "TEXT"
1943
- ]
1986
+ ],
1987
+ "source": "models.dev",
1988
+ "provider_id": "amazon-bedrock",
1989
+ "open_weights": false,
1990
+ "attachment": true,
1991
+ "temperature": true,
1992
+ "last_updated": "2024-10-22",
1993
+ "cost": {
1994
+ "input": 3,
1995
+ "output": 15,
1996
+ "cache_read": 0.3,
1997
+ "cache_write": 3.75
1998
+ },
1999
+ "limit": {
2000
+ "context": 200000,
2001
+ "output": 8192
2002
+ },
2003
+ "knowledge": "2024-04"
1944
2004
  }
1945
2005
  },
1946
2006
  {
1947
2007
  "id": "anthropic.claude-3-5-sonnet-20241022-v2:0:200k",
1948
- "name": "Claude 3.5 Sonnet v2",
2008
+ "name": "Claude Sonnet 3.5 v2",
1949
2009
  "provider": "bedrock",
1950
- "family": "claude3_sonnet",
1951
- "created_at": null,
2010
+ "family": "claude-sonnet",
2011
+ "created_at": "2024-10-22 00:00:00 +0200",
1952
2012
  "context_window": 200000,
1953
- "max_output_tokens": 4096,
2013
+ "max_output_tokens": 8192,
1954
2014
  "knowledge_cutoff": null,
1955
2015
  "modalities": {
1956
2016
  "input": [
@@ -1963,18 +2023,16 @@
1963
2023
  ]
1964
2024
  },
1965
2025
  "capabilities": [
1966
- "streaming",
1967
- "function_calling"
2026
+ "function_calling",
2027
+ "vision",
2028
+ "streaming"
1968
2029
  ],
1969
2030
  "pricing": {
1970
2031
  "text_tokens": {
1971
2032
  "standard": {
1972
- "input_per_million": 3.0,
1973
- "output_per_million": 15.0
1974
- },
1975
- "batch": {
1976
- "input_per_million": 1.5,
1977
- "output_per_million": 7.5
2033
+ "input_per_million": 3,
2034
+ "output_per_million": 15,
2035
+ "cached_input_per_million": 0.3
1978
2036
  }
1979
2037
  }
1980
2038
  },
@@ -1990,17 +2048,34 @@
1990
2048
  ],
1991
2049
  "output_modalities": [
1992
2050
  "TEXT"
1993
- ]
2051
+ ],
2052
+ "source": "models.dev",
2053
+ "provider_id": "amazon-bedrock",
2054
+ "open_weights": false,
2055
+ "attachment": true,
2056
+ "temperature": true,
2057
+ "last_updated": "2024-10-22",
2058
+ "cost": {
2059
+ "input": 3,
2060
+ "output": 15,
2061
+ "cache_read": 0.3,
2062
+ "cache_write": 3.75
2063
+ },
2064
+ "limit": {
2065
+ "context": 200000,
2066
+ "output": 8192
2067
+ },
2068
+ "knowledge": "2024-04"
1994
2069
  }
1995
2070
  },
1996
2071
  {
1997
2072
  "id": "anthropic.claude-3-5-sonnet-20241022-v2:0:51k",
1998
- "name": "Claude 3.5 Sonnet v2",
2073
+ "name": "Claude Sonnet 3.5 v2",
1999
2074
  "provider": "bedrock",
2000
- "family": "claude3_sonnet",
2001
- "created_at": null,
2002
- "context_window": 200000,
2003
- "max_output_tokens": 4096,
2075
+ "family": "claude-sonnet",
2076
+ "created_at": "2024-10-22 00:00:00 +0200",
2077
+ "context_window": 51000,
2078
+ "max_output_tokens": 8192,
2004
2079
  "knowledge_cutoff": null,
2005
2080
  "modalities": {
2006
2081
  "input": [
@@ -2013,18 +2088,16 @@
2013
2088
  ]
2014
2089
  },
2015
2090
  "capabilities": [
2016
- "streaming",
2017
- "function_calling"
2091
+ "function_calling",
2092
+ "vision",
2093
+ "streaming"
2018
2094
  ],
2019
2095
  "pricing": {
2020
2096
  "text_tokens": {
2021
2097
  "standard": {
2022
- "input_per_million": 3.0,
2023
- "output_per_million": 15.0
2024
- },
2025
- "batch": {
2026
- "input_per_million": 1.5,
2027
- "output_per_million": 7.5
2098
+ "input_per_million": 3,
2099
+ "output_per_million": 15,
2100
+ "cached_input_per_million": 0.3
2028
2101
  }
2029
2102
  }
2030
2103
  },
@@ -2040,7 +2113,24 @@
2040
2113
  ],
2041
2114
  "output_modalities": [
2042
2115
  "TEXT"
2043
- ]
2116
+ ],
2117
+ "source": "models.dev",
2118
+ "provider_id": "amazon-bedrock",
2119
+ "open_weights": false,
2120
+ "attachment": true,
2121
+ "temperature": true,
2122
+ "last_updated": "2024-10-22",
2123
+ "cost": {
2124
+ "input": 3,
2125
+ "output": 15,
2126
+ "cache_read": 0.3,
2127
+ "cache_write": 3.75
2128
+ },
2129
+ "limit": {
2130
+ "context": 200000,
2131
+ "output": 8192
2132
+ },
2133
+ "knowledge": "2024-04"
2044
2134
  }
2045
2135
  },
2046
2136
  {
@@ -2159,10 +2249,10 @@
2159
2249
  },
2160
2250
  {
2161
2251
  "id": "anthropic.claude-3-haiku-20240307-v1:0:200k",
2162
- "name": "Claude 3 Haiku",
2252
+ "name": "Claude Haiku 3",
2163
2253
  "provider": "bedrock",
2164
- "family": "claude3_haiku",
2165
- "created_at": null,
2254
+ "family": "claude-haiku",
2255
+ "created_at": "2024-03-13 00:00:00 +0100",
2166
2256
  "context_window": 200000,
2167
2257
  "max_output_tokens": 4096,
2168
2258
  "knowledge_cutoff": null,
@@ -2177,18 +2267,15 @@
2177
2267
  ]
2178
2268
  },
2179
2269
  "capabilities": [
2180
- "streaming",
2181
- "function_calling"
2270
+ "function_calling",
2271
+ "vision",
2272
+ "streaming"
2182
2273
  ],
2183
2274
  "pricing": {
2184
2275
  "text_tokens": {
2185
2276
  "standard": {
2186
2277
  "input_per_million": 0.25,
2187
2278
  "output_per_million": 1.25
2188
- },
2189
- "batch": {
2190
- "input_per_million": 0.125,
2191
- "output_per_million": 0.625
2192
2279
  }
2193
2280
  }
2194
2281
  },
@@ -2204,16 +2291,31 @@
2204
2291
  ],
2205
2292
  "output_modalities": [
2206
2293
  "TEXT"
2207
- ]
2294
+ ],
2295
+ "source": "models.dev",
2296
+ "provider_id": "amazon-bedrock",
2297
+ "open_weights": false,
2298
+ "attachment": true,
2299
+ "temperature": true,
2300
+ "last_updated": "2024-03-13",
2301
+ "cost": {
2302
+ "input": 0.25,
2303
+ "output": 1.25
2304
+ },
2305
+ "limit": {
2306
+ "context": 200000,
2307
+ "output": 4096
2308
+ },
2309
+ "knowledge": "2024-02"
2208
2310
  }
2209
2311
  },
2210
2312
  {
2211
2313
  "id": "anthropic.claude-3-haiku-20240307-v1:0:48k",
2212
- "name": "Claude 3 Haiku",
2314
+ "name": "Claude Haiku 3",
2213
2315
  "provider": "bedrock",
2214
- "family": "claude3_haiku",
2215
- "created_at": null,
2216
- "context_window": 200000,
2316
+ "family": "claude-haiku",
2317
+ "created_at": "2024-03-13 00:00:00 +0100",
2318
+ "context_window": 48000,
2217
2319
  "max_output_tokens": 4096,
2218
2320
  "knowledge_cutoff": null,
2219
2321
  "modalities": {
@@ -2227,18 +2329,15 @@
2227
2329
  ]
2228
2330
  },
2229
2331
  "capabilities": [
2230
- "streaming",
2231
- "function_calling"
2332
+ "function_calling",
2333
+ "vision",
2334
+ "streaming"
2232
2335
  ],
2233
2336
  "pricing": {
2234
2337
  "text_tokens": {
2235
2338
  "standard": {
2236
2339
  "input_per_million": 0.25,
2237
2340
  "output_per_million": 1.25
2238
- },
2239
- "batch": {
2240
- "input_per_million": 0.125,
2241
- "output_per_million": 0.625
2242
2341
  }
2243
2342
  }
2244
2343
  },
@@ -2254,7 +2353,22 @@
2254
2353
  ],
2255
2354
  "output_modalities": [
2256
2355
  "TEXT"
2257
- ]
2356
+ ],
2357
+ "source": "models.dev",
2358
+ "provider_id": "amazon-bedrock",
2359
+ "open_weights": false,
2360
+ "attachment": true,
2361
+ "temperature": true,
2362
+ "last_updated": "2024-03-13",
2363
+ "cost": {
2364
+ "input": 0.25,
2365
+ "output": 1.25
2366
+ },
2367
+ "limit": {
2368
+ "context": 200000,
2369
+ "output": 4096
2370
+ },
2371
+ "knowledge": "2024-02"
2258
2372
  }
2259
2373
  },
2260
2374
  {
@@ -2321,11 +2435,11 @@
2321
2435
  },
2322
2436
  {
2323
2437
  "id": "anthropic.claude-3-opus-20240229-v1:0:12k",
2324
- "name": "Claude 3 Opus",
2438
+ "name": "Claude Opus 3",
2325
2439
  "provider": "bedrock",
2326
- "family": "claude3_opus",
2327
- "created_at": null,
2328
- "context_window": 200000,
2440
+ "family": "claude-opus",
2441
+ "created_at": "2024-02-29 00:00:00 +0100",
2442
+ "context_window": 12000,
2329
2443
  "max_output_tokens": 4096,
2330
2444
  "knowledge_cutoff": null,
2331
2445
  "modalities": {
@@ -2339,18 +2453,15 @@
2339
2453
  ]
2340
2454
  },
2341
2455
  "capabilities": [
2342
- "streaming",
2343
- "function_calling"
2456
+ "function_calling",
2457
+ "vision",
2458
+ "streaming"
2344
2459
  ],
2345
2460
  "pricing": {
2346
2461
  "text_tokens": {
2347
2462
  "standard": {
2348
- "input_per_million": 15.0,
2349
- "output_per_million": 75.0
2350
- },
2351
- "batch": {
2352
- "input_per_million": 7.5,
2353
- "output_per_million": 37.5
2463
+ "input_per_million": 15,
2464
+ "output_per_million": 75
2354
2465
  }
2355
2466
  }
2356
2467
  },
@@ -2364,15 +2475,30 @@
2364
2475
  ],
2365
2476
  "output_modalities": [
2366
2477
  "TEXT"
2367
- ]
2478
+ ],
2479
+ "source": "models.dev",
2480
+ "provider_id": "amazon-bedrock",
2481
+ "open_weights": false,
2482
+ "attachment": true,
2483
+ "temperature": true,
2484
+ "last_updated": "2024-02-29",
2485
+ "cost": {
2486
+ "input": 15,
2487
+ "output": 75
2488
+ },
2489
+ "limit": {
2490
+ "context": 200000,
2491
+ "output": 4096
2492
+ },
2493
+ "knowledge": "2023-08"
2368
2494
  }
2369
2495
  },
2370
2496
  {
2371
2497
  "id": "anthropic.claude-3-opus-20240229-v1:0:200k",
2372
- "name": "Claude 3 Opus",
2498
+ "name": "Claude Opus 3",
2373
2499
  "provider": "bedrock",
2374
- "family": "claude3_opus",
2375
- "created_at": null,
2500
+ "family": "claude-opus",
2501
+ "created_at": "2024-02-29 00:00:00 +0100",
2376
2502
  "context_window": 200000,
2377
2503
  "max_output_tokens": 4096,
2378
2504
  "knowledge_cutoff": null,
@@ -2387,18 +2513,15 @@
2387
2513
  ]
2388
2514
  },
2389
2515
  "capabilities": [
2390
- "streaming",
2391
- "function_calling"
2516
+ "function_calling",
2517
+ "vision",
2518
+ "streaming"
2392
2519
  ],
2393
2520
  "pricing": {
2394
2521
  "text_tokens": {
2395
2522
  "standard": {
2396
- "input_per_million": 15.0,
2397
- "output_per_million": 75.0
2398
- },
2399
- "batch": {
2400
- "input_per_million": 7.5,
2401
- "output_per_million": 37.5
2523
+ "input_per_million": 15,
2524
+ "output_per_million": 75
2402
2525
  }
2403
2526
  }
2404
2527
  },
@@ -2412,16 +2535,31 @@
2412
2535
  ],
2413
2536
  "output_modalities": [
2414
2537
  "TEXT"
2415
- ]
2538
+ ],
2539
+ "source": "models.dev",
2540
+ "provider_id": "amazon-bedrock",
2541
+ "open_weights": false,
2542
+ "attachment": true,
2543
+ "temperature": true,
2544
+ "last_updated": "2024-02-29",
2545
+ "cost": {
2546
+ "input": 15,
2547
+ "output": 75
2548
+ },
2549
+ "limit": {
2550
+ "context": 200000,
2551
+ "output": 4096
2552
+ },
2553
+ "knowledge": "2023-08"
2416
2554
  }
2417
2555
  },
2418
2556
  {
2419
2557
  "id": "anthropic.claude-3-opus-20240229-v1:0:28k",
2420
- "name": "Claude 3 Opus",
2558
+ "name": "Claude Opus 3",
2421
2559
  "provider": "bedrock",
2422
- "family": "claude3_opus",
2423
- "created_at": null,
2424
- "context_window": 200000,
2560
+ "family": "claude-opus",
2561
+ "created_at": "2024-02-29 00:00:00 +0100",
2562
+ "context_window": 28000,
2425
2563
  "max_output_tokens": 4096,
2426
2564
  "knowledge_cutoff": null,
2427
2565
  "modalities": {
@@ -2435,18 +2573,15 @@
2435
2573
  ]
2436
2574
  },
2437
2575
  "capabilities": [
2438
- "streaming",
2439
- "function_calling"
2576
+ "function_calling",
2577
+ "vision",
2578
+ "streaming"
2440
2579
  ],
2441
2580
  "pricing": {
2442
2581
  "text_tokens": {
2443
2582
  "standard": {
2444
- "input_per_million": 15.0,
2445
- "output_per_million": 75.0
2446
- },
2447
- "batch": {
2448
- "input_per_million": 7.5,
2449
- "output_per_million": 37.5
2583
+ "input_per_million": 15,
2584
+ "output_per_million": 75
2450
2585
  }
2451
2586
  }
2452
2587
  },
@@ -2460,7 +2595,22 @@
2460
2595
  ],
2461
2596
  "output_modalities": [
2462
2597
  "TEXT"
2463
- ]
2598
+ ],
2599
+ "source": "models.dev",
2600
+ "provider_id": "amazon-bedrock",
2601
+ "open_weights": false,
2602
+ "attachment": true,
2603
+ "temperature": true,
2604
+ "last_updated": "2024-02-29",
2605
+ "cost": {
2606
+ "input": 15,
2607
+ "output": 75
2608
+ },
2609
+ "limit": {
2610
+ "context": 200000,
2611
+ "output": 4096
2612
+ },
2613
+ "knowledge": "2023-08"
2464
2614
  }
2465
2615
  },
2466
2616
  {
@@ -2527,10 +2677,10 @@
2527
2677
  },
2528
2678
  {
2529
2679
  "id": "anthropic.claude-3-sonnet-20240229-v1:0:200k",
2530
- "name": "Claude 3 Sonnet",
2680
+ "name": "Claude Sonnet 3",
2531
2681
  "provider": "bedrock",
2532
- "family": "claude3_sonnet",
2533
- "created_at": null,
2682
+ "family": "claude-sonnet",
2683
+ "created_at": "2024-03-04 00:00:00 +0100",
2534
2684
  "context_window": 200000,
2535
2685
  "max_output_tokens": 4096,
2536
2686
  "knowledge_cutoff": null,
@@ -2545,18 +2695,15 @@
2545
2695
  ]
2546
2696
  },
2547
2697
  "capabilities": [
2548
- "streaming",
2549
- "function_calling"
2698
+ "function_calling",
2699
+ "vision",
2700
+ "streaming"
2550
2701
  ],
2551
2702
  "pricing": {
2552
2703
  "text_tokens": {
2553
2704
  "standard": {
2554
- "input_per_million": 3.0,
2555
- "output_per_million": 15.0
2556
- },
2557
- "batch": {
2558
- "input_per_million": 1.5,
2559
- "output_per_million": 7.5
2705
+ "input_per_million": 3,
2706
+ "output_per_million": 15
2560
2707
  }
2561
2708
  }
2562
2709
  },
@@ -2572,16 +2719,31 @@
2572
2719
  ],
2573
2720
  "output_modalities": [
2574
2721
  "TEXT"
2575
- ]
2722
+ ],
2723
+ "source": "models.dev",
2724
+ "provider_id": "amazon-bedrock",
2725
+ "open_weights": false,
2726
+ "attachment": true,
2727
+ "temperature": true,
2728
+ "last_updated": "2024-03-04",
2729
+ "cost": {
2730
+ "input": 3,
2731
+ "output": 15
2732
+ },
2733
+ "limit": {
2734
+ "context": 200000,
2735
+ "output": 4096
2736
+ },
2737
+ "knowledge": "2023-08"
2576
2738
  }
2577
2739
  },
2578
2740
  {
2579
2741
  "id": "anthropic.claude-3-sonnet-20240229-v1:0:28k",
2580
- "name": "Claude 3 Sonnet",
2742
+ "name": "Claude Sonnet 3",
2581
2743
  "provider": "bedrock",
2582
- "family": "claude3_sonnet",
2583
- "created_at": null,
2584
- "context_window": 200000,
2744
+ "family": "claude-sonnet",
2745
+ "created_at": "2024-03-04 00:00:00 +0100",
2746
+ "context_window": 28000,
2585
2747
  "max_output_tokens": 4096,
2586
2748
  "knowledge_cutoff": null,
2587
2749
  "modalities": {
@@ -2595,18 +2757,15 @@
2595
2757
  ]
2596
2758
  },
2597
2759
  "capabilities": [
2598
- "streaming",
2599
- "function_calling"
2760
+ "function_calling",
2761
+ "vision",
2762
+ "streaming"
2600
2763
  ],
2601
2764
  "pricing": {
2602
2765
  "text_tokens": {
2603
2766
  "standard": {
2604
- "input_per_million": 3.0,
2605
- "output_per_million": 15.0
2606
- },
2607
- "batch": {
2608
- "input_per_million": 1.5,
2609
- "output_per_million": 7.5
2767
+ "input_per_million": 3,
2768
+ "output_per_million": 15
2610
2769
  }
2611
2770
  }
2612
2771
  },
@@ -2622,7 +2781,22 @@
2622
2781
  ],
2623
2782
  "output_modalities": [
2624
2783
  "TEXT"
2625
- ]
2784
+ ],
2785
+ "source": "models.dev",
2786
+ "provider_id": "amazon-bedrock",
2787
+ "open_weights": false,
2788
+ "attachment": true,
2789
+ "temperature": true,
2790
+ "last_updated": "2024-03-04",
2791
+ "cost": {
2792
+ "input": 3,
2793
+ "output": 15
2794
+ },
2795
+ "limit": {
2796
+ "context": 200000,
2797
+ "output": 4096
2798
+ },
2799
+ "knowledge": "2023-08"
2626
2800
  }
2627
2801
  },
2628
2802
  {
@@ -2906,7 +3080,7 @@
2906
3080
  "standard": {
2907
3081
  "input_per_million": 5,
2908
3082
  "output_per_million": 25,
2909
- "cached_input_per_million": 1.5
3083
+ "cached_input_per_million": 0.5
2910
3084
  }
2911
3085
  }
2912
3086
  },
@@ -2920,8 +3094,8 @@
2920
3094
  "cost": {
2921
3095
  "input": 5,
2922
3096
  "output": 25,
2923
- "cache_read": 1.5,
2924
- "cache_write": 18.75
3097
+ "cache_read": 0.5,
3098
+ "cache_write": 6.25
2925
3099
  },
2926
3100
  "limit": {
2927
3101
  "context": 200000,
@@ -3224,18 +3398,16 @@
3224
3398
  },
3225
3399
  {
3226
3400
  "id": "anthropic.claude-v2:1:18k",
3227
- "name": "Claude",
3401
+ "name": "Claude 2.1",
3228
3402
  "provider": "bedrock",
3229
- "family": "claude2",
3230
- "created_at": null,
3231
- "context_window": 200000,
3403
+ "family": "claude",
3404
+ "created_at": "2023-11-21 00:00:00 +0100",
3405
+ "context_window": 18000,
3232
3406
  "max_output_tokens": 4096,
3233
3407
  "knowledge_cutoff": null,
3234
3408
  "modalities": {
3235
3409
  "input": [
3236
- "text",
3237
- "image",
3238
- "pdf"
3410
+ "text"
3239
3411
  ],
3240
3412
  "output": [
3241
3413
  "text"
@@ -3248,12 +3420,8 @@
3248
3420
  "pricing": {
3249
3421
  "text_tokens": {
3250
3422
  "standard": {
3251
- "input_per_million": 8.0,
3252
- "output_per_million": 24.0
3253
- },
3254
- "batch": {
3255
- "input_per_million": 4.0,
3256
- "output_per_million": 12.0
3423
+ "input_per_million": 8,
3424
+ "output_per_million": 24
3257
3425
  }
3258
3426
  }
3259
3427
  },
@@ -3268,23 +3436,36 @@
3268
3436
  ],
3269
3437
  "output_modalities": [
3270
3438
  "TEXT"
3271
- ]
3439
+ ],
3440
+ "source": "models.dev",
3441
+ "provider_id": "amazon-bedrock",
3442
+ "open_weights": false,
3443
+ "attachment": false,
3444
+ "temperature": true,
3445
+ "last_updated": "2023-11-21",
3446
+ "cost": {
3447
+ "input": 8,
3448
+ "output": 24
3449
+ },
3450
+ "limit": {
3451
+ "context": 200000,
3452
+ "output": 4096
3453
+ },
3454
+ "knowledge": "2023-08"
3272
3455
  }
3273
3456
  },
3274
3457
  {
3275
3458
  "id": "anthropic.claude-v2:1:200k",
3276
- "name": "Claude",
3459
+ "name": "Claude 2.1",
3277
3460
  "provider": "bedrock",
3278
- "family": "claude2",
3279
- "created_at": null,
3461
+ "family": "claude",
3462
+ "created_at": "2023-11-21 00:00:00 +0100",
3280
3463
  "context_window": 200000,
3281
3464
  "max_output_tokens": 4096,
3282
3465
  "knowledge_cutoff": null,
3283
3466
  "modalities": {
3284
3467
  "input": [
3285
- "text",
3286
- "image",
3287
- "pdf"
3468
+ "text"
3288
3469
  ],
3289
3470
  "output": [
3290
3471
  "text"
@@ -3297,12 +3478,8 @@
3297
3478
  "pricing": {
3298
3479
  "text_tokens": {
3299
3480
  "standard": {
3300
- "input_per_million": 8.0,
3301
- "output_per_million": 24.0
3302
- },
3303
- "batch": {
3304
- "input_per_million": 4.0,
3305
- "output_per_million": 12.0
3481
+ "input_per_million": 8,
3482
+ "output_per_million": 24
3306
3483
  }
3307
3484
  }
3308
3485
  },
@@ -3317,7 +3494,22 @@
3317
3494
  ],
3318
3495
  "output_modalities": [
3319
3496
  "TEXT"
3320
- ]
3497
+ ],
3498
+ "source": "models.dev",
3499
+ "provider_id": "amazon-bedrock",
3500
+ "open_weights": false,
3501
+ "attachment": false,
3502
+ "temperature": true,
3503
+ "last_updated": "2023-11-21",
3504
+ "cost": {
3505
+ "input": 8,
3506
+ "output": 24
3507
+ },
3508
+ "limit": {
3509
+ "context": 200000,
3510
+ "output": 4096
3511
+ },
3512
+ "knowledge": "2023-08"
3321
3513
  }
3322
3514
  },
3323
3515
  {
@@ -3623,7 +3815,7 @@
3623
3815
  "standard": {
3624
3816
  "input_per_million": 5,
3625
3817
  "output_per_million": 25,
3626
- "cached_input_per_million": 1.5
3818
+ "cached_input_per_million": 0.5
3627
3819
  }
3628
3820
  }
3629
3821
  },
@@ -3637,8 +3829,8 @@
3637
3829
  "cost": {
3638
3830
  "input": 5,
3639
3831
  "output": 25,
3640
- "cache_read": 1.5,
3641
- "cache_write": 18.75
3832
+ "cache_read": 0.5,
3833
+ "cache_write": 6.25
3642
3834
  },
3643
3835
  "limit": {
3644
3836
  "context": 200000,
@@ -5263,12 +5455,12 @@
5263
5455
  },
5264
5456
  {
5265
5457
  "id": "us.anthropic.claude-3-7-sonnet-20250219-v1:0",
5266
- "name": "Claude 3.7 Sonnet",
5458
+ "name": "Claude Sonnet 3.7",
5267
5459
  "provider": "bedrock",
5268
- "family": "claude3_sonnet",
5269
- "created_at": null,
5460
+ "family": "claude-sonnet",
5461
+ "created_at": "2025-02-19 00:00:00 +0100",
5270
5462
  "context_window": 200000,
5271
- "max_output_tokens": 4096,
5463
+ "max_output_tokens": 8192,
5272
5464
  "knowledge_cutoff": null,
5273
5465
  "modalities": {
5274
5466
  "input": [
@@ -5281,8 +5473,9 @@
5281
5473
  ]
5282
5474
  },
5283
5475
  "capabilities": [
5284
- "streaming",
5285
5476
  "function_calling",
5477
+ "vision",
5478
+ "streaming",
5286
5479
  "reasoning",
5287
5480
  "batch",
5288
5481
  "citations"
@@ -5290,12 +5483,9 @@
5290
5483
  "pricing": {
5291
5484
  "text_tokens": {
5292
5485
  "standard": {
5293
- "input_per_million": 3.0,
5294
- "output_per_million": 15.0
5295
- },
5296
- "batch": {
5297
- "input_per_million": 1.5,
5298
- "output_per_million": 7.5
5486
+ "input_per_million": 3,
5487
+ "output_per_million": 15,
5488
+ "cached_input_per_million": 0.3
5299
5489
  }
5300
5490
  }
5301
5491
  },
@@ -5311,18 +5501,35 @@
5311
5501
  ],
5312
5502
  "output_modalities": [
5313
5503
  "TEXT"
5314
- ]
5504
+ ],
5505
+ "source": "models.dev",
5506
+ "provider_id": "amazon-bedrock",
5507
+ "open_weights": false,
5508
+ "attachment": true,
5509
+ "temperature": true,
5510
+ "last_updated": "2025-02-19",
5511
+ "cost": {
5512
+ "input": 3,
5513
+ "output": 15,
5514
+ "cache_read": 0.3,
5515
+ "cache_write": 3.75
5516
+ },
5517
+ "limit": {
5518
+ "context": 200000,
5519
+ "output": 8192
5520
+ },
5521
+ "knowledge": "2024-04"
5315
5522
  }
5316
5523
  },
5317
5524
  {
5318
5525
  "id": "us.anthropic.claude-haiku-4-5-20251001-v1:0",
5319
5526
  "name": "Claude Haiku 4.5",
5320
5527
  "provider": "bedrock",
5321
- "family": "other",
5322
- "created_at": null,
5528
+ "family": "claude-haiku",
5529
+ "created_at": "2025-10-15 00:00:00 +0200",
5323
5530
  "context_window": 200000,
5324
- "max_output_tokens": 4096,
5325
- "knowledge_cutoff": null,
5531
+ "max_output_tokens": 64000,
5532
+ "knowledge_cutoff": "2025-02-28",
5326
5533
  "modalities": {
5327
5534
  "input": [
5328
5535
  "text",
@@ -5334,18 +5541,17 @@
5334
5541
  ]
5335
5542
  },
5336
5543
  "capabilities": [
5337
- "streaming",
5338
- "function_calling"
5544
+ "function_calling",
5545
+ "reasoning",
5546
+ "vision",
5547
+ "streaming"
5339
5548
  ],
5340
5549
  "pricing": {
5341
5550
  "text_tokens": {
5342
5551
  "standard": {
5343
- "input_per_million": 0.1,
5344
- "output_per_million": 0.2
5345
- },
5346
- "batch": {
5347
- "input_per_million": 0.05,
5348
- "output_per_million": 0.1
5552
+ "input_per_million": 1,
5553
+ "output_per_million": 5,
5554
+ "cached_input_per_million": 0.1
5349
5555
  }
5350
5556
  }
5351
5557
  },
@@ -5361,18 +5567,35 @@
5361
5567
  ],
5362
5568
  "output_modalities": [
5363
5569
  "TEXT"
5364
- ]
5570
+ ],
5571
+ "source": "models.dev",
5572
+ "provider_id": "amazon-bedrock",
5573
+ "open_weights": false,
5574
+ "attachment": true,
5575
+ "temperature": true,
5576
+ "last_updated": "2025-10-15",
5577
+ "cost": {
5578
+ "input": 1,
5579
+ "output": 5,
5580
+ "cache_read": 0.1,
5581
+ "cache_write": 1.25
5582
+ },
5583
+ "limit": {
5584
+ "context": 200000,
5585
+ "output": 64000
5586
+ },
5587
+ "knowledge": "2025-02-28"
5365
5588
  }
5366
5589
  },
5367
5590
  {
5368
5591
  "id": "us.anthropic.claude-opus-4-1-20250805-v1:0",
5369
5592
  "name": "Claude Opus 4.1",
5370
5593
  "provider": "bedrock",
5371
- "family": "other",
5372
- "created_at": null,
5594
+ "family": "claude-opus",
5595
+ "created_at": "2025-08-05 00:00:00 +0200",
5373
5596
  "context_window": 200000,
5374
- "max_output_tokens": 4096,
5375
- "knowledge_cutoff": null,
5597
+ "max_output_tokens": 32000,
5598
+ "knowledge_cutoff": "2025-03-31",
5376
5599
  "modalities": {
5377
5600
  "input": [
5378
5601
  "text",
@@ -5384,18 +5607,17 @@
5384
5607
  ]
5385
5608
  },
5386
5609
  "capabilities": [
5387
- "streaming",
5388
- "function_calling"
5610
+ "function_calling",
5611
+ "reasoning",
5612
+ "vision",
5613
+ "streaming"
5389
5614
  ],
5390
5615
  "pricing": {
5391
5616
  "text_tokens": {
5392
5617
  "standard": {
5393
- "input_per_million": 0.1,
5394
- "output_per_million": 0.2
5395
- },
5396
- "batch": {
5397
- "input_per_million": 0.05,
5398
- "output_per_million": 0.1
5618
+ "input_per_million": 15,
5619
+ "output_per_million": 75,
5620
+ "cached_input_per_million": 1.5
5399
5621
  }
5400
5622
  }
5401
5623
  },
@@ -5411,17 +5633,34 @@
5411
5633
  ],
5412
5634
  "output_modalities": [
5413
5635
  "TEXT"
5414
- ]
5636
+ ],
5637
+ "source": "models.dev",
5638
+ "provider_id": "amazon-bedrock",
5639
+ "open_weights": false,
5640
+ "attachment": true,
5641
+ "temperature": true,
5642
+ "last_updated": "2025-08-05",
5643
+ "cost": {
5644
+ "input": 15,
5645
+ "output": 75,
5646
+ "cache_read": 1.5,
5647
+ "cache_write": 18.75
5648
+ },
5649
+ "limit": {
5650
+ "context": 200000,
5651
+ "output": 32000
5652
+ },
5653
+ "knowledge": "2025-03-31"
5415
5654
  }
5416
5655
  },
5417
5656
  {
5418
5657
  "id": "us.anthropic.claude-opus-4-20250514-v1:0",
5419
5658
  "name": "Claude Opus 4",
5420
5659
  "provider": "bedrock",
5421
- "family": "other",
5422
- "created_at": null,
5660
+ "family": "claude-opus",
5661
+ "created_at": "2025-05-22 00:00:00 +0200",
5423
5662
  "context_window": 200000,
5424
- "max_output_tokens": 4096,
5663
+ "max_output_tokens": 32000,
5425
5664
  "knowledge_cutoff": null,
5426
5665
  "modalities": {
5427
5666
  "input": [
@@ -5434,18 +5673,17 @@
5434
5673
  ]
5435
5674
  },
5436
5675
  "capabilities": [
5437
- "streaming",
5438
- "function_calling"
5676
+ "function_calling",
5677
+ "reasoning",
5678
+ "vision",
5679
+ "streaming"
5439
5680
  ],
5440
5681
  "pricing": {
5441
5682
  "text_tokens": {
5442
5683
  "standard": {
5443
- "input_per_million": 0.1,
5444
- "output_per_million": 0.2
5445
- },
5446
- "batch": {
5447
- "input_per_million": 0.05,
5448
- "output_per_million": 0.1
5684
+ "input_per_million": 15,
5685
+ "output_per_million": 75,
5686
+ "cached_input_per_million": 1.5
5449
5687
  }
5450
5688
  }
5451
5689
  },
@@ -5461,18 +5699,35 @@
5461
5699
  ],
5462
5700
  "output_modalities": [
5463
5701
  "TEXT"
5464
- ]
5702
+ ],
5703
+ "source": "models.dev",
5704
+ "provider_id": "amazon-bedrock",
5705
+ "open_weights": false,
5706
+ "attachment": true,
5707
+ "temperature": true,
5708
+ "last_updated": "2025-05-22",
5709
+ "cost": {
5710
+ "input": 15,
5711
+ "output": 75,
5712
+ "cache_read": 1.5,
5713
+ "cache_write": 18.75
5714
+ },
5715
+ "limit": {
5716
+ "context": 200000,
5717
+ "output": 32000
5718
+ },
5719
+ "knowledge": "2024-04"
5465
5720
  }
5466
5721
  },
5467
5722
  {
5468
5723
  "id": "us.anthropic.claude-opus-4-5-20251101-v1:0",
5469
5724
  "name": "Claude Opus 4.5",
5470
5725
  "provider": "bedrock",
5471
- "family": "other",
5472
- "created_at": null,
5726
+ "family": "claude-opus",
5727
+ "created_at": "2025-11-24 00:00:00 +0100",
5473
5728
  "context_window": 200000,
5474
- "max_output_tokens": 4096,
5475
- "knowledge_cutoff": null,
5729
+ "max_output_tokens": 64000,
5730
+ "knowledge_cutoff": "2025-03-31",
5476
5731
  "modalities": {
5477
5732
  "input": [
5478
5733
  "text",
@@ -5484,18 +5739,17 @@
5484
5739
  ]
5485
5740
  },
5486
5741
  "capabilities": [
5487
- "streaming",
5488
- "function_calling"
5742
+ "function_calling",
5743
+ "reasoning",
5744
+ "vision",
5745
+ "streaming"
5489
5746
  ],
5490
5747
  "pricing": {
5491
5748
  "text_tokens": {
5492
5749
  "standard": {
5493
- "input_per_million": 0.1,
5494
- "output_per_million": 0.2
5495
- },
5496
- "batch": {
5497
- "input_per_million": 0.05,
5498
- "output_per_million": 0.1
5750
+ "input_per_million": 5,
5751
+ "output_per_million": 25,
5752
+ "cached_input_per_million": 0.5
5499
5753
  }
5500
5754
  }
5501
5755
  },
@@ -5511,17 +5765,34 @@
5511
5765
  ],
5512
5766
  "output_modalities": [
5513
5767
  "TEXT"
5514
- ]
5768
+ ],
5769
+ "source": "models.dev",
5770
+ "provider_id": "amazon-bedrock",
5771
+ "open_weights": false,
5772
+ "attachment": true,
5773
+ "temperature": true,
5774
+ "last_updated": "2025-08-01",
5775
+ "cost": {
5776
+ "input": 5,
5777
+ "output": 25,
5778
+ "cache_read": 0.5,
5779
+ "cache_write": 6.25
5780
+ },
5781
+ "limit": {
5782
+ "context": 200000,
5783
+ "output": 64000
5784
+ },
5785
+ "knowledge": "2025-03-31"
5515
5786
  }
5516
5787
  },
5517
5788
  {
5518
5789
  "id": "us.anthropic.claude-sonnet-4-20250514-v1:0",
5519
5790
  "name": "Claude Sonnet 4",
5520
5791
  "provider": "bedrock",
5521
- "family": "other",
5522
- "created_at": null,
5792
+ "family": "claude-sonnet",
5793
+ "created_at": "2025-05-22 00:00:00 +0200",
5523
5794
  "context_window": 200000,
5524
- "max_output_tokens": 4096,
5795
+ "max_output_tokens": 64000,
5525
5796
  "knowledge_cutoff": null,
5526
5797
  "modalities": {
5527
5798
  "input": [
@@ -5534,18 +5805,17 @@
5534
5805
  ]
5535
5806
  },
5536
5807
  "capabilities": [
5537
- "streaming",
5538
- "function_calling"
5808
+ "function_calling",
5809
+ "reasoning",
5810
+ "vision",
5811
+ "streaming"
5539
5812
  ],
5540
5813
  "pricing": {
5541
5814
  "text_tokens": {
5542
5815
  "standard": {
5543
- "input_per_million": 0.1,
5544
- "output_per_million": 0.2
5545
- },
5546
- "batch": {
5547
- "input_per_million": 0.05,
5548
- "output_per_million": 0.1
5816
+ "input_per_million": 3,
5817
+ "output_per_million": 15,
5818
+ "cached_input_per_million": 0.3
5549
5819
  }
5550
5820
  }
5551
5821
  },
@@ -5561,18 +5831,35 @@
5561
5831
  ],
5562
5832
  "output_modalities": [
5563
5833
  "TEXT"
5564
- ]
5834
+ ],
5835
+ "source": "models.dev",
5836
+ "provider_id": "amazon-bedrock",
5837
+ "open_weights": false,
5838
+ "attachment": true,
5839
+ "temperature": true,
5840
+ "last_updated": "2025-05-22",
5841
+ "cost": {
5842
+ "input": 3,
5843
+ "output": 15,
5844
+ "cache_read": 0.3,
5845
+ "cache_write": 3.75
5846
+ },
5847
+ "limit": {
5848
+ "context": 200000,
5849
+ "output": 64000
5850
+ },
5851
+ "knowledge": "2024-04"
5565
5852
  }
5566
5853
  },
5567
5854
  {
5568
5855
  "id": "us.anthropic.claude-sonnet-4-5-20250929-v1:0",
5569
5856
  "name": "Claude Sonnet 4.5",
5570
5857
  "provider": "bedrock",
5571
- "family": "other",
5572
- "created_at": null,
5858
+ "family": "claude-sonnet",
5859
+ "created_at": "2025-09-29 00:00:00 +0200",
5573
5860
  "context_window": 200000,
5574
- "max_output_tokens": 4096,
5575
- "knowledge_cutoff": null,
5861
+ "max_output_tokens": 64000,
5862
+ "knowledge_cutoff": "2025-07-31",
5576
5863
  "modalities": {
5577
5864
  "input": [
5578
5865
  "text",
@@ -5584,18 +5871,17 @@
5584
5871
  ]
5585
5872
  },
5586
5873
  "capabilities": [
5587
- "streaming",
5588
- "function_calling"
5874
+ "function_calling",
5875
+ "reasoning",
5876
+ "vision",
5877
+ "streaming"
5589
5878
  ],
5590
5879
  "pricing": {
5591
5880
  "text_tokens": {
5592
5881
  "standard": {
5593
- "input_per_million": 0.1,
5594
- "output_per_million": 0.2
5595
- },
5596
- "batch": {
5597
- "input_per_million": 0.05,
5598
- "output_per_million": 0.1
5882
+ "input_per_million": 3,
5883
+ "output_per_million": 15,
5884
+ "cached_input_per_million": 0.3
5599
5885
  }
5600
5886
  }
5601
5887
  },
@@ -5611,7 +5897,24 @@
5611
5897
  ],
5612
5898
  "output_modalities": [
5613
5899
  "TEXT"
5614
- ]
5900
+ ],
5901
+ "source": "models.dev",
5902
+ "provider_id": "amazon-bedrock",
5903
+ "open_weights": false,
5904
+ "attachment": true,
5905
+ "temperature": true,
5906
+ "last_updated": "2025-09-29",
5907
+ "cost": {
5908
+ "input": 3,
5909
+ "output": 15,
5910
+ "cache_read": 0.3,
5911
+ "cache_write": 3.75
5912
+ },
5913
+ "limit": {
5914
+ "context": 200000,
5915
+ "output": 64000
5916
+ },
5917
+ "knowledge": "2025-07-31"
5615
5918
  }
5616
5919
  },
5617
5920
  {
@@ -7499,7 +7802,7 @@
7499
7802
  "text"
7500
7803
  ],
7501
7804
  "output": [
7502
- "text"
7805
+ "embeddings"
7503
7806
  ]
7504
7807
  },
7505
7808
  "capabilities": [
@@ -15867,7 +16170,7 @@
15867
16170
  "text"
15868
16171
  ],
15869
16172
  "output": [
15870
- "text"
16173
+ "embeddings"
15871
16174
  ]
15872
16175
  },
15873
16176
  "capabilities": [
@@ -15914,7 +16217,7 @@
15914
16217
  "text"
15915
16218
  ],
15916
16219
  "output": [
15917
- "text"
16220
+ "embeddings"
15918
16221
  ]
15919
16222
  },
15920
16223
  "capabilities": [
@@ -15961,7 +16264,7 @@
15961
16264
  "text"
15962
16265
  ],
15963
16266
  "output": [
15964
- "text"
16267
+ "embeddings"
15965
16268
  ]
15966
16269
  },
15967
16270
  "capabilities": [
@@ -16584,6 +16887,66 @@
16584
16887
  ]
16585
16888
  }
16586
16889
  },
16890
+ {
16891
+ "id": "allenai/molmo-2-8b:free",
16892
+ "name": "AllenAI: Molmo2 8B (free)",
16893
+ "provider": "openrouter",
16894
+ "family": "allenai",
16895
+ "created_at": "2026-01-09 23:11:12 +0100",
16896
+ "context_window": 36864,
16897
+ "max_output_tokens": 36864,
16898
+ "knowledge_cutoff": null,
16899
+ "modalities": {
16900
+ "input": [
16901
+ "text",
16902
+ "image",
16903
+ "video"
16904
+ ],
16905
+ "output": [
16906
+ "text"
16907
+ ]
16908
+ },
16909
+ "capabilities": [
16910
+ "streaming",
16911
+ "predicted_outputs"
16912
+ ],
16913
+ "pricing": {},
16914
+ "metadata": {
16915
+ "description": "Molmo2-8B is an open vision-language model developed by the Allen Institute for AI (Ai2) as part of the Molmo2 family, supporting image, video, and multi-image understanding and grounding. It is based on Qwen3-8B and uses SigLIP 2 as its vision backbone, outperforming other open-weight, open-data models on short videos, counting, and captioning, while remaining competitive on long-video tasks.",
16916
+ "architecture": {
16917
+ "modality": "text+image->text",
16918
+ "input_modalities": [
16919
+ "text",
16920
+ "image",
16921
+ "video"
16922
+ ],
16923
+ "output_modalities": [
16924
+ "text"
16925
+ ],
16926
+ "tokenizer": "Other",
16927
+ "instruct_type": null
16928
+ },
16929
+ "top_provider": {
16930
+ "context_length": 36864,
16931
+ "max_completion_tokens": 36864,
16932
+ "is_moderated": false
16933
+ },
16934
+ "per_request_limits": null,
16935
+ "supported_parameters": [
16936
+ "frequency_penalty",
16937
+ "logit_bias",
16938
+ "max_tokens",
16939
+ "min_p",
16940
+ "presence_penalty",
16941
+ "repetition_penalty",
16942
+ "seed",
16943
+ "stop",
16944
+ "temperature",
16945
+ "top_k",
16946
+ "top_p"
16947
+ ]
16948
+ }
16949
+ },
16587
16950
  {
16588
16951
  "id": "allenai/olmo-2-0325-32b-instruct",
16589
16952
  "name": "AllenAI: Olmo 2 32B Instruct",
@@ -18057,7 +18420,7 @@
18057
18420
  },
18058
18421
  "top_provider": {
18059
18422
  "context_length": 200000,
18060
- "max_completion_tokens": null,
18423
+ "max_completion_tokens": 32000,
18061
18424
  "is_moderated": true
18062
18425
  },
18063
18426
  "per_request_limits": null,
@@ -18145,7 +18508,7 @@
18145
18508
  },
18146
18509
  "top_provider": {
18147
18510
  "context_length": 200000,
18148
- "max_completion_tokens": 32000,
18511
+ "max_completion_tokens": 64000,
18149
18512
  "is_moderated": true
18150
18513
  },
18151
18514
  "per_request_limits": null,
@@ -20016,7 +20379,14 @@
20016
20379
  "structured_output",
20017
20380
  "predicted_outputs"
20018
20381
  ],
20019
- "pricing": {},
20382
+ "pricing": {
20383
+ "text_tokens": {
20384
+ "standard": {
20385
+ "input_per_million": 0.19,
20386
+ "output_per_million": 0.87
20387
+ }
20388
+ }
20389
+ },
20020
20390
  "metadata": {
20021
20391
  "description": "DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team.\n\nIt succeeds the [DeepSeek V3](/deepseek/deepseek-chat-v3) model and performs really well on a variety of tasks.",
20022
20392
  "architecture": {
@@ -20299,8 +20669,8 @@
20299
20669
  "provider": "openrouter",
20300
20670
  "family": "deepseek",
20301
20671
  "created_at": "2025-05-28 19:59:30 +0200",
20302
- "context_window": 163840,
20303
- "max_output_tokens": 65536,
20672
+ "context_window": 131072,
20673
+ "max_output_tokens": 32768,
20304
20674
  "knowledge_cutoff": null,
20305
20675
  "modalities": {
20306
20676
  "input": [
@@ -20319,8 +20689,8 @@
20319
20689
  "pricing": {
20320
20690
  "text_tokens": {
20321
20691
  "standard": {
20322
- "input_per_million": 0.39999999999999997,
20323
- "output_per_million": 1.75
20692
+ "input_per_million": 0.44999999999999996,
20693
+ "output_per_million": 2.1500000000000004
20324
20694
  }
20325
20695
  }
20326
20696
  },
@@ -20338,8 +20708,8 @@
20338
20708
  "instruct_type": "deepseek-r1"
20339
20709
  },
20340
20710
  "top_provider": {
20341
- "context_length": 163840,
20342
- "max_completion_tokens": 65536,
20711
+ "context_length": 131072,
20712
+ "max_completion_tokens": 32768,
20343
20713
  "is_moderated": false
20344
20714
  },
20345
20715
  "per_request_limits": null,
@@ -20560,7 +20930,14 @@
20560
20930
  "structured_output",
20561
20931
  "predicted_outputs"
20562
20932
  ],
20563
- "pricing": {},
20933
+ "pricing": {
20934
+ "text_tokens": {
20935
+ "standard": {
20936
+ "input_per_million": 0.03,
20937
+ "output_per_million": 0.11
20938
+ }
20939
+ }
20940
+ },
20564
20941
  "metadata": {
20565
20942
  "description": "DeepSeek R1 Distill Llama 70B is a distilled large language model based on [Llama-3.3-70B-Instruct](/meta-llama/llama-3.3-70b-instruct), using outputs from [DeepSeek R1](/deepseek/deepseek-r1). The model combines advanced distillation techniques to achieve high performance across multiple benchmarks, including:\n\n- AIME 2024 pass@1: 70.0\n- MATH-500 pass@1: 94.5\n- CodeForces Rating: 1633\n\nThe model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.",
20566
20943
  "architecture": {
@@ -20638,7 +21015,14 @@
20638
21015
  "streaming",
20639
21016
  "structured_output"
20640
21017
  ],
20641
- "pricing": {},
21018
+ "pricing": {
21019
+ "text_tokens": {
21020
+ "standard": {
21021
+ "input_per_million": 0.15,
21022
+ "output_per_million": 0.15
21023
+ }
21024
+ }
21025
+ },
20642
21026
  "metadata": {
20643
21027
  "description": "DeepSeek R1 Distill Qwen 14B is a distilled large language model based on [Qwen 2.5 14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B), using outputs from [DeepSeek R1](/deepseek/deepseek-r1). It outperforms OpenAI's o1-mini across various benchmarks, achieving new state-of-the-art results for dense models.\n\nOther benchmark results include:\n\n- AIME 2024 pass@1: 69.7\n- MATH-500 pass@1: 93.9\n- CodeForces Rating: 1481\n\nThe model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.",
20644
21028
  "architecture": {
@@ -22867,7 +23251,14 @@
22867
23251
  "structured_output",
22868
23252
  "predicted_outputs"
22869
23253
  ],
22870
- "pricing": {},
23254
+ "pricing": {
23255
+ "text_tokens": {
23256
+ "standard": {
23257
+ "input_per_million": 0.03,
23258
+ "output_per_million": 0.09999999999999999
23259
+ }
23260
+ }
23261
+ },
22871
23262
  "metadata": {
22872
23263
  "description": "Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 12B is the second largest in the family of Gemma 3 models after [Gemma 3 27B](google/gemma-3-27b-it)",
22873
23264
  "architecture": {
@@ -22965,6 +23356,7 @@
22965
23356
  "supported_parameters": [
22966
23357
  "max_tokens",
22967
23358
  "seed",
23359
+ "stop",
22968
23360
  "temperature",
22969
23361
  "top_p"
22970
23362
  ]
@@ -22995,7 +23387,14 @@
22995
23387
  "structured_output",
22996
23388
  "predicted_outputs"
22997
23389
  ],
22998
- "pricing": {},
23390
+ "pricing": {
23391
+ "text_tokens": {
23392
+ "standard": {
23393
+ "input_per_million": 0.04,
23394
+ "output_per_million": 0.15
23395
+ }
23396
+ }
23397
+ },
22999
23398
  "metadata": {
23000
23399
  "description": "Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 27B is Google's latest open source model, successor to [Gemma 2](google/gemma-2-27b-it)",
23001
23400
  "architecture": {
@@ -23102,7 +23501,6 @@
23102
23501
  "response_format",
23103
23502
  "seed",
23104
23503
  "stop",
23105
- "structured_outputs",
23106
23504
  "temperature",
23107
23505
  "tool_choice",
23108
23506
  "tools",
@@ -23222,7 +23620,7 @@
23222
23620
  "max_tokens",
23223
23621
  "response_format",
23224
23622
  "seed",
23225
- "structured_outputs",
23623
+ "stop",
23226
23624
  "temperature",
23227
23625
  "top_p"
23228
23626
  ]
@@ -23305,7 +23703,14 @@
23305
23703
  "streaming",
23306
23704
  "predicted_outputs"
23307
23705
  ],
23308
- "pricing": {},
23706
+ "pricing": {
23707
+ "text_tokens": {
23708
+ "standard": {
23709
+ "input_per_million": 0.02,
23710
+ "output_per_million": 0.04
23711
+ }
23712
+ }
23713
+ },
23309
23714
  "metadata": {
23310
23715
  "description": "Gemma 3n E4B-it is optimized for efficient execution on mobile and low-resource devices, such as phones, laptops, and tablets. It supports multimodal inputs—including text, visual data, and audio—enabling diverse tasks such as text generation, speech recognition, translation, and image analysis. Leveraging innovations like Per-Layer Embedding (PLE) caching and the MatFormer architecture, Gemma 3n dynamically manages memory usage and computational load by selectively activating model parameters, significantly reducing runtime resource requirements.\n\nThis model supports a wide linguistic range (trained in over 140 languages) and features a flexible 32K token context window. Gemma 3n can selectively load parameters, optimizing memory and computational efficiency based on the task or device capabilities, making it well-suited for privacy-focused, offline-capable applications and on-device AI solutions. [Read more in the blog post](https://developers.googleblog.com/en/introducing-gemma-3n/)",
23311
23716
  "architecture": {
@@ -23877,45 +24282,10 @@
23877
24282
  ]
23878
24283
  },
23879
24284
  "capabilities": [
23880
- "function_calling",
23881
- "streaming",
23882
- "structured_output"
24285
+ "function_calling"
23883
24286
  ],
23884
24287
  "pricing": {},
23885
24288
  "metadata": {
23886
- "description": "KAT-Coder-Pro V1 is KwaiKAT's most advanced agentic coding model in the KAT-Coder series. Designed specifically for agentic coding tasks, it excels in real-world software engineering scenarios, achieving 73.4% solve rate on the SWE-Bench Verified benchmark. \n\nThe model has been optimized for tool-use capability, multi-turn interaction, instruction following, generalization, and comprehensive capabilities through a multi-stage training process, including mid-training, supervised fine-tuning (SFT), reinforcement fine-tuning (RFT), and scalable agentic RL.",
23887
- "architecture": {
23888
- "modality": "text->text",
23889
- "input_modalities": [
23890
- "text"
23891
- ],
23892
- "output_modalities": [
23893
- "text"
23894
- ],
23895
- "tokenizer": "Other",
23896
- "instruct_type": null
23897
- },
23898
- "top_provider": {
23899
- "context_length": 256000,
23900
- "max_completion_tokens": 128000,
23901
- "is_moderated": false
23902
- },
23903
- "per_request_limits": null,
23904
- "supported_parameters": [
23905
- "frequency_penalty",
23906
- "max_tokens",
23907
- "presence_penalty",
23908
- "repetition_penalty",
23909
- "response_format",
23910
- "seed",
23911
- "stop",
23912
- "structured_outputs",
23913
- "temperature",
23914
- "tool_choice",
23915
- "tools",
23916
- "top_k",
23917
- "top_p"
23918
- ],
23919
24289
  "source": "models.dev",
23920
24290
  "provider_id": "openrouter",
23921
24291
  "open_weights": false,
@@ -24658,7 +25028,14 @@
24658
25028
  "structured_output",
24659
25029
  "predicted_outputs"
24660
25030
  ],
24661
- "pricing": {},
25031
+ "pricing": {
25032
+ "text_tokens": {
25033
+ "standard": {
25034
+ "input_per_million": 0.049,
25035
+ "output_per_million": 0.049
25036
+ }
25037
+ }
25038
+ },
24662
25039
  "metadata": {
24663
25040
  "description": "Llama 3.2 11B Vision is a multimodal model with 11 billion parameters, designed to handle tasks combining visual and textual data. It excels in tasks such as image captioning and visual question answering, bridging the gap between language generation and visual reasoning. Pre-trained on a massive dataset of image-text pairs, it performs well in complex, high-accuracy image analysis.\n\nIts ability to integrate visual understanding with language processing makes it an ideal solution for industries requiring comprehensive visual-linguistic AI applications, such as content creation, AI-driven customer service, and research.\n\nClick here for the [original model card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD_VISION.md).\n\nUsage of this model is subject to [Meta's Acceptable Use Policy](https://www.llama.com/llama3/use-policy/).",
24664
25041
  "architecture": {
@@ -26057,7 +26434,7 @@
26057
26434
  },
26058
26435
  "top_provider": {
26059
26436
  "context_length": 196608,
26060
- "max_completion_tokens": null,
26437
+ "max_completion_tokens": 65536,
26061
26438
  "is_moderated": false
26062
26439
  },
26063
26440
  "per_request_limits": null,
@@ -28015,7 +28392,14 @@
28015
28392
  "streaming",
28016
28393
  "structured_output"
28017
28394
  ],
28018
- "pricing": {},
28395
+ "pricing": {
28396
+ "text_tokens": {
28397
+ "standard": {
28398
+ "input_per_million": 0.03,
28399
+ "output_per_million": 0.11
28400
+ }
28401
+ }
28402
+ },
28019
28403
  "metadata": {
28020
28404
  "description": "Mistral Small 3.1 24B Instruct is an upgraded variant of Mistral Small 3 (2501), featuring 24 billion parameters with advanced multimodal capabilities. It provides state-of-the-art performance in text-based reasoning and vision tasks, including image analysis, programming, mathematical reasoning, and multilingual support across dozens of languages. Equipped with an extensive 128k token context window and optimized for efficient local inference, it supports use cases such as conversational agents, function calling, long-document comprehension, and privacy-sensitive deployments. The updated version is [Mistral Small 3.2](mistralai/mistral-small-3.2-24b-instruct)",
28021
28405
  "architecture": {
@@ -28152,7 +28536,14 @@
28152
28536
  "structured_output",
28153
28537
  "predicted_outputs"
28154
28538
  ],
28155
- "pricing": {},
28539
+ "pricing": {
28540
+ "text_tokens": {
28541
+ "standard": {
28542
+ "input_per_million": 0.06,
28543
+ "output_per_million": 0.18
28544
+ }
28545
+ }
28546
+ },
28156
28547
  "metadata": {
28157
28548
  "description": "Mistral-Small-3.2-24B-Instruct-2506 is an updated 24B parameter model from Mistral optimized for instruction following, repetition reduction, and improved function calling. Compared to the 3.1 release, version 3.2 significantly improves accuracy on WildBench and Arena Hard, reduces infinite generations, and delivers gains in tool use and structured output tasks.\n\nIt supports image and text inputs with structured outputs, function/tool calling, and strong performance across coding (HumanEval+, MBPP), STEM (MMLU, MATH, GPQA), and vision benchmarks (ChartQA, DocVQA).",
28158
28549
  "architecture": {
@@ -29445,8 +29836,8 @@
29445
29836
  }
29446
29837
  },
29447
29838
  {
29448
- "id": "nex-agi/deepseek-v3.1-nex-n1:free",
29449
- "name": "Nex AGI: DeepSeek V3.1 Nex N1 (free)",
29839
+ "id": "nex-agi/deepseek-v3.1-nex-n1",
29840
+ "name": "Nex AGI: DeepSeek V3.1 Nex N1",
29450
29841
  "provider": "openrouter",
29451
29842
  "family": "nex-agi",
29452
29843
  "created_at": "2025-12-08 15:33:13 +0100",
@@ -29466,7 +29857,14 @@
29466
29857
  "function_calling",
29467
29858
  "structured_output"
29468
29859
  ],
29469
- "pricing": {},
29860
+ "pricing": {
29861
+ "text_tokens": {
29862
+ "standard": {
29863
+ "input_per_million": 0.27,
29864
+ "output_per_million": 1.0
29865
+ }
29866
+ }
29867
+ },
29470
29868
  "metadata": {
29471
29869
  "description": "DeepSeek V3.1 Nex-N1 is the flagship release of the Nex-N1 series — a post-trained model designed to highlight agent autonomy, tool use, and real-world productivity. \n\nNex-N1 demonstrates competitive performance across all evaluation scenarios, showing particularly strong results in practical coding and HTML generation tasks.",
29472
29870
  "architecture": {
@@ -35479,7 +35877,14 @@
35479
35877
  "structured_output",
35480
35878
  "predicted_outputs"
35481
35879
  ],
35482
- "pricing": {},
35880
+ "pricing": {
35881
+ "text_tokens": {
35882
+ "standard": {
35883
+ "input_per_million": 0.03,
35884
+ "output_per_million": 0.11
35885
+ }
35886
+ }
35887
+ },
35483
35888
  "metadata": {
35484
35889
  "description": "Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:\n\n- Significantly improvements in **code generation**, **code reasoning** and **code fixing**. \n- A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.\n\nTo read more about its evaluation results, check out [Qwen 2.5 Coder's blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/).",
35485
35890
  "architecture": {
@@ -36279,7 +36684,14 @@
36279
36684
  "structured_output",
36280
36685
  "predicted_outputs"
36281
36686
  ],
36282
- "pricing": {},
36687
+ "pricing": {
36688
+ "text_tokens": {
36689
+ "standard": {
36690
+ "input_per_million": 0.15,
36691
+ "output_per_million": 0.6
36692
+ }
36693
+ }
36694
+ },
36283
36695
  "metadata": {
36284
36696
  "description": "Qwen2.5-VL is proficient in recognizing common objects such as flowers, birds, fish, and insects. It is also highly capable of analyzing texts, charts, icons, graphics, and layouts within images.",
36285
36697
  "architecture": {
@@ -37485,12 +37897,12 @@
37485
37897
  },
37486
37898
  {
37487
37899
  "id": "qwen/qwen3-coder-30b-a3b-instruct",
37488
- "name": "Qwen: Qwen3 Coder 30B A3B Instruct",
37900
+ "name": "Qwen3 Coder 30B A3B Instruct",
37489
37901
  "provider": "openrouter",
37490
- "family": "qwen",
37491
- "created_at": "2025-07-31 16:32:59 +0200",
37902
+ "family": "qwen3-coder",
37903
+ "created_at": "2025-07-31 00:00:00 +0200",
37492
37904
  "context_window": 160000,
37493
- "max_output_tokens": 32768,
37905
+ "max_output_tokens": 65536,
37494
37906
  "knowledge_cutoff": null,
37495
37907
  "modalities": {
37496
37908
  "input": [
@@ -37501,8 +37913,8 @@
37501
37913
  ]
37502
37914
  },
37503
37915
  "capabilities": [
37504
- "streaming",
37505
37916
  "function_calling",
37917
+ "streaming",
37506
37918
  "structured_output"
37507
37919
  ],
37508
37920
  "pricing": {
@@ -37546,7 +37958,22 @@
37546
37958
  "tools",
37547
37959
  "top_k",
37548
37960
  "top_p"
37549
- ]
37961
+ ],
37962
+ "source": "models.dev",
37963
+ "provider_id": "openrouter",
37964
+ "open_weights": true,
37965
+ "attachment": false,
37966
+ "temperature": true,
37967
+ "last_updated": "2025-07-31",
37968
+ "cost": {
37969
+ "input": 0.07,
37970
+ "output": 0.27
37971
+ },
37972
+ "limit": {
37973
+ "context": 160000,
37974
+ "output": 65536
37975
+ },
37976
+ "knowledge": "2025-04"
37550
37977
  }
37551
37978
  },
37552
37979
  {
@@ -41790,7 +42217,7 @@
41790
42217
  "name": "Sonar Deep Research",
41791
42218
  "provider": "perplexity",
41792
42219
  "family": "sonar_deep_research",
41793
- "created_at": "2026-01-09 17:47:54 +0100",
42220
+ "created_at": "2026-01-13 19:17:42 +0100",
41794
42221
  "context_window": 128000,
41795
42222
  "max_output_tokens": 4096,
41796
42223
  "knowledge_cutoff": null,
@@ -41874,7 +42301,7 @@
41874
42301
  "name": "Sonar Reasoning",
41875
42302
  "provider": "perplexity",
41876
42303
  "family": "sonar_reasoning",
41877
- "created_at": "2026-01-09 17:47:54 +0100",
42304
+ "created_at": "2026-01-13 19:17:42 +0100",
41878
42305
  "context_window": 128000,
41879
42306
  "max_output_tokens": 4096,
41880
42307
  "knowledge_cutoff": null,
@@ -41951,115 +42378,6 @@
41951
42378
  "knowledge": "2025-09-01"
41952
42379
  }
41953
42380
  },
41954
- {
41955
- "id": "chat-bison",
41956
- "name": "chat-bison",
41957
- "provider": "vertexai",
41958
- "family": "palm",
41959
- "created_at": null,
41960
- "context_window": null,
41961
- "max_output_tokens": null,
41962
- "knowledge_cutoff": null,
41963
- "modalities": {
41964
- "input": [],
41965
- "output": []
41966
- },
41967
- "capabilities": [
41968
- "streaming"
41969
- ],
41970
- "pricing": {},
41971
- "metadata": {
41972
- "version_id": "002",
41973
- "open_source_category": "PROPRIETARY",
41974
- "launch_stage": "GA",
41975
- "supported_actions": {
41976
- "openGenie": {
41977
- "references": {
41978
- "us-central1": {
41979
- "uri": "https://console.cloud.google.com/vertex-ai/generative/language/create/chat"
41980
- }
41981
- },
41982
- "title": "Open Prompt Design"
41983
- }
41984
- },
41985
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/chat-bison@002"
41986
- }
41987
- },
41988
- {
41989
- "id": "code-bison",
41990
- "name": "code-bison",
41991
- "provider": "vertexai",
41992
- "family": "palm",
41993
- "created_at": null,
41994
- "context_window": null,
41995
- "max_output_tokens": null,
41996
- "knowledge_cutoff": null,
41997
- "modalities": {
41998
- "input": [],
41999
- "output": []
42000
- },
42001
- "capabilities": [
42002
- "streaming"
42003
- ],
42004
- "pricing": {},
42005
- "metadata": {
42006
- "version_id": "002",
42007
- "open_source_category": null,
42008
- "launch_stage": "GA",
42009
- "supported_actions": null,
42010
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/code-bison@002"
42011
- }
42012
- },
42013
- {
42014
- "id": "code-gecko",
42015
- "name": "code-gecko",
42016
- "provider": "vertexai",
42017
- "family": "gemini",
42018
- "created_at": null,
42019
- "context_window": null,
42020
- "max_output_tokens": null,
42021
- "knowledge_cutoff": null,
42022
- "modalities": {
42023
- "input": [],
42024
- "output": []
42025
- },
42026
- "capabilities": [
42027
- "streaming"
42028
- ],
42029
- "pricing": {},
42030
- "metadata": {
42031
- "version_id": "002",
42032
- "open_source_category": null,
42033
- "launch_stage": "GA",
42034
- "supported_actions": null,
42035
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/code-gecko@002"
42036
- }
42037
- },
42038
- {
42039
- "id": "codechat-bison",
42040
- "name": "codechat-bison",
42041
- "provider": "vertexai",
42042
- "family": "palm",
42043
- "created_at": null,
42044
- "context_window": null,
42045
- "max_output_tokens": null,
42046
- "knowledge_cutoff": null,
42047
- "modalities": {
42048
- "input": [],
42049
- "output": []
42050
- },
42051
- "capabilities": [
42052
- "streaming"
42053
- ],
42054
- "pricing": {},
42055
- "metadata": {
42056
- "version_id": "002",
42057
- "open_source_category": null,
42058
- "launch_stage": "GA",
42059
- "supported_actions": null,
42060
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/codechat-bison@002"
42061
- }
42062
- },
42063
42381
  {
42064
42382
  "id": "gemini-1.5-flash",
42065
42383
  "name": "Gemini 1.5 Flash",
@@ -42132,7 +42450,55 @@
42132
42450
  ],
42133
42451
  "pricing": {},
42134
42452
  "metadata": {
42135
- "source": "known_models"
42453
+ "version_id": "default",
42454
+ "open_source_category": "PROPRIETARY",
42455
+ "launch_stage": "GA",
42456
+ "supported_actions": {
42457
+ "openNotebook": {
42458
+ "references": {
42459
+ "global": {
42460
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_1_5_flash.ipynb"
42461
+ }
42462
+ },
42463
+ "title": "Open Notebook"
42464
+ },
42465
+ "openGenerationAiStudio": {
42466
+ "references": {
42467
+ "global": {
42468
+ "uri": "https://console.cloud.google.com/vertex-ai/studio/freeform?model=gemini-1.5-flash-002"
42469
+ }
42470
+ }
42471
+ },
42472
+ "openEvaluationPipeline": {
42473
+ "references": {
42474
+ "global": {
42475
+ "uri": "https://console.cloud.google.com/vertex-ai/pipelines/vertex-ai-templates/autosxs-template"
42476
+ }
42477
+ },
42478
+ "title": "Evaluate"
42479
+ },
42480
+ "openNotebooks": {
42481
+ "notebooks": [
42482
+ {
42483
+ "references": {
42484
+ "global": {
42485
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_1_5_flash.ipynb"
42486
+ }
42487
+ },
42488
+ "title": "Open Notebook"
42489
+ },
42490
+ {
42491
+ "references": {
42492
+ "global": {
42493
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_1_5_flash.ipynb"
42494
+ }
42495
+ },
42496
+ "title": "Open Notebook"
42497
+ }
42498
+ ]
42499
+ }
42500
+ },
42501
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-1.5-flash-002@default"
42136
42502
  }
42137
42503
  },
42138
42504
  {
@@ -42260,7 +42626,72 @@
42260
42626
  ],
42261
42627
  "pricing": {},
42262
42628
  "metadata": {
42263
- "source": "known_models"
42629
+ "version_id": "default",
42630
+ "open_source_category": "PROPRIETARY",
42631
+ "launch_stage": "GA",
42632
+ "supported_actions": {
42633
+ "openNotebook": {
42634
+ "references": {
42635
+ "us-central1": {
42636
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/use-cases/retail/product_attributes_extraction.ipynb"
42637
+ }
42638
+ },
42639
+ "title": "Open Notebook",
42640
+ "resourceTitle": "Notebook",
42641
+ "resourceUseCase": "Product Attributes Extraction",
42642
+ "resourceDescription": "Extract product descriptions and attribute json from images using Gemini 1.5 Pro. This notebook also shows the use of self-correcting prompt to improve the quality of the output."
42643
+ },
42644
+ "openGenerationAiStudio": {
42645
+ "references": {
42646
+ "us-central1": {
42647
+ "uri": "https://console.cloud.google.com/vertex-ai/studio/freeform?model=gemini-1.5-pro-002"
42648
+ }
42649
+ }
42650
+ },
42651
+ "openEvaluationPipeline": {
42652
+ "references": {
42653
+ "us-central1": {
42654
+ "uri": "https://console.cloud.google.com/vertex-ai/pipelines/vertex-ai-templates/autosxs-template"
42655
+ }
42656
+ },
42657
+ "title": "Evaluate"
42658
+ },
42659
+ "openNotebooks": {
42660
+ "notebooks": [
42661
+ {
42662
+ "references": {
42663
+ "us-central1": {
42664
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_1_5_pro.ipynb"
42665
+ }
42666
+ },
42667
+ "title": "Open Notebook"
42668
+ },
42669
+ {
42670
+ "references": {
42671
+ "us-central1": {
42672
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_1_5_pro.ipynb"
42673
+ }
42674
+ },
42675
+ "title": "Open Notebook",
42676
+ "resourceTitle": "Notebook",
42677
+ "resourceUseCase": "Vertex AI Gemini API 1.5 Pro",
42678
+ "resourceDescription": "Use the Vertex AI Gemini API 1.5 Pro model to process images, video, audio, and text simultaneously."
42679
+ },
42680
+ {
42681
+ "references": {
42682
+ "us-central1": {
42683
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/use-cases/retail/product_attributes_extraction.ipynb"
42684
+ }
42685
+ },
42686
+ "title": "Open Notebook",
42687
+ "resourceTitle": "Notebook",
42688
+ "resourceUseCase": "Product Attributes Extraction",
42689
+ "resourceDescription": "Extract product descriptions and attribute json from images using Gemini 1.5 Pro. This notebook also shows the use of self-correcting prompt to improve the quality of the output."
42690
+ }
42691
+ ]
42692
+ }
42693
+ },
42694
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-1.5-pro-002@default"
42264
42695
  }
42265
42696
  },
42266
42697
  {
@@ -42336,7 +42767,43 @@
42336
42767
  ],
42337
42768
  "pricing": {},
42338
42769
  "metadata": {
42339
- "source": "known_models"
42770
+ "version_id": "default",
42771
+ "open_source_category": null,
42772
+ "launch_stage": "GA",
42773
+ "supported_actions": {
42774
+ "openNotebook": {
42775
+ "references": {
42776
+ "us-central1": {
42777
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_2_0_flash.ipynb"
42778
+ }
42779
+ },
42780
+ "resourceTitle": "Notebook",
42781
+ "resourceUseCase": "Vertex Serving",
42782
+ "resourceDescription": "Intro to Gemini 2.0 Flash."
42783
+ },
42784
+ "openGenerationAiStudio": {
42785
+ "references": {
42786
+ "us-central1": {
42787
+ "uri": "https://console.cloud.google.com/vertex-ai/generative/multimodal/create/text?model=gemini-2.0-flash-001"
42788
+ }
42789
+ }
42790
+ },
42791
+ "openNotebooks": {
42792
+ "notebooks": [
42793
+ {
42794
+ "references": {
42795
+ "us-central1": {
42796
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_2_0_flash.ipynb"
42797
+ }
42798
+ },
42799
+ "resourceTitle": "Notebook",
42800
+ "resourceUseCase": "Vertex Serving",
42801
+ "resourceDescription": "Intro to Gemini 2.0 Flash."
42802
+ }
42803
+ ]
42804
+ }
42805
+ },
42806
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.0-flash-001@default"
42340
42807
  }
42341
42808
  },
42342
42809
  {
@@ -42431,7 +42898,37 @@
42431
42898
  ],
42432
42899
  "pricing": {},
42433
42900
  "metadata": {
42434
- "source": "known_models"
42901
+ "version_id": "default",
42902
+ "open_source_category": null,
42903
+ "launch_stage": "GA",
42904
+ "supported_actions": null,
42905
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.0-flash-lite-001@default"
42906
+ }
42907
+ },
42908
+ {
42909
+ "id": "gemini-2.0-flash-preview-image-generation",
42910
+ "name": "gemini-2.0-flash-preview-image-generation",
42911
+ "provider": "vertexai",
42912
+ "family": "gemini-2",
42913
+ "created_at": null,
42914
+ "context_window": null,
42915
+ "max_output_tokens": null,
42916
+ "knowledge_cutoff": null,
42917
+ "modalities": {
42918
+ "input": [],
42919
+ "output": []
42920
+ },
42921
+ "capabilities": [
42922
+ "streaming",
42923
+ "function_calling"
42924
+ ],
42925
+ "pricing": {},
42926
+ "metadata": {
42927
+ "version_id": "default",
42928
+ "open_source_category": null,
42929
+ "launch_stage": null,
42930
+ "supported_actions": null,
42931
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.0-flash-preview-image-generation@default"
42435
42932
  }
42436
42933
  },
42437
42934
  {
@@ -42471,6 +42968,11 @@
42471
42968
  }
42472
42969
  },
42473
42970
  "metadata": {
42971
+ "version_id": "default",
42972
+ "open_source_category": null,
42973
+ "launch_stage": "GA",
42974
+ "supported_actions": null,
42975
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.5-flash@default",
42474
42976
  "source": "models.dev",
42475
42977
  "provider_id": "google-vertex",
42476
42978
  "open_weights": false,
@@ -42527,6 +43029,11 @@
42527
43029
  }
42528
43030
  },
42529
43031
  "metadata": {
43032
+ "version_id": "default",
43033
+ "open_source_category": null,
43034
+ "launch_stage": "GA",
43035
+ "supported_actions": null,
43036
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.5-flash-lite@default",
42530
43037
  "source": "models.dev",
42531
43038
  "provider_id": "google-vertex",
42532
43039
  "open_weights": false,
@@ -42677,7 +43184,8 @@
42677
43184
  "capabilities": [
42678
43185
  "function_calling",
42679
43186
  "reasoning",
42680
- "vision"
43187
+ "vision",
43188
+ "streaming"
42681
43189
  ],
42682
43190
  "pricing": {
42683
43191
  "text_tokens": {
@@ -42689,6 +43197,19 @@
42689
43197
  }
42690
43198
  },
42691
43199
  "metadata": {
43200
+ "version_id": "default",
43201
+ "open_source_category": null,
43202
+ "launch_stage": "PUBLIC_PREVIEW",
43203
+ "supported_actions": {
43204
+ "openGenerationAiStudio": {
43205
+ "references": {
43206
+ "us-central1": {
43207
+ "uri": "https://console.cloud.google.com/vertex-ai/generative/multimodal/create/text?model=gemini-2.5-flash-preview-04-17"
43208
+ }
43209
+ }
43210
+ }
43211
+ },
43212
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.5-flash-preview-04-17@default",
42692
43213
  "source": "models.dev",
42693
43214
  "provider_id": "google-vertex",
42694
43215
  "open_weights": false,
@@ -42853,6 +43374,11 @@
42853
43374
  }
42854
43375
  },
42855
43376
  "metadata": {
43377
+ "version_id": "default",
43378
+ "open_source_category": null,
43379
+ "launch_stage": "GA",
43380
+ "supported_actions": null,
43381
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.5-pro@default",
42856
43382
  "source": "models.dev",
42857
43383
  "provider_id": "google-vertex",
42858
43384
  "open_weights": false,
@@ -42871,6 +43397,64 @@
42871
43397
  "knowledge": "2025-01"
42872
43398
  }
42873
43399
  },
43400
+ {
43401
+ "id": "gemini-2.5-pro-exp-03-25",
43402
+ "name": "gemini-2.5-pro-exp-03-25",
43403
+ "provider": "vertexai",
43404
+ "family": "gemini-2",
43405
+ "created_at": null,
43406
+ "context_window": null,
43407
+ "max_output_tokens": null,
43408
+ "knowledge_cutoff": null,
43409
+ "modalities": {
43410
+ "input": [],
43411
+ "output": []
43412
+ },
43413
+ "capabilities": [
43414
+ "streaming",
43415
+ "function_calling"
43416
+ ],
43417
+ "pricing": {},
43418
+ "metadata": {
43419
+ "version_id": "default",
43420
+ "open_source_category": null,
43421
+ "launch_stage": "EXPERIMENTAL",
43422
+ "supported_actions": {
43423
+ "openNotebook": {
43424
+ "references": {
43425
+ "us-central1": {
43426
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_2_5_pro.ipynb"
43427
+ }
43428
+ },
43429
+ "resourceTitle": "Notebook",
43430
+ "resourceUseCase": "Vertex Serving",
43431
+ "resourceDescription": "Intro to Gemini 2.5 Pro."
43432
+ },
43433
+ "openGenerationAiStudio": {
43434
+ "references": {
43435
+ "us-central1": {
43436
+ "uri": "https://console.cloud.google.com/vertex-ai/generative/multimodal/create/text?model=gemini-2.5-pro-exp-03-25"
43437
+ }
43438
+ }
43439
+ },
43440
+ "openNotebooks": {
43441
+ "notebooks": [
43442
+ {
43443
+ "references": {
43444
+ "us-central1": {
43445
+ "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_2_5_pro.ipynb"
43446
+ }
43447
+ },
43448
+ "resourceTitle": "Notebook",
43449
+ "resourceUseCase": "Vertex Serving",
43450
+ "resourceDescription": "Intro to Gemini 2.5 Pro."
43451
+ }
43452
+ ]
43453
+ }
43454
+ },
43455
+ "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/gemini-2.5-pro-exp-03-25@default"
43456
+ }
43457
+ },
42874
43458
  {
42875
43459
  "id": "gemini-2.5-pro-preview-05-06",
42876
43460
  "name": "Gemini 2.5 Pro Preview 05-06",
@@ -43113,7 +43697,7 @@
43113
43697
  "text"
43114
43698
  ],
43115
43699
  "output": [
43116
- "text"
43700
+ "embeddings"
43117
43701
  ]
43118
43702
  },
43119
43703
  "capabilities": [
@@ -43342,279 +43926,6 @@
43342
43926
  "source": "known_models"
43343
43927
  }
43344
43928
  },
43345
- {
43346
- "id": "image-segmentation-001",
43347
- "name": "image-segmentation-001",
43348
- "provider": "vertexai",
43349
- "family": "gemini",
43350
- "created_at": null,
43351
- "context_window": null,
43352
- "max_output_tokens": null,
43353
- "knowledge_cutoff": null,
43354
- "modalities": {
43355
- "input": [],
43356
- "output": []
43357
- },
43358
- "capabilities": [
43359
- "streaming"
43360
- ],
43361
- "pricing": {},
43362
- "metadata": {
43363
- "version_id": "default",
43364
- "open_source_category": null,
43365
- "launch_stage": "PUBLIC_PREVIEW",
43366
- "supported_actions": {
43367
- "openNotebook": {
43368
- "references": {
43369
- "europe-west1": {
43370
- "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/vision/getting-started/image_segmentation.ipynb"
43371
- }
43372
- },
43373
- "title": "Open Notebook"
43374
- },
43375
- "requestAccess": {
43376
- "references": {
43377
- "europe-west1": {
43378
- "uri": "https://docs.google.com/forms/d/e/1FAIpQLSdzIR1EeQGFcMsqd9nPip5e9ovDKSjfWRd58QVjo1zLpfdvEg/viewform?resourcekey=0-Pvqc66u-0Z1QmuzHq4wLKg"
43379
- }
43380
- }
43381
- },
43382
- "openNotebooks": {
43383
- "notebooks": [
43384
- {
43385
- "references": {
43386
- "europe-west1": {
43387
- "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/vision/getting-started/image_segmentation.ipynb"
43388
- }
43389
- },
43390
- "title": "Open Notebook"
43391
- }
43392
- ]
43393
- }
43394
- },
43395
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/image-segmentation-001@default"
43396
- }
43397
- },
43398
- {
43399
- "id": "imagegeneration",
43400
- "name": "imagegeneration",
43401
- "provider": "vertexai",
43402
- "family": "gemini",
43403
- "created_at": null,
43404
- "context_window": null,
43405
- "max_output_tokens": null,
43406
- "knowledge_cutoff": null,
43407
- "modalities": {
43408
- "input": [],
43409
- "output": []
43410
- },
43411
- "capabilities": [
43412
- "streaming"
43413
- ],
43414
- "pricing": {},
43415
- "metadata": {
43416
- "version_id": "006",
43417
- "open_source_category": "PROPRIETARY",
43418
- "launch_stage": "PUBLIC_PREVIEW",
43419
- "supported_actions": {
43420
- "openGenerationAiStudio": {
43421
- "references": {
43422
- "europe-west1": {
43423
- "uri": "https://cloud.google.com/console/vertex-ai/generative/vision"
43424
- }
43425
- },
43426
- "title": "Open Vertex AI Studio"
43427
- }
43428
- },
43429
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagegeneration@006"
43430
- }
43431
- },
43432
- {
43433
- "id": "imagen-3.0-capability-002",
43434
- "name": "imagen-3.0-capability-002",
43435
- "provider": "vertexai",
43436
- "family": "gemini",
43437
- "created_at": null,
43438
- "context_window": null,
43439
- "max_output_tokens": null,
43440
- "knowledge_cutoff": null,
43441
- "modalities": {
43442
- "input": [],
43443
- "output": []
43444
- },
43445
- "capabilities": [
43446
- "streaming"
43447
- ],
43448
- "pricing": {},
43449
- "metadata": {
43450
- "version_id": "default",
43451
- "open_source_category": null,
43452
- "launch_stage": "GA",
43453
- "supported_actions": null,
43454
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagen-3.0-capability-002@default"
43455
- }
43456
- },
43457
- {
43458
- "id": "imagen-4.0-fast-generate-001",
43459
- "name": "imagen-4.0-fast-generate-001",
43460
- "provider": "vertexai",
43461
- "family": "gemini",
43462
- "created_at": null,
43463
- "context_window": null,
43464
- "max_output_tokens": null,
43465
- "knowledge_cutoff": null,
43466
- "modalities": {
43467
- "input": [],
43468
- "output": []
43469
- },
43470
- "capabilities": [
43471
- "streaming"
43472
- ],
43473
- "pricing": {},
43474
- "metadata": {
43475
- "version_id": "default",
43476
- "open_source_category": null,
43477
- "launch_stage": "GA",
43478
- "supported_actions": {
43479
- "openGenerationAiStudio": {
43480
- "references": {
43481
- "europe-west1": {
43482
- "uri": "https://console.cloud.google.com/vertex-ai/studio/media/generate"
43483
- }
43484
- },
43485
- "title": "Open Vertex AI Studio"
43486
- }
43487
- },
43488
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagen-4.0-fast-generate-001@default"
43489
- }
43490
- },
43491
- {
43492
- "id": "imagen-4.0-generate-001",
43493
- "name": "imagen-4.0-generate-001",
43494
- "provider": "vertexai",
43495
- "family": "gemini",
43496
- "created_at": null,
43497
- "context_window": null,
43498
- "max_output_tokens": null,
43499
- "knowledge_cutoff": null,
43500
- "modalities": {
43501
- "input": [],
43502
- "output": []
43503
- },
43504
- "capabilities": [
43505
- "streaming"
43506
- ],
43507
- "pricing": {},
43508
- "metadata": {
43509
- "version_id": "default",
43510
- "open_source_category": null,
43511
- "launch_stage": "GA",
43512
- "supported_actions": {
43513
- "openGenerationAiStudio": {
43514
- "references": {
43515
- "europe-west1": {
43516
- "uri": "https://console.cloud.google.com/vertex-ai/studio/media/generate"
43517
- }
43518
- },
43519
- "title": "Open Vertex AI Studio"
43520
- }
43521
- },
43522
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagen-4.0-generate-001@default"
43523
- }
43524
- },
43525
- {
43526
- "id": "imagen-4.0-ultra-generate-001",
43527
- "name": "imagen-4.0-ultra-generate-001",
43528
- "provider": "vertexai",
43529
- "family": "gemini",
43530
- "created_at": null,
43531
- "context_window": null,
43532
- "max_output_tokens": null,
43533
- "knowledge_cutoff": null,
43534
- "modalities": {
43535
- "input": [],
43536
- "output": []
43537
- },
43538
- "capabilities": [
43539
- "streaming"
43540
- ],
43541
- "pricing": {},
43542
- "metadata": {
43543
- "version_id": "default",
43544
- "open_source_category": null,
43545
- "launch_stage": "GA",
43546
- "supported_actions": {
43547
- "openGenerationAiStudio": {
43548
- "references": {
43549
- "europe-west1": {
43550
- "uri": "https://console.cloud.google.com/vertex-ai/studio/media/generate"
43551
- }
43552
- },
43553
- "title": "Open Vertex AI Studio"
43554
- }
43555
- },
43556
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagen-4.0-ultra-generate-001@default"
43557
- }
43558
- },
43559
- {
43560
- "id": "imagetext",
43561
- "name": "imagetext",
43562
- "provider": "vertexai",
43563
- "family": "gemini",
43564
- "created_at": null,
43565
- "context_window": null,
43566
- "max_output_tokens": null,
43567
- "knowledge_cutoff": null,
43568
- "modalities": {
43569
- "input": [],
43570
- "output": []
43571
- },
43572
- "capabilities": [
43573
- "streaming"
43574
- ],
43575
- "pricing": {},
43576
- "metadata": {
43577
- "version_id": "001",
43578
- "open_source_category": "PROPRIETARY",
43579
- "launch_stage": "GA",
43580
- "supported_actions": {
43581
- "openGenerationAiStudio": {
43582
- "references": {
43583
- "us-central1": {
43584
- "uri": "https://cloud.google.com/console/vertex-ai/generative/vision"
43585
- }
43586
- },
43587
- "title": "Open Vertex AI Studio"
43588
- }
43589
- },
43590
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/imagetext@001"
43591
- }
43592
- },
43593
- {
43594
- "id": "multimodalembedding",
43595
- "name": "multimodalembedding",
43596
- "provider": "vertexai",
43597
- "family": "gemini",
43598
- "created_at": null,
43599
- "context_window": null,
43600
- "max_output_tokens": null,
43601
- "knowledge_cutoff": null,
43602
- "modalities": {
43603
- "input": [],
43604
- "output": []
43605
- },
43606
- "capabilities": [
43607
- "streaming"
43608
- ],
43609
- "pricing": {},
43610
- "metadata": {
43611
- "version_id": "001",
43612
- "open_source_category": "PROPRIETARY",
43613
- "launch_stage": "GA",
43614
- "supported_actions": null,
43615
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/multimodalembedding@001"
43616
- }
43617
- },
43618
43929
  {
43619
43930
  "id": "openai/gpt-oss-120b-maas",
43620
43931
  "name": "GPT OSS 120B",
@@ -43707,48 +44018,6 @@
43707
44018
  }
43708
44019
  }
43709
44020
  },
43710
- {
43711
- "id": "text-bison",
43712
- "name": "text-bison",
43713
- "provider": "vertexai",
43714
- "family": "palm",
43715
- "created_at": null,
43716
- "context_window": null,
43717
- "max_output_tokens": null,
43718
- "knowledge_cutoff": null,
43719
- "modalities": {
43720
- "input": [],
43721
- "output": []
43722
- },
43723
- "capabilities": [
43724
- "streaming"
43725
- ],
43726
- "pricing": {},
43727
- "metadata": {
43728
- "version_id": "002",
43729
- "open_source_category": "PROPRIETARY",
43730
- "launch_stage": "GA",
43731
- "supported_actions": {
43732
- "openGenie": {
43733
- "references": {
43734
- "us-central1": {
43735
- "uri": "https://console.cloud.google.com/vertex-ai/generative/language/create/text"
43736
- }
43737
- },
43738
- "title": "Open Prompt Design"
43739
- },
43740
- "openEvaluationPipeline": {
43741
- "references": {
43742
- "us-central1": {
43743
- "uri": "https://console.cloud.google.com/vertex-ai/pipelines/vertex-ai-templates/evaluation-llm-text-generation-pipeline"
43744
- }
43745
- },
43746
- "title": "Evaluate"
43747
- }
43748
- },
43749
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/text-bison@002"
43750
- }
43751
- },
43752
44021
  {
43753
44022
  "id": "text-embedding-004",
43754
44023
  "name": "text-embedding-004",
@@ -43814,72 +44083,5 @@
43814
44083
  "metadata": {
43815
44084
  "source": "known_models"
43816
44085
  }
43817
- },
43818
- {
43819
- "id": "text-unicorn",
43820
- "name": "text-unicorn",
43821
- "provider": "vertexai",
43822
- "family": "gemini",
43823
- "created_at": null,
43824
- "context_window": null,
43825
- "max_output_tokens": null,
43826
- "knowledge_cutoff": null,
43827
- "modalities": {
43828
- "input": [],
43829
- "output": []
43830
- },
43831
- "capabilities": [
43832
- "streaming"
43833
- ],
43834
- "pricing": {},
43835
- "metadata": {
43836
- "version_id": "001",
43837
- "open_source_category": "PROPRIETARY",
43838
- "launch_stage": "GA",
43839
- "supported_actions": {
43840
- "openGenie": {
43841
- "references": {
43842
- "europe-west1": {
43843
- "uri": "https://console.cloud.google.com/vertex-ai/generative/language/create/text"
43844
- }
43845
- },
43846
- "title": "Open in Vertex AI Studio"
43847
- },
43848
- "openEvaluationPipeline": {
43849
- "references": {
43850
- "europe-west1": {
43851
- "uri": "https://console.cloud.google.com/vertex-ai/pipelines/vertex-ai-templates/evaluation-llm-text-generation-pipeline"
43852
- }
43853
- },
43854
- "title": "Evaluate"
43855
- }
43856
- },
43857
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/text-unicorn@001"
43858
- }
43859
- },
43860
- {
43861
- "id": "textembedding-gecko",
43862
- "name": "textembedding-gecko",
43863
- "provider": "vertexai",
43864
- "family": "gemini",
43865
- "created_at": null,
43866
- "context_window": null,
43867
- "max_output_tokens": null,
43868
- "knowledge_cutoff": null,
43869
- "modalities": {
43870
- "input": [],
43871
- "output": []
43872
- },
43873
- "capabilities": [
43874
- "streaming"
43875
- ],
43876
- "pricing": {},
43877
- "metadata": {
43878
- "version_id": "003",
43879
- "open_source_category": "PROPRIETARY",
43880
- "launch_stage": "GA",
43881
- "supported_actions": null,
43882
- "publisher_model_template": "projects/{project}/locations/{location}/publishers/google/models/textembedding-gecko@003"
43883
- }
43884
44086
  }
43885
44087
  ]