ruby_llm 1.6.2 → 1.6.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +73 -91
  3. data/lib/ruby_llm/active_record/acts_as.rb +2 -10
  4. data/lib/ruby_llm/aliases.json +4 -0
  5. data/lib/ruby_llm/aliases.rb +7 -25
  6. data/lib/ruby_llm/chat.rb +2 -10
  7. data/lib/ruby_llm/configuration.rb +1 -12
  8. data/lib/ruby_llm/content.rb +0 -2
  9. data/lib/ruby_llm/embedding.rb +1 -2
  10. data/lib/ruby_llm/error.rb +0 -8
  11. data/lib/ruby_llm/image.rb +0 -4
  12. data/lib/ruby_llm/message.rb +2 -4
  13. data/lib/ruby_llm/model/info.rb +0 -10
  14. data/lib/ruby_llm/model/pricing.rb +0 -3
  15. data/lib/ruby_llm/model/pricing_category.rb +0 -2
  16. data/lib/ruby_llm/model/pricing_tier.rb +0 -1
  17. data/lib/ruby_llm/models.json +623 -452
  18. data/lib/ruby_llm/models.rb +5 -13
  19. data/lib/ruby_llm/provider.rb +1 -5
  20. data/lib/ruby_llm/providers/anthropic/capabilities.rb +1 -46
  21. data/lib/ruby_llm/providers/anthropic/media.rb +0 -1
  22. data/lib/ruby_llm/providers/anthropic/tools.rb +0 -1
  23. data/lib/ruby_llm/providers/anthropic.rb +1 -2
  24. data/lib/ruby_llm/providers/bedrock/chat.rb +0 -2
  25. data/lib/ruby_llm/providers/bedrock/media.rb +0 -1
  26. data/lib/ruby_llm/providers/bedrock/models.rb +0 -2
  27. data/lib/ruby_llm/providers/bedrock/streaming/base.rb +0 -12
  28. data/lib/ruby_llm/providers/bedrock/streaming/content_extraction.rb +0 -7
  29. data/lib/ruby_llm/providers/bedrock/streaming/message_processing.rb +0 -12
  30. data/lib/ruby_llm/providers/bedrock/streaming/payload_processing.rb +0 -12
  31. data/lib/ruby_llm/providers/bedrock/streaming/prelude_handling.rb +0 -13
  32. data/lib/ruby_llm/providers/bedrock/streaming.rb +0 -18
  33. data/lib/ruby_llm/providers/bedrock.rb +1 -2
  34. data/lib/ruby_llm/providers/deepseek/capabilities.rb +1 -2
  35. data/lib/ruby_llm/providers/deepseek/chat.rb +0 -1
  36. data/lib/ruby_llm/providers/gemini/capabilities.rb +26 -101
  37. data/lib/ruby_llm/providers/gemini/chat.rb +5 -7
  38. data/lib/ruby_llm/providers/gemini/embeddings.rb +0 -2
  39. data/lib/ruby_llm/providers/gemini/images.rb +0 -1
  40. data/lib/ruby_llm/providers/gemini/media.rb +0 -1
  41. data/lib/ruby_llm/providers/gemini/models.rb +1 -2
  42. data/lib/ruby_llm/providers/gemini/tools.rb +0 -5
  43. data/lib/ruby_llm/providers/gpustack/chat.rb +0 -1
  44. data/lib/ruby_llm/providers/gpustack/models.rb +3 -4
  45. data/lib/ruby_llm/providers/mistral/capabilities.rb +2 -10
  46. data/lib/ruby_llm/providers/mistral/chat.rb +0 -2
  47. data/lib/ruby_llm/providers/mistral/embeddings.rb +0 -3
  48. data/lib/ruby_llm/providers/mistral/models.rb +0 -1
  49. data/lib/ruby_llm/providers/ollama/chat.rb +0 -1
  50. data/lib/ruby_llm/providers/ollama/media.rb +0 -1
  51. data/lib/ruby_llm/providers/openai/capabilities.rb +0 -15
  52. data/lib/ruby_llm/providers/openai/chat.rb +0 -3
  53. data/lib/ruby_llm/providers/openai/embeddings.rb +0 -3
  54. data/lib/ruby_llm/providers/openai/media.rb +0 -1
  55. data/lib/ruby_llm/providers/openai.rb +1 -3
  56. data/lib/ruby_llm/providers/openrouter/models.rb +1 -16
  57. data/lib/ruby_llm/providers/perplexity/capabilities.rb +0 -1
  58. data/lib/ruby_llm/providers/perplexity/chat.rb +0 -1
  59. data/lib/ruby_llm/providers/perplexity.rb +1 -5
  60. data/lib/ruby_llm/railtie.rb +0 -1
  61. data/lib/ruby_llm/stream_accumulator.rb +1 -3
  62. data/lib/ruby_llm/streaming.rb +15 -24
  63. data/lib/ruby_llm/tool.rb +2 -19
  64. data/lib/ruby_llm/tool_call.rb +0 -9
  65. data/lib/ruby_llm/version.rb +1 -1
  66. data/lib/ruby_llm.rb +0 -2
  67. data/lib/tasks/aliases.rake +5 -35
  68. data/lib/tasks/models_docs.rake +1 -11
  69. data/lib/tasks/models_update.rake +1 -1
  70. data/lib/tasks/vcr.rake +0 -7
  71. metadata +1 -1
@@ -33,31 +33,37 @@
33
33
  },
34
34
  {
35
35
  "id": "claude-3-5-sonnet-20240620",
36
- "name": "Claude Sonnet 3.5",
36
+ "name": "Claude Sonnet 3.5 (Old)",
37
37
  "provider": "anthropic",
38
38
  "family": "claude-3-5-sonnet",
39
- "created_at": null,
39
+ "created_at": "2024-06-20 00:00:00 UTC",
40
40
  "context_window": 200000,
41
41
  "max_output_tokens": 8192,
42
42
  "knowledge_cutoff": null,
43
43
  "modalities": {
44
44
  "input": [
45
+ "text",
45
46
  "image",
46
- "text"
47
+ "pdf"
47
48
  ],
48
49
  "output": [
49
50
  "text"
50
51
  ]
51
52
  },
52
53
  "capabilities": [
53
- "function_calling"
54
+ "streaming",
55
+ "function_calling",
56
+ "batch"
54
57
  ],
55
58
  "pricing": {
56
59
  "text_tokens": {
57
60
  "standard": {
58
61
  "input_per_million": 3.0,
59
- "cached_input_per_million": 3.75,
60
62
  "output_per_million": 15.0
63
+ },
64
+ "batch": {
65
+ "input_per_million": 1.5,
66
+ "output_per_million": 7.5
61
67
  }
62
68
  }
63
69
  },
@@ -65,31 +71,37 @@
65
71
  },
66
72
  {
67
73
  "id": "claude-3-5-sonnet-20241022",
68
- "name": "Claude Sonnet 3.5",
74
+ "name": "Claude Sonnet 3.5 (New)",
69
75
  "provider": "anthropic",
70
76
  "family": "claude-3-5-sonnet",
71
- "created_at": null,
77
+ "created_at": "2024-10-22 00:00:00 UTC",
72
78
  "context_window": 200000,
73
79
  "max_output_tokens": 8192,
74
80
  "knowledge_cutoff": null,
75
81
  "modalities": {
76
82
  "input": [
83
+ "text",
77
84
  "image",
78
- "text"
85
+ "pdf"
79
86
  ],
80
87
  "output": [
81
88
  "text"
82
89
  ]
83
90
  },
84
91
  "capabilities": [
85
- "function_calling"
92
+ "streaming",
93
+ "function_calling",
94
+ "batch"
86
95
  ],
87
96
  "pricing": {
88
97
  "text_tokens": {
89
98
  "standard": {
90
99
  "input_per_million": 3.0,
91
- "cached_input_per_million": 3.75,
92
100
  "output_per_million": 15.0
101
+ },
102
+ "batch": {
103
+ "input_per_million": 1.5,
104
+ "output_per_million": 7.5
93
105
  }
94
106
  }
95
107
  },
@@ -4127,7 +4139,7 @@
4127
4139
  },
4128
4140
  {
4129
4141
  "id": "imagen-3.0-generate-002",
4130
- "name": "Imagen 3.0 002 model",
4142
+ "name": "Imagen 3.0",
4131
4143
  "provider": "gemini",
4132
4144
  "family": "imagen3",
4133
4145
  "created_at": null,
@@ -4156,6 +4168,37 @@
4156
4168
  ]
4157
4169
  }
4158
4170
  },
4171
+ {
4172
+ "id": "imagen-4.0-generate-001",
4173
+ "name": "Imagen 4",
4174
+ "provider": "gemini",
4175
+ "family": "other",
4176
+ "created_at": null,
4177
+ "context_window": 480,
4178
+ "max_output_tokens": 8192,
4179
+ "knowledge_cutoff": null,
4180
+ "modalities": {
4181
+ "input": [
4182
+ "text",
4183
+ "image",
4184
+ "pdf"
4185
+ ],
4186
+ "output": [
4187
+ "image"
4188
+ ]
4189
+ },
4190
+ "capabilities": [
4191
+ "streaming"
4192
+ ],
4193
+ "pricing": {},
4194
+ "metadata": {
4195
+ "version": "001",
4196
+ "description": "Vertex served Imagen 4.0 model",
4197
+ "supported_generation_methods": [
4198
+ "predict"
4199
+ ]
4200
+ }
4201
+ },
4159
4202
  {
4160
4203
  "id": "imagen-4.0-generate-preview-06-06",
4161
4204
  "name": "Imagen 4 (Preview)",
@@ -4302,46 +4345,6 @@
4302
4345
  ]
4303
4346
  }
4304
4347
  },
4305
- {
4306
- "id": "veo-2.0-generate-001",
4307
- "name": "Veo 2",
4308
- "provider": "gemini",
4309
- "family": "other",
4310
- "created_at": null,
4311
- "context_window": 480,
4312
- "max_output_tokens": 8192,
4313
- "knowledge_cutoff": null,
4314
- "modalities": {
4315
- "input": [
4316
- "text"
4317
- ],
4318
- "output": [
4319
- "text"
4320
- ]
4321
- },
4322
- "capabilities": [
4323
- "streaming"
4324
- ],
4325
- "pricing": {
4326
- "text_tokens": {
4327
- "standard": {
4328
- "input_per_million": 0.075,
4329
- "output_per_million": 0.3
4330
- },
4331
- "batch": {
4332
- "input_per_million": 0.0375,
4333
- "output_per_million": 0.15
4334
- }
4335
- }
4336
- },
4337
- "metadata": {
4338
- "version": "2.0",
4339
- "description": "Vertex served Veo 2 model. Access to this model requires billing to be enabled on the associated Google Cloud Platform account. Please visit https://console.cloud.google.com/billing to enable it.",
4340
- "supported_generation_methods": [
4341
- "predictLongRunning"
4342
- ]
4343
- }
4344
- },
4345
4348
  {
4346
4349
  "id": "codestral-2411-rc5",
4347
4350
  "name": "Codestral",
@@ -6700,29 +6703,31 @@
6700
6703
  "id": "gpt-4",
6701
6704
  "name": "GPT-4",
6702
6705
  "provider": "openai",
6703
- "family": "gpt4",
6704
- "created_at": "2023-06-27 18:13:31 +0200",
6706
+ "family": "gpt-4",
6707
+ "created_at": null,
6705
6708
  "context_window": 8192,
6706
6709
  "max_output_tokens": 8192,
6707
6710
  "knowledge_cutoff": null,
6708
6711
  "modalities": {
6709
6712
  "input": [
6710
- "text",
6711
- "image",
6712
- "pdf"
6713
+ "text"
6713
6714
  ],
6714
6715
  "output": [
6716
+ "embeddings",
6715
6717
  "text"
6716
6718
  ]
6717
6719
  },
6718
6720
  "capabilities": [
6719
- "streaming",
6720
- "function_calling"
6721
+ "batch"
6721
6722
  ],
6722
6723
  "pricing": {
6723
6724
  "text_tokens": {
6724
6725
  "standard": {
6725
- "input_per_million": 10.0,
6726
+ "input_per_million": 30.0,
6727
+ "output_per_million": 60.0
6728
+ },
6729
+ "batch": {
6730
+ "input_per_million": 15.0,
6726
6731
  "output_per_million": 30.0
6727
6732
  }
6728
6733
  }
@@ -6767,29 +6772,34 @@
6767
6772
  },
6768
6773
  {
6769
6774
  "id": "gpt-4-0613",
6770
- "name": "GPT-4 0613",
6775
+ "name": "GPT-4",
6771
6776
  "provider": "openai",
6772
- "family": "other",
6773
- "created_at": "2023-06-12 18:54:56 +0200",
6774
- "context_window": 4096,
6775
- "max_output_tokens": 16384,
6777
+ "family": "gpt-4",
6778
+ "created_at": null,
6779
+ "context_window": 8192,
6780
+ "max_output_tokens": 8192,
6776
6781
  "knowledge_cutoff": null,
6777
6782
  "modalities": {
6778
6783
  "input": [
6779
6784
  "text"
6780
6785
  ],
6781
6786
  "output": [
6787
+ "embeddings",
6782
6788
  "text"
6783
6789
  ]
6784
6790
  },
6785
6791
  "capabilities": [
6786
- "streaming"
6792
+ "batch"
6787
6793
  ],
6788
6794
  "pricing": {
6789
6795
  "text_tokens": {
6790
6796
  "standard": {
6791
- "input_per_million": 0.5,
6792
- "output_per_million": 1.5
6797
+ "input_per_million": 30.0,
6798
+ "output_per_million": 60.0
6799
+ },
6800
+ "batch": {
6801
+ "input_per_million": 15.0,
6802
+ "output_per_million": 30.0
6793
6803
  }
6794
6804
  }
6795
6805
  },
@@ -6915,25 +6925,21 @@
6915
6925
  "id": "gpt-4-turbo-preview",
6916
6926
  "name": "GPT-4 Turbo Preview",
6917
6927
  "provider": "openai",
6918
- "family": "gpt4_turbo",
6919
- "created_at": "2024-01-23 20:22:57 +0100",
6928
+ "family": "gpt-4-turbo-preview",
6929
+ "created_at": null,
6920
6930
  "context_window": 128000,
6921
6931
  "max_output_tokens": 4096,
6922
6932
  "knowledge_cutoff": null,
6923
6933
  "modalities": {
6924
6934
  "input": [
6925
- "text",
6926
- "image",
6927
- "pdf"
6935
+ "text"
6928
6936
  ],
6929
6937
  "output": [
6938
+ "embeddings",
6930
6939
  "text"
6931
6940
  ]
6932
6941
  },
6933
- "capabilities": [
6934
- "streaming",
6935
- "function_calling"
6936
- ],
6942
+ "capabilities": [],
6937
6943
  "pricing": {
6938
6944
  "text_tokens": {
6939
6945
  "standard": {
@@ -6951,23 +6957,23 @@
6951
6957
  "id": "gpt-4.1",
6952
6958
  "name": "GPT-4.1",
6953
6959
  "provider": "openai",
6954
- "family": "gpt41",
6955
- "created_at": "2025-04-10 22:22:22 +0200",
6960
+ "family": "gpt-4.1",
6961
+ "created_at": null,
6956
6962
  "context_window": 1047576,
6957
6963
  "max_output_tokens": 32768,
6958
6964
  "knowledge_cutoff": null,
6959
6965
  "modalities": {
6960
6966
  "input": [
6961
- "text",
6962
6967
  "image",
6963
- "pdf"
6968
+ "text"
6964
6969
  ],
6965
6970
  "output": [
6971
+ "embeddings",
6966
6972
  "text"
6967
6973
  ]
6968
6974
  },
6969
6975
  "capabilities": [
6970
- "streaming",
6976
+ "batch",
6971
6977
  "function_calling",
6972
6978
  "structured_output"
6973
6979
  ],
@@ -6975,8 +6981,12 @@
6975
6981
  "text_tokens": {
6976
6982
  "standard": {
6977
6983
  "input_per_million": 2.0,
6978
- "output_per_million": 8.0,
6979
- "cached_input_per_million": 0.5
6984
+ "cached_input_per_million": 0.5,
6985
+ "output_per_million": 8.0
6986
+ },
6987
+ "batch": {
6988
+ "input_per_million": 1.0,
6989
+ "output_per_million": 4.0
6980
6990
  }
6981
6991
  }
6982
6992
  },
@@ -6987,25 +6997,25 @@
6987
6997
  },
6988
6998
  {
6989
6999
  "id": "gpt-4.1-2025-04-14",
6990
- "name": "GPT-4.1 20250414",
7000
+ "name": "GPT-4.1",
6991
7001
  "provider": "openai",
6992
- "family": "gpt41",
6993
- "created_at": "2025-04-10 22:09:06 +0200",
7002
+ "family": "gpt-4.1",
7003
+ "created_at": null,
6994
7004
  "context_window": 1047576,
6995
7005
  "max_output_tokens": 32768,
6996
7006
  "knowledge_cutoff": null,
6997
7007
  "modalities": {
6998
7008
  "input": [
6999
- "text",
7000
7009
  "image",
7001
- "pdf"
7010
+ "text"
7002
7011
  ],
7003
7012
  "output": [
7013
+ "embeddings",
7004
7014
  "text"
7005
7015
  ]
7006
7016
  },
7007
7017
  "capabilities": [
7008
- "streaming",
7018
+ "batch",
7009
7019
  "function_calling",
7010
7020
  "structured_output"
7011
7021
  ],
@@ -7013,8 +7023,12 @@
7013
7023
  "text_tokens": {
7014
7024
  "standard": {
7015
7025
  "input_per_million": 2.0,
7016
- "output_per_million": 8.0,
7017
- "cached_input_per_million": 0.5
7026
+ "cached_input_per_million": 0.5,
7027
+ "output_per_million": 8.0
7028
+ },
7029
+ "batch": {
7030
+ "input_per_million": 1.0,
7031
+ "output_per_million": 4.0
7018
7032
  }
7019
7033
  }
7020
7034
  },
@@ -8296,30 +8310,38 @@
8296
8310
  },
8297
8311
  {
8298
8312
  "id": "gpt-5-mini",
8299
- "name": "GPT-5 Mini",
8313
+ "name": "GPT-5 mini",
8300
8314
  "provider": "openai",
8301
- "family": "other",
8302
- "created_at": "2025-08-05 22:32:08 +0200",
8303
- "context_window": 4096,
8304
- "max_output_tokens": 16384,
8315
+ "family": "gpt-5-mini",
8316
+ "created_at": null,
8317
+ "context_window": 400000,
8318
+ "max_output_tokens": 128000,
8305
8319
  "knowledge_cutoff": null,
8306
8320
  "modalities": {
8307
8321
  "input": [
8322
+ "image",
8308
8323
  "text"
8309
8324
  ],
8310
8325
  "output": [
8326
+ "embeddings",
8311
8327
  "text"
8312
8328
  ]
8313
8329
  },
8314
8330
  "capabilities": [
8315
- "streaming",
8316
- "reasoning"
8331
+ "batch",
8332
+ "function_calling",
8333
+ "structured_output"
8317
8334
  ],
8318
8335
  "pricing": {
8319
8336
  "text_tokens": {
8320
8337
  "standard": {
8321
- "input_per_million": 0.5,
8322
- "output_per_million": 1.5
8338
+ "input_per_million": 0.25,
8339
+ "cached_input_per_million": 0.025,
8340
+ "output_per_million": 2.0
8341
+ },
8342
+ "batch": {
8343
+ "input_per_million": 0.125,
8344
+ "output_per_million": 1.0
8323
8345
  }
8324
8346
  }
8325
8347
  },
@@ -8330,30 +8352,38 @@
8330
8352
  },
8331
8353
  {
8332
8354
  "id": "gpt-5-mini-2025-08-07",
8333
- "name": "GPT-5 Mini 20250807",
8355
+ "name": "GPT-5 mini",
8334
8356
  "provider": "openai",
8335
- "family": "other",
8336
- "created_at": "2025-08-05 22:31:07 +0200",
8337
- "context_window": 4096,
8338
- "max_output_tokens": 16384,
8357
+ "family": "gpt-5-mini",
8358
+ "created_at": null,
8359
+ "context_window": 400000,
8360
+ "max_output_tokens": 128000,
8339
8361
  "knowledge_cutoff": null,
8340
8362
  "modalities": {
8341
8363
  "input": [
8364
+ "image",
8342
8365
  "text"
8343
8366
  ],
8344
8367
  "output": [
8368
+ "embeddings",
8345
8369
  "text"
8346
8370
  ]
8347
8371
  },
8348
8372
  "capabilities": [
8349
- "streaming",
8350
- "reasoning"
8373
+ "batch",
8374
+ "function_calling",
8375
+ "structured_output"
8351
8376
  ],
8352
8377
  "pricing": {
8353
8378
  "text_tokens": {
8354
8379
  "standard": {
8355
- "input_per_million": 0.5,
8356
- "output_per_million": 1.5
8380
+ "input_per_million": 0.25,
8381
+ "cached_input_per_million": 0.025,
8382
+ "output_per_million": 2.0
8383
+ },
8384
+ "batch": {
8385
+ "input_per_million": 0.125,
8386
+ "output_per_million": 1.0
8357
8387
  }
8358
8388
  }
8359
8389
  },
@@ -8364,30 +8394,38 @@
8364
8394
  },
8365
8395
  {
8366
8396
  "id": "gpt-5-nano",
8367
- "name": "GPT-5 Nano",
8397
+ "name": "GPT-5 nano",
8368
8398
  "provider": "openai",
8369
- "family": "other",
8370
- "created_at": "2025-08-05 22:39:44 +0200",
8371
- "context_window": 4096,
8372
- "max_output_tokens": 16384,
8399
+ "family": "gpt-5-nano",
8400
+ "created_at": null,
8401
+ "context_window": 400000,
8402
+ "max_output_tokens": 128000,
8373
8403
  "knowledge_cutoff": null,
8374
8404
  "modalities": {
8375
8405
  "input": [
8406
+ "image",
8376
8407
  "text"
8377
8408
  ],
8378
8409
  "output": [
8410
+ "embeddings",
8379
8411
  "text"
8380
8412
  ]
8381
8413
  },
8382
8414
  "capabilities": [
8383
- "streaming",
8384
- "reasoning"
8415
+ "batch",
8416
+ "function_calling",
8417
+ "structured_output"
8385
8418
  ],
8386
8419
  "pricing": {
8387
8420
  "text_tokens": {
8388
8421
  "standard": {
8389
- "input_per_million": 0.5,
8390
- "output_per_million": 1.5
8422
+ "input_per_million": 0.05,
8423
+ "cached_input_per_million": 0.005,
8424
+ "output_per_million": 0.4
8425
+ },
8426
+ "batch": {
8427
+ "input_per_million": 0.025,
8428
+ "output_per_million": 0.2
8391
8429
  }
8392
8430
  }
8393
8431
  },
@@ -8398,30 +8436,38 @@
8398
8436
  },
8399
8437
  {
8400
8438
  "id": "gpt-5-nano-2025-08-07",
8401
- "name": "GPT-5 Nano 20250807",
8439
+ "name": "GPT-5 nano",
8402
8440
  "provider": "openai",
8403
- "family": "other",
8404
- "created_at": "2025-08-05 22:38:23 +0200",
8405
- "context_window": 4096,
8406
- "max_output_tokens": 16384,
8441
+ "family": "gpt-5-nano",
8442
+ "created_at": null,
8443
+ "context_window": 400000,
8444
+ "max_output_tokens": 128000,
8407
8445
  "knowledge_cutoff": null,
8408
8446
  "modalities": {
8409
8447
  "input": [
8448
+ "image",
8410
8449
  "text"
8411
8450
  ],
8412
8451
  "output": [
8452
+ "embeddings",
8413
8453
  "text"
8414
8454
  ]
8415
8455
  },
8416
8456
  "capabilities": [
8417
- "streaming",
8418
- "reasoning"
8457
+ "batch",
8458
+ "function_calling",
8459
+ "structured_output"
8419
8460
  ],
8420
8461
  "pricing": {
8421
8462
  "text_tokens": {
8422
8463
  "standard": {
8423
- "input_per_million": 0.5,
8424
- "output_per_million": 1.5
8464
+ "input_per_million": 0.05,
8465
+ "cached_input_per_million": 0.005,
8466
+ "output_per_million": 0.4
8467
+ },
8468
+ "batch": {
8469
+ "input_per_million": 0.025,
8470
+ "output_per_million": 0.2
8425
8471
  }
8426
8472
  }
8427
8473
  },
@@ -8491,35 +8537,65 @@
8491
8537
  "metadata": {}
8492
8538
  },
8493
8539
  {
8494
- "id": "o1",
8495
- "name": "O1",
8540
+ "id": "gpt-oss-20b",
8541
+ "name": "gpt-oss-20b",
8496
8542
  "provider": "openai",
8497
- "family": "o1",
8498
- "created_at": "2024-12-16 20:03:36 +0100",
8499
- "context_window": 200000,
8500
- "max_output_tokens": 100000,
8543
+ "family": "gpt-oss-20b",
8544
+ "created_at": null,
8545
+ "context_window": 131072,
8546
+ "max_output_tokens": 131072,
8501
8547
  "knowledge_cutoff": null,
8502
8548
  "modalities": {
8503
8549
  "input": [
8504
- "text",
8505
- "image",
8506
- "pdf"
8550
+ "text"
8507
8551
  ],
8508
8552
  "output": [
8553
+ "embeddings",
8509
8554
  "text"
8510
8555
  ]
8511
8556
  },
8512
8557
  "capabilities": [
8513
- "streaming",
8558
+ "batch",
8514
8559
  "function_calling",
8515
- "structured_output",
8516
- "reasoning"
8560
+ "structured_output"
8561
+ ],
8562
+ "pricing": {},
8563
+ "metadata": {}
8564
+ },
8565
+ {
8566
+ "id": "o1",
8567
+ "name": "o1",
8568
+ "provider": "openai",
8569
+ "family": "o1",
8570
+ "created_at": null,
8571
+ "context_window": 200000,
8572
+ "max_output_tokens": 100000,
8573
+ "knowledge_cutoff": null,
8574
+ "modalities": {
8575
+ "input": [
8576
+ "image",
8577
+ "text"
8578
+ ],
8579
+ "output": [
8580
+ "embeddings",
8581
+ "text"
8582
+ ]
8583
+ },
8584
+ "capabilities": [
8585
+ "batch",
8586
+ "function_calling",
8587
+ "structured_output"
8517
8588
  ],
8518
8589
  "pricing": {
8519
8590
  "text_tokens": {
8520
8591
  "standard": {
8521
8592
  "input_per_million": 15.0,
8593
+ "cached_input_per_million": 7.5,
8522
8594
  "output_per_million": 60.0
8595
+ },
8596
+ "batch": {
8597
+ "input_per_million": 7.5,
8598
+ "output_per_million": 30.0
8523
8599
  }
8524
8600
  }
8525
8601
  },
@@ -8530,34 +8606,38 @@
8530
8606
  },
8531
8607
  {
8532
8608
  "id": "o1-2024-12-17",
8533
- "name": "O1-20241217",
8609
+ "name": "o1",
8534
8610
  "provider": "openai",
8535
8611
  "family": "o1",
8536
- "created_at": "2024-12-16 06:29:36 +0100",
8612
+ "created_at": null,
8537
8613
  "context_window": 200000,
8538
8614
  "max_output_tokens": 100000,
8539
8615
  "knowledge_cutoff": null,
8540
8616
  "modalities": {
8541
8617
  "input": [
8542
- "text",
8543
8618
  "image",
8544
- "pdf"
8619
+ "text"
8545
8620
  ],
8546
8621
  "output": [
8622
+ "embeddings",
8547
8623
  "text"
8548
8624
  ]
8549
8625
  },
8550
8626
  "capabilities": [
8551
- "streaming",
8627
+ "batch",
8552
8628
  "function_calling",
8553
- "structured_output",
8554
- "reasoning"
8629
+ "structured_output"
8555
8630
  ],
8556
8631
  "pricing": {
8557
8632
  "text_tokens": {
8558
8633
  "standard": {
8559
8634
  "input_per_million": 15.0,
8635
+ "cached_input_per_million": 7.5,
8560
8636
  "output_per_million": 60.0
8637
+ },
8638
+ "batch": {
8639
+ "input_per_million": 7.5,
8640
+ "output_per_million": 30.0
8561
8641
  }
8562
8642
  }
8563
8643
  },
@@ -8632,6 +8712,72 @@
8632
8712
  "owned_by": "system"
8633
8713
  }
8634
8714
  },
8715
+ {
8716
+ "id": "o1-preview",
8717
+ "name": "o1 Preview",
8718
+ "provider": "openai",
8719
+ "family": "o1-preview",
8720
+ "created_at": null,
8721
+ "context_window": 128000,
8722
+ "max_output_tokens": 32768,
8723
+ "knowledge_cutoff": null,
8724
+ "modalities": {
8725
+ "input": [
8726
+ "text"
8727
+ ],
8728
+ "output": [
8729
+ "embeddings",
8730
+ "text"
8731
+ ]
8732
+ },
8733
+ "capabilities": [
8734
+ "function_calling",
8735
+ "structured_output"
8736
+ ],
8737
+ "pricing": {
8738
+ "text_tokens": {
8739
+ "standard": {
8740
+ "input_per_million": 15.0,
8741
+ "cached_input_per_million": 7.5,
8742
+ "output_per_million": 60.0
8743
+ }
8744
+ }
8745
+ },
8746
+ "metadata": {}
8747
+ },
8748
+ {
8749
+ "id": "o1-preview-2024-09-12",
8750
+ "name": "o1 Preview",
8751
+ "provider": "openai",
8752
+ "family": "o1-preview",
8753
+ "created_at": null,
8754
+ "context_window": 128000,
8755
+ "max_output_tokens": 32768,
8756
+ "knowledge_cutoff": null,
8757
+ "modalities": {
8758
+ "input": [
8759
+ "text"
8760
+ ],
8761
+ "output": [
8762
+ "embeddings",
8763
+ "text"
8764
+ ]
8765
+ },
8766
+ "capabilities": [
8767
+ "function_calling",
8768
+ "structured_output"
8769
+ ],
8770
+ "pricing": {
8771
+ "text_tokens": {
8772
+ "standard": {
8773
+ "input_per_million": 15.0,
8774
+ "cached_input_per_million": 7.5,
8775
+ "output_per_million": 60.0
8776
+ }
8777
+ }
8778
+ },
8779
+ "metadata": {}
8780
+ },
8635
8781
  {
8636
8782
  "id": "o1-pro",
8637
8783
  "name": "o1-pro",
@@ -9235,22 +9381,21 @@
9235
9381
  },
9236
9382
  {
9237
9383
  "id": "omni-moderation-latest",
9238
- "name": "Omni Moderation Latest",
9384
+ "name": "omni-moderation",
9239
9385
  "provider": "openai",
9240
- "family": "moderation",
9241
- "created_at": "2024-11-15 17:47:45 +0100",
9386
+ "family": "omni-moderation-latest",
9387
+ "created_at": null,
9242
9388
  "context_window": null,
9243
9389
  "max_output_tokens": null,
9244
9390
  "knowledge_cutoff": null,
9245
9391
  "modalities": {
9246
9392
  "input": [
9247
- "text",
9248
9393
  "image",
9249
- "pdf"
9394
+ "text"
9250
9395
  ],
9251
9396
  "output": [
9252
- "text",
9253
- "moderation"
9397
+ "embeddings",
9398
+ "text"
9254
9399
  ]
9255
9400
  },
9256
9401
  "capabilities": [],
@@ -9262,10 +9407,10 @@
9262
9407
  },
9263
9408
  {
9264
9409
  "id": "text-embedding-3-large",
9265
- "name": "text-embedding- 3 Large",
9410
+ "name": "text-embedding-3-large",
9266
9411
  "provider": "openai",
9267
- "family": "embedding3_large",
9268
- "created_at": "2024-01-22 20:53:00 +0100",
9412
+ "family": "text-embedding-3-large",
9413
+ "created_at": null,
9269
9414
  "context_window": null,
9270
9415
  "max_output_tokens": null,
9271
9416
  "knowledge_cutoff": null,
@@ -9274,8 +9419,8 @@
9274
9419
  "text"
9275
9420
  ],
9276
9421
  "output": [
9277
- "text",
9278
- "embeddings"
9422
+ "embeddings",
9423
+ "text"
9279
9424
  ]
9280
9425
  },
9281
9426
  "capabilities": [
@@ -9284,12 +9429,18 @@
9284
9429
  "pricing": {
9285
9430
  "text_tokens": {
9286
9431
  "standard": {
9287
- "input_per_million": 0.13,
9288
- "output_per_million": 0.13
9432
+ "input_per_million": 0.13
9433
+ },
9434
+ "batch": {
9435
+ "input_per_million": 0.065
9436
+ }
9437
+ },
9438
+ "embeddings": {
9439
+ "standard": {
9440
+ "input_per_million": 0.13
9289
9441
  },
9290
9442
  "batch": {
9291
- "input_per_million": 0.065,
9292
- "output_per_million": 0.065
9443
+ "input_per_million": 0.065
9293
9444
  }
9294
9445
  }
9295
9446
  },
@@ -9344,10 +9495,10 @@
9344
9495
  },
9345
9496
  {
9346
9497
  "id": "text-embedding-ada-002",
9347
- "name": "text-embedding- Ada 002",
9498
+ "name": "text-embedding-ada-002",
9348
9499
  "provider": "openai",
9349
- "family": "embedding_ada",
9350
- "created_at": "2022-12-16 20:01:39 +0100",
9500
+ "family": "text-embedding-ada-002",
9501
+ "created_at": null,
9351
9502
  "context_window": null,
9352
9503
  "max_output_tokens": null,
9353
9504
  "knowledge_cutoff": null,
@@ -9356,8 +9507,8 @@
9356
9507
  "text"
9357
9508
  ],
9358
9509
  "output": [
9359
- "text",
9360
- "embeddings"
9510
+ "embeddings",
9511
+ "text"
9361
9512
  ]
9362
9513
  },
9363
9514
  "capabilities": [
@@ -9366,12 +9517,18 @@
9366
9517
  "pricing": {
9367
9518
  "text_tokens": {
9368
9519
  "standard": {
9369
- "input_per_million": 0.1,
9370
- "output_per_million": 0.1
9520
+ "input_per_million": 0.1
9371
9521
  },
9372
9522
  "batch": {
9373
- "input_per_million": 0.05,
9374
- "output_per_million": 0.05
9523
+ "input_per_million": 0.05
9524
+ }
9525
+ },
9526
+ "embeddings": {
9527
+ "standard": {
9528
+ "input_per_million": 0.1
9529
+ },
9530
+ "batch": {
9531
+ "input_per_million": 0.05
9375
9532
  }
9376
9533
  }
9377
9534
  },
@@ -9428,29 +9585,25 @@
9428
9585
  "id": "tts-1",
9429
9586
  "name": "TTS-1",
9430
9587
  "provider": "openai",
9431
- "family": "tts1",
9432
- "created_at": "2023-04-19 23:49:11 +0200",
9588
+ "family": "tts-1",
9589
+ "created_at": null,
9433
9590
  "context_window": null,
9434
9591
  "max_output_tokens": null,
9435
9592
  "knowledge_cutoff": null,
9436
9593
  "modalities": {
9437
9594
  "input": [
9438
- "text",
9439
- "audio"
9595
+ "text"
9440
9596
  ],
9441
9597
  "output": [
9442
- "text",
9443
- "audio"
9598
+ "audio",
9599
+ "embeddings"
9444
9600
  ]
9445
9601
  },
9446
- "capabilities": [
9447
- "streaming"
9448
- ],
9602
+ "capabilities": [],
9449
9603
  "pricing": {
9450
9604
  "text_tokens": {
9451
9605
  "standard": {
9452
- "input_per_million": 15.0,
9453
- "output_per_million": 15.0
9606
+ "input_per_million": 15.0
9454
9607
  }
9455
9608
  }
9456
9609
  },
@@ -10091,8 +10244,8 @@
10091
10244
  "pricing": {
10092
10245
  "text_tokens": {
10093
10246
  "standard": {
10094
- "input_per_million": 9.0,
10095
- "output_per_million": 11.0
10247
+ "input_per_million": 5.0,
10248
+ "output_per_million": 6.25
10096
10249
  }
10097
10250
  }
10098
10251
  },
@@ -10398,8 +10551,8 @@
10398
10551
  "pricing": {
10399
10552
  "text_tokens": {
10400
10553
  "standard": {
10401
- "input_per_million": 2.5,
10402
- "output_per_million": 3.0
10554
+ "input_per_million": 1.25,
10555
+ "output_per_million": 1.5
10403
10556
  }
10404
10557
  }
10405
10558
  },
@@ -10882,70 +11035,6 @@
10882
11035
  ]
10883
11036
  }
10884
11037
  },
10885
- {
10886
- "id": "anthropic/claude-3.7-sonnet:beta",
10887
- "name": "Anthropic: Claude 3.7 Sonnet (self-moderated)",
10888
- "provider": "openrouter",
10889
- "family": "anthropic",
10890
- "created_at": "2025-02-24 19:35:10 +0100",
10891
- "context_window": 200000,
10892
- "max_output_tokens": 128000,
10893
- "knowledge_cutoff": null,
10894
- "modalities": {
10895
- "input": [
10896
- "text",
10897
- "image",
10898
- "file"
10899
- ],
10900
- "output": [
10901
- "text"
10902
- ]
10903
- },
10904
- "capabilities": [
10905
- "streaming",
10906
- "function_calling"
10907
- ],
10908
- "pricing": {
10909
- "text_tokens": {
10910
- "standard": {
10911
- "input_per_million": 3.0,
10912
- "output_per_million": 15.0,
10913
- "cached_input_per_million": 0.3
10914
- }
10915
- }
10916
- },
10917
- "metadata": {
10918
- "description": "Claude 3.7 Sonnet is an advanced large language model with improved reasoning, coding, and problem-solving capabilities. It introduces a hybrid reasoning approach, allowing users to choose between rapid responses and extended, step-by-step processing for complex tasks. The model demonstrates notable improvements in coding, particularly in front-end development and full-stack updates, and excels in agentic workflows, where it can autonomously navigate multi-step processes. \n\nClaude 3.7 Sonnet maintains performance parity with its predecessor in standard mode while offering an extended reasoning mode for enhanced accuracy in math, coding, and instruction-following tasks.\n\nRead more at the [blog post here](https://www.anthropic.com/news/claude-3-7-sonnet)",
10919
- "architecture": {
10920
- "modality": "text+image->text",
10921
- "input_modalities": [
10922
- "text",
10923
- "image",
10924
- "file"
10925
- ],
10926
- "output_modalities": [
10927
- "text"
10928
- ],
10929
- "tokenizer": "Claude",
10930
- "instruct_type": null
10931
- },
10932
- "top_provider": {
10933
- "context_length": 200000,
10934
- "max_completion_tokens": 128000,
10935
- "is_moderated": false
10936
- },
10937
- "per_request_limits": null,
10938
- "supported_parameters": [
10939
- "include_reasoning",
10940
- "max_tokens",
10941
- "reasoning",
10942
- "stop",
10943
- "temperature",
10944
- "tool_choice",
10945
- "tools"
10946
- ]
10947
- }
10948
- },
10949
11038
  {
10950
11039
  "id": "anthropic/claude-3.7-sonnet:thinking",
10951
11040
  "name": "Anthropic: Claude 3.7 Sonnet (thinking)",
@@ -11537,7 +11626,194 @@
11537
11626
  "knowledge_cutoff": null,
11538
11627
  "modalities": {
11539
11628
  "input": [
11540
- "text"
11629
+ "text"
11630
+ ],
11631
+ "output": [
11632
+ "text"
11633
+ ]
11634
+ },
11635
+ "capabilities": [
11636
+ "streaming",
11637
+ "predicted_outputs"
11638
+ ],
11639
+ "pricing": {},
11640
+ "metadata": {
11641
+ "description": "QwQ-32B-ArliAI-RpR-v1 is a 32B parameter model fine-tuned from Qwen/QwQ-32B using a curated creative writing and roleplay dataset originally developed for the RPMax series. It is designed to maintain coherence and reasoning across long multi-turn conversations by introducing explicit reasoning steps per dialogue turn, generated and refined using the base model itself.\n\nThe model was trained using RS-QLORA+ on 8K sequence lengths and supports up to 128K context windows (with practical performance around 32K). It is optimized for creative roleplay and dialogue generation, with an emphasis on minimizing cross-context repetition while preserving stylistic diversity.",
11642
+ "architecture": {
11643
+ "modality": "text->text",
11644
+ "input_modalities": [
11645
+ "text"
11646
+ ],
11647
+ "output_modalities": [
11648
+ "text"
11649
+ ],
11650
+ "tokenizer": "Other",
11651
+ "instruct_type": "deepseek-r1"
11652
+ },
11653
+ "top_provider": {
11654
+ "context_length": 32768,
11655
+ "max_completion_tokens": null,
11656
+ "is_moderated": false
11657
+ },
11658
+ "per_request_limits": null,
11659
+ "supported_parameters": [
11660
+ "frequency_penalty",
11661
+ "include_reasoning",
11662
+ "logit_bias",
11663
+ "logprobs",
11664
+ "max_tokens",
11665
+ "min_p",
11666
+ "presence_penalty",
11667
+ "reasoning",
11668
+ "repetition_penalty",
11669
+ "seed",
11670
+ "stop",
11671
+ "temperature",
11672
+ "top_k",
11673
+ "top_logprobs",
11674
+ "top_p"
11675
+ ]
11676
+ }
11677
+ },
11678
+ {
11679
+ "id": "baidu/ernie-4.5-21b-a3b",
11680
+ "name": "Baidu: ERNIE 4.5 21B A3B",
11681
+ "provider": "openrouter",
11682
+ "family": "baidu",
11683
+ "created_at": "2025-08-12 23:29:27 +0200",
11684
+ "context_window": 120000,
11685
+ "max_output_tokens": 8000,
11686
+ "knowledge_cutoff": null,
11687
+ "modalities": {
11688
+ "input": [
11689
+ "text"
11690
+ ],
11691
+ "output": [
11692
+ "text"
11693
+ ]
11694
+ },
11695
+ "capabilities": [
11696
+ "streaming",
11697
+ "predicted_outputs"
11698
+ ],
11699
+ "pricing": {
11700
+ "text_tokens": {
11701
+ "standard": {
11702
+ "input_per_million": 0.07,
11703
+ "output_per_million": 0.28
11704
+ }
11705
+ }
11706
+ },
11707
+ "metadata": {
11708
+ "description": "A sophisticated text-based Mixture-of-Experts (MoE) model featuring 21B total parameters with 3B activated per token, delivering exceptional multimodal understanding and generation through heterogeneous MoE structures and modality-isolated routing. Supporting an extensive 131K token context length, the model achieves efficient inference via multi-expert parallel collaboration and quantization, while advanced post-training techniques including SFT, DPO, and UPO ensure optimized performance across diverse applications with specialized routing and balancing losses for superior task handling.",
11709
+ "architecture": {
11710
+ "modality": "text->text",
11711
+ "input_modalities": [
11712
+ "text"
11713
+ ],
11714
+ "output_modalities": [
11715
+ "text"
11716
+ ],
11717
+ "tokenizer": "Other",
11718
+ "instruct_type": null
11719
+ },
11720
+ "top_provider": {
11721
+ "context_length": 120000,
11722
+ "max_completion_tokens": 8000,
11723
+ "is_moderated": false
11724
+ },
11725
+ "per_request_limits": null,
11726
+ "supported_parameters": [
11727
+ "frequency_penalty",
11728
+ "logit_bias",
11729
+ "max_tokens",
11730
+ "min_p",
11731
+ "presence_penalty",
11732
+ "repetition_penalty",
11733
+ "seed",
11734
+ "stop",
11735
+ "temperature",
11736
+ "top_k",
11737
+ "top_p"
11738
+ ]
11739
+ }
11740
+ },
11741
+ {
11742
+ "id": "baidu/ernie-4.5-300b-a47b",
11743
+ "name": "Baidu: ERNIE 4.5 300B A47B ",
11744
+ "provider": "openrouter",
11745
+ "family": "baidu",
11746
+ "created_at": "2025-06-30 18:15:39 +0200",
11747
+ "context_window": 123000,
11748
+ "max_output_tokens": 12000,
11749
+ "knowledge_cutoff": null,
11750
+ "modalities": {
11751
+ "input": [
11752
+ "text"
11753
+ ],
11754
+ "output": [
11755
+ "text"
11756
+ ]
11757
+ },
11758
+ "capabilities": [
11759
+ "streaming",
11760
+ "predicted_outputs"
11761
+ ],
11762
+ "pricing": {
11763
+ "text_tokens": {
11764
+ "standard": {
11765
+ "input_per_million": 0.28,
11766
+ "output_per_million": 1.1
11767
+ }
11768
+ }
11769
+ },
11770
+ "metadata": {
11771
+ "description": "ERNIE-4.5-300B-A47B is a 300B parameter Mixture-of-Experts (MoE) language model developed by Baidu as part of the ERNIE 4.5 series. It activates 47B parameters per token and supports text generation in both English and Chinese. Optimized for high-throughput inference and efficient scaling, it uses a heterogeneous MoE structure with advanced routing and quantization strategies, including FP8 and 2-bit formats. This version is fine-tuned for language-only tasks and supports reasoning, tool parameters, and extended context lengths up to 131k tokens. Suitable for general-purpose LLM applications with high reasoning and throughput demands.",
11772
+ "architecture": {
11773
+ "modality": "text->text",
11774
+ "input_modalities": [
11775
+ "text"
11776
+ ],
11777
+ "output_modalities": [
11778
+ "text"
11779
+ ],
11780
+ "tokenizer": "Other",
11781
+ "instruct_type": null
11782
+ },
11783
+ "top_provider": {
11784
+ "context_length": 123000,
11785
+ "max_completion_tokens": 12000,
11786
+ "is_moderated": false
11787
+ },
11788
+ "per_request_limits": null,
11789
+ "supported_parameters": [
11790
+ "frequency_penalty",
11791
+ "logit_bias",
11792
+ "max_tokens",
11793
+ "min_p",
11794
+ "presence_penalty",
11795
+ "repetition_penalty",
11796
+ "seed",
11797
+ "stop",
11798
+ "temperature",
11799
+ "top_k",
11800
+ "top_p"
11801
+ ]
11802
+ }
11803
+ },
11804
+ {
11805
+ "id": "baidu/ernie-4.5-vl-28b-a3b",
11806
+ "name": "Baidu: ERNIE 4.5 VL 28B A3B",
11807
+ "provider": "openrouter",
11808
+ "family": "baidu",
11809
+ "created_at": "2025-08-12 23:07:16 +0200",
11810
+ "context_window": 30000,
11811
+ "max_output_tokens": 8000,
11812
+ "knowledge_cutoff": null,
11813
+ "modalities": {
11814
+ "input": [
11815
+ "text",
11816
+ "image"
11541
11817
  ],
11542
11818
  "output": [
11543
11819
  "text"
@@ -11547,23 +11823,31 @@
11547
11823
  "streaming",
11548
11824
  "predicted_outputs"
11549
11825
  ],
11550
- "pricing": {},
11826
+ "pricing": {
11827
+ "text_tokens": {
11828
+ "standard": {
11829
+ "input_per_million": 0.14,
11830
+ "output_per_million": 0.56
11831
+ }
11832
+ }
11833
+ },
11551
11834
  "metadata": {
11552
- "description": "QwQ-32B-ArliAI-RpR-v1 is a 32B parameter model fine-tuned from Qwen/QwQ-32B using a curated creative writing and roleplay dataset originally developed for the RPMax series. It is designed to maintain coherence and reasoning across long multi-turn conversations by introducing explicit reasoning steps per dialogue turn, generated and refined using the base model itself.\n\nThe model was trained using RS-QLORA+ on 8K sequence lengths and supports up to 128K context windows (with practical performance around 32K). It is optimized for creative roleplay and dialogue generation, with an emphasis on minimizing cross-context repetition while preserving stylistic diversity.",
11835
+ "description": "A powerful multimodal Mixture-of-Experts chat model featuring 28B total parameters with 3B activated per token, delivering exceptional text and vision understanding through its innovative heterogeneous MoE structure with modality-isolated routing. Built with scaling-efficient infrastructure for high-throughput training and inference, the model leverages advanced post-training techniques including SFT, DPO, and UPO for optimized performance, while supporting an impressive 131K context length and RLVR alignment for superior cross-modal reasoning and generation capabilities.",
11553
11836
  "architecture": {
11554
- "modality": "text->text",
11837
+ "modality": "text+image->text",
11555
11838
  "input_modalities": [
11556
- "text"
11839
+ "text",
11840
+ "image"
11557
11841
  ],
11558
11842
  "output_modalities": [
11559
11843
  "text"
11560
11844
  ],
11561
11845
  "tokenizer": "Other",
11562
- "instruct_type": "deepseek-r1"
11846
+ "instruct_type": null
11563
11847
  },
11564
11848
  "top_provider": {
11565
- "context_length": 32768,
11566
- "max_completion_tokens": null,
11849
+ "context_length": 30000,
11850
+ "max_completion_tokens": 8000,
11567
11851
  "is_moderated": false
11568
11852
  },
11569
11853
  "per_request_limits": null,
@@ -11571,7 +11855,6 @@
11571
11855
  "frequency_penalty",
11572
11856
  "include_reasoning",
11573
11857
  "logit_bias",
11574
- "logprobs",
11575
11858
  "max_tokens",
11576
11859
  "min_p",
11577
11860
  "presence_penalty",
@@ -11581,22 +11864,22 @@
11581
11864
  "stop",
11582
11865
  "temperature",
11583
11866
  "top_k",
11584
- "top_logprobs",
11585
11867
  "top_p"
11586
11868
  ]
11587
11869
  }
11588
11870
  },
11589
11871
  {
11590
- "id": "baidu/ernie-4.5-300b-a47b",
11591
- "name": "Baidu: ERNIE 4.5 300B A47B ",
11872
+ "id": "baidu/ernie-4.5-vl-424b-a47b",
11873
+ "name": "Baidu: ERNIE 4.5 VL 424B A47B ",
11592
11874
  "provider": "openrouter",
11593
11875
  "family": "baidu",
11594
- "created_at": "2025-06-30 18:15:39 +0200",
11876
+ "created_at": "2025-06-30 18:28:23 +0200",
11595
11877
  "context_window": 123000,
11596
- "max_output_tokens": 12000,
11878
+ "max_output_tokens": 16000,
11597
11879
  "knowledge_cutoff": null,
11598
11880
  "modalities": {
11599
11881
  "input": [
11882
+ "image",
11600
11883
  "text"
11601
11884
  ],
11602
11885
  "output": [
@@ -11610,16 +11893,17 @@
11610
11893
  "pricing": {
11611
11894
  "text_tokens": {
11612
11895
  "standard": {
11613
- "input_per_million": 0.28,
11614
- "output_per_million": 1.1
11896
+ "input_per_million": 0.42,
11897
+ "output_per_million": 1.25
11615
11898
  }
11616
11899
  }
11617
11900
  },
11618
11901
  "metadata": {
11619
- "description": "ERNIE-4.5-300B-A47B is a 300B parameter Mixture-of-Experts (MoE) language model developed by Baidu as part of the ERNIE 4.5 series. It activates 47B parameters per token and supports text generation in both English and Chinese. Optimized for high-throughput inference and efficient scaling, it uses a heterogeneous MoE structure with advanced routing and quantization strategies, including FP8 and 2-bit formats. This version is fine-tuned for language-only tasks and supports reasoning, tool parameters, and extended context lengths up to 131k tokens. Suitable for general-purpose LLM applications with high reasoning and throughput demands.",
11902
+ "description": "ERNIE-4.5-VL-424B-A47B is a multimodal Mixture-of-Experts (MoE) model from Baidu’s ERNIE 4.5 series, featuring 424B total parameters with 47B active per token. It is trained jointly on text and image data using a heterogeneous MoE architecture and modality-isolated routing to enable high-fidelity cross-modal reasoning, image understanding, and long-context generation (up to 131k tokens). Fine-tuned with techniques like SFT, DPO, UPO, and RLVR, this model supports both “thinking” and non-thinking inference modes. Designed for vision-language tasks in English and Chinese, it is optimized for efficient scaling and can operate under 4-bit/8-bit quantization.",
11620
11903
  "architecture": {
11621
- "modality": "text->text",
11904
+ "modality": "text+image->text",
11622
11905
  "input_modalities": [
11906
+ "image",
11623
11907
  "text"
11624
11908
  ],
11625
11909
  "output_modalities": [
@@ -11630,16 +11914,18 @@
11630
11914
  },
11631
11915
  "top_provider": {
11632
11916
  "context_length": 123000,
11633
- "max_completion_tokens": 12000,
11917
+ "max_completion_tokens": 16000,
11634
11918
  "is_moderated": false
11635
11919
  },
11636
11920
  "per_request_limits": null,
11637
11921
  "supported_parameters": [
11638
11922
  "frequency_penalty",
11923
+ "include_reasoning",
11639
11924
  "logit_bias",
11640
11925
  "max_tokens",
11641
11926
  "min_p",
11642
11927
  "presence_penalty",
11928
+ "reasoning",
11643
11929
  "repetition_penalty",
11644
11930
  "seed",
11645
11931
  "stop",
@@ -14068,7 +14354,8 @@
14068
14354
  "input": [
14069
14355
  "text",
14070
14356
  "image",
14071
- "file"
14357
+ "file",
14358
+ "audio"
14072
14359
  ],
14073
14360
  "output": [
14074
14361
  "text"
@@ -14094,7 +14381,8 @@
14094
14381
  "input_modalities": [
14095
14382
  "text",
14096
14383
  "image",
14097
- "file"
14384
+ "file",
14385
+ "audio"
14098
14386
  ],
14099
14387
  "output_modalities": [
14100
14388
  "text"
@@ -14254,6 +14542,7 @@
14254
14542
  "reasoning",
14255
14543
  "response_format",
14256
14544
  "seed",
14545
+ "stop",
14257
14546
  "structured_outputs",
14258
14547
  "temperature",
14259
14548
  "tool_choice",
@@ -14275,7 +14564,8 @@
14275
14564
  "input": [
14276
14565
  "file",
14277
14566
  "image",
14278
- "text"
14567
+ "text",
14568
+ "audio"
14279
14569
  ],
14280
14570
  "output": [
14281
14571
  "text"
@@ -14302,7 +14592,8 @@
14302
14592
  "input_modalities": [
14303
14593
  "file",
14304
14594
  "image",
14305
- "text"
14595
+ "text",
14596
+ "audio"
14306
14597
  ],
14307
14598
  "output_modalities": [
14308
14599
  "text"
@@ -14344,7 +14635,8 @@
14344
14635
  "input": [
14345
14636
  "file",
14346
14637
  "image",
14347
- "text"
14638
+ "text",
14639
+ "audio"
14348
14640
  ],
14349
14641
  "output": [
14350
14642
  "text"
@@ -14371,7 +14663,8 @@
14371
14663
  "input_modalities": [
14372
14664
  "file",
14373
14665
  "image",
14374
- "text"
14666
+ "text",
14667
+ "audio"
14375
14668
  ],
14376
14669
  "output_modalities": [
14377
14670
  "text"
@@ -14472,7 +14765,8 @@
14472
14765
  "input": [
14473
14766
  "file",
14474
14767
  "image",
14475
- "text"
14768
+ "text",
14769
+ "audio"
14476
14770
  ],
14477
14771
  "output": [
14478
14772
  "text"
@@ -14499,7 +14793,8 @@
14499
14793
  "input_modalities": [
14500
14794
  "file",
14501
14795
  "image",
14502
- "text"
14796
+ "text",
14797
+ "audio"
14503
14798
  ],
14504
14799
  "output_modalities": [
14505
14800
  "text"
@@ -14541,7 +14836,8 @@
14541
14836
  "input": [
14542
14837
  "text",
14543
14838
  "image",
14544
- "file"
14839
+ "file",
14840
+ "audio"
14545
14841
  ],
14546
14842
  "output": [
14547
14843
  "text"
@@ -14568,7 +14864,8 @@
14568
14864
  "input_modalities": [
14569
14865
  "text",
14570
14866
  "image",
14571
- "file"
14867
+ "file",
14868
+ "audio"
14572
14869
  ],
14573
14870
  "output_modalities": [
14574
14871
  "text"
@@ -15062,7 +15359,7 @@
15062
15359
  "provider": "openrouter",
15063
15360
  "family": "google",
15064
15361
  "created_at": "2025-03-13 22:50:25 +0100",
15065
- "context_window": 96000,
15362
+ "context_window": 32768,
15066
15363
  "max_output_tokens": 8192,
15067
15364
  "knowledge_cutoff": null,
15068
15365
  "modalities": {
@@ -15076,7 +15373,6 @@
15076
15373
  },
15077
15374
  "capabilities": [
15078
15375
  "streaming",
15079
- "structured_output",
15080
15376
  "predicted_outputs"
15081
15377
  ],
15082
15378
  "pricing": {},
@@ -15095,7 +15391,7 @@
15095
15391
  "instruct_type": "gemma"
15096
15392
  },
15097
15393
  "top_provider": {
15098
- "context_length": 96000,
15394
+ "context_length": 32768,
15099
15395
  "max_completion_tokens": 8192,
15100
15396
  "is_moderated": false
15101
15397
  },
@@ -15108,10 +15404,8 @@
15108
15404
  "min_p",
15109
15405
  "presence_penalty",
15110
15406
  "repetition_penalty",
15111
- "response_format",
15112
15407
  "seed",
15113
15408
  "stop",
15114
- "structured_outputs",
15115
15409
  "temperature",
15116
15410
  "top_k",
15117
15411
  "top_logprobs",
@@ -16122,8 +16416,8 @@
16122
16416
  "pricing": {
16123
16417
  "text_tokens": {
16124
16418
  "standard": {
16125
- "input_per_million": 1.5,
16126
- "output_per_million": 1.5
16419
+ "input_per_million": 0.75,
16420
+ "output_per_million": 0.75
16127
16421
  }
16128
16422
  }
16129
16423
  },
@@ -19020,68 +19314,6 @@
19020
19314
  ]
19021
19315
  }
19022
19316
  },
19023
- {
19024
- "id": "mistralai/mistral-7b-instruct-v0.2",
19025
- "name": "Mistral: Mistral 7B Instruct v0.2",
19026
- "provider": "openrouter",
19027
- "family": "mistralai",
19028
- "created_at": "2023-12-28 01:00:00 +0100",
19029
- "context_window": 32768,
19030
- "max_output_tokens": null,
19031
- "knowledge_cutoff": null,
19032
- "modalities": {
19033
- "input": [
19034
- "text"
19035
- ],
19036
- "output": [
19037
- "text"
19038
- ]
19039
- },
19040
- "capabilities": [
19041
- "streaming",
19042
- "predicted_outputs"
19043
- ],
19044
- "pricing": {
19045
- "text_tokens": {
19046
- "standard": {
19047
- "input_per_million": 0.19999999999999998,
19048
- "output_per_million": 0.19999999999999998
19049
- }
19050
- }
19051
- },
19052
- "metadata": {
19053
- "description": "A high-performing, industry-standard 7.3B parameter model, with optimizations for speed and context length.\n\nAn improved version of [Mistral 7B Instruct](/modelsmistralai/mistral-7b-instruct-v0.1), with the following changes:\n\n- 32k context window (vs 8k context in v0.1)\n- Rope-theta = 1e6\n- No Sliding-Window Attention",
19054
- "architecture": {
19055
- "modality": "text->text",
19056
- "input_modalities": [
19057
- "text"
19058
- ],
19059
- "output_modalities": [
19060
- "text"
19061
- ],
19062
- "tokenizer": "Mistral",
19063
- "instruct_type": "mistral"
19064
- },
19065
- "top_provider": {
19066
- "context_length": 32768,
19067
- "max_completion_tokens": null,
19068
- "is_moderated": false
19069
- },
19070
- "per_request_limits": null,
19071
- "supported_parameters": [
19072
- "frequency_penalty",
19073
- "logit_bias",
19074
- "max_tokens",
19075
- "min_p",
19076
- "presence_penalty",
19077
- "repetition_penalty",
19078
- "stop",
19079
- "temperature",
19080
- "top_k",
19081
- "top_p"
19082
- ]
19083
- }
19084
- },
19085
19317
  {
19086
19318
  "id": "mistralai/mistral-7b-instruct-v0.3",
19087
19319
  "name": "Mistral: Mistral 7B Instruct v0.3",
@@ -19474,7 +19706,7 @@
19474
19706
  "provider": "openrouter",
19475
19707
  "family": "mistralai",
19476
19708
  "created_at": "2025-08-13 16:33:59 +0200",
19477
- "context_window": 131072,
19709
+ "context_window": 262144,
19478
19710
  "max_output_tokens": null,
19479
19711
  "knowledge_cutoff": null,
19480
19712
  "modalities": {
@@ -19514,7 +19746,7 @@
19514
19746
  "instruct_type": null
19515
19747
  },
19516
19748
  "top_provider": {
19517
- "context_length": 131072,
19749
+ "context_length": 262144,
19518
19750
  "max_completion_tokens": null,
19519
19751
  "is_moderated": false
19520
19752
  },
@@ -20065,7 +20297,7 @@
20065
20297
  "provider": "openrouter",
20066
20298
  "family": "mistralai",
20067
20299
  "created_at": "2025-06-20 20:10:16 +0200",
20068
- "context_window": 131072,
20300
+ "context_window": 128000,
20069
20301
  "max_output_tokens": null,
20070
20302
  "knowledge_cutoff": null,
20071
20303
  "modalities": {
@@ -20086,8 +20318,8 @@
20086
20318
  "pricing": {
20087
20319
  "text_tokens": {
20088
20320
  "standard": {
20089
- "input_per_million": 0.01999188,
20090
- "output_per_million": 0.0800064
20321
+ "input_per_million": 0.049999999999999996,
20322
+ "output_per_million": 0.09999999999999999
20091
20323
  }
20092
20324
  }
20093
20325
  },
@@ -20106,7 +20338,7 @@
20106
20338
  "instruct_type": null
20107
20339
  },
20108
20340
  "top_provider": {
20109
- "context_length": 131072,
20341
+ "context_length": 128000,
20110
20342
  "max_completion_tokens": null,
20111
20343
  "is_moderated": false
20112
20344
  },
@@ -21035,8 +21267,8 @@
21035
21267
  "provider": "openrouter",
21036
21268
  "family": "neversleep",
21037
21269
  "created_at": "2024-09-15 02:00:00 +0200",
21038
- "context_window": 40000,
21039
- "max_output_tokens": 40000,
21270
+ "context_window": 32768,
21271
+ "max_output_tokens": 2048,
21040
21272
  "knowledge_cutoff": null,
21041
21273
  "modalities": {
21042
21274
  "input": [
@@ -21054,8 +21286,8 @@
21054
21286
  "pricing": {
21055
21287
  "text_tokens": {
21056
21288
  "standard": {
21057
- "input_per_million": 0.16999999999999998,
21058
- "output_per_million": 0.9900000000000001
21289
+ "input_per_million": 0.09999999999999999,
21290
+ "output_per_million": 0.625
21059
21291
  }
21060
21292
  }
21061
21293
  },
@@ -21073,8 +21305,8 @@
21073
21305
  "instruct_type": "llama3"
21074
21306
  },
21075
21307
  "top_provider": {
21076
- "context_length": 40000,
21077
- "max_completion_tokens": 40000,
21308
+ "context_length": 32768,
21309
+ "max_completion_tokens": 2048,
21078
21310
  "is_moderated": false
21079
21311
  },
21080
21312
  "per_request_limits": null,
@@ -21102,8 +21334,8 @@
21102
21334
  "provider": "openrouter",
21103
21335
  "family": "neversleep",
21104
21336
  "created_at": "2023-11-26 01:00:00 +0100",
21105
- "context_window": 4096,
21106
- "max_output_tokens": null,
21337
+ "context_window": 8192,
21338
+ "max_output_tokens": 2048,
21107
21339
  "knowledge_cutoff": null,
21108
21340
  "modalities": {
21109
21341
  "input": [
@@ -21121,8 +21353,8 @@
21121
21353
  "pricing": {
21122
21354
  "text_tokens": {
21123
21355
  "standard": {
21124
- "input_per_million": 1.0,
21125
- "output_per_million": 1.75
21356
+ "input_per_million": 0.625,
21357
+ "output_per_million": 1.0
21126
21358
  }
21127
21359
  }
21128
21360
  },
@@ -21140,8 +21372,8 @@
21140
21372
  "instruct_type": "alpaca"
21141
21373
  },
21142
21374
  "top_provider": {
21143
- "context_length": 4096,
21144
- "max_completion_tokens": null,
21375
+ "context_length": 8192,
21376
+ "max_completion_tokens": 2048,
21145
21377
  "is_moderated": false
21146
21378
  },
21147
21379
  "per_request_limits": null,
@@ -23650,8 +23882,8 @@
23650
23882
  "provider": "openrouter",
23651
23883
  "family": "openai",
23652
23884
  "created_at": "2025-08-05 19:17:11 +0200",
23653
- "context_window": 131072,
23654
- "max_output_tokens": null,
23885
+ "context_window": 131000,
23886
+ "max_output_tokens": 131000,
23655
23887
  "knowledge_cutoff": null,
23656
23888
  "modalities": {
23657
23889
  "input": [
@@ -23670,8 +23902,8 @@
23670
23902
  "pricing": {
23671
23903
  "text_tokens": {
23672
23904
  "standard": {
23673
- "input_per_million": 0.07256312,
23674
- "output_per_million": 0.2903936
23905
+ "input_per_million": 0.072,
23906
+ "output_per_million": 0.28
23675
23907
  }
23676
23908
  }
23677
23909
  },
@@ -23689,8 +23921,8 @@
23689
23921
  "instruct_type": null
23690
23922
  },
23691
23923
  "top_provider": {
23692
- "context_length": 131072,
23693
- "max_completion_tokens": null,
23924
+ "context_length": 131000,
23925
+ "max_completion_tokens": 131000,
23694
23926
  "is_moderated": false
23695
23927
  },
23696
23928
  "per_request_limits": null,
@@ -23723,8 +23955,8 @@
23723
23955
  "provider": "openrouter",
23724
23956
  "family": "openai",
23725
23957
  "created_at": "2025-08-05 19:17:09 +0200",
23726
- "context_window": 131072,
23727
- "max_output_tokens": null,
23958
+ "context_window": 131000,
23959
+ "max_output_tokens": 131000,
23728
23960
  "knowledge_cutoff": null,
23729
23961
  "modalities": {
23730
23962
  "input": [
@@ -23744,7 +23976,7 @@
23744
23976
  "text_tokens": {
23745
23977
  "standard": {
23746
23978
  "input_per_million": 0.04,
23747
- "output_per_million": 0.16
23979
+ "output_per_million": 0.15
23748
23980
  }
23749
23981
  }
23750
23982
  },
@@ -23762,8 +23994,8 @@
23762
23994
  "instruct_type": null
23763
23995
  },
23764
23996
  "top_provider": {
23765
- "context_length": 131072,
23766
- "max_completion_tokens": null,
23997
+ "context_length": 131000,
23998
+ "max_completion_tokens": 131000,
23767
23999
  "is_moderated": false
23768
24000
  },
23769
24001
  "per_request_limits": null,
@@ -28385,69 +28617,6 @@
28385
28617
  ]
28386
28618
  }
28387
28619
  },
28388
- {
28389
- "id": "thedrummer/valkyrie-49b-v1",
28390
- "name": "TheDrummer: Valkyrie 49B V1",
28391
- "provider": "openrouter",
28392
- "family": "thedrummer",
28393
- "created_at": "2025-05-23 19:51:10 +0200",
28394
- "context_window": 131072,
28395
- "max_output_tokens": 131072,
28396
- "knowledge_cutoff": null,
28397
- "modalities": {
28398
- "input": [
28399
- "text"
28400
- ],
28401
- "output": [
28402
- "text"
28403
- ]
28404
- },
28405
- "capabilities": [
28406
- "streaming"
28407
- ],
28408
- "pricing": {
28409
- "text_tokens": {
28410
- "standard": {
28411
- "input_per_million": 0.65,
28412
- "output_per_million": 1.0
28413
- }
28414
- }
28415
- },
28416
- "metadata": {
28417
- "description": "Built on top of NVIDIA's Llama 3.3 Nemotron Super 49B, Valkyrie is TheDrummer's newest model drop for creative writing.",
28418
- "architecture": {
28419
- "modality": "text->text",
28420
- "input_modalities": [
28421
- "text"
28422
- ],
28423
- "output_modalities": [
28424
- "text"
28425
- ],
28426
- "tokenizer": "Other",
28427
- "instruct_type": null
28428
- },
28429
- "top_provider": {
28430
- "context_length": 131072,
28431
- "max_completion_tokens": 131072,
28432
- "is_moderated": false
28433
- },
28434
- "per_request_limits": null,
28435
- "supported_parameters": [
28436
- "frequency_penalty",
28437
- "include_reasoning",
28438
- "max_tokens",
28439
- "min_p",
28440
- "presence_penalty",
28441
- "reasoning",
28442
- "repetition_penalty",
28443
- "seed",
28444
- "stop",
28445
- "temperature",
28446
- "top_k",
28447
- "top_p"
28448
- ]
28449
- }
28450
- },
28451
28620
  {
28452
28621
  "id": "thudm/glm-4-32b",
28453
28622
  "name": "THUDM: GLM 4 32B",
@@ -28839,7 +29008,7 @@
28839
29008
  "family": "undi95",
28840
29009
  "created_at": "2023-07-22 02:00:00 +0200",
28841
29010
  "context_window": 6144,
28842
- "max_output_tokens": null,
29011
+ "max_output_tokens": 1024,
28843
29012
  "knowledge_cutoff": null,
28844
29013
  "modalities": {
28845
29014
  "input": [
@@ -28857,8 +29026,8 @@
28857
29026
  "pricing": {
28858
29027
  "text_tokens": {
28859
29028
  "standard": {
28860
- "input_per_million": 0.7,
28861
- "output_per_million": 1.0
29029
+ "input_per_million": 0.5,
29030
+ "output_per_million": 0.75
28862
29031
  }
28863
29032
  }
28864
29033
  },
@@ -28877,7 +29046,7 @@
28877
29046
  },
28878
29047
  "top_provider": {
28879
29048
  "context_length": 6144,
28880
- "max_completion_tokens": null,
29049
+ "max_completion_tokens": 1024,
28881
29050
  "is_moderated": false
28882
29051
  },
28883
29052
  "per_request_limits": null,
@@ -29489,7 +29658,7 @@
29489
29658
  "provider": "openrouter",
29490
29659
  "family": "z-ai",
29491
29660
  "created_at": "2025-07-25 21:22:27 +0200",
29492
- "context_window": 98304,
29661
+ "context_window": 131072,
29493
29662
  "max_output_tokens": null,
29494
29663
  "knowledge_cutoff": null,
29495
29664
  "modalities": {
@@ -29528,7 +29697,7 @@
29528
29697
  "instruct_type": null
29529
29698
  },
29530
29699
  "top_provider": {
29531
- "context_length": 98304,
29700
+ "context_length": 131072,
29532
29701
  "max_completion_tokens": null,
29533
29702
  "is_moderated": false
29534
29703
  },
@@ -29709,13 +29878,14 @@
29709
29878
  "capabilities": [
29710
29879
  "streaming",
29711
29880
  "function_calling",
29881
+ "structured_output",
29712
29882
  "predicted_outputs"
29713
29883
  ],
29714
29884
  "pricing": {
29715
29885
  "text_tokens": {
29716
29886
  "standard": {
29717
29887
  "input_per_million": 0.5,
29718
- "output_per_million": 1.7999999999999998
29888
+ "output_per_million": 1.7
29719
29889
  }
29720
29890
  }
29721
29891
  },
@@ -29748,6 +29918,7 @@
29748
29918
  "presence_penalty",
29749
29919
  "reasoning",
29750
29920
  "repetition_penalty",
29921
+ "response_format",
29751
29922
  "seed",
29752
29923
  "stop",
29753
29924
  "temperature",
@@ -29763,7 +29934,7 @@
29763
29934
  "name": "Sonar",
29764
29935
  "provider": "perplexity",
29765
29936
  "family": "sonar",
29766
- "created_at": "2025-08-14 00:27:27 +0200",
29937
+ "created_at": "2025-08-19 12:48:52 +0200",
29767
29938
  "context_window": 128000,
29768
29939
  "max_output_tokens": 4096,
29769
29940
  "knowledge_cutoff": null,
@@ -29795,7 +29966,7 @@
29795
29966
  "name": "Sonar Deep Research",
29796
29967
  "provider": "perplexity",
29797
29968
  "family": "sonar_deep_research",
29798
- "created_at": "2025-08-14 00:27:27 +0200",
29969
+ "created_at": "2025-08-19 12:48:52 +0200",
29799
29970
  "context_window": 128000,
29800
29971
  "max_output_tokens": 4096,
29801
29972
  "knowledge_cutoff": null,
@@ -29830,7 +30001,7 @@
29830
30001
  "name": "Sonar Pro",
29831
30002
  "provider": "perplexity",
29832
30003
  "family": "sonar_pro",
29833
- "created_at": "2025-08-14 00:27:27 +0200",
30004
+ "created_at": "2025-08-19 12:48:52 +0200",
29834
30005
  "context_window": 200000,
29835
30006
  "max_output_tokens": 8192,
29836
30007
  "knowledge_cutoff": null,
@@ -29862,7 +30033,7 @@
29862
30033
  "name": "Sonar Reasoning",
29863
30034
  "provider": "perplexity",
29864
30035
  "family": "sonar_reasoning",
29865
- "created_at": "2025-08-14 00:27:27 +0200",
30036
+ "created_at": "2025-08-19 12:48:52 +0200",
29866
30037
  "context_window": 128000,
29867
30038
  "max_output_tokens": 4096,
29868
30039
  "knowledge_cutoff": null,
@@ -29894,7 +30065,7 @@
29894
30065
  "name": "Sonar Reasoning Pro",
29895
30066
  "provider": "perplexity",
29896
30067
  "family": "sonar_reasoning_pro",
29897
- "created_at": "2025-08-14 00:27:27 +0200",
30068
+ "created_at": "2025-08-19 12:48:52 +0200",
29898
30069
  "context_window": 128000,
29899
30070
  "max_output_tokens": 8192,
29900
30071
  "knowledge_cutoff": null,