ruby_llm 1.6.0 → 1.6.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,7 +3,7 @@
3
3
  "id": "claude-3-5-haiku-20241022",
4
4
  "name": "Claude Haiku 3.5",
5
5
  "provider": "anthropic",
6
- "family": "claude-haiku-3-5",
6
+ "family": "claude-3-5-haiku",
7
7
  "created_at": null,
8
8
  "context_window": 200000,
9
9
  "max_output_tokens": 8192,
@@ -35,7 +35,7 @@
35
35
  "id": "claude-3-5-sonnet-20240620",
36
36
  "name": "Claude Sonnet 3.5",
37
37
  "provider": "anthropic",
38
- "family": "claude-sonnet-3-5",
38
+ "family": "claude-3-5-sonnet",
39
39
  "created_at": null,
40
40
  "context_window": 200000,
41
41
  "max_output_tokens": 8192,
@@ -67,7 +67,7 @@
67
67
  "id": "claude-3-5-sonnet-20241022",
68
68
  "name": "Claude Sonnet 3.5",
69
69
  "provider": "anthropic",
70
- "family": "claude-sonnet-3-5",
70
+ "family": "claude-3-5-sonnet",
71
71
  "created_at": null,
72
72
  "context_window": 200000,
73
73
  "max_output_tokens": 8192,
@@ -99,7 +99,7 @@
99
99
  "id": "claude-3-7-sonnet-20250219",
100
100
  "name": "Claude Sonnet 3.7",
101
101
  "provider": "anthropic",
102
- "family": "claude-sonnet-3-7",
102
+ "family": "claude-3-7-sonnet",
103
103
  "created_at": null,
104
104
  "context_window": 200000,
105
105
  "max_output_tokens": 64000,
@@ -131,7 +131,7 @@
131
131
  "id": "claude-3-haiku-20240307",
132
132
  "name": "Claude Haiku 3",
133
133
  "provider": "anthropic",
134
- "family": "claude-haiku-3",
134
+ "family": "claude-3-haiku",
135
135
  "created_at": null,
136
136
  "context_window": 200000,
137
137
  "max_output_tokens": 4096,
@@ -5202,6 +5202,37 @@
5202
5202
  "owned_by": "mistralai"
5203
5203
  }
5204
5204
  },
5205
+ {
5206
+ "id": "mistral-medium-2508",
5207
+ "name": "Mistral Medium",
5208
+ "provider": "mistral",
5209
+ "family": "mistral-medium",
5210
+ "created_at": null,
5211
+ "context_window": 32768,
5212
+ "max_output_tokens": 8192,
5213
+ "knowledge_cutoff": null,
5214
+ "modalities": {
5215
+ "input": [
5216
+ "text"
5217
+ ],
5218
+ "output": [
5219
+ "text"
5220
+ ]
5221
+ },
5222
+ "capabilities": [
5223
+ "streaming",
5224
+ "function_calling",
5225
+ "structured_output",
5226
+ "vision",
5227
+ "batch",
5228
+ "fine_tuning"
5229
+ ],
5230
+ "pricing": {},
5231
+ "metadata": {
5232
+ "object": "model",
5233
+ "owned_by": "mistralai"
5234
+ }
5235
+ },
5205
5236
  {
5206
5237
  "id": "mistral-medium-latest",
5207
5238
  "name": "Mistral Medium",
@@ -6669,31 +6700,29 @@
6669
6700
  "id": "gpt-4",
6670
6701
  "name": "GPT-4",
6671
6702
  "provider": "openai",
6672
- "family": "gpt-4",
6673
- "created_at": null,
6703
+ "family": "gpt4",
6704
+ "created_at": "2023-06-27 18:13:31 +0200",
6674
6705
  "context_window": 8192,
6675
6706
  "max_output_tokens": 8192,
6676
6707
  "knowledge_cutoff": null,
6677
6708
  "modalities": {
6678
6709
  "input": [
6679
- "text"
6710
+ "text",
6711
+ "image",
6712
+ "pdf"
6680
6713
  ],
6681
6714
  "output": [
6682
- "embeddings",
6683
6715
  "text"
6684
6716
  ]
6685
6717
  },
6686
6718
  "capabilities": [
6687
- "batch"
6719
+ "streaming",
6720
+ "function_calling"
6688
6721
  ],
6689
6722
  "pricing": {
6690
6723
  "text_tokens": {
6691
6724
  "standard": {
6692
- "input_per_million": 30.0,
6693
- "output_per_million": 60.0
6694
- },
6695
- "batch": {
6696
- "input_per_million": 15.0,
6725
+ "input_per_million": 10.0,
6697
6726
  "output_per_million": 30.0
6698
6727
  }
6699
6728
  }
@@ -6738,34 +6767,29 @@
6738
6767
  },
6739
6768
  {
6740
6769
  "id": "gpt-4-0613",
6741
- "name": "GPT-4",
6770
+ "name": "GPT-4 0613",
6742
6771
  "provider": "openai",
6743
- "family": "gpt-4",
6744
- "created_at": null,
6745
- "context_window": 8192,
6746
- "max_output_tokens": 8192,
6772
+ "family": "other",
6773
+ "created_at": "2023-06-12 18:54:56 +0200",
6774
+ "context_window": 4096,
6775
+ "max_output_tokens": 16384,
6747
6776
  "knowledge_cutoff": null,
6748
6777
  "modalities": {
6749
6778
  "input": [
6750
6779
  "text"
6751
6780
  ],
6752
6781
  "output": [
6753
- "embeddings",
6754
6782
  "text"
6755
6783
  ]
6756
6784
  },
6757
6785
  "capabilities": [
6758
- "batch"
6786
+ "streaming"
6759
6787
  ],
6760
6788
  "pricing": {
6761
6789
  "text_tokens": {
6762
6790
  "standard": {
6763
- "input_per_million": 30.0,
6764
- "output_per_million": 60.0
6765
- },
6766
- "batch": {
6767
- "input_per_million": 15.0,
6768
- "output_per_million": 30.0
6791
+ "input_per_million": 0.5,
6792
+ "output_per_million": 1.5
6769
6793
  }
6770
6794
  }
6771
6795
  },
@@ -6891,21 +6915,25 @@
6891
6915
  "id": "gpt-4-turbo-preview",
6892
6916
  "name": "GPT-4 Turbo Preview",
6893
6917
  "provider": "openai",
6894
- "family": "gpt-4-turbo-preview",
6895
- "created_at": null,
6918
+ "family": "gpt4_turbo",
6919
+ "created_at": "2024-01-23 20:22:57 +0100",
6896
6920
  "context_window": 128000,
6897
6921
  "max_output_tokens": 4096,
6898
6922
  "knowledge_cutoff": null,
6899
6923
  "modalities": {
6900
6924
  "input": [
6901
- "text"
6925
+ "text",
6926
+ "image",
6927
+ "pdf"
6902
6928
  ],
6903
6929
  "output": [
6904
- "embeddings",
6905
6930
  "text"
6906
6931
  ]
6907
6932
  },
6908
- "capabilities": [],
6933
+ "capabilities": [
6934
+ "streaming",
6935
+ "function_calling"
6936
+ ],
6909
6937
  "pricing": {
6910
6938
  "text_tokens": {
6911
6939
  "standard": {
@@ -6923,23 +6951,23 @@
6923
6951
  "id": "gpt-4.1",
6924
6952
  "name": "GPT-4.1",
6925
6953
  "provider": "openai",
6926
- "family": "gpt-4.1",
6927
- "created_at": null,
6954
+ "family": "gpt41",
6955
+ "created_at": "2025-04-10 22:22:22 +0200",
6928
6956
  "context_window": 1047576,
6929
6957
  "max_output_tokens": 32768,
6930
6958
  "knowledge_cutoff": null,
6931
6959
  "modalities": {
6932
6960
  "input": [
6961
+ "text",
6933
6962
  "image",
6934
- "text"
6963
+ "pdf"
6935
6964
  ],
6936
6965
  "output": [
6937
- "embeddings",
6938
6966
  "text"
6939
6967
  ]
6940
6968
  },
6941
6969
  "capabilities": [
6942
- "batch",
6970
+ "streaming",
6943
6971
  "function_calling",
6944
6972
  "structured_output"
6945
6973
  ],
@@ -6947,12 +6975,8 @@
6947
6975
  "text_tokens": {
6948
6976
  "standard": {
6949
6977
  "input_per_million": 2.0,
6950
- "cached_input_per_million": 0.5,
6951
- "output_per_million": 8.0
6952
- },
6953
- "batch": {
6954
- "input_per_million": 1.0,
6955
- "output_per_million": 4.0
6978
+ "output_per_million": 8.0,
6979
+ "cached_input_per_million": 0.5
6956
6980
  }
6957
6981
  }
6958
6982
  },
@@ -6963,25 +6987,25 @@
6963
6987
  },
6964
6988
  {
6965
6989
  "id": "gpt-4.1-2025-04-14",
6966
- "name": "GPT-4.1",
6990
+ "name": "GPT-4.1 20250414",
6967
6991
  "provider": "openai",
6968
- "family": "gpt-4.1",
6969
- "created_at": null,
6992
+ "family": "gpt41",
6993
+ "created_at": "2025-04-10 22:09:06 +0200",
6970
6994
  "context_window": 1047576,
6971
6995
  "max_output_tokens": 32768,
6972
6996
  "knowledge_cutoff": null,
6973
6997
  "modalities": {
6974
6998
  "input": [
6999
+ "text",
6975
7000
  "image",
6976
- "text"
7001
+ "pdf"
6977
7002
  ],
6978
7003
  "output": [
6979
- "embeddings",
6980
7004
  "text"
6981
7005
  ]
6982
7006
  },
6983
7007
  "capabilities": [
6984
- "batch",
7008
+ "streaming",
6985
7009
  "function_calling",
6986
7010
  "structured_output"
6987
7011
  ],
@@ -6989,12 +7013,8 @@
6989
7013
  "text_tokens": {
6990
7014
  "standard": {
6991
7015
  "input_per_million": 2.0,
6992
- "cached_input_per_million": 0.5,
6993
- "output_per_million": 8.0
6994
- },
6995
- "batch": {
6996
- "input_per_million": 1.0,
6997
- "output_per_million": 4.0
7016
+ "output_per_million": 8.0,
7017
+ "cached_input_per_million": 0.5
6998
7018
  }
6999
7019
  }
7000
7020
  },
@@ -8244,8 +8264,8 @@
8244
8264
  "provider": "openai",
8245
8265
  "family": "gpt-5-chat-latest",
8246
8266
  "created_at": null,
8247
- "context_window": 400000,
8248
- "max_output_tokens": 128000,
8267
+ "context_window": 128000,
8268
+ "max_output_tokens": 16384,
8249
8269
  "knowledge_cutoff": null,
8250
8270
  "modalities": {
8251
8271
  "input": [
@@ -8257,7 +8277,9 @@
8257
8277
  "text"
8258
8278
  ]
8259
8279
  },
8260
- "capabilities": [],
8280
+ "capabilities": [
8281
+ "structured_output"
8282
+ ],
8261
8283
  "pricing": {
8262
8284
  "text_tokens": {
8263
8285
  "standard": {
@@ -8274,38 +8296,30 @@
8274
8296
  },
8275
8297
  {
8276
8298
  "id": "gpt-5-mini",
8277
- "name": "GPT-5 mini",
8299
+ "name": "GPT-5 Mini",
8278
8300
  "provider": "openai",
8279
- "family": "gpt-5-mini",
8280
- "created_at": null,
8281
- "context_window": 400000,
8282
- "max_output_tokens": 128000,
8301
+ "family": "other",
8302
+ "created_at": "2025-08-05 22:32:08 +0200",
8303
+ "context_window": 4096,
8304
+ "max_output_tokens": 16384,
8283
8305
  "knowledge_cutoff": null,
8284
8306
  "modalities": {
8285
8307
  "input": [
8286
- "image",
8287
8308
  "text"
8288
8309
  ],
8289
8310
  "output": [
8290
- "embeddings",
8291
8311
  "text"
8292
8312
  ]
8293
8313
  },
8294
8314
  "capabilities": [
8295
- "batch",
8296
- "function_calling",
8297
- "structured_output"
8315
+ "streaming",
8316
+ "reasoning"
8298
8317
  ],
8299
8318
  "pricing": {
8300
8319
  "text_tokens": {
8301
8320
  "standard": {
8302
- "input_per_million": 0.25,
8303
- "cached_input_per_million": 0.025,
8304
- "output_per_million": 2.0
8305
- },
8306
- "batch": {
8307
- "input_per_million": 0.125,
8308
- "output_per_million": 1.0
8321
+ "input_per_million": 0.5,
8322
+ "output_per_million": 1.5
8309
8323
  }
8310
8324
  }
8311
8325
  },
@@ -8316,38 +8330,30 @@
8316
8330
  },
8317
8331
  {
8318
8332
  "id": "gpt-5-mini-2025-08-07",
8319
- "name": "GPT-5 mini",
8333
+ "name": "GPT-5 Mini 20250807",
8320
8334
  "provider": "openai",
8321
- "family": "gpt-5-mini",
8322
- "created_at": null,
8323
- "context_window": 400000,
8324
- "max_output_tokens": 128000,
8335
+ "family": "other",
8336
+ "created_at": "2025-08-05 22:31:07 +0200",
8337
+ "context_window": 4096,
8338
+ "max_output_tokens": 16384,
8325
8339
  "knowledge_cutoff": null,
8326
8340
  "modalities": {
8327
8341
  "input": [
8328
- "image",
8329
8342
  "text"
8330
8343
  ],
8331
8344
  "output": [
8332
- "embeddings",
8333
8345
  "text"
8334
8346
  ]
8335
8347
  },
8336
8348
  "capabilities": [
8337
- "batch",
8338
- "function_calling",
8339
- "structured_output"
8349
+ "streaming",
8350
+ "reasoning"
8340
8351
  ],
8341
8352
  "pricing": {
8342
8353
  "text_tokens": {
8343
8354
  "standard": {
8344
- "input_per_million": 0.25,
8345
- "cached_input_per_million": 0.025,
8346
- "output_per_million": 2.0
8347
- },
8348
- "batch": {
8349
- "input_per_million": 0.125,
8350
- "output_per_million": 1.0
8355
+ "input_per_million": 0.5,
8356
+ "output_per_million": 1.5
8351
8357
  }
8352
8358
  }
8353
8359
  },
@@ -8358,38 +8364,30 @@
8358
8364
  },
8359
8365
  {
8360
8366
  "id": "gpt-5-nano",
8361
- "name": "GPT-5 nano",
8367
+ "name": "GPT-5 Nano",
8362
8368
  "provider": "openai",
8363
- "family": "gpt-5-nano",
8364
- "created_at": null,
8365
- "context_window": 400000,
8366
- "max_output_tokens": 128000,
8369
+ "family": "other",
8370
+ "created_at": "2025-08-05 22:39:44 +0200",
8371
+ "context_window": 4096,
8372
+ "max_output_tokens": 16384,
8367
8373
  "knowledge_cutoff": null,
8368
8374
  "modalities": {
8369
8375
  "input": [
8370
- "image",
8371
8376
  "text"
8372
8377
  ],
8373
8378
  "output": [
8374
- "embeddings",
8375
8379
  "text"
8376
8380
  ]
8377
8381
  },
8378
8382
  "capabilities": [
8379
- "batch",
8380
- "function_calling",
8381
- "structured_output"
8383
+ "streaming",
8384
+ "reasoning"
8382
8385
  ],
8383
8386
  "pricing": {
8384
8387
  "text_tokens": {
8385
8388
  "standard": {
8386
- "input_per_million": 0.05,
8387
- "cached_input_per_million": 0.005,
8388
- "output_per_million": 0.4
8389
- },
8390
- "batch": {
8391
- "input_per_million": 0.025,
8392
- "output_per_million": 0.2
8389
+ "input_per_million": 0.5,
8390
+ "output_per_million": 1.5
8393
8391
  }
8394
8392
  }
8395
8393
  },
@@ -8400,38 +8398,30 @@
8400
8398
  },
8401
8399
  {
8402
8400
  "id": "gpt-5-nano-2025-08-07",
8403
- "name": "GPT-5 nano",
8401
+ "name": "GPT-5 Nano 20250807",
8404
8402
  "provider": "openai",
8405
- "family": "gpt-5-nano",
8406
- "created_at": null,
8407
- "context_window": 400000,
8408
- "max_output_tokens": 128000,
8403
+ "family": "other",
8404
+ "created_at": "2025-08-05 22:38:23 +0200",
8405
+ "context_window": 4096,
8406
+ "max_output_tokens": 16384,
8409
8407
  "knowledge_cutoff": null,
8410
8408
  "modalities": {
8411
8409
  "input": [
8412
- "image",
8413
8410
  "text"
8414
8411
  ],
8415
8412
  "output": [
8416
- "embeddings",
8417
8413
  "text"
8418
8414
  ]
8419
8415
  },
8420
8416
  "capabilities": [
8421
- "batch",
8422
- "function_calling",
8423
- "structured_output"
8417
+ "streaming",
8418
+ "reasoning"
8424
8419
  ],
8425
8420
  "pricing": {
8426
8421
  "text_tokens": {
8427
8422
  "standard": {
8428
- "input_per_million": 0.05,
8429
- "cached_input_per_million": 0.005,
8430
- "output_per_million": 0.4
8431
- },
8432
- "batch": {
8433
- "input_per_million": 0.025,
8434
- "output_per_million": 0.2
8423
+ "input_per_million": 0.5,
8424
+ "output_per_million": 1.5
8435
8425
  }
8436
8426
  }
8437
8427
  },
@@ -8500,66 +8490,36 @@
8500
8490
  "pricing": {},
8501
8491
  "metadata": {}
8502
8492
  },
8503
- {
8504
- "id": "gpt-oss-20b",
8505
- "name": "gpt-oss-20b",
8506
- "provider": "openai",
8507
- "family": "gpt-oss-20b",
8508
- "created_at": null,
8509
- "context_window": 131072,
8510
- "max_output_tokens": 131072,
8511
- "knowledge_cutoff": null,
8512
- "modalities": {
8513
- "input": [
8514
- "text"
8515
- ],
8516
- "output": [
8517
- "embeddings",
8518
- "text"
8519
- ]
8520
- },
8521
- "capabilities": [
8522
- "batch",
8523
- "function_calling",
8524
- "structured_output"
8525
- ],
8526
- "pricing": {},
8527
- "metadata": {}
8528
- },
8529
8493
  {
8530
8494
  "id": "o1",
8531
- "name": "o1",
8495
+ "name": "O1",
8532
8496
  "provider": "openai",
8533
8497
  "family": "o1",
8534
- "created_at": null,
8498
+ "created_at": "2024-12-16 20:03:36 +0100",
8535
8499
  "context_window": 200000,
8536
8500
  "max_output_tokens": 100000,
8537
8501
  "knowledge_cutoff": null,
8538
8502
  "modalities": {
8539
8503
  "input": [
8504
+ "text",
8540
8505
  "image",
8541
- "text"
8506
+ "pdf"
8542
8507
  ],
8543
8508
  "output": [
8544
- "embeddings",
8545
8509
  "text"
8546
8510
  ]
8547
8511
  },
8548
8512
  "capabilities": [
8549
- "batch",
8513
+ "streaming",
8550
8514
  "function_calling",
8551
- "structured_output"
8515
+ "structured_output",
8516
+ "reasoning"
8552
8517
  ],
8553
8518
  "pricing": {
8554
8519
  "text_tokens": {
8555
8520
  "standard": {
8556
8521
  "input_per_million": 15.0,
8557
- "cached_input_per_million": 7.5,
8558
8522
  "output_per_million": 60.0
8559
- },
8560
- "batch": {
8561
- "input_per_million": 7.5,
8562
- "output_per_million": 30.0
8563
8523
  }
8564
8524
  }
8565
8525
  },
@@ -8570,38 +8530,34 @@
8570
8530
  },
8571
8531
  {
8572
8532
  "id": "o1-2024-12-17",
8573
- "name": "o1",
8533
+ "name": "O1-20241217",
8574
8534
  "provider": "openai",
8575
8535
  "family": "o1",
8576
- "created_at": null,
8536
+ "created_at": "2024-12-16 06:29:36 +0100",
8577
8537
  "context_window": 200000,
8578
8538
  "max_output_tokens": 100000,
8579
8539
  "knowledge_cutoff": null,
8580
8540
  "modalities": {
8581
8541
  "input": [
8542
+ "text",
8582
8543
  "image",
8583
- "text"
8544
+ "pdf"
8584
8545
  ],
8585
8546
  "output": [
8586
- "embeddings",
8587
8547
  "text"
8588
8548
  ]
8589
8549
  },
8590
8550
  "capabilities": [
8591
- "batch",
8551
+ "streaming",
8592
8552
  "function_calling",
8593
- "structured_output"
8553
+ "structured_output",
8554
+ "reasoning"
8594
8555
  ],
8595
8556
  "pricing": {
8596
8557
  "text_tokens": {
8597
8558
  "standard": {
8598
8559
  "input_per_million": 15.0,
8599
- "cached_input_per_million": 7.5,
8600
8560
  "output_per_million": 60.0
8601
- },
8602
- "batch": {
8603
- "input_per_million": 7.5,
8604
- "output_per_million": 30.0
8605
8561
  }
8606
8562
  }
8607
8563
  },
@@ -8677,16 +8633,17 @@
8677
8633
  }
8678
8634
  },
8679
8635
  {
8680
- "id": "o1-preview",
8681
- "name": "o1 Preview",
8636
+ "id": "o1-pro",
8637
+ "name": "o1-pro",
8682
8638
  "provider": "openai",
8683
- "family": "o1-preview",
8639
+ "family": "o1-pro",
8684
8640
  "created_at": null,
8685
- "context_window": 128000,
8686
- "max_output_tokens": 32768,
8641
+ "context_window": 200000,
8642
+ "max_output_tokens": 100000,
8687
8643
  "knowledge_cutoff": null,
8688
8644
  "modalities": {
8689
8645
  "input": [
8646
+ "image",
8690
8647
  "text"
8691
8648
  ],
8692
8649
  "output": [
@@ -8695,74 +8652,7 @@
8695
8652
  ]
8696
8653
  },
8697
8654
  "capabilities": [
8698
- "function_calling",
8699
- "structured_output"
8700
- ],
8701
- "pricing": {
8702
- "text_tokens": {
8703
- "standard": {
8704
- "input_per_million": 15.0,
8705
- "cached_input_per_million": 7.5,
8706
- "output_per_million": 60.0
8707
- }
8708
- }
8709
- },
8710
- "metadata": {}
8711
- },
8712
- {
8713
- "id": "o1-preview-2024-09-12",
8714
- "name": "o1 Preview",
8715
- "provider": "openai",
8716
- "family": "o1-preview",
8717
- "created_at": null,
8718
- "context_window": 128000,
8719
- "max_output_tokens": 32768,
8720
- "knowledge_cutoff": null,
8721
- "modalities": {
8722
- "input": [
8723
- "text"
8724
- ],
8725
- "output": [
8726
- "embeddings",
8727
- "text"
8728
- ]
8729
- },
8730
- "capabilities": [
8731
- "function_calling",
8732
- "structured_output"
8733
- ],
8734
- "pricing": {
8735
- "text_tokens": {
8736
- "standard": {
8737
- "input_per_million": 15.0,
8738
- "cached_input_per_million": 7.5,
8739
- "output_per_million": 60.0
8740
- }
8741
- }
8742
- },
8743
- "metadata": {}
8744
- },
8745
- {
8746
- "id": "o1-pro",
8747
- "name": "o1-pro",
8748
- "provider": "openai",
8749
- "family": "o1-pro",
8750
- "created_at": null,
8751
- "context_window": 200000,
8752
- "max_output_tokens": 100000,
8753
- "knowledge_cutoff": null,
8754
- "modalities": {
8755
- "input": [
8756
- "image",
8757
- "text"
8758
- ],
8759
- "output": [
8760
- "embeddings",
8761
- "text"
8762
- ]
8763
- },
8764
- "capabilities": [
8765
- "batch",
8655
+ "batch",
8766
8656
  "function_calling",
8767
8657
  "structured_output"
8768
8658
  ],
@@ -9345,21 +9235,22 @@
9345
9235
  },
9346
9236
  {
9347
9237
  "id": "omni-moderation-latest",
9348
- "name": "omni-moderation",
9238
+ "name": "Omni Moderation Latest",
9349
9239
  "provider": "openai",
9350
- "family": "omni-moderation-latest",
9351
- "created_at": null,
9240
+ "family": "moderation",
9241
+ "created_at": "2024-11-15 17:47:45 +0100",
9352
9242
  "context_window": null,
9353
9243
  "max_output_tokens": null,
9354
9244
  "knowledge_cutoff": null,
9355
9245
  "modalities": {
9356
9246
  "input": [
9247
+ "text",
9357
9248
  "image",
9358
- "text"
9249
+ "pdf"
9359
9250
  ],
9360
9251
  "output": [
9361
- "embeddings",
9362
- "text"
9252
+ "text",
9253
+ "moderation"
9363
9254
  ]
9364
9255
  },
9365
9256
  "capabilities": [],
@@ -9371,10 +9262,10 @@
9371
9262
  },
9372
9263
  {
9373
9264
  "id": "text-embedding-3-large",
9374
- "name": "text-embedding-3-large",
9265
+ "name": "text-embedding- 3 Large",
9375
9266
  "provider": "openai",
9376
- "family": "text-embedding-3-large",
9377
- "created_at": null,
9267
+ "family": "embedding3_large",
9268
+ "created_at": "2024-01-22 20:53:00 +0100",
9378
9269
  "context_window": null,
9379
9270
  "max_output_tokens": null,
9380
9271
  "knowledge_cutoff": null,
@@ -9383,8 +9274,8 @@
9383
9274
  "text"
9384
9275
  ],
9385
9276
  "output": [
9386
- "embeddings",
9387
- "text"
9277
+ "text",
9278
+ "embeddings"
9388
9279
  ]
9389
9280
  },
9390
9281
  "capabilities": [
@@ -9393,18 +9284,12 @@
9393
9284
  "pricing": {
9394
9285
  "text_tokens": {
9395
9286
  "standard": {
9396
- "input_per_million": 0.13
9397
- },
9398
- "batch": {
9399
- "input_per_million": 0.065
9400
- }
9401
- },
9402
- "embeddings": {
9403
- "standard": {
9404
- "input_per_million": 0.13
9287
+ "input_per_million": 0.13,
9288
+ "output_per_million": 0.13
9405
9289
  },
9406
9290
  "batch": {
9407
- "input_per_million": 0.065
9291
+ "input_per_million": 0.065,
9292
+ "output_per_million": 0.065
9408
9293
  }
9409
9294
  }
9410
9295
  },
@@ -9459,10 +9344,10 @@
9459
9344
  },
9460
9345
  {
9461
9346
  "id": "text-embedding-ada-002",
9462
- "name": "text-embedding-ada-002",
9347
+ "name": "text-embedding- Ada 002",
9463
9348
  "provider": "openai",
9464
- "family": "text-embedding-ada-002",
9465
- "created_at": null,
9349
+ "family": "embedding_ada",
9350
+ "created_at": "2022-12-16 20:01:39 +0100",
9466
9351
  "context_window": null,
9467
9352
  "max_output_tokens": null,
9468
9353
  "knowledge_cutoff": null,
@@ -9471,8 +9356,8 @@
9471
9356
  "text"
9472
9357
  ],
9473
9358
  "output": [
9474
- "embeddings",
9475
- "text"
9359
+ "text",
9360
+ "embeddings"
9476
9361
  ]
9477
9362
  },
9478
9363
  "capabilities": [
@@ -9481,18 +9366,12 @@
9481
9366
  "pricing": {
9482
9367
  "text_tokens": {
9483
9368
  "standard": {
9484
- "input_per_million": 0.1
9485
- },
9486
- "batch": {
9487
- "input_per_million": 0.05
9488
- }
9489
- },
9490
- "embeddings": {
9491
- "standard": {
9492
- "input_per_million": 0.1
9369
+ "input_per_million": 0.1,
9370
+ "output_per_million": 0.1
9493
9371
  },
9494
9372
  "batch": {
9495
- "input_per_million": 0.05
9373
+ "input_per_million": 0.05,
9374
+ "output_per_million": 0.05
9496
9375
  }
9497
9376
  }
9498
9377
  },
@@ -9549,25 +9428,29 @@
9549
9428
  "id": "tts-1",
9550
9429
  "name": "TTS-1",
9551
9430
  "provider": "openai",
9552
- "family": "tts-1",
9553
- "created_at": null,
9431
+ "family": "tts1",
9432
+ "created_at": "2023-04-19 23:49:11 +0200",
9554
9433
  "context_window": null,
9555
9434
  "max_output_tokens": null,
9556
9435
  "knowledge_cutoff": null,
9557
9436
  "modalities": {
9558
9437
  "input": [
9559
- "text"
9438
+ "text",
9439
+ "audio"
9560
9440
  ],
9561
9441
  "output": [
9562
- "audio",
9563
- "embeddings"
9442
+ "text",
9443
+ "audio"
9564
9444
  ]
9565
9445
  },
9566
- "capabilities": [],
9446
+ "capabilities": [
9447
+ "streaming"
9448
+ ],
9567
9449
  "pricing": {
9568
9450
  "text_tokens": {
9569
9451
  "standard": {
9570
- "input_per_million": 15.0
9452
+ "input_per_million": 15.0,
9453
+ "output_per_million": 15.0
9571
9454
  }
9572
9455
  }
9573
9456
  },
@@ -10190,7 +10073,7 @@
10190
10073
  "family": "alpindale",
10191
10074
  "created_at": "2023-11-10 01:00:00 +0100",
10192
10075
  "context_window": 6144,
10193
- "max_output_tokens": null,
10076
+ "max_output_tokens": 512,
10194
10077
  "knowledge_cutoff": null,
10195
10078
  "modalities": {
10196
10079
  "input": [
@@ -10228,7 +10111,7 @@
10228
10111
  },
10229
10112
  "top_provider": {
10230
10113
  "context_length": 6144,
10231
- "max_completion_tokens": null,
10114
+ "max_completion_tokens": 512,
10232
10115
  "is_moderated": false
10233
10116
  },
10234
10117
  "per_request_limits": null,
@@ -10618,325 +10501,13 @@
10618
10501
  }
10619
10502
  },
10620
10503
  {
10621
- "id": "anthropic/claude-3-haiku:beta",
10622
- "name": "Anthropic: Claude 3 Haiku (self-moderated)",
10623
- "provider": "openrouter",
10624
- "family": "anthropic",
10625
- "created_at": "2024-03-13 01:00:00 +0100",
10626
- "context_window": 200000,
10627
- "max_output_tokens": 4096,
10628
- "knowledge_cutoff": null,
10629
- "modalities": {
10630
- "input": [
10631
- "text",
10632
- "image"
10633
- ],
10634
- "output": [
10635
- "text"
10636
- ]
10637
- },
10638
- "capabilities": [
10639
- "streaming",
10640
- "function_calling"
10641
- ],
10642
- "pricing": {
10643
- "text_tokens": {
10644
- "standard": {
10645
- "input_per_million": 0.25,
10646
- "output_per_million": 1.25,
10647
- "cached_input_per_million": 0.03
10648
- }
10649
- }
10650
- },
10651
- "metadata": {
10652
- "description": "Claude 3 Haiku is Anthropic's fastest and most compact model for\nnear-instant responsiveness. Quick and accurate targeted performance.\n\nSee the launch announcement and benchmark results [here](https://www.anthropic.com/news/claude-3-haiku)\n\n#multimodal",
10653
- "architecture": {
10654
- "modality": "text+image->text",
10655
- "input_modalities": [
10656
- "text",
10657
- "image"
10658
- ],
10659
- "output_modalities": [
10660
- "text"
10661
- ],
10662
- "tokenizer": "Claude",
10663
- "instruct_type": null
10664
- },
10665
- "top_provider": {
10666
- "context_length": 200000,
10667
- "max_completion_tokens": 4096,
10668
- "is_moderated": false
10669
- },
10670
- "per_request_limits": null,
10671
- "supported_parameters": [
10672
- "max_tokens",
10673
- "stop",
10674
- "temperature",
10675
- "tool_choice",
10676
- "tools",
10677
- "top_k",
10678
- "top_p"
10679
- ]
10680
- }
10681
- },
10682
- {
10683
- "id": "anthropic/claude-3-opus",
10684
- "name": "Anthropic: Claude 3 Opus",
10685
- "provider": "openrouter",
10686
- "family": "anthropic",
10687
- "created_at": "2024-03-05 01:00:00 +0100",
10688
- "context_window": 200000,
10689
- "max_output_tokens": 4096,
10690
- "knowledge_cutoff": null,
10691
- "modalities": {
10692
- "input": [
10693
- "text",
10694
- "image"
10695
- ],
10696
- "output": [
10697
- "text"
10698
- ]
10699
- },
10700
- "capabilities": [
10701
- "streaming",
10702
- "function_calling"
10703
- ],
10704
- "pricing": {
10705
- "text_tokens": {
10706
- "standard": {
10707
- "input_per_million": 15.0,
10708
- "output_per_million": 75.0,
10709
- "cached_input_per_million": 1.5
10710
- }
10711
- }
10712
- },
10713
- "metadata": {
10714
- "description": "Claude 3 Opus is Anthropic's most powerful model for highly complex tasks. It boasts top-level performance, intelligence, fluency, and understanding.\n\nSee the launch announcement and benchmark results [here](https://www.anthropic.com/news/claude-3-family)\n\n#multimodal",
10715
- "architecture": {
10716
- "modality": "text+image->text",
10717
- "input_modalities": [
10718
- "text",
10719
- "image"
10720
- ],
10721
- "output_modalities": [
10722
- "text"
10723
- ],
10724
- "tokenizer": "Claude",
10725
- "instruct_type": null
10726
- },
10727
- "top_provider": {
10728
- "context_length": 200000,
10729
- "max_completion_tokens": 4096,
10730
- "is_moderated": true
10731
- },
10732
- "per_request_limits": null,
10733
- "supported_parameters": [
10734
- "max_tokens",
10735
- "stop",
10736
- "temperature",
10737
- "tool_choice",
10738
- "tools",
10739
- "top_k",
10740
- "top_p"
10741
- ]
10742
- }
10743
- },
10744
- {
10745
- "id": "anthropic/claude-3-opus:beta",
10746
- "name": "Anthropic: Claude 3 Opus (self-moderated)",
10747
- "provider": "openrouter",
10748
- "family": "anthropic",
10749
- "created_at": "2024-03-05 01:00:00 +0100",
10750
- "context_window": 200000,
10751
- "max_output_tokens": 4096,
10752
- "knowledge_cutoff": null,
10753
- "modalities": {
10754
- "input": [
10755
- "text",
10756
- "image"
10757
- ],
10758
- "output": [
10759
- "text"
10760
- ]
10761
- },
10762
- "capabilities": [
10763
- "streaming",
10764
- "function_calling"
10765
- ],
10766
- "pricing": {
10767
- "text_tokens": {
10768
- "standard": {
10769
- "input_per_million": 15.0,
10770
- "output_per_million": 75.0,
10771
- "cached_input_per_million": 1.5
10772
- }
10773
- }
10774
- },
10775
- "metadata": {
10776
- "description": "Claude 3 Opus is Anthropic's most powerful model for highly complex tasks. It boasts top-level performance, intelligence, fluency, and understanding.\n\nSee the launch announcement and benchmark results [here](https://www.anthropic.com/news/claude-3-family)\n\n#multimodal",
10777
- "architecture": {
10778
- "modality": "text+image->text",
10779
- "input_modalities": [
10780
- "text",
10781
- "image"
10782
- ],
10783
- "output_modalities": [
10784
- "text"
10785
- ],
10786
- "tokenizer": "Claude",
10787
- "instruct_type": null
10788
- },
10789
- "top_provider": {
10790
- "context_length": 200000,
10791
- "max_completion_tokens": 4096,
10792
- "is_moderated": false
10793
- },
10794
- "per_request_limits": null,
10795
- "supported_parameters": [
10796
- "max_tokens",
10797
- "stop",
10798
- "temperature",
10799
- "tool_choice",
10800
- "tools",
10801
- "top_k",
10802
- "top_p"
10803
- ]
10804
- }
10805
- },
10806
- {
10807
- "id": "anthropic/claude-3.5-haiku",
10808
- "name": "Anthropic: Claude 3.5 Haiku",
10809
- "provider": "openrouter",
10810
- "family": "anthropic",
10811
- "created_at": "2024-11-04 01:00:00 +0100",
10812
- "context_window": 200000,
10813
- "max_output_tokens": 8192,
10814
- "knowledge_cutoff": null,
10815
- "modalities": {
10816
- "input": [
10817
- "text",
10818
- "image"
10819
- ],
10820
- "output": [
10821
- "text"
10822
- ]
10823
- },
10824
- "capabilities": [
10825
- "streaming",
10826
- "function_calling"
10827
- ],
10828
- "pricing": {
10829
- "text_tokens": {
10830
- "standard": {
10831
- "input_per_million": 0.7999999999999999,
10832
- "output_per_million": 4.0,
10833
- "cached_input_per_million": 0.08
10834
- }
10835
- }
10836
- },
10837
- "metadata": {
10838
- "description": "Claude 3.5 Haiku features offers enhanced capabilities in speed, coding accuracy, and tool use. Engineered to excel in real-time applications, it delivers quick response times that are essential for dynamic tasks such as chat interactions and immediate coding suggestions.\n\nThis makes it highly suitable for environments that demand both speed and precision, such as software development, customer service bots, and data management systems.\n\nThis model is currently pointing to [Claude 3.5 Haiku (2024-10-22)](/anthropic/claude-3-5-haiku-20241022).",
10839
- "architecture": {
10840
- "modality": "text+image->text",
10841
- "input_modalities": [
10842
- "text",
10843
- "image"
10844
- ],
10845
- "output_modalities": [
10846
- "text"
10847
- ],
10848
- "tokenizer": "Claude",
10849
- "instruct_type": null
10850
- },
10851
- "top_provider": {
10852
- "context_length": 200000,
10853
- "max_completion_tokens": 8192,
10854
- "is_moderated": true
10855
- },
10856
- "per_request_limits": null,
10857
- "supported_parameters": [
10858
- "max_tokens",
10859
- "stop",
10860
- "temperature",
10861
- "tool_choice",
10862
- "tools",
10863
- "top_k",
10864
- "top_p"
10865
- ]
10866
- }
10867
- },
10868
- {
10869
- "id": "anthropic/claude-3.5-haiku-20241022",
10870
- "name": "Anthropic: Claude 3.5 Haiku (2024-10-22)",
10871
- "provider": "openrouter",
10872
- "family": "anthropic",
10873
- "created_at": "2024-11-04 01:00:00 +0100",
10874
- "context_window": 200000,
10875
- "max_output_tokens": 8192,
10876
- "knowledge_cutoff": null,
10877
- "modalities": {
10878
- "input": [
10879
- "text",
10880
- "image",
10881
- "file"
10882
- ],
10883
- "output": [
10884
- "text"
10885
- ]
10886
- },
10887
- "capabilities": [
10888
- "streaming",
10889
- "function_calling"
10890
- ],
10891
- "pricing": {
10892
- "text_tokens": {
10893
- "standard": {
10894
- "input_per_million": 0.7999999999999999,
10895
- "output_per_million": 4.0,
10896
- "cached_input_per_million": 0.08
10897
- }
10898
- }
10899
- },
10900
- "metadata": {
10901
- "description": "Claude 3.5 Haiku features enhancements across all skill sets including coding, tool use, and reasoning. As the fastest model in the Anthropic lineup, it offers rapid response times suitable for applications that require high interactivity and low latency, such as user-facing chatbots and on-the-fly code completions. It also excels in specialized tasks like data extraction and real-time content moderation, making it a versatile tool for a broad range of industries.\n\nIt does not support image inputs.\n\nSee the launch announcement and benchmark results [here](https://www.anthropic.com/news/3-5-models-and-computer-use)",
10902
- "architecture": {
10903
- "modality": "text+image->text",
10904
- "input_modalities": [
10905
- "text",
10906
- "image",
10907
- "file"
10908
- ],
10909
- "output_modalities": [
10910
- "text"
10911
- ],
10912
- "tokenizer": "Claude",
10913
- "instruct_type": null
10914
- },
10915
- "top_provider": {
10916
- "context_length": 200000,
10917
- "max_completion_tokens": 8192,
10918
- "is_moderated": false
10919
- },
10920
- "per_request_limits": null,
10921
- "supported_parameters": [
10922
- "max_tokens",
10923
- "stop",
10924
- "temperature",
10925
- "tool_choice",
10926
- "tools",
10927
- "top_k",
10928
- "top_p"
10929
- ]
10930
- }
10931
- },
10932
- {
10933
- "id": "anthropic/claude-3.5-haiku:beta",
10934
- "name": "Anthropic: Claude 3.5 Haiku (self-moderated)",
10504
+ "id": "anthropic/claude-3-opus",
10505
+ "name": "Anthropic: Claude 3 Opus",
10935
10506
  "provider": "openrouter",
10936
10507
  "family": "anthropic",
10937
- "created_at": "2024-11-04 01:00:00 +0100",
10508
+ "created_at": "2024-03-05 01:00:00 +0100",
10938
10509
  "context_window": 200000,
10939
- "max_output_tokens": 8192,
10510
+ "max_output_tokens": 4096,
10940
10511
  "knowledge_cutoff": null,
10941
10512
  "modalities": {
10942
10513
  "input": [
@@ -10954,14 +10525,14 @@
10954
10525
  "pricing": {
10955
10526
  "text_tokens": {
10956
10527
  "standard": {
10957
- "input_per_million": 0.7999999999999999,
10958
- "output_per_million": 4.0,
10959
- "cached_input_per_million": 0.08
10528
+ "input_per_million": 15.0,
10529
+ "output_per_million": 75.0,
10530
+ "cached_input_per_million": 1.5
10960
10531
  }
10961
10532
  }
10962
10533
  },
10963
10534
  "metadata": {
10964
- "description": "Claude 3.5 Haiku features offers enhanced capabilities in speed, coding accuracy, and tool use. Engineered to excel in real-time applications, it delivers quick response times that are essential for dynamic tasks such as chat interactions and immediate coding suggestions.\n\nThis makes it highly suitable for environments that demand both speed and precision, such as software development, customer service bots, and data management systems.\n\nThis model is currently pointing to [Claude 3.5 Haiku (2024-10-22)](/anthropic/claude-3-5-haiku-20241022).",
10535
+ "description": "Claude 3 Opus is Anthropic's most powerful model for highly complex tasks. It boasts top-level performance, intelligence, fluency, and understanding.\n\nSee the launch announcement and benchmark results [here](https://www.anthropic.com/news/claude-3-family)\n\n#multimodal",
10965
10536
  "architecture": {
10966
10537
  "modality": "text+image->text",
10967
10538
  "input_modalities": [
@@ -10976,8 +10547,8 @@
10976
10547
  },
10977
10548
  "top_provider": {
10978
10549
  "context_length": 200000,
10979
- "max_completion_tokens": 8192,
10980
- "is_moderated": false
10550
+ "max_completion_tokens": 4096,
10551
+ "is_moderated": true
10981
10552
  },
10982
10553
  "per_request_limits": null,
10983
10554
  "supported_parameters": [
@@ -10992,19 +10563,18 @@
10992
10563
  }
10993
10564
  },
10994
10565
  {
10995
- "id": "anthropic/claude-3.5-sonnet",
10996
- "name": "Anthropic: Claude 3.5 Sonnet",
10566
+ "id": "anthropic/claude-3.5-haiku",
10567
+ "name": "Anthropic: Claude 3.5 Haiku",
10997
10568
  "provider": "openrouter",
10998
10569
  "family": "anthropic",
10999
- "created_at": "2024-10-22 02:00:00 +0200",
10570
+ "created_at": "2024-11-04 01:00:00 +0100",
11000
10571
  "context_window": 200000,
11001
10572
  "max_output_tokens": 8192,
11002
10573
  "knowledge_cutoff": null,
11003
10574
  "modalities": {
11004
10575
  "input": [
11005
10576
  "text",
11006
- "image",
11007
- "file"
10577
+ "image"
11008
10578
  ],
11009
10579
  "output": [
11010
10580
  "text"
@@ -11017,20 +10587,19 @@
11017
10587
  "pricing": {
11018
10588
  "text_tokens": {
11019
10589
  "standard": {
11020
- "input_per_million": 3.0,
11021
- "output_per_million": 15.0,
11022
- "cached_input_per_million": 0.3
10590
+ "input_per_million": 0.7999999999999999,
10591
+ "output_per_million": 4.0,
10592
+ "cached_input_per_million": 0.08
11023
10593
  }
11024
10594
  }
11025
10595
  },
11026
10596
  "metadata": {
11027
- "description": "New Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at:\n\n- Coding: Scores ~49% on SWE-Bench Verified, higher than the last best score, and without any fancy prompt scaffolding\n- Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights\n- Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone\n- Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems)\n\n#multimodal",
10597
+ "description": "Claude 3.5 Haiku features offers enhanced capabilities in speed, coding accuracy, and tool use. Engineered to excel in real-time applications, it delivers quick response times that are essential for dynamic tasks such as chat interactions and immediate coding suggestions.\n\nThis makes it highly suitable for environments that demand both speed and precision, such as software development, customer service bots, and data management systems.\n\nThis model is currently pointing to [Claude 3.5 Haiku (2024-10-22)](/anthropic/claude-3-5-haiku-20241022).",
11028
10598
  "architecture": {
11029
10599
  "modality": "text+image->text",
11030
10600
  "input_modalities": [
11031
10601
  "text",
11032
- "image",
11033
- "file"
10602
+ "image"
11034
10603
  ],
11035
10604
  "output_modalities": [
11036
10605
  "text"
@@ -11056,11 +10625,11 @@
11056
10625
  }
11057
10626
  },
11058
10627
  {
11059
- "id": "anthropic/claude-3.5-sonnet-20240620",
11060
- "name": "Anthropic: Claude 3.5 Sonnet (2024-06-20)",
10628
+ "id": "anthropic/claude-3.5-haiku-20241022",
10629
+ "name": "Anthropic: Claude 3.5 Haiku (2024-10-22)",
11061
10630
  "provider": "openrouter",
11062
10631
  "family": "anthropic",
11063
- "created_at": "2024-06-20 02:00:00 +0200",
10632
+ "created_at": "2024-11-04 01:00:00 +0100",
11064
10633
  "context_window": 200000,
11065
10634
  "max_output_tokens": 8192,
11066
10635
  "knowledge_cutoff": null,
@@ -11081,14 +10650,14 @@
11081
10650
  "pricing": {
11082
10651
  "text_tokens": {
11083
10652
  "standard": {
11084
- "input_per_million": 3.0,
11085
- "output_per_million": 15.0,
11086
- "cached_input_per_million": 0.3
10653
+ "input_per_million": 0.7999999999999999,
10654
+ "output_per_million": 4.0,
10655
+ "cached_input_per_million": 0.08
11087
10656
  }
11088
10657
  }
11089
10658
  },
11090
10659
  "metadata": {
11091
- "description": "Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at:\n\n- Coding: Autonomously writes, edits, and runs code with reasoning and troubleshooting\n- Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights\n- Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone\n- Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems)\n\nFor the latest version (2024-10-23), check out [Claude 3.5 Sonnet](/anthropic/claude-3.5-sonnet).\n\n#multimodal",
10660
+ "description": "Claude 3.5 Haiku features enhancements across all skill sets including coding, tool use, and reasoning. As the fastest model in the Anthropic lineup, it offers rapid response times suitable for applications that require high interactivity and low latency, such as user-facing chatbots and on-the-fly code completions. It also excels in specialized tasks like data extraction and real-time content moderation, making it a versatile tool for a broad range of industries.\n\nIt does not support image inputs.\n\nSee the launch announcement and benchmark results [here](https://www.anthropic.com/news/3-5-models-and-computer-use)",
11092
10661
  "architecture": {
11093
10662
  "modality": "text+image->text",
11094
10663
  "input_modalities": [
@@ -11105,7 +10674,7 @@
11105
10674
  "top_provider": {
11106
10675
  "context_length": 200000,
11107
10676
  "max_completion_tokens": 8192,
11108
- "is_moderated": true
10677
+ "is_moderated": false
11109
10678
  },
11110
10679
  "per_request_limits": null,
11111
10680
  "supported_parameters": [
@@ -11120,11 +10689,11 @@
11120
10689
  }
11121
10690
  },
11122
10691
  {
11123
- "id": "anthropic/claude-3.5-sonnet-20240620:beta",
11124
- "name": "Anthropic: Claude 3.5 Sonnet (2024-06-20) (self-moderated)",
10692
+ "id": "anthropic/claude-3.5-sonnet",
10693
+ "name": "Anthropic: Claude 3.5 Sonnet",
11125
10694
  "provider": "openrouter",
11126
10695
  "family": "anthropic",
11127
- "created_at": "2024-06-20 02:00:00 +0200",
10696
+ "created_at": "2024-10-22 02:00:00 +0200",
11128
10697
  "context_window": 200000,
11129
10698
  "max_output_tokens": 8192,
11130
10699
  "knowledge_cutoff": null,
@@ -11152,7 +10721,7 @@
11152
10721
  }
11153
10722
  },
11154
10723
  "metadata": {
11155
- "description": "Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at:\n\n- Coding: Autonomously writes, edits, and runs code with reasoning and troubleshooting\n- Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights\n- Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone\n- Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems)\n\nFor the latest version (2024-10-23), check out [Claude 3.5 Sonnet](/anthropic/claude-3.5-sonnet).\n\n#multimodal",
10724
+ "description": "New Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at:\n\n- Coding: Scores ~49% on SWE-Bench Verified, higher than the last best score, and without any fancy prompt scaffolding\n- Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights\n- Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone\n- Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems)\n\n#multimodal",
11156
10725
  "architecture": {
11157
10726
  "modality": "text+image->text",
11158
10727
  "input_modalities": [
@@ -11169,7 +10738,7 @@
11169
10738
  "top_provider": {
11170
10739
  "context_length": 200000,
11171
10740
  "max_completion_tokens": 8192,
11172
- "is_moderated": false
10741
+ "is_moderated": true
11173
10742
  },
11174
10743
  "per_request_limits": null,
11175
10744
  "supported_parameters": [
@@ -11184,11 +10753,11 @@
11184
10753
  }
11185
10754
  },
11186
10755
  {
11187
- "id": "anthropic/claude-3.5-sonnet:beta",
11188
- "name": "Anthropic: Claude 3.5 Sonnet (self-moderated)",
10756
+ "id": "anthropic/claude-3.5-sonnet-20240620",
10757
+ "name": "Anthropic: Claude 3.5 Sonnet (2024-06-20)",
11189
10758
  "provider": "openrouter",
11190
10759
  "family": "anthropic",
11191
- "created_at": "2024-10-22 02:00:00 +0200",
10760
+ "created_at": "2024-06-20 02:00:00 +0200",
11192
10761
  "context_window": 200000,
11193
10762
  "max_output_tokens": 8192,
11194
10763
  "knowledge_cutoff": null,
@@ -11216,7 +10785,7 @@
11216
10785
  }
11217
10786
  },
11218
10787
  "metadata": {
11219
- "description": "New Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at:\n\n- Coding: Scores ~49% on SWE-Bench Verified, higher than the last best score, and without any fancy prompt scaffolding\n- Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights\n- Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone\n- Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems)\n\n#multimodal",
10788
+ "description": "Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at:\n\n- Coding: Autonomously writes, edits, and runs code with reasoning and troubleshooting\n- Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights\n- Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone\n- Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems)\n\nFor the latest version (2024-10-23), check out [Claude 3.5 Sonnet](/anthropic/claude-3.5-sonnet).\n\n#multimodal",
11220
10789
  "architecture": {
11221
10790
  "modality": "text+image->text",
11222
10791
  "input_modalities": [
@@ -11233,7 +10802,7 @@
11233
10802
  "top_provider": {
11234
10803
  "context_length": 200000,
11235
10804
  "max_completion_tokens": 8192,
11236
- "is_moderated": false
10805
+ "is_moderated": true
11237
10806
  },
11238
10807
  "per_request_limits": null,
11239
10808
  "supported_parameters": [
@@ -14133,63 +13702,6 @@
14133
13702
  ]
14134
13703
  }
14135
13704
  },
14136
- {
14137
- "id": "deepseek/deepseek-r1-distill-qwen-7b",
14138
- "name": "DeepSeek: R1 Distill Qwen 7B",
14139
- "provider": "openrouter",
14140
- "family": "deepseek",
14141
- "created_at": "2025-05-30 20:03:57 +0200",
14142
- "context_window": 131072,
14143
- "max_output_tokens": null,
14144
- "knowledge_cutoff": null,
14145
- "modalities": {
14146
- "input": [
14147
- "text"
14148
- ],
14149
- "output": [
14150
- "text"
14151
- ]
14152
- },
14153
- "capabilities": [
14154
- "streaming"
14155
- ],
14156
- "pricing": {
14157
- "text_tokens": {
14158
- "standard": {
14159
- "input_per_million": 0.09999999999999999,
14160
- "output_per_million": 0.19999999999999998
14161
- }
14162
- }
14163
- },
14164
- "metadata": {
14165
- "description": "DeepSeek-R1-Distill-Qwen-7B is a 7 billion parameter dense language model distilled from DeepSeek-R1, leveraging reinforcement learning-enhanced reasoning data generated by DeepSeek's larger models. The distillation process transfers advanced reasoning, math, and code capabilities into a smaller, more efficient model architecture based on Qwen2.5-Math-7B. This model demonstrates strong performance across mathematical benchmarks (92.8% pass@1 on MATH-500), coding tasks (Codeforces rating 1189), and general reasoning (49.1% pass@1 on GPQA Diamond), achieving competitive accuracy relative to larger models while maintaining smaller inference costs.",
14166
- "architecture": {
14167
- "modality": "text->text",
14168
- "input_modalities": [
14169
- "text"
14170
- ],
14171
- "output_modalities": [
14172
- "text"
14173
- ],
14174
- "tokenizer": "Qwen",
14175
- "instruct_type": "deepseek-r1"
14176
- },
14177
- "top_provider": {
14178
- "context_length": 131072,
14179
- "max_completion_tokens": null,
14180
- "is_moderated": false
14181
- },
14182
- "per_request_limits": null,
14183
- "supported_parameters": [
14184
- "include_reasoning",
14185
- "max_tokens",
14186
- "reasoning",
14187
- "seed",
14188
- "temperature",
14189
- "top_p"
14190
- ]
14191
- }
14192
- },
14193
13705
  {
14194
13706
  "id": "deepseek/deepseek-r1:free",
14195
13707
  "name": "DeepSeek: R1 (free)",
@@ -17142,7 +16654,6 @@
17142
16654
  },
17143
16655
  "capabilities": [
17144
16656
  "streaming",
17145
- "function_calling",
17146
16657
  "structured_output",
17147
16658
  "predicted_outputs"
17148
16659
  ],
@@ -17177,7 +16688,6 @@
17177
16688
  "supported_parameters": [
17178
16689
  "frequency_penalty",
17179
16690
  "logit_bias",
17180
- "logprobs",
17181
16691
  "max_tokens",
17182
16692
  "min_p",
17183
16693
  "presence_penalty",
@@ -17187,8 +16697,6 @@
17187
16697
  "stop",
17188
16698
  "structured_outputs",
17189
16699
  "temperature",
17190
- "tool_choice",
17191
- "tools",
17192
16700
  "top_k",
17193
16701
  "top_logprobs",
17194
16702
  "top_p"
@@ -17938,8 +17446,8 @@
17938
17446
  "pricing": {
17939
17447
  "text_tokens": {
17940
17448
  "standard": {
17941
- "input_per_million": 0.049999999999999996,
17942
- "output_per_million": 0.049999999999999996
17449
+ "input_per_million": 0.18,
17450
+ "output_per_million": 0.18
17943
17451
  }
17944
17452
  }
17945
17453
  },
@@ -18932,7 +18440,7 @@
18932
18440
  "provider": "openrouter",
18933
18441
  "family": "mistralai",
18934
18442
  "created_at": "2025-05-21 16:22:59 +0200",
18935
- "context_window": 32768,
18443
+ "context_window": 131072,
18936
18444
  "max_output_tokens": null,
18937
18445
  "knowledge_cutoff": null,
18938
18446
  "modalities": {
@@ -18971,7 +18479,7 @@
18971
18479
  "instruct_type": null
18972
18480
  },
18973
18481
  "top_provider": {
18974
- "context_length": 32768,
18482
+ "context_length": 131072,
18975
18483
  "max_completion_tokens": null,
18976
18484
  "is_moderated": false
18977
18485
  },
@@ -20969,7 +20477,7 @@
20969
20477
  },
20970
20478
  {
20971
20479
  "id": "moonshotai/kimi-dev-72b:free",
20972
- "name": "Kimi Dev 72b (free)",
20480
+ "name": "MoonshotAI: Kimi Dev 72B (free)",
20973
20481
  "provider": "openrouter",
20974
20482
  "family": "moonshotai",
20975
20483
  "created_at": "2025-06-17 01:18:29 +0200",
@@ -21161,7 +20669,7 @@
21161
20669
  },
21162
20670
  {
21163
20671
  "id": "moonshotai/kimi-vl-a3b-thinking",
21164
- "name": "Moonshot AI: Kimi VL A3B Thinking",
20672
+ "name": "MoonshotAI: Kimi VL A3B Thinking",
21165
20673
  "provider": "openrouter",
21166
20674
  "family": "moonshotai",
21167
20675
  "created_at": "2025-04-10 19:07:21 +0200",
@@ -21230,7 +20738,7 @@
21230
20738
  },
21231
20739
  {
21232
20740
  "id": "moonshotai/kimi-vl-a3b-thinking:free",
21233
- "name": "Moonshot AI: Kimi VL A3B Thinking (free)",
20741
+ "name": "MoonshotAI: Kimi VL A3B Thinking (free)",
21234
20742
  "provider": "openrouter",
21235
20743
  "family": "moonshotai",
21236
20744
  "created_at": "2025-04-10 19:07:21 +0200",
@@ -24100,8 +23608,8 @@
24100
23608
  "pricing": {
24101
23609
  "text_tokens": {
24102
23610
  "standard": {
24103
- "input_per_million": 0.09,
24104
- "output_per_million": 0.44999999999999996
23611
+ "input_per_million": 0.07256312,
23612
+ "output_per_million": 0.2903936
24105
23613
  }
24106
23614
  }
24107
23615
  },
@@ -26305,7 +25813,7 @@
26305
25813
  "provider": "openrouter",
26306
25814
  "family": "qwen",
26307
25815
  "created_at": "2025-02-01 12:45:11 +0100",
26308
- "context_window": 32000,
25816
+ "context_window": 32768,
26309
25817
  "max_output_tokens": null,
26310
25818
  "knowledge_cutoff": null,
26311
25819
  "modalities": {
@@ -26324,8 +25832,8 @@
26324
25832
  "pricing": {
26325
25833
  "text_tokens": {
26326
25834
  "standard": {
26327
- "input_per_million": 0.25,
26328
- "output_per_million": 0.75
25835
+ "input_per_million": 0.0999594,
25836
+ "output_per_million": 0.400032
26329
25837
  }
26330
25838
  }
26331
25839
  },
@@ -26344,7 +25852,7 @@
26344
25852
  "instruct_type": null
26345
25853
  },
26346
25854
  "top_provider": {
26347
- "context_length": 32000,
25855
+ "context_length": 32768,
26348
25856
  "max_completion_tokens": null,
26349
25857
  "is_moderated": false
26350
25858
  },
@@ -26430,7 +25938,7 @@
26430
25938
  "family": "qwen",
26431
25939
  "created_at": "2025-04-28 23:41:18 +0200",
26432
25940
  "context_window": 40960,
26433
- "max_output_tokens": null,
25941
+ "max_output_tokens": 40960,
26434
25942
  "knowledge_cutoff": null,
26435
25943
  "modalities": {
26436
25944
  "input": [
@@ -26469,7 +25977,7 @@
26469
25977
  },
26470
25978
  "top_provider": {
26471
25979
  "context_length": 40960,
26472
- "max_completion_tokens": null,
25980
+ "max_completion_tokens": 40960,
26473
25981
  "is_moderated": false
26474
25982
  },
26475
25983
  "per_request_limits": null,
@@ -27312,8 +26820,8 @@
27312
26820
  "pricing": {
27313
26821
  "text_tokens": {
27314
26822
  "standard": {
27315
- "input_per_million": 0.1999188,
27316
- "output_per_million": 0.800064
26823
+ "input_per_million": 0.19999999999999998,
26824
+ "output_per_million": 0.7999999999999999
27317
26825
  }
27318
26826
  }
27319
26827
  },
@@ -27363,8 +26871,8 @@
27363
26871
  "provider": "openrouter",
27364
26872
  "family": "qwen",
27365
26873
  "created_at": "2025-07-23 02:29:06 +0200",
27366
- "context_window": 32000,
27367
- "max_output_tokens": 4000,
26874
+ "context_window": 262144,
26875
+ "max_output_tokens": null,
27368
26876
  "knowledge_cutoff": null,
27369
26877
  "modalities": {
27370
26878
  "input": [
@@ -27375,7 +26883,9 @@
27375
26883
  ]
27376
26884
  },
27377
26885
  "capabilities": [
27378
- "streaming"
26886
+ "streaming",
26887
+ "function_calling",
26888
+ "predicted_outputs"
27379
26889
  ],
27380
26890
  "pricing": {},
27381
26891
  "metadata": {
@@ -27392,16 +26902,27 @@
27392
26902
  "instruct_type": null
27393
26903
  },
27394
26904
  "top_provider": {
27395
- "context_length": 32000,
27396
- "max_completion_tokens": 4000,
27397
- "is_moderated": true
26905
+ "context_length": 262144,
26906
+ "max_completion_tokens": null,
26907
+ "is_moderated": false
27398
26908
  },
27399
26909
  "per_request_limits": null,
27400
26910
  "supported_parameters": [
26911
+ "frequency_penalty",
26912
+ "logit_bias",
26913
+ "logprobs",
27401
26914
  "max_tokens",
26915
+ "min_p",
26916
+ "presence_penalty",
26917
+ "repetition_penalty",
27402
26918
  "seed",
27403
26919
  "stop",
27404
- "temperature"
26920
+ "temperature",
26921
+ "tool_choice",
26922
+ "tools",
26923
+ "top_k",
26924
+ "top_logprobs",
26925
+ "top_p"
27405
26926
  ]
27406
26927
  }
27407
26928
  },
@@ -27918,7 +27439,7 @@
27918
27439
  "family": "sao10k",
27919
27440
  "created_at": "2024-12-18 16:32:08 +0100",
27920
27441
  "context_window": 131072,
27921
- "max_output_tokens": null,
27442
+ "max_output_tokens": 16384,
27922
27443
  "knowledge_cutoff": null,
27923
27444
  "modalities": {
27924
27445
  "input": [
@@ -27956,7 +27477,7 @@
27956
27477
  },
27957
27478
  "top_provider": {
27958
27479
  "context_length": 131072,
27959
- "max_completion_tokens": null,
27480
+ "max_completion_tokens": 16384,
27960
27481
  "is_moderated": false
27961
27482
  },
27962
27483
  "per_request_limits": null,
@@ -28996,8 +28517,8 @@
28996
28517
  }
28997
28518
  },
28998
28519
  {
28999
- "id": "thudm/glm-z1-32b:free",
29000
- "name": "THUDM: GLM Z1 32B (free)",
28520
+ "id": "thudm/glm-z1-32b",
28521
+ "name": "THUDM: GLM Z1 32B",
29001
28522
  "provider": "openrouter",
29002
28523
  "family": "thudm",
29003
28524
  "created_at": "2025-04-17 23:09:08 +0200",
@@ -29016,7 +28537,14 @@
29016
28537
  "streaming",
29017
28538
  "predicted_outputs"
29018
28539
  ],
29019
- "pricing": {},
28540
+ "pricing": {
28541
+ "text_tokens": {
28542
+ "standard": {
28543
+ "input_per_million": 0.01999188,
28544
+ "output_per_million": 0.0800064
28545
+ }
28546
+ }
28547
+ },
29020
28548
  "metadata": {
29021
28549
  "description": "GLM-Z1-32B-0414 is an enhanced reasoning variant of GLM-4-32B, built for deep mathematical, logical, and code-oriented problem solving. It applies extended reinforcement learning—both task-specific and general pairwise preference-based—to improve performance on complex multi-step tasks. Compared to the base GLM-4-32B model, Z1 significantly boosts capabilities in structured reasoning and formal domains.\n\nThe model supports enforced “thinking” steps via prompt engineering and offers improved coherence for long-form outputs. It’s optimized for use in agentic workflows, and includes support for long context (via YaRN), JSON tool calling, and fine-grained sampling configuration for stable inference. Ideal for use cases requiring deliberate, multi-step reasoning or formal derivations.",
29022
28550
  "architecture": {
@@ -30097,12 +29625,82 @@
30097
29625
  ]
30098
29626
  }
30099
29627
  },
29628
+ {
29629
+ "id": "z-ai/glm-4.5v",
29630
+ "name": "Z.AI: GLM 4.5V",
29631
+ "provider": "openrouter",
29632
+ "family": "z-ai",
29633
+ "created_at": "2025-08-11 16:24:48 +0200",
29634
+ "context_window": 65536,
29635
+ "max_output_tokens": 65536,
29636
+ "knowledge_cutoff": null,
29637
+ "modalities": {
29638
+ "input": [
29639
+ "text",
29640
+ "image"
29641
+ ],
29642
+ "output": [
29643
+ "text"
29644
+ ]
29645
+ },
29646
+ "capabilities": [
29647
+ "streaming",
29648
+ "function_calling",
29649
+ "predicted_outputs"
29650
+ ],
29651
+ "pricing": {
29652
+ "text_tokens": {
29653
+ "standard": {
29654
+ "input_per_million": 0.5,
29655
+ "output_per_million": 1.7999999999999998
29656
+ }
29657
+ }
29658
+ },
29659
+ "metadata": {
29660
+ "description": "GLM-4.5V is a vision-language foundation model for multimodal agent applications. Built on a Mixture-of-Experts (MoE) architecture with 106B parameters and 12B activated parameters, it achieves state-of-the-art results in video understanding, image Q&A, OCR, and document parsing, with strong gains in front-end web coding, grounding, and spatial reasoning. It offers a hybrid inference mode: a \"thinking mode\" for deep reasoning and a \"non-thinking mode\" for fast responses. Reasoning behavior can be toggled via the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)",
29661
+ "architecture": {
29662
+ "modality": "text+image->text",
29663
+ "input_modalities": [
29664
+ "text",
29665
+ "image"
29666
+ ],
29667
+ "output_modalities": [
29668
+ "text"
29669
+ ],
29670
+ "tokenizer": "Other",
29671
+ "instruct_type": null
29672
+ },
29673
+ "top_provider": {
29674
+ "context_length": 65536,
29675
+ "max_completion_tokens": 65536,
29676
+ "is_moderated": false
29677
+ },
29678
+ "per_request_limits": null,
29679
+ "supported_parameters": [
29680
+ "frequency_penalty",
29681
+ "include_reasoning",
29682
+ "logit_bias",
29683
+ "max_tokens",
29684
+ "min_p",
29685
+ "presence_penalty",
29686
+ "reasoning",
29687
+ "repetition_penalty",
29688
+ "seed",
29689
+ "stop",
29690
+ "temperature",
29691
+ "tool_choice",
29692
+ "tools",
29693
+ "top_k",
29694
+ "top_p"
29695
+ ]
29696
+ }
29697
+ },
30100
29698
  {
30101
29699
  "id": "sonar",
30102
29700
  "name": "Sonar",
30103
29701
  "provider": "perplexity",
30104
29702
  "family": "sonar",
30105
- "created_at": "2025-08-10 12:24:55 +0200",
29703
+ "created_at": "2025-08-13 11:35:41 +0200",
30106
29704
  "context_window": 128000,
30107
29705
  "max_output_tokens": 4096,
30108
29706
  "knowledge_cutoff": null,
@@ -30134,7 +29732,7 @@
30134
29732
  "name": "Sonar Deep Research",
30135
29733
  "provider": "perplexity",
30136
29734
  "family": "sonar_deep_research",
30137
- "created_at": "2025-08-10 12:24:55 +0200",
29735
+ "created_at": "2025-08-13 11:35:41 +0200",
30138
29736
  "context_window": 128000,
30139
29737
  "max_output_tokens": 4096,
30140
29738
  "knowledge_cutoff": null,
@@ -30169,7 +29767,7 @@
30169
29767
  "name": "Sonar Pro",
30170
29768
  "provider": "perplexity",
30171
29769
  "family": "sonar_pro",
30172
- "created_at": "2025-08-10 12:24:55 +0200",
29770
+ "created_at": "2025-08-13 11:35:41 +0200",
30173
29771
  "context_window": 200000,
30174
29772
  "max_output_tokens": 8192,
30175
29773
  "knowledge_cutoff": null,
@@ -30201,7 +29799,7 @@
30201
29799
  "name": "Sonar Reasoning",
30202
29800
  "provider": "perplexity",
30203
29801
  "family": "sonar_reasoning",
30204
- "created_at": "2025-08-10 12:24:55 +0200",
29802
+ "created_at": "2025-08-13 11:35:41 +0200",
30205
29803
  "context_window": 128000,
30206
29804
  "max_output_tokens": 4096,
30207
29805
  "knowledge_cutoff": null,
@@ -30233,7 +29831,7 @@
30233
29831
  "name": "Sonar Reasoning Pro",
30234
29832
  "provider": "perplexity",
30235
29833
  "family": "sonar_reasoning_pro",
30236
- "created_at": "2025-08-10 12:24:55 +0200",
29834
+ "created_at": "2025-08-13 11:35:41 +0200",
30237
29835
  "context_window": 128000,
30238
29836
  "max_output_tokens": 8192,
30239
29837
  "knowledge_cutoff": null,