ruby_llm 1.3.0 → 1.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +13 -9
- data/lib/ruby_llm/active_record/acts_as.rb +1 -0
- data/lib/ruby_llm/aliases.json +8 -0
- data/lib/ruby_llm/configuration.rb +1 -0
- data/lib/ruby_llm/models.json +979 -839
- data/lib/ruby_llm/providers/anthropic/tools.rb +5 -4
- data/lib/ruby_llm/providers/bedrock/streaming/prelude_handling.rb +3 -3
- data/lib/ruby_llm/providers/openai/capabilities.rb +4 -1
- data/lib/ruby_llm/providers/openai/chat.rb +12 -8
- data/lib/ruby_llm/tool.rb +8 -8
- data/lib/ruby_llm/version.rb +1 -1
- data/lib/ruby_llm.rb +1 -1
- data/lib/tasks/models_docs.rake +13 -7
- metadata +1 -1
data/lib/ruby_llm/models.json
CHANGED
@@ -71,7 +71,7 @@
|
|
71
71
|
"id": "claude-3-5-haiku-20241022",
|
72
72
|
"name": "Claude Haiku 3.5",
|
73
73
|
"provider": "anthropic",
|
74
|
-
"family": "claude-haiku-3
|
74
|
+
"family": "claude-haiku-3.5",
|
75
75
|
"created_at": null,
|
76
76
|
"context_window": 200000,
|
77
77
|
"max_output_tokens": 8192,
|
@@ -103,7 +103,7 @@
|
|
103
103
|
"id": "claude-3-5-sonnet-20240620",
|
104
104
|
"name": "Claude Sonnet 3.5",
|
105
105
|
"provider": "anthropic",
|
106
|
-
"family": "claude-sonnet-3
|
106
|
+
"family": "claude-sonnet-3.5",
|
107
107
|
"created_at": null,
|
108
108
|
"context_window": 200000,
|
109
109
|
"max_output_tokens": 8192,
|
@@ -135,7 +135,7 @@
|
|
135
135
|
"id": "claude-3-5-sonnet-20241022",
|
136
136
|
"name": "Claude Sonnet 3.5",
|
137
137
|
"provider": "anthropic",
|
138
|
-
"family": "claude-sonnet-3
|
138
|
+
"family": "claude-sonnet-3.5",
|
139
139
|
"created_at": null,
|
140
140
|
"context_window": 200000,
|
141
141
|
"max_output_tokens": 8192,
|
@@ -167,7 +167,7 @@
|
|
167
167
|
"id": "claude-3-7-sonnet-20250219",
|
168
168
|
"name": "Claude Sonnet 3.7",
|
169
169
|
"provider": "anthropic",
|
170
|
-
"family": "claude-sonnet-3
|
170
|
+
"family": "claude-sonnet-3.7",
|
171
171
|
"created_at": null,
|
172
172
|
"context_window": 200000,
|
173
173
|
"max_output_tokens": 64000,
|
@@ -1959,7 +1959,7 @@
|
|
1959
1959
|
},
|
1960
1960
|
{
|
1961
1961
|
"id": "aqa",
|
1962
|
-
"name": "
|
1962
|
+
"name": "AQA",
|
1963
1963
|
"provider": "gemini",
|
1964
1964
|
"family": "aqa",
|
1965
1965
|
"created_at": null,
|
@@ -1974,9 +1974,7 @@
|
|
1974
1974
|
"text"
|
1975
1975
|
]
|
1976
1976
|
},
|
1977
|
-
"capabilities": [
|
1978
|
-
"streaming"
|
1979
|
-
],
|
1977
|
+
"capabilities": [],
|
1980
1978
|
"pricing": {},
|
1981
1979
|
"metadata": {
|
1982
1980
|
"version": "001",
|
@@ -1988,33 +1986,23 @@
|
|
1988
1986
|
},
|
1989
1987
|
{
|
1990
1988
|
"id": "embedding-001",
|
1991
|
-
"name": "Embedding
|
1989
|
+
"name": "Embedding",
|
1992
1990
|
"provider": "gemini",
|
1993
|
-
"family": "
|
1991
|
+
"family": "embedding-001",
|
1994
1992
|
"created_at": null,
|
1995
1993
|
"context_window": 2048,
|
1996
|
-
"max_output_tokens":
|
1994
|
+
"max_output_tokens": null,
|
1997
1995
|
"knowledge_cutoff": null,
|
1998
1996
|
"modalities": {
|
1999
1997
|
"input": [
|
2000
1998
|
"text"
|
2001
1999
|
],
|
2002
2000
|
"output": [
|
2003
|
-
"text",
|
2004
2001
|
"embeddings"
|
2005
2002
|
]
|
2006
2003
|
},
|
2007
|
-
"capabilities": [
|
2008
|
-
|
2009
|
-
"batch"
|
2010
|
-
],
|
2011
|
-
"pricing": {
|
2012
|
-
"embeddings": {
|
2013
|
-
"standard": {
|
2014
|
-
"input_per_million": 0.002
|
2015
|
-
}
|
2016
|
-
}
|
2017
|
-
},
|
2004
|
+
"capabilities": [],
|
2005
|
+
"pricing": {},
|
2018
2006
|
"metadata": {
|
2019
2007
|
"version": "001",
|
2020
2008
|
"description": "Obtain a distributed representation of a text.",
|
@@ -2150,40 +2138,33 @@
|
|
2150
2138
|
},
|
2151
2139
|
{
|
2152
2140
|
"id": "gemini-1.5-flash-001",
|
2153
|
-
"name": "Gemini 1.5 Flash
|
2141
|
+
"name": "Gemini 1.5 Flash",
|
2154
2142
|
"provider": "gemini",
|
2155
|
-
"family": "
|
2143
|
+
"family": "gemini-1.5-flash",
|
2156
2144
|
"created_at": null,
|
2157
|
-
"context_window":
|
2145
|
+
"context_window": 1048576,
|
2158
2146
|
"max_output_tokens": 8192,
|
2159
2147
|
"knowledge_cutoff": null,
|
2160
2148
|
"modalities": {
|
2161
2149
|
"input": [
|
2162
|
-
"
|
2150
|
+
"audio",
|
2163
2151
|
"image",
|
2164
|
-
"
|
2152
|
+
"text"
|
2165
2153
|
],
|
2166
2154
|
"output": [
|
2167
2155
|
"text"
|
2168
2156
|
]
|
2169
2157
|
},
|
2170
2158
|
"capabilities": [
|
2171
|
-
"streaming",
|
2172
2159
|
"function_calling",
|
2173
|
-
"structured_output"
|
2174
|
-
"batch",
|
2175
|
-
"caching",
|
2176
|
-
"fine_tuning"
|
2160
|
+
"structured_output"
|
2177
2161
|
],
|
2178
2162
|
"pricing": {
|
2179
2163
|
"text_tokens": {
|
2180
2164
|
"standard": {
|
2181
2165
|
"input_per_million": 0.075,
|
2166
|
+
"cached_input_per_million": 0.01875,
|
2182
2167
|
"output_per_million": 0.3
|
2183
|
-
},
|
2184
|
-
"batch": {
|
2185
|
-
"input_per_million": 0.0375,
|
2186
|
-
"output_per_million": 0.15
|
2187
2168
|
}
|
2188
2169
|
}
|
2189
2170
|
},
|
@@ -2248,40 +2229,33 @@
|
|
2248
2229
|
},
|
2249
2230
|
{
|
2250
2231
|
"id": "gemini-1.5-flash-002",
|
2251
|
-
"name": "Gemini 1.5 Flash
|
2232
|
+
"name": "Gemini 1.5 Flash",
|
2252
2233
|
"provider": "gemini",
|
2253
|
-
"family": "
|
2234
|
+
"family": "gemini-1.5-flash",
|
2254
2235
|
"created_at": null,
|
2255
|
-
"context_window":
|
2236
|
+
"context_window": 1048576,
|
2256
2237
|
"max_output_tokens": 8192,
|
2257
2238
|
"knowledge_cutoff": null,
|
2258
2239
|
"modalities": {
|
2259
2240
|
"input": [
|
2260
|
-
"
|
2241
|
+
"audio",
|
2261
2242
|
"image",
|
2262
|
-
"
|
2243
|
+
"text"
|
2263
2244
|
],
|
2264
2245
|
"output": [
|
2265
2246
|
"text"
|
2266
2247
|
]
|
2267
2248
|
},
|
2268
2249
|
"capabilities": [
|
2269
|
-
"streaming",
|
2270
2250
|
"function_calling",
|
2271
|
-
"structured_output"
|
2272
|
-
"batch",
|
2273
|
-
"caching",
|
2274
|
-
"fine_tuning"
|
2251
|
+
"structured_output"
|
2275
2252
|
],
|
2276
2253
|
"pricing": {
|
2277
2254
|
"text_tokens": {
|
2278
2255
|
"standard": {
|
2279
2256
|
"input_per_million": 0.075,
|
2257
|
+
"cached_input_per_million": 0.01875,
|
2280
2258
|
"output_per_million": 0.3
|
2281
|
-
},
|
2282
|
-
"batch": {
|
2283
|
-
"input_per_million": 0.0375,
|
2284
|
-
"output_per_million": 0.15
|
2285
2259
|
}
|
2286
2260
|
}
|
2287
2261
|
},
|
@@ -2339,40 +2313,33 @@
|
|
2339
2313
|
},
|
2340
2314
|
{
|
2341
2315
|
"id": "gemini-1.5-flash-8b-001",
|
2342
|
-
"name": "Gemini 1.5 Flash-8B
|
2316
|
+
"name": "Gemini 1.5 Flash-8B",
|
2343
2317
|
"provider": "gemini",
|
2344
|
-
"family": "
|
2318
|
+
"family": "gemini-1.5-flash-8b",
|
2345
2319
|
"created_at": null,
|
2346
|
-
"context_window":
|
2320
|
+
"context_window": 1048576,
|
2347
2321
|
"max_output_tokens": 8192,
|
2348
2322
|
"knowledge_cutoff": null,
|
2349
2323
|
"modalities": {
|
2350
2324
|
"input": [
|
2351
|
-
"
|
2325
|
+
"audio",
|
2352
2326
|
"image",
|
2353
|
-
"
|
2327
|
+
"text"
|
2354
2328
|
],
|
2355
2329
|
"output": [
|
2356
2330
|
"text"
|
2357
2331
|
]
|
2358
2332
|
},
|
2359
2333
|
"capabilities": [
|
2360
|
-
"streaming",
|
2361
2334
|
"function_calling",
|
2362
|
-
"structured_output"
|
2363
|
-
"batch",
|
2364
|
-
"caching",
|
2365
|
-
"fine_tuning"
|
2335
|
+
"structured_output"
|
2366
2336
|
],
|
2367
2337
|
"pricing": {
|
2368
2338
|
"text_tokens": {
|
2369
2339
|
"standard": {
|
2370
|
-
"input_per_million": 0.
|
2371
|
-
"
|
2372
|
-
|
2373
|
-
"batch": {
|
2374
|
-
"input_per_million": 0.01875,
|
2375
|
-
"output_per_million": 0.075
|
2340
|
+
"input_per_million": 0.075,
|
2341
|
+
"cached_input_per_million": 0.01875,
|
2342
|
+
"output_per_million": 0.3
|
2376
2343
|
}
|
2377
2344
|
}
|
2378
2345
|
},
|
@@ -2429,6 +2396,7 @@
|
|
2429
2396
|
"version": "001",
|
2430
2397
|
"description": "Experimental release (August 27th, 2024) of Gemini 1.5 Flash-8B, our smallest and most cost effective Flash model. Replaced by Gemini-1.5-flash-8b-001 (stable).",
|
2431
2398
|
"supported_generation_methods": [
|
2399
|
+
"createCachedContent",
|
2432
2400
|
"generateContent",
|
2433
2401
|
"countTokens"
|
2434
2402
|
]
|
@@ -2477,6 +2445,7 @@
|
|
2477
2445
|
"version": "001",
|
2478
2446
|
"description": "Experimental release (September 24th, 2024) of Gemini 1.5 Flash-8B, our smallest and most cost effective Flash model. Replaced by Gemini-1.5-flash-8b-001 (stable).",
|
2479
2447
|
"supported_generation_methods": [
|
2448
|
+
"createCachedContent",
|
2480
2449
|
"generateContent",
|
2481
2450
|
"countTokens"
|
2482
2451
|
]
|
@@ -2484,40 +2453,33 @@
|
|
2484
2453
|
},
|
2485
2454
|
{
|
2486
2455
|
"id": "gemini-1.5-flash-8b-latest",
|
2487
|
-
"name": "Gemini 1.5 Flash-8B
|
2456
|
+
"name": "Gemini 1.5 Flash-8B",
|
2488
2457
|
"provider": "gemini",
|
2489
|
-
"family": "
|
2458
|
+
"family": "gemini-1.5-flash-8b",
|
2490
2459
|
"created_at": null,
|
2491
|
-
"context_window":
|
2460
|
+
"context_window": 1048576,
|
2492
2461
|
"max_output_tokens": 8192,
|
2493
2462
|
"knowledge_cutoff": null,
|
2494
2463
|
"modalities": {
|
2495
2464
|
"input": [
|
2496
|
-
"
|
2465
|
+
"audio",
|
2497
2466
|
"image",
|
2498
|
-
"
|
2467
|
+
"text"
|
2499
2468
|
],
|
2500
2469
|
"output": [
|
2501
2470
|
"text"
|
2502
2471
|
]
|
2503
2472
|
},
|
2504
2473
|
"capabilities": [
|
2505
|
-
"streaming",
|
2506
2474
|
"function_calling",
|
2507
|
-
"structured_output"
|
2508
|
-
"batch",
|
2509
|
-
"caching",
|
2510
|
-
"fine_tuning"
|
2475
|
+
"structured_output"
|
2511
2476
|
],
|
2512
2477
|
"pricing": {
|
2513
2478
|
"text_tokens": {
|
2514
2479
|
"standard": {
|
2515
|
-
"input_per_million": 0.
|
2516
|
-
"
|
2517
|
-
|
2518
|
-
"batch": {
|
2519
|
-
"input_per_million": 0.01875,
|
2520
|
-
"output_per_million": 0.075
|
2480
|
+
"input_per_million": 0.075,
|
2481
|
+
"cached_input_per_million": 0.01875,
|
2482
|
+
"output_per_million": 0.3
|
2521
2483
|
}
|
2522
2484
|
}
|
2523
2485
|
},
|
@@ -2533,40 +2495,33 @@
|
|
2533
2495
|
},
|
2534
2496
|
{
|
2535
2497
|
"id": "gemini-1.5-flash-latest",
|
2536
|
-
"name": "Gemini 1.5 Flash
|
2498
|
+
"name": "Gemini 1.5 Flash",
|
2537
2499
|
"provider": "gemini",
|
2538
|
-
"family": "
|
2500
|
+
"family": "gemini-1.5-flash",
|
2539
2501
|
"created_at": null,
|
2540
|
-
"context_window":
|
2502
|
+
"context_window": 1048576,
|
2541
2503
|
"max_output_tokens": 8192,
|
2542
2504
|
"knowledge_cutoff": null,
|
2543
2505
|
"modalities": {
|
2544
2506
|
"input": [
|
2545
|
-
"
|
2507
|
+
"audio",
|
2546
2508
|
"image",
|
2547
|
-
"
|
2509
|
+
"text"
|
2548
2510
|
],
|
2549
2511
|
"output": [
|
2550
2512
|
"text"
|
2551
2513
|
]
|
2552
2514
|
},
|
2553
2515
|
"capabilities": [
|
2554
|
-
"streaming",
|
2555
2516
|
"function_calling",
|
2556
|
-
"structured_output"
|
2557
|
-
"batch",
|
2558
|
-
"caching",
|
2559
|
-
"fine_tuning"
|
2517
|
+
"structured_output"
|
2560
2518
|
],
|
2561
2519
|
"pricing": {
|
2562
2520
|
"text_tokens": {
|
2563
2521
|
"standard": {
|
2564
2522
|
"input_per_million": 0.075,
|
2523
|
+
"cached_input_per_million": 0.01875,
|
2565
2524
|
"output_per_million": 0.3
|
2566
|
-
},
|
2567
|
-
"batch": {
|
2568
|
-
"input_per_million": 0.0375,
|
2569
|
-
"output_per_million": 0.15
|
2570
2525
|
}
|
2571
2526
|
}
|
2572
2527
|
},
|
@@ -2622,38 +2577,33 @@
|
|
2622
2577
|
},
|
2623
2578
|
{
|
2624
2579
|
"id": "gemini-1.5-pro-001",
|
2625
|
-
"name": "Gemini 1.5 Pro
|
2580
|
+
"name": "Gemini 1.5 Pro",
|
2626
2581
|
"provider": "gemini",
|
2627
|
-
"family": "
|
2582
|
+
"family": "gemini-1.5-pro",
|
2628
2583
|
"created_at": null,
|
2629
|
-
"context_window":
|
2584
|
+
"context_window": 2097152,
|
2630
2585
|
"max_output_tokens": 8192,
|
2631
2586
|
"knowledge_cutoff": null,
|
2632
2587
|
"modalities": {
|
2633
2588
|
"input": [
|
2634
|
-
"
|
2589
|
+
"audio",
|
2635
2590
|
"image",
|
2636
|
-
"
|
2591
|
+
"text"
|
2637
2592
|
],
|
2638
2593
|
"output": [
|
2639
2594
|
"text"
|
2640
2595
|
]
|
2641
2596
|
},
|
2642
2597
|
"capabilities": [
|
2643
|
-
"streaming",
|
2644
2598
|
"function_calling",
|
2645
|
-
"structured_output"
|
2646
|
-
"caching"
|
2599
|
+
"structured_output"
|
2647
2600
|
],
|
2648
2601
|
"pricing": {
|
2649
2602
|
"text_tokens": {
|
2650
2603
|
"standard": {
|
2651
2604
|
"input_per_million": 1.25,
|
2605
|
+
"cached_input_per_million": 0.3125,
|
2652
2606
|
"output_per_million": 5.0
|
2653
|
-
},
|
2654
|
-
"batch": {
|
2655
|
-
"input_per_million": 0.625,
|
2656
|
-
"output_per_million": 2.5
|
2657
2607
|
}
|
2658
2608
|
}
|
2659
2609
|
},
|
@@ -2669,38 +2619,33 @@
|
|
2669
2619
|
},
|
2670
2620
|
{
|
2671
2621
|
"id": "gemini-1.5-pro-002",
|
2672
|
-
"name": "Gemini 1.5 Pro
|
2622
|
+
"name": "Gemini 1.5 Pro",
|
2673
2623
|
"provider": "gemini",
|
2674
|
-
"family": "
|
2624
|
+
"family": "gemini-1.5-pro",
|
2675
2625
|
"created_at": null,
|
2676
|
-
"context_window":
|
2626
|
+
"context_window": 2097152,
|
2677
2627
|
"max_output_tokens": 8192,
|
2678
2628
|
"knowledge_cutoff": null,
|
2679
2629
|
"modalities": {
|
2680
2630
|
"input": [
|
2681
|
-
"
|
2631
|
+
"audio",
|
2682
2632
|
"image",
|
2683
|
-
"
|
2633
|
+
"text"
|
2684
2634
|
],
|
2685
2635
|
"output": [
|
2686
2636
|
"text"
|
2687
2637
|
]
|
2688
2638
|
},
|
2689
2639
|
"capabilities": [
|
2690
|
-
"streaming",
|
2691
2640
|
"function_calling",
|
2692
|
-
"structured_output"
|
2693
|
-
"caching"
|
2641
|
+
"structured_output"
|
2694
2642
|
],
|
2695
2643
|
"pricing": {
|
2696
2644
|
"text_tokens": {
|
2697
2645
|
"standard": {
|
2698
2646
|
"input_per_million": 1.25,
|
2647
|
+
"cached_input_per_million": 0.3125,
|
2699
2648
|
"output_per_million": 5.0
|
2700
|
-
},
|
2701
|
-
"batch": {
|
2702
|
-
"input_per_million": 0.625,
|
2703
|
-
"output_per_million": 2.5
|
2704
2649
|
}
|
2705
2650
|
}
|
2706
2651
|
},
|
@@ -2716,38 +2661,33 @@
|
|
2716
2661
|
},
|
2717
2662
|
{
|
2718
2663
|
"id": "gemini-1.5-pro-latest",
|
2719
|
-
"name": "Gemini 1.5 Pro
|
2664
|
+
"name": "Gemini 1.5 Pro",
|
2720
2665
|
"provider": "gemini",
|
2721
|
-
"family": "
|
2666
|
+
"family": "gemini-1.5-pro",
|
2722
2667
|
"created_at": null,
|
2723
|
-
"context_window":
|
2668
|
+
"context_window": 2097152,
|
2724
2669
|
"max_output_tokens": 8192,
|
2725
2670
|
"knowledge_cutoff": null,
|
2726
2671
|
"modalities": {
|
2727
2672
|
"input": [
|
2728
|
-
"
|
2673
|
+
"audio",
|
2729
2674
|
"image",
|
2730
|
-
"
|
2675
|
+
"text"
|
2731
2676
|
],
|
2732
2677
|
"output": [
|
2733
2678
|
"text"
|
2734
2679
|
]
|
2735
2680
|
},
|
2736
2681
|
"capabilities": [
|
2737
|
-
"streaming",
|
2738
2682
|
"function_calling",
|
2739
|
-
"structured_output"
|
2740
|
-
"caching"
|
2683
|
+
"structured_output"
|
2741
2684
|
],
|
2742
2685
|
"pricing": {
|
2743
2686
|
"text_tokens": {
|
2744
2687
|
"standard": {
|
2745
2688
|
"input_per_million": 1.25,
|
2689
|
+
"cached_input_per_million": 0.3125,
|
2746
2690
|
"output_per_million": 5.0
|
2747
|
-
},
|
2748
|
-
"batch": {
|
2749
|
-
"input_per_million": 0.625,
|
2750
|
-
"output_per_million": 2.5
|
2751
2691
|
}
|
2752
2692
|
}
|
2753
2693
|
},
|
@@ -2805,39 +2745,33 @@
|
|
2805
2745
|
},
|
2806
2746
|
{
|
2807
2747
|
"id": "gemini-2.0-flash-001",
|
2808
|
-
"name": "Gemini 2.0 Flash
|
2748
|
+
"name": "Gemini 2.0 Flash",
|
2809
2749
|
"provider": "gemini",
|
2810
|
-
"family": "
|
2750
|
+
"family": "gemini-2.0-flash",
|
2811
2751
|
"created_at": null,
|
2812
2752
|
"context_window": 1048576,
|
2813
2753
|
"max_output_tokens": 8192,
|
2814
2754
|
"knowledge_cutoff": null,
|
2815
2755
|
"modalities": {
|
2816
2756
|
"input": [
|
2817
|
-
"
|
2757
|
+
"audio",
|
2818
2758
|
"image",
|
2819
|
-
"
|
2759
|
+
"text"
|
2820
2760
|
],
|
2821
2761
|
"output": [
|
2822
2762
|
"text"
|
2823
2763
|
]
|
2824
2764
|
},
|
2825
2765
|
"capabilities": [
|
2826
|
-
"streaming",
|
2827
2766
|
"function_calling",
|
2828
|
-
"structured_output"
|
2829
|
-
"batch",
|
2830
|
-
"caching"
|
2767
|
+
"structured_output"
|
2831
2768
|
],
|
2832
2769
|
"pricing": {
|
2833
2770
|
"text_tokens": {
|
2834
2771
|
"standard": {
|
2835
2772
|
"input_per_million": 0.1,
|
2773
|
+
"cached_input_per_million": 0.025,
|
2836
2774
|
"output_per_million": 0.4
|
2837
|
-
},
|
2838
|
-
"batch": {
|
2839
|
-
"input_per_million": 0.05,
|
2840
|
-
"output_per_million": 0.2
|
2841
2775
|
}
|
2842
2776
|
}
|
2843
2777
|
},
|
@@ -2854,39 +2788,33 @@
|
|
2854
2788
|
},
|
2855
2789
|
{
|
2856
2790
|
"id": "gemini-2.0-flash-exp",
|
2857
|
-
"name": "Gemini 2.0 Flash
|
2791
|
+
"name": "Gemini 2.0 Flash",
|
2858
2792
|
"provider": "gemini",
|
2859
|
-
"family": "
|
2793
|
+
"family": "gemini-2.0-flash",
|
2860
2794
|
"created_at": null,
|
2861
2795
|
"context_window": 1048576,
|
2862
2796
|
"max_output_tokens": 8192,
|
2863
2797
|
"knowledge_cutoff": null,
|
2864
2798
|
"modalities": {
|
2865
2799
|
"input": [
|
2866
|
-
"
|
2800
|
+
"audio",
|
2867
2801
|
"image",
|
2868
|
-
"
|
2802
|
+
"text"
|
2869
2803
|
],
|
2870
2804
|
"output": [
|
2871
2805
|
"text"
|
2872
2806
|
]
|
2873
2807
|
},
|
2874
2808
|
"capabilities": [
|
2875
|
-
"streaming",
|
2876
2809
|
"function_calling",
|
2877
|
-
"structured_output"
|
2878
|
-
"batch",
|
2879
|
-
"caching"
|
2810
|
+
"structured_output"
|
2880
2811
|
],
|
2881
2812
|
"pricing": {
|
2882
2813
|
"text_tokens": {
|
2883
2814
|
"standard": {
|
2884
2815
|
"input_per_million": 0.1,
|
2816
|
+
"cached_input_per_million": 0.025,
|
2885
2817
|
"output_per_million": 0.4
|
2886
|
-
},
|
2887
|
-
"batch": {
|
2888
|
-
"input_per_million": 0.05,
|
2889
|
-
"output_per_million": 0.2
|
2890
2818
|
}
|
2891
2819
|
}
|
2892
2820
|
},
|
@@ -2945,36 +2873,33 @@
|
|
2945
2873
|
},
|
2946
2874
|
{
|
2947
2875
|
"id": "gemini-2.0-flash-lite-001",
|
2948
|
-
"name": "Gemini 2.0 Flash-Lite
|
2876
|
+
"name": "Gemini 2.0 Flash-Lite",
|
2949
2877
|
"provider": "gemini",
|
2950
|
-
"family": "
|
2878
|
+
"family": "gemini-2.0-flash-lite",
|
2951
2879
|
"created_at": null,
|
2952
2880
|
"context_window": 1048576,
|
2953
2881
|
"max_output_tokens": 8192,
|
2954
2882
|
"knowledge_cutoff": null,
|
2955
2883
|
"modalities": {
|
2956
2884
|
"input": [
|
2957
|
-
"
|
2885
|
+
"audio",
|
2958
2886
|
"image",
|
2959
|
-
"
|
2887
|
+
"text"
|
2960
2888
|
],
|
2961
2889
|
"output": [
|
2962
2890
|
"text"
|
2963
2891
|
]
|
2964
2892
|
},
|
2965
2893
|
"capabilities": [
|
2966
|
-
"
|
2967
|
-
"
|
2894
|
+
"function_calling",
|
2895
|
+
"structured_output"
|
2968
2896
|
],
|
2969
2897
|
"pricing": {
|
2970
2898
|
"text_tokens": {
|
2971
2899
|
"standard": {
|
2972
|
-
"input_per_million": 0.
|
2973
|
-
"
|
2974
|
-
|
2975
|
-
"batch": {
|
2976
|
-
"input_per_million": 0.0375,
|
2977
|
-
"output_per_million": 0.15
|
2900
|
+
"input_per_million": 0.1,
|
2901
|
+
"cached_input_per_million": 0.025,
|
2902
|
+
"output_per_million": 0.4
|
2978
2903
|
}
|
2979
2904
|
}
|
2980
2905
|
},
|
@@ -3085,7 +3010,7 @@
|
|
3085
3010
|
"id": "gemini-2.0-flash-live-001",
|
3086
3011
|
"name": "Gemini 2.0 Flash Live",
|
3087
3012
|
"provider": "gemini",
|
3088
|
-
"family": "gemini-2.0-flash-live",
|
3013
|
+
"family": "gemini-2.0-flash-live-001",
|
3089
3014
|
"created_at": null,
|
3090
3015
|
"context_window": 1048576,
|
3091
3016
|
"max_output_tokens": 8192,
|
@@ -3396,7 +3321,7 @@
|
|
3396
3321
|
"id": "gemini-2.5-flash-exp-native-audio-thinking-dialog",
|
3397
3322
|
"name": "Gemini 2.5 Flash Native Audio",
|
3398
3323
|
"provider": "gemini",
|
3399
|
-
"family": "gemini-2.5-flash-native-audio",
|
3324
|
+
"family": "gemini-2.5-flash-preview-native-audio-dialog",
|
3400
3325
|
"created_at": null,
|
3401
3326
|
"context_window": 128000,
|
3402
3327
|
"max_output_tokens": 8000,
|
@@ -3526,7 +3451,7 @@
|
|
3526
3451
|
"id": "gemini-2.5-flash-preview-05-20",
|
3527
3452
|
"name": "Gemini 2.5 Flash Preview 05-20",
|
3528
3453
|
"provider": "gemini",
|
3529
|
-
"family": "gemini-2.5-flash-preview",
|
3454
|
+
"family": "gemini-2.5-flash-preview-05-20",
|
3530
3455
|
"created_at": null,
|
3531
3456
|
"context_window": 1048576,
|
3532
3457
|
"max_output_tokens": 65536,
|
@@ -3569,7 +3494,7 @@
|
|
3569
3494
|
"id": "gemini-2.5-flash-preview-native-audio-dialog",
|
3570
3495
|
"name": "Gemini 2.5 Flash Native Audio",
|
3571
3496
|
"provider": "gemini",
|
3572
|
-
"family": "gemini-2.5-flash-native-audio",
|
3497
|
+
"family": "gemini-2.5-flash-preview-native-audio-dialog",
|
3573
3498
|
"created_at": null,
|
3574
3499
|
"context_window": 128000,
|
3575
3500
|
"max_output_tokens": 8000,
|
@@ -3599,7 +3524,7 @@
|
|
3599
3524
|
},
|
3600
3525
|
{
|
3601
3526
|
"id": "gemini-2.5-flash-preview-tts",
|
3602
|
-
"name": "Gemini 2.5 Flash Preview
|
3527
|
+
"name": "Gemini 2.5 Flash Preview TTS",
|
3603
3528
|
"provider": "gemini",
|
3604
3529
|
"family": "gemini-2.5-flash-preview-tts",
|
3605
3530
|
"created_at": null,
|
@@ -3729,9 +3654,57 @@
|
|
3729
3654
|
},
|
3730
3655
|
{
|
3731
3656
|
"id": "gemini-2.5-pro-preview-05-06",
|
3657
|
+
"name": "Gemini 2.5 Pro Preview 05-06",
|
3658
|
+
"provider": "gemini",
|
3659
|
+
"family": "other",
|
3660
|
+
"created_at": null,
|
3661
|
+
"context_window": 1048576,
|
3662
|
+
"max_output_tokens": 65536,
|
3663
|
+
"knowledge_cutoff": null,
|
3664
|
+
"modalities": {
|
3665
|
+
"input": [
|
3666
|
+
"text",
|
3667
|
+
"image",
|
3668
|
+
"pdf"
|
3669
|
+
],
|
3670
|
+
"output": [
|
3671
|
+
"text"
|
3672
|
+
]
|
3673
|
+
},
|
3674
|
+
"capabilities": [
|
3675
|
+
"streaming",
|
3676
|
+
"function_calling",
|
3677
|
+
"structured_output",
|
3678
|
+
"caching"
|
3679
|
+
],
|
3680
|
+
"pricing": {
|
3681
|
+
"text_tokens": {
|
3682
|
+
"standard": {
|
3683
|
+
"input_per_million": 0.075,
|
3684
|
+
"output_per_million": 0.3
|
3685
|
+
},
|
3686
|
+
"batch": {
|
3687
|
+
"input_per_million": 0.0375,
|
3688
|
+
"output_per_million": 0.15
|
3689
|
+
}
|
3690
|
+
}
|
3691
|
+
},
|
3692
|
+
"metadata": {
|
3693
|
+
"version": "2.5-preview-05-06",
|
3694
|
+
"description": "Preview release (May 6th, 2025) of Gemini 2.5 Pro",
|
3695
|
+
"supported_generation_methods": [
|
3696
|
+
"generateContent",
|
3697
|
+
"countTokens",
|
3698
|
+
"createCachedContent",
|
3699
|
+
"batchGenerateContent"
|
3700
|
+
]
|
3701
|
+
}
|
3702
|
+
},
|
3703
|
+
{
|
3704
|
+
"id": "gemini-2.5-pro-preview-06-05",
|
3732
3705
|
"name": "Gemini 2.5 Pro Preview",
|
3733
3706
|
"provider": "gemini",
|
3734
|
-
"family": "gemini-2.5-pro-preview",
|
3707
|
+
"family": "gemini-2.5-pro-preview-06-05",
|
3735
3708
|
"created_at": null,
|
3736
3709
|
"context_window": 1048576,
|
3737
3710
|
"max_output_tokens": 65536,
|
@@ -3760,8 +3733,8 @@
|
|
3760
3733
|
}
|
3761
3734
|
},
|
3762
3735
|
"metadata": {
|
3763
|
-
"version": "2.5-preview-05
|
3764
|
-
"description": "Preview release (
|
3736
|
+
"version": "2.5-preview-06-05",
|
3737
|
+
"description": "Preview release (June 5th, 2025) of Gemini 2.5 Pro",
|
3765
3738
|
"supported_generation_methods": [
|
3766
3739
|
"generateContent",
|
3767
3740
|
"countTokens",
|
@@ -3772,7 +3745,7 @@
|
|
3772
3745
|
},
|
3773
3746
|
{
|
3774
3747
|
"id": "gemini-2.5-pro-preview-tts",
|
3775
|
-
"name": "Gemini 2.5 Pro Preview
|
3748
|
+
"name": "Gemini 2.5 Pro Preview TTS",
|
3776
3749
|
"provider": "gemini",
|
3777
3750
|
"family": "gemini-2.5-pro-preview-tts",
|
3778
3751
|
"created_at": null,
|
@@ -3855,7 +3828,8 @@
|
|
3855
3828
|
"description": "Obtain a distributed representation of a text.",
|
3856
3829
|
"supported_generation_methods": [
|
3857
3830
|
"embedContent",
|
3858
|
-
"countTextTokens"
|
3831
|
+
"countTextTokens",
|
3832
|
+
"countTokens"
|
3859
3833
|
]
|
3860
3834
|
}
|
3861
3835
|
},
|
@@ -3863,7 +3837,7 @@
|
|
3863
3837
|
"id": "gemini-embedding-exp-03-07",
|
3864
3838
|
"name": "Gemini Embedding Experimental",
|
3865
3839
|
"provider": "gemini",
|
3866
|
-
"family": "gemini-embedding",
|
3840
|
+
"family": "gemini-embedding-exp-03-07",
|
3867
3841
|
"created_at": null,
|
3868
3842
|
"context_window": 8192,
|
3869
3843
|
"max_output_tokens": null,
|
@@ -3883,7 +3857,8 @@
|
|
3883
3857
|
"description": "Obtain a distributed representation of a text.",
|
3884
3858
|
"supported_generation_methods": [
|
3885
3859
|
"embedContent",
|
3886
|
-
"countTextTokens"
|
3860
|
+
"countTextTokens",
|
3861
|
+
"countTokens"
|
3887
3862
|
]
|
3888
3863
|
}
|
3889
3864
|
},
|
@@ -4190,7 +4165,7 @@
|
|
4190
4165
|
"id": "imagen-3.0-generate-002",
|
4191
4166
|
"name": "Imagen 3",
|
4192
4167
|
"provider": "gemini",
|
4193
|
-
"family": "imagen-3",
|
4168
|
+
"family": "imagen-3.0-generate-002",
|
4194
4169
|
"created_at": null,
|
4195
4170
|
"context_window": null,
|
4196
4171
|
"max_output_tokens": null,
|
@@ -4204,20 +4179,8 @@
|
|
4204
4179
|
]
|
4205
4180
|
},
|
4206
4181
|
"capabilities": [],
|
4207
|
-
"pricing": {
|
4208
|
-
|
4209
|
-
"standard": {
|
4210
|
-
"output_per_million": 0.03
|
4211
|
-
}
|
4212
|
-
}
|
4213
|
-
},
|
4214
|
-
"metadata": {
|
4215
|
-
"version": "002",
|
4216
|
-
"description": "Vertex served Imagen 3.0 002 model",
|
4217
|
-
"supported_generation_methods": [
|
4218
|
-
"predict"
|
4219
|
-
]
|
4220
|
-
}
|
4182
|
+
"pricing": {},
|
4183
|
+
"metadata": {}
|
4221
4184
|
},
|
4222
4185
|
{
|
4223
4186
|
"id": "learnlm-2.0-flash-experimental",
|
@@ -4231,133 +4194,60 @@
|
|
4231
4194
|
"modalities": {
|
4232
4195
|
"input": [
|
4233
4196
|
"text",
|
4234
|
-
"image",
|
4235
|
-
"pdf"
|
4236
|
-
],
|
4237
|
-
"output": [
|
4238
|
-
"text"
|
4239
|
-
]
|
4240
|
-
},
|
4241
|
-
"capabilities": [
|
4242
|
-
"streaming",
|
4243
|
-
"function_calling",
|
4244
|
-
"structured_output",
|
4245
|
-
"batch",
|
4246
|
-
"caching"
|
4247
|
-
],
|
4248
|
-
"pricing": {
|
4249
|
-
"text_tokens": {
|
4250
|
-
"standard": {
|
4251
|
-
"input_per_million": 0.075,
|
4252
|
-
"output_per_million": 0.3
|
4253
|
-
},
|
4254
|
-
"batch": {
|
4255
|
-
"input_per_million": 0.0375,
|
4256
|
-
"output_per_million": 0.15
|
4257
|
-
}
|
4258
|
-
}
|
4259
|
-
},
|
4260
|
-
"metadata": {
|
4261
|
-
"version": "2.0",
|
4262
|
-
"description": "LearnLM 2.0 Flash Experimental",
|
4263
|
-
"supported_generation_methods": [
|
4264
|
-
"generateContent",
|
4265
|
-
"countTokens"
|
4266
|
-
]
|
4267
|
-
}
|
4268
|
-
},
|
4269
|
-
{
|
4270
|
-
"id": "models/aqa",
|
4271
|
-
"name": "AQA",
|
4272
|
-
"provider": "gemini",
|
4273
|
-
"family": "aqa",
|
4274
|
-
"created_at": null,
|
4275
|
-
"context_window": 7168,
|
4276
|
-
"max_output_tokens": 1024,
|
4277
|
-
"knowledge_cutoff": null,
|
4278
|
-
"modalities": {
|
4279
|
-
"input": [
|
4280
|
-
"text"
|
4281
|
-
],
|
4282
|
-
"output": [
|
4283
|
-
"text"
|
4284
|
-
]
|
4285
|
-
},
|
4286
|
-
"capabilities": [],
|
4287
|
-
"pricing": {},
|
4288
|
-
"metadata": {}
|
4289
|
-
},
|
4290
|
-
{
|
4291
|
-
"id": "models/embedding-001",
|
4292
|
-
"name": "Embedding",
|
4293
|
-
"provider": "gemini",
|
4294
|
-
"family": "embedding",
|
4295
|
-
"created_at": null,
|
4296
|
-
"context_window": 2048,
|
4297
|
-
"max_output_tokens": null,
|
4298
|
-
"knowledge_cutoff": null,
|
4299
|
-
"modalities": {
|
4300
|
-
"input": [
|
4301
|
-
"text"
|
4302
|
-
],
|
4303
|
-
"output": [
|
4304
|
-
"embeddings"
|
4305
|
-
]
|
4306
|
-
},
|
4307
|
-
"capabilities": [],
|
4308
|
-
"pricing": {},
|
4309
|
-
"metadata": {}
|
4310
|
-
},
|
4311
|
-
{
|
4312
|
-
"id": "models/text-embedding-004",
|
4313
|
-
"name": "Text Embedding",
|
4314
|
-
"provider": "gemini",
|
4315
|
-
"family": "text-embedding",
|
4316
|
-
"created_at": null,
|
4317
|
-
"context_window": 2048,
|
4318
|
-
"max_output_tokens": null,
|
4319
|
-
"knowledge_cutoff": null,
|
4320
|
-
"modalities": {
|
4321
|
-
"input": [
|
4322
|
-
"text"
|
4197
|
+
"image",
|
4198
|
+
"pdf"
|
4323
4199
|
],
|
4324
4200
|
"output": [
|
4325
|
-
"
|
4201
|
+
"text"
|
4326
4202
|
]
|
4327
4203
|
},
|
4328
|
-
"capabilities": [
|
4329
|
-
|
4330
|
-
|
4204
|
+
"capabilities": [
|
4205
|
+
"streaming",
|
4206
|
+
"function_calling",
|
4207
|
+
"structured_output",
|
4208
|
+
"batch",
|
4209
|
+
"caching"
|
4210
|
+
],
|
4211
|
+
"pricing": {
|
4212
|
+
"text_tokens": {
|
4213
|
+
"standard": {
|
4214
|
+
"input_per_million": 0.075,
|
4215
|
+
"output_per_million": 0.3
|
4216
|
+
},
|
4217
|
+
"batch": {
|
4218
|
+
"input_per_million": 0.0375,
|
4219
|
+
"output_per_million": 0.15
|
4220
|
+
}
|
4221
|
+
}
|
4222
|
+
},
|
4223
|
+
"metadata": {
|
4224
|
+
"version": "2.0",
|
4225
|
+
"description": "LearnLM 2.0 Flash Experimental",
|
4226
|
+
"supported_generation_methods": [
|
4227
|
+
"generateContent",
|
4228
|
+
"countTokens"
|
4229
|
+
]
|
4230
|
+
}
|
4331
4231
|
},
|
4332
4232
|
{
|
4333
4233
|
"id": "text-embedding-004",
|
4334
|
-
"name": "Text Embedding
|
4234
|
+
"name": "Text Embedding",
|
4335
4235
|
"provider": "gemini",
|
4336
|
-
"family": "
|
4236
|
+
"family": "text-embedding-004",
|
4337
4237
|
"created_at": null,
|
4338
4238
|
"context_window": 2048,
|
4339
|
-
"max_output_tokens":
|
4239
|
+
"max_output_tokens": null,
|
4340
4240
|
"knowledge_cutoff": null,
|
4341
4241
|
"modalities": {
|
4342
4242
|
"input": [
|
4343
4243
|
"text"
|
4344
4244
|
],
|
4345
4245
|
"output": [
|
4346
|
-
"text",
|
4347
4246
|
"embeddings"
|
4348
4247
|
]
|
4349
4248
|
},
|
4350
|
-
"capabilities": [
|
4351
|
-
|
4352
|
-
"batch"
|
4353
|
-
],
|
4354
|
-
"pricing": {
|
4355
|
-
"embeddings": {
|
4356
|
-
"standard": {
|
4357
|
-
"input_per_million": 0.002
|
4358
|
-
}
|
4359
|
-
}
|
4360
|
-
},
|
4249
|
+
"capabilities": [],
|
4250
|
+
"pricing": {},
|
4361
4251
|
"metadata": {
|
4362
4252
|
"version": "004",
|
4363
4253
|
"description": "Obtain a distributed representation of a text.",
|
@@ -4370,7 +4260,7 @@
|
|
4370
4260
|
"id": "veo-2.0-generate-001",
|
4371
4261
|
"name": "Veo 2",
|
4372
4262
|
"provider": "gemini",
|
4373
|
-
"family": "veo-2",
|
4263
|
+
"family": "veo-2.0-generate-001",
|
4374
4264
|
"created_at": null,
|
4375
4265
|
"context_window": null,
|
4376
4266
|
"max_output_tokens": null,
|
@@ -4383,13 +4273,7 @@
|
|
4383
4273
|
"output": []
|
4384
4274
|
},
|
4385
4275
|
"capabilities": [],
|
4386
|
-
"pricing": {
|
4387
|
-
"text_tokens": {
|
4388
|
-
"standard": {
|
4389
|
-
"output_per_million": 0.35
|
4390
|
-
}
|
4391
|
-
}
|
4392
|
-
},
|
4276
|
+
"pricing": {},
|
4393
4277
|
"metadata": {}
|
4394
4278
|
},
|
4395
4279
|
{
|
@@ -4473,7 +4357,10 @@
|
|
4473
4357
|
"text"
|
4474
4358
|
]
|
4475
4359
|
},
|
4476
|
-
"capabilities": [
|
4360
|
+
"capabilities": [
|
4361
|
+
"function_calling",
|
4362
|
+
"structured_output"
|
4363
|
+
],
|
4477
4364
|
"pricing": {
|
4478
4365
|
"text_tokens": {
|
4479
4366
|
"standard": {
|
@@ -4507,7 +4394,8 @@
|
|
4507
4394
|
]
|
4508
4395
|
},
|
4509
4396
|
"capabilities": [
|
4510
|
-
"batch"
|
4397
|
+
"batch",
|
4398
|
+
"function_calling"
|
4511
4399
|
],
|
4512
4400
|
"pricing": {
|
4513
4401
|
"text_tokens": {
|
@@ -4542,7 +4430,8 @@
|
|
4542
4430
|
]
|
4543
4431
|
},
|
4544
4432
|
"capabilities": [
|
4545
|
-
"batch"
|
4433
|
+
"batch",
|
4434
|
+
"function_calling"
|
4546
4435
|
],
|
4547
4436
|
"pricing": {
|
4548
4437
|
"text_tokens": {
|
@@ -4572,17 +4461,12 @@
|
|
4572
4461
|
"text"
|
4573
4462
|
],
|
4574
4463
|
"output": [
|
4575
|
-
"image"
|
4464
|
+
"image",
|
4465
|
+
"text"
|
4576
4466
|
]
|
4577
4467
|
},
|
4578
4468
|
"capabilities": [],
|
4579
|
-
"pricing": {
|
4580
|
-
"text_tokens": {
|
4581
|
-
"standard": {
|
4582
|
-
"output_per_million": 0.02
|
4583
|
-
}
|
4584
|
-
}
|
4585
|
-
},
|
4469
|
+
"pricing": {},
|
4586
4470
|
"metadata": {
|
4587
4471
|
"object": "model",
|
4588
4472
|
"owned_by": "system"
|
@@ -5647,25 +5531,64 @@
|
|
5647
5531
|
},
|
5648
5532
|
{
|
5649
5533
|
"id": "gpt-4o-audio-preview-2024-12-17",
|
5650
|
-
"name": "GPT-4o
|
5534
|
+
"name": "GPT-4o-Audio Preview 20241217",
|
5651
5535
|
"provider": "openai",
|
5652
|
-
"family": "
|
5653
|
-
"created_at":
|
5536
|
+
"family": "gpt4o_audio",
|
5537
|
+
"created_at": "2024-12-12 21:10:39 +0100",
|
5654
5538
|
"context_window": 128000,
|
5655
5539
|
"max_output_tokens": 16384,
|
5656
5540
|
"knowledge_cutoff": null,
|
5657
5541
|
"modalities": {
|
5658
5542
|
"input": [
|
5659
|
-
"
|
5660
|
-
"
|
5543
|
+
"text",
|
5544
|
+
"audio"
|
5661
5545
|
],
|
5662
5546
|
"output": [
|
5663
|
-
"
|
5664
|
-
"
|
5547
|
+
"text",
|
5548
|
+
"audio"
|
5665
5549
|
]
|
5666
5550
|
},
|
5667
5551
|
"capabilities": [
|
5668
|
-
"
|
5552
|
+
"streaming",
|
5553
|
+
"speech_generation",
|
5554
|
+
"transcription"
|
5555
|
+
],
|
5556
|
+
"pricing": {
|
5557
|
+
"text_tokens": {
|
5558
|
+
"standard": {
|
5559
|
+
"input_per_million": 2.5,
|
5560
|
+
"output_per_million": 10.0
|
5561
|
+
}
|
5562
|
+
}
|
5563
|
+
},
|
5564
|
+
"metadata": {
|
5565
|
+
"object": "model",
|
5566
|
+
"owned_by": "system"
|
5567
|
+
}
|
5568
|
+
},
|
5569
|
+
{
|
5570
|
+
"id": "gpt-4o-audio-preview-2025-06-03",
|
5571
|
+
"name": "GPT-4o-Audio Preview 20250603",
|
5572
|
+
"provider": "openai",
|
5573
|
+
"family": "gpt4o_audio",
|
5574
|
+
"created_at": "2025-06-03 01:54:58 +0200",
|
5575
|
+
"context_window": 128000,
|
5576
|
+
"max_output_tokens": 16384,
|
5577
|
+
"knowledge_cutoff": null,
|
5578
|
+
"modalities": {
|
5579
|
+
"input": [
|
5580
|
+
"text",
|
5581
|
+
"audio"
|
5582
|
+
],
|
5583
|
+
"output": [
|
5584
|
+
"text",
|
5585
|
+
"audio"
|
5586
|
+
]
|
5587
|
+
},
|
5588
|
+
"capabilities": [
|
5589
|
+
"streaming",
|
5590
|
+
"speech_generation",
|
5591
|
+
"transcription"
|
5669
5592
|
],
|
5670
5593
|
"pricing": {
|
5671
5594
|
"text_tokens": {
|
@@ -5921,7 +5844,9 @@
|
|
5921
5844
|
"text"
|
5922
5845
|
]
|
5923
5846
|
},
|
5924
|
-
"capabilities": [
|
5847
|
+
"capabilities": [
|
5848
|
+
"structured_output"
|
5849
|
+
],
|
5925
5850
|
"pricing": {
|
5926
5851
|
"text_tokens": {
|
5927
5852
|
"standard": {
|
@@ -5952,7 +5877,9 @@
|
|
5952
5877
|
"text"
|
5953
5878
|
]
|
5954
5879
|
},
|
5955
|
-
"capabilities": [
|
5880
|
+
"capabilities": [
|
5881
|
+
"structured_output"
|
5882
|
+
],
|
5956
5883
|
"pricing": {
|
5957
5884
|
"text_tokens": {
|
5958
5885
|
"standard": {
|
@@ -6131,6 +6058,39 @@
|
|
6131
6058
|
"owned_by": "system"
|
6132
6059
|
}
|
6133
6060
|
},
|
6061
|
+
{
|
6062
|
+
"id": "gpt-4o-realtime-preview-2025-06-03",
|
6063
|
+
"name": "GPT-4o-Realtime Preview 20250603",
|
6064
|
+
"provider": "openai",
|
6065
|
+
"family": "gpt4o_realtime",
|
6066
|
+
"created_at": "2025-06-03 01:43:58 +0200",
|
6067
|
+
"context_window": 128000,
|
6068
|
+
"max_output_tokens": 4096,
|
6069
|
+
"knowledge_cutoff": null,
|
6070
|
+
"modalities": {
|
6071
|
+
"input": [
|
6072
|
+
"text"
|
6073
|
+
],
|
6074
|
+
"output": [
|
6075
|
+
"text"
|
6076
|
+
]
|
6077
|
+
},
|
6078
|
+
"capabilities": [
|
6079
|
+
"streaming"
|
6080
|
+
],
|
6081
|
+
"pricing": {
|
6082
|
+
"text_tokens": {
|
6083
|
+
"standard": {
|
6084
|
+
"input_per_million": 5.0,
|
6085
|
+
"output_per_million": 20.0
|
6086
|
+
}
|
6087
|
+
}
|
6088
|
+
},
|
6089
|
+
"metadata": {
|
6090
|
+
"object": "model",
|
6091
|
+
"owned_by": "system"
|
6092
|
+
}
|
6093
|
+
},
|
6134
6094
|
{
|
6135
6095
|
"id": "gpt-4o-search-preview",
|
6136
6096
|
"name": "GPT-4o Search Preview",
|
@@ -6148,7 +6108,9 @@
|
|
6148
6108
|
"text"
|
6149
6109
|
]
|
6150
6110
|
},
|
6151
|
-
"capabilities": [
|
6111
|
+
"capabilities": [
|
6112
|
+
"structured_output"
|
6113
|
+
],
|
6152
6114
|
"pricing": {
|
6153
6115
|
"text_tokens": {
|
6154
6116
|
"standard": {
|
@@ -6179,7 +6141,9 @@
|
|
6179
6141
|
"text"
|
6180
6142
|
]
|
6181
6143
|
},
|
6182
|
-
"capabilities": [
|
6144
|
+
"capabilities": [
|
6145
|
+
"structured_output"
|
6146
|
+
],
|
6183
6147
|
"pricing": {
|
6184
6148
|
"text_tokens": {
|
6185
6149
|
"standard": {
|
@@ -6561,17 +6525,98 @@
|
|
6561
6525
|
}
|
6562
6526
|
},
|
6563
6527
|
{
|
6564
|
-
"id": "o3",
|
6565
|
-
"name": "o3",
|
6528
|
+
"id": "o3",
|
6529
|
+
"name": "o3",
|
6530
|
+
"provider": "openai",
|
6531
|
+
"family": "o3",
|
6532
|
+
"created_at": null,
|
6533
|
+
"context_window": 200000,
|
6534
|
+
"max_output_tokens": 100000,
|
6535
|
+
"knowledge_cutoff": null,
|
6536
|
+
"modalities": {
|
6537
|
+
"input": [
|
6538
|
+
"image",
|
6539
|
+
"text"
|
6540
|
+
],
|
6541
|
+
"output": [
|
6542
|
+
"text"
|
6543
|
+
]
|
6544
|
+
},
|
6545
|
+
"capabilities": [
|
6546
|
+
"batch",
|
6547
|
+
"function_calling",
|
6548
|
+
"structured_output"
|
6549
|
+
],
|
6550
|
+
"pricing": {
|
6551
|
+
"text_tokens": {
|
6552
|
+
"standard": {
|
6553
|
+
"input_per_million": 2.0,
|
6554
|
+
"cached_input_per_million": 0.5,
|
6555
|
+
"output_per_million": 8.0
|
6556
|
+
},
|
6557
|
+
"batch": {
|
6558
|
+
"input_per_million": 1.0,
|
6559
|
+
"output_per_million": 4.0
|
6560
|
+
}
|
6561
|
+
}
|
6562
|
+
},
|
6563
|
+
"metadata": {
|
6564
|
+
"object": "model",
|
6565
|
+
"owned_by": "system"
|
6566
|
+
}
|
6567
|
+
},
|
6568
|
+
{
|
6569
|
+
"id": "o3-2025-04-16",
|
6570
|
+
"name": "o3",
|
6571
|
+
"provider": "openai",
|
6572
|
+
"family": "o3",
|
6573
|
+
"created_at": null,
|
6574
|
+
"context_window": 200000,
|
6575
|
+
"max_output_tokens": 100000,
|
6576
|
+
"knowledge_cutoff": null,
|
6577
|
+
"modalities": {
|
6578
|
+
"input": [
|
6579
|
+
"image",
|
6580
|
+
"text"
|
6581
|
+
],
|
6582
|
+
"output": [
|
6583
|
+
"text"
|
6584
|
+
]
|
6585
|
+
},
|
6586
|
+
"capabilities": [
|
6587
|
+
"batch",
|
6588
|
+
"function_calling",
|
6589
|
+
"structured_output"
|
6590
|
+
],
|
6591
|
+
"pricing": {
|
6592
|
+
"text_tokens": {
|
6593
|
+
"standard": {
|
6594
|
+
"input_per_million": 2.0,
|
6595
|
+
"cached_input_per_million": 0.5,
|
6596
|
+
"output_per_million": 8.0
|
6597
|
+
},
|
6598
|
+
"batch": {
|
6599
|
+
"input_per_million": 1.0,
|
6600
|
+
"output_per_million": 4.0
|
6601
|
+
}
|
6602
|
+
}
|
6603
|
+
},
|
6604
|
+
"metadata": {
|
6605
|
+
"object": "model",
|
6606
|
+
"owned_by": "system"
|
6607
|
+
}
|
6608
|
+
},
|
6609
|
+
{
|
6610
|
+
"id": "o3-mini",
|
6611
|
+
"name": "o3-mini",
|
6566
6612
|
"provider": "openai",
|
6567
|
-
"family": "o3",
|
6613
|
+
"family": "o3-mini",
|
6568
6614
|
"created_at": null,
|
6569
6615
|
"context_window": 200000,
|
6570
6616
|
"max_output_tokens": 100000,
|
6571
6617
|
"knowledge_cutoff": null,
|
6572
6618
|
"modalities": {
|
6573
6619
|
"input": [
|
6574
|
-
"image",
|
6575
6620
|
"text"
|
6576
6621
|
],
|
6577
6622
|
"output": [
|
@@ -6586,30 +6631,32 @@
|
|
6586
6631
|
"pricing": {
|
6587
6632
|
"text_tokens": {
|
6588
6633
|
"standard": {
|
6589
|
-
"input_per_million":
|
6590
|
-
"cached_input_per_million":
|
6591
|
-
"output_per_million":
|
6634
|
+
"input_per_million": 1.1,
|
6635
|
+
"cached_input_per_million": 0.55,
|
6636
|
+
"output_per_million": 4.4
|
6592
6637
|
},
|
6593
6638
|
"batch": {
|
6594
|
-
"input_per_million":
|
6595
|
-
"output_per_million":
|
6639
|
+
"input_per_million": 0.55,
|
6640
|
+
"output_per_million": 2.2
|
6596
6641
|
}
|
6597
6642
|
}
|
6598
6643
|
},
|
6599
|
-
"metadata": {
|
6644
|
+
"metadata": {
|
6645
|
+
"object": "model",
|
6646
|
+
"owned_by": "system"
|
6647
|
+
}
|
6600
6648
|
},
|
6601
6649
|
{
|
6602
|
-
"id": "o3-2025-
|
6603
|
-
"name": "o3",
|
6650
|
+
"id": "o3-mini-2025-01-31",
|
6651
|
+
"name": "o3-mini",
|
6604
6652
|
"provider": "openai",
|
6605
|
-
"family": "o3",
|
6653
|
+
"family": "o3-mini",
|
6606
6654
|
"created_at": null,
|
6607
6655
|
"context_window": 200000,
|
6608
6656
|
"max_output_tokens": 100000,
|
6609
6657
|
"knowledge_cutoff": null,
|
6610
6658
|
"modalities": {
|
6611
6659
|
"input": [
|
6612
|
-
"image",
|
6613
6660
|
"text"
|
6614
6661
|
],
|
6615
6662
|
"output": [
|
@@ -6624,29 +6671,33 @@
|
|
6624
6671
|
"pricing": {
|
6625
6672
|
"text_tokens": {
|
6626
6673
|
"standard": {
|
6627
|
-
"input_per_million":
|
6628
|
-
"cached_input_per_million":
|
6629
|
-
"output_per_million":
|
6674
|
+
"input_per_million": 1.1,
|
6675
|
+
"cached_input_per_million": 0.55,
|
6676
|
+
"output_per_million": 4.4
|
6630
6677
|
},
|
6631
6678
|
"batch": {
|
6632
|
-
"input_per_million":
|
6633
|
-
"output_per_million":
|
6679
|
+
"input_per_million": 0.55,
|
6680
|
+
"output_per_million": 2.2
|
6634
6681
|
}
|
6635
6682
|
}
|
6636
6683
|
},
|
6637
|
-
"metadata": {
|
6684
|
+
"metadata": {
|
6685
|
+
"object": "model",
|
6686
|
+
"owned_by": "system"
|
6687
|
+
}
|
6638
6688
|
},
|
6639
6689
|
{
|
6640
|
-
"id": "o3-
|
6641
|
-
"name": "o3-
|
6690
|
+
"id": "o3-pro",
|
6691
|
+
"name": "o3-pro",
|
6642
6692
|
"provider": "openai",
|
6643
|
-
"family": "o3-
|
6693
|
+
"family": "o3-pro",
|
6644
6694
|
"created_at": null,
|
6645
6695
|
"context_window": 200000,
|
6646
6696
|
"max_output_tokens": 100000,
|
6647
6697
|
"knowledge_cutoff": null,
|
6648
6698
|
"modalities": {
|
6649
6699
|
"input": [
|
6700
|
+
"image",
|
6650
6701
|
"text"
|
6651
6702
|
],
|
6652
6703
|
"output": [
|
@@ -6661,13 +6712,12 @@
|
|
6661
6712
|
"pricing": {
|
6662
6713
|
"text_tokens": {
|
6663
6714
|
"standard": {
|
6664
|
-
"input_per_million":
|
6665
|
-
"
|
6666
|
-
"output_per_million": 4.4
|
6715
|
+
"input_per_million": 20.0,
|
6716
|
+
"output_per_million": 80.0
|
6667
6717
|
},
|
6668
6718
|
"batch": {
|
6669
|
-
"input_per_million": 0
|
6670
|
-
"output_per_million":
|
6719
|
+
"input_per_million": 10.0,
|
6720
|
+
"output_per_million": 40.0
|
6671
6721
|
}
|
6672
6722
|
}
|
6673
6723
|
},
|
@@ -6677,16 +6727,17 @@
|
|
6677
6727
|
}
|
6678
6728
|
},
|
6679
6729
|
{
|
6680
|
-
"id": "o3-
|
6681
|
-
"name": "o3-
|
6730
|
+
"id": "o3-pro-2025-06-10",
|
6731
|
+
"name": "o3-pro",
|
6682
6732
|
"provider": "openai",
|
6683
|
-
"family": "o3-
|
6733
|
+
"family": "o3-pro",
|
6684
6734
|
"created_at": null,
|
6685
6735
|
"context_window": 200000,
|
6686
6736
|
"max_output_tokens": 100000,
|
6687
6737
|
"knowledge_cutoff": null,
|
6688
6738
|
"modalities": {
|
6689
6739
|
"input": [
|
6740
|
+
"image",
|
6690
6741
|
"text"
|
6691
6742
|
],
|
6692
6743
|
"output": [
|
@@ -6701,13 +6752,12 @@
|
|
6701
6752
|
"pricing": {
|
6702
6753
|
"text_tokens": {
|
6703
6754
|
"standard": {
|
6704
|
-
"input_per_million":
|
6705
|
-
"
|
6706
|
-
"output_per_million": 4.4
|
6755
|
+
"input_per_million": 20.0,
|
6756
|
+
"output_per_million": 80.0
|
6707
6757
|
},
|
6708
6758
|
"batch": {
|
6709
|
-
"input_per_million": 0
|
6710
|
-
"output_per_million":
|
6759
|
+
"input_per_million": 10.0,
|
6760
|
+
"output_per_million": 40.0
|
6711
6761
|
}
|
6712
6762
|
}
|
6713
6763
|
},
|
@@ -7147,6 +7197,7 @@
|
|
7147
7197
|
"audio"
|
7148
7198
|
],
|
7149
7199
|
"output": [
|
7200
|
+
"audio",
|
7150
7201
|
"text"
|
7151
7202
|
]
|
7152
7203
|
},
|
@@ -11022,23 +11073,23 @@
|
|
11022
11073
|
},
|
11023
11074
|
"per_request_limits": null,
|
11024
11075
|
"supported_parameters": [
|
11076
|
+
"tools",
|
11077
|
+
"tool_choice",
|
11025
11078
|
"max_tokens",
|
11026
11079
|
"temperature",
|
11027
11080
|
"top_p",
|
11081
|
+
"structured_outputs",
|
11082
|
+
"response_format",
|
11028
11083
|
"stop",
|
11029
11084
|
"frequency_penalty",
|
11030
11085
|
"presence_penalty",
|
11031
|
-
"repetition_penalty",
|
11032
|
-
"response_format",
|
11033
11086
|
"top_k",
|
11034
|
-
"
|
11035
|
-
"min_p",
|
11087
|
+
"repetition_penalty",
|
11036
11088
|
"logit_bias",
|
11037
11089
|
"logprobs",
|
11038
11090
|
"top_logprobs",
|
11039
|
-
"
|
11040
|
-
"
|
11041
|
-
"structured_outputs"
|
11091
|
+
"seed",
|
11092
|
+
"min_p"
|
11042
11093
|
]
|
11043
11094
|
}
|
11044
11095
|
},
|
@@ -11048,8 +11099,8 @@
|
|
11048
11099
|
"provider": "openrouter",
|
11049
11100
|
"family": "deepseek",
|
11050
11101
|
"created_at": "2025-03-24 14:59:15 +0100",
|
11051
|
-
"context_window":
|
11052
|
-
"max_output_tokens":
|
11102
|
+
"context_window": 163840,
|
11103
|
+
"max_output_tokens": null,
|
11053
11104
|
"knowledge_cutoff": null,
|
11054
11105
|
"modalities": {
|
11055
11106
|
"input": [
|
@@ -11068,8 +11119,8 @@
|
|
11068
11119
|
"pricing": {
|
11069
11120
|
"text_tokens": {
|
11070
11121
|
"standard": {
|
11071
|
-
"input_per_million": 0.
|
11072
|
-
"output_per_million":
|
11122
|
+
"input_per_million": 0.3,
|
11123
|
+
"output_per_million": 0.88
|
11073
11124
|
}
|
11074
11125
|
}
|
11075
11126
|
},
|
@@ -11087,24 +11138,24 @@
|
|
11087
11138
|
"instruct_type": null
|
11088
11139
|
},
|
11089
11140
|
"top_provider": {
|
11090
|
-
"context_length":
|
11091
|
-
"max_completion_tokens":
|
11141
|
+
"context_length": 163840,
|
11142
|
+
"max_completion_tokens": null,
|
11092
11143
|
"is_moderated": false
|
11093
11144
|
},
|
11094
11145
|
"per_request_limits": null,
|
11095
11146
|
"supported_parameters": [
|
11147
|
+
"tools",
|
11148
|
+
"tool_choice",
|
11096
11149
|
"max_tokens",
|
11097
11150
|
"temperature",
|
11098
11151
|
"top_p",
|
11099
|
-
"
|
11152
|
+
"structured_outputs",
|
11153
|
+
"response_format",
|
11154
|
+
"stop",
|
11100
11155
|
"frequency_penalty",
|
11101
|
-
"
|
11156
|
+
"presence_penalty",
|
11102
11157
|
"top_k",
|
11103
|
-
"
|
11104
|
-
"tools",
|
11105
|
-
"tool_choice",
|
11106
|
-
"response_format",
|
11107
|
-
"structured_outputs",
|
11158
|
+
"repetition_penalty",
|
11108
11159
|
"logit_bias",
|
11109
11160
|
"logprobs",
|
11110
11161
|
"top_logprobs",
|
@@ -11449,6 +11500,7 @@
|
|
11449
11500
|
},
|
11450
11501
|
"capabilities": [
|
11451
11502
|
"streaming",
|
11503
|
+
"function_calling",
|
11452
11504
|
"structured_output",
|
11453
11505
|
"predicted_outputs"
|
11454
11506
|
],
|
@@ -11493,6 +11545,8 @@
|
|
11493
11545
|
"logit_bias",
|
11494
11546
|
"min_p",
|
11495
11547
|
"response_format",
|
11548
|
+
"tools",
|
11549
|
+
"tool_choice",
|
11496
11550
|
"logprobs",
|
11497
11551
|
"top_logprobs",
|
11498
11552
|
"seed",
|
@@ -11506,8 +11560,8 @@
|
|
11506
11560
|
"provider": "openrouter",
|
11507
11561
|
"family": "deepseek",
|
11508
11562
|
"created_at": "2025-05-29 19:09:03 +0200",
|
11509
|
-
"context_window":
|
11510
|
-
"max_output_tokens":
|
11563
|
+
"context_window": 131072,
|
11564
|
+
"max_output_tokens": 131072,
|
11511
11565
|
"knowledge_cutoff": null,
|
11512
11566
|
"modalities": {
|
11513
11567
|
"input": [
|
@@ -11524,8 +11578,8 @@
|
|
11524
11578
|
"pricing": {
|
11525
11579
|
"text_tokens": {
|
11526
11580
|
"standard": {
|
11527
|
-
"input_per_million": 0.
|
11528
|
-
"output_per_million": 0.
|
11581
|
+
"input_per_million": 0.049999999999999996,
|
11582
|
+
"output_per_million": 0.09999999999999999
|
11529
11583
|
}
|
11530
11584
|
}
|
11531
11585
|
},
|
@@ -11543,8 +11597,8 @@
|
|
11543
11597
|
"instruct_type": "deepseek-r1"
|
11544
11598
|
},
|
11545
11599
|
"top_provider": {
|
11546
|
-
"context_length":
|
11547
|
-
"max_completion_tokens":
|
11600
|
+
"context_length": 131072,
|
11601
|
+
"max_completion_tokens": 131072,
|
11548
11602
|
"is_moderated": false
|
11549
11603
|
},
|
11550
11604
|
"per_request_limits": null,
|
@@ -11554,13 +11608,13 @@
|
|
11554
11608
|
"top_p",
|
11555
11609
|
"reasoning",
|
11556
11610
|
"include_reasoning",
|
11557
|
-
"stop",
|
11558
|
-
"frequency_penalty",
|
11559
11611
|
"presence_penalty",
|
11560
|
-
"
|
11612
|
+
"frequency_penalty",
|
11613
|
+
"repetition_penalty",
|
11561
11614
|
"top_k",
|
11615
|
+
"stop",
|
11616
|
+
"seed",
|
11562
11617
|
"min_p",
|
11563
|
-
"repetition_penalty",
|
11564
11618
|
"logit_bias"
|
11565
11619
|
]
|
11566
11620
|
}
|
@@ -12257,7 +12311,7 @@
|
|
12257
12311
|
"provider": "openrouter",
|
12258
12312
|
"family": "deepseek",
|
12259
12313
|
"created_at": "2025-03-06 22:43:54 +0100",
|
12260
|
-
"context_window":
|
12314
|
+
"context_window": 163840,
|
12261
12315
|
"max_output_tokens": null,
|
12262
12316
|
"knowledge_cutoff": null,
|
12263
12317
|
"modalities": {
|
@@ -12287,7 +12341,7 @@
|
|
12287
12341
|
"instruct_type": "deepseek-r1"
|
12288
12342
|
},
|
12289
12343
|
"top_provider": {
|
12290
|
-
"context_length":
|
12344
|
+
"context_length": 163840,
|
12291
12345
|
"max_completion_tokens": null,
|
12292
12346
|
"is_moderated": false
|
12293
12347
|
},
|
@@ -13245,7 +13299,78 @@
|
|
13245
13299
|
},
|
13246
13300
|
{
|
13247
13301
|
"id": "google/gemini-2.5-pro-preview",
|
13248
|
-
"name": "Google: Gemini 2.5 Pro Preview",
|
13302
|
+
"name": "Google: Gemini 2.5 Pro Preview 06-05",
|
13303
|
+
"provider": "openrouter",
|
13304
|
+
"family": "google",
|
13305
|
+
"created_at": "2025-06-05 17:27:37 +0200",
|
13306
|
+
"context_window": 1048576,
|
13307
|
+
"max_output_tokens": 65536,
|
13308
|
+
"knowledge_cutoff": null,
|
13309
|
+
"modalities": {
|
13310
|
+
"input": [
|
13311
|
+
"file",
|
13312
|
+
"image",
|
13313
|
+
"text"
|
13314
|
+
],
|
13315
|
+
"output": [
|
13316
|
+
"text"
|
13317
|
+
]
|
13318
|
+
},
|
13319
|
+
"capabilities": [
|
13320
|
+
"streaming",
|
13321
|
+
"function_calling",
|
13322
|
+
"structured_output"
|
13323
|
+
],
|
13324
|
+
"pricing": {
|
13325
|
+
"text_tokens": {
|
13326
|
+
"standard": {
|
13327
|
+
"input_per_million": 1.25,
|
13328
|
+
"output_per_million": 10.0,
|
13329
|
+
"cached_input_per_million": 0.31
|
13330
|
+
}
|
13331
|
+
}
|
13332
|
+
},
|
13333
|
+
"metadata": {
|
13334
|
+
"description": "Gemini 2.5 Pro is Google’s state-of-the-art AI model designed for advanced reasoning, coding, mathematics, and scientific tasks. It employs “thinking” capabilities, enabling it to reason through responses with enhanced accuracy and nuanced context handling. Gemini 2.5 Pro achieves top-tier performance on multiple benchmarks, including first-place positioning on the LMArena leaderboard, reflecting superior human-preference alignment and complex problem-solving abilities.\n",
|
13335
|
+
"architecture": {
|
13336
|
+
"modality": "text+image->text",
|
13337
|
+
"input_modalities": [
|
13338
|
+
"file",
|
13339
|
+
"image",
|
13340
|
+
"text"
|
13341
|
+
],
|
13342
|
+
"output_modalities": [
|
13343
|
+
"text"
|
13344
|
+
],
|
13345
|
+
"tokenizer": "Gemini",
|
13346
|
+
"instruct_type": null
|
13347
|
+
},
|
13348
|
+
"top_provider": {
|
13349
|
+
"context_length": 1048576,
|
13350
|
+
"max_completion_tokens": 65536,
|
13351
|
+
"is_moderated": false
|
13352
|
+
},
|
13353
|
+
"per_request_limits": null,
|
13354
|
+
"supported_parameters": [
|
13355
|
+
"tools",
|
13356
|
+
"tool_choice",
|
13357
|
+
"max_tokens",
|
13358
|
+
"temperature",
|
13359
|
+
"top_p",
|
13360
|
+
"reasoning",
|
13361
|
+
"include_reasoning",
|
13362
|
+
"structured_outputs",
|
13363
|
+
"response_format",
|
13364
|
+
"stop",
|
13365
|
+
"frequency_penalty",
|
13366
|
+
"presence_penalty",
|
13367
|
+
"seed"
|
13368
|
+
]
|
13369
|
+
}
|
13370
|
+
},
|
13371
|
+
{
|
13372
|
+
"id": "google/gemini-2.5-pro-preview-05-06",
|
13373
|
+
"name": "Google: Gemini 2.5 Pro Preview 05-06",
|
13249
13374
|
"provider": "openrouter",
|
13250
13375
|
"family": "google",
|
13251
13376
|
"created_at": "2025-05-07 02:41:53 +0200",
|
@@ -13644,65 +13769,7 @@
|
|
13644
13769
|
"family": "google",
|
13645
13770
|
"created_at": "2024-06-28 02:00:00 +0200",
|
13646
13771
|
"context_window": 8192,
|
13647
|
-
"max_output_tokens": 8192,
|
13648
|
-
"knowledge_cutoff": null,
|
13649
|
-
"modalities": {
|
13650
|
-
"input": [
|
13651
|
-
"text"
|
13652
|
-
],
|
13653
|
-
"output": [
|
13654
|
-
"text"
|
13655
|
-
]
|
13656
|
-
},
|
13657
|
-
"capabilities": [
|
13658
|
-
"streaming",
|
13659
|
-
"predicted_outputs"
|
13660
|
-
],
|
13661
|
-
"pricing": {},
|
13662
|
-
"metadata": {
|
13663
|
-
"description": "Gemma 2 9B by Google is an advanced, open-source language model that sets a new standard for efficiency and performance in its size class.\n\nDesigned for a wide variety of tasks, it empowers developers and researchers to build innovative applications, while maintaining accessibility, safety, and cost-effectiveness.\n\nSee the [launch announcement](https://blog.google/technology/developers/google-gemma-2/) for more details. Usage of Gemma is subject to Google's [Gemma Terms of Use](https://ai.google.dev/gemma/terms).",
|
13664
|
-
"architecture": {
|
13665
|
-
"modality": "text->text",
|
13666
|
-
"input_modalities": [
|
13667
|
-
"text"
|
13668
|
-
],
|
13669
|
-
"output_modalities": [
|
13670
|
-
"text"
|
13671
|
-
],
|
13672
|
-
"tokenizer": "Gemini",
|
13673
|
-
"instruct_type": "gemma"
|
13674
|
-
},
|
13675
|
-
"top_provider": {
|
13676
|
-
"context_length": 8192,
|
13677
|
-
"max_completion_tokens": 8192,
|
13678
|
-
"is_moderated": false
|
13679
|
-
},
|
13680
|
-
"per_request_limits": null,
|
13681
|
-
"supported_parameters": [
|
13682
|
-
"max_tokens",
|
13683
|
-
"temperature",
|
13684
|
-
"top_p",
|
13685
|
-
"stop",
|
13686
|
-
"frequency_penalty",
|
13687
|
-
"presence_penalty",
|
13688
|
-
"seed",
|
13689
|
-
"top_k",
|
13690
|
-
"min_p",
|
13691
|
-
"repetition_penalty",
|
13692
|
-
"logprobs",
|
13693
|
-
"logit_bias",
|
13694
|
-
"top_logprobs"
|
13695
|
-
]
|
13696
|
-
}
|
13697
|
-
},
|
13698
|
-
{
|
13699
|
-
"id": "google/gemma-2b-it",
|
13700
|
-
"name": "Google: Gemma 2 2B",
|
13701
|
-
"provider": "openrouter",
|
13702
|
-
"family": "google",
|
13703
|
-
"created_at": "2025-05-28 21:33:35 +0200",
|
13704
|
-
"context_window": 8192,
|
13705
|
-
"max_output_tokens": null,
|
13772
|
+
"max_output_tokens": 8192,
|
13706
13773
|
"knowledge_cutoff": null,
|
13707
13774
|
"modalities": {
|
13708
13775
|
"input": [
|
@@ -13714,19 +13781,11 @@
|
|
13714
13781
|
},
|
13715
13782
|
"capabilities": [
|
13716
13783
|
"streaming",
|
13717
|
-
"structured_output",
|
13718
13784
|
"predicted_outputs"
|
13719
13785
|
],
|
13720
|
-
"pricing": {
|
13721
|
-
"text_tokens": {
|
13722
|
-
"standard": {
|
13723
|
-
"input_per_million": 0.09999999999999999,
|
13724
|
-
"output_per_million": 0.09999999999999999
|
13725
|
-
}
|
13726
|
-
}
|
13727
|
-
},
|
13786
|
+
"pricing": {},
|
13728
13787
|
"metadata": {
|
13729
|
-
"description": "Gemma 2
|
13788
|
+
"description": "Gemma 2 9B by Google is an advanced, open-source language model that sets a new standard for efficiency and performance in its size class.\n\nDesigned for a wide variety of tasks, it empowers developers and researchers to build innovative applications, while maintaining accessibility, safety, and cost-effectiveness.\n\nSee the [launch announcement](https://blog.google/technology/developers/google-gemma-2/) for more details. Usage of Gemma is subject to Google's [Gemma Terms of Use](https://ai.google.dev/gemma/terms).",
|
13730
13789
|
"architecture": {
|
13731
13790
|
"modality": "text->text",
|
13732
13791
|
"input_modalities": [
|
@@ -13740,7 +13799,7 @@
|
|
13740
13799
|
},
|
13741
13800
|
"top_provider": {
|
13742
13801
|
"context_length": 8192,
|
13743
|
-
"max_completion_tokens":
|
13802
|
+
"max_completion_tokens": 8192,
|
13744
13803
|
"is_moderated": false
|
13745
13804
|
},
|
13746
13805
|
"per_request_limits": null,
|
@@ -13751,11 +13810,13 @@
|
|
13751
13810
|
"stop",
|
13752
13811
|
"frequency_penalty",
|
13753
13812
|
"presence_penalty",
|
13813
|
+
"seed",
|
13754
13814
|
"top_k",
|
13815
|
+
"min_p",
|
13755
13816
|
"repetition_penalty",
|
13817
|
+
"logprobs",
|
13756
13818
|
"logit_bias",
|
13757
|
-
"
|
13758
|
-
"response_format"
|
13819
|
+
"top_logprobs"
|
13759
13820
|
]
|
13760
13821
|
}
|
13761
13822
|
},
|
@@ -14313,13 +14374,13 @@
|
|
14313
14374
|
"max_tokens",
|
14314
14375
|
"temperature",
|
14315
14376
|
"top_p",
|
14316
|
-
"stop",
|
14317
|
-
"frequency_penalty",
|
14318
14377
|
"presence_penalty",
|
14319
|
-
"
|
14378
|
+
"frequency_penalty",
|
14379
|
+
"repetition_penalty",
|
14320
14380
|
"top_k",
|
14381
|
+
"stop",
|
14382
|
+
"seed",
|
14321
14383
|
"min_p",
|
14322
|
-
"repetition_penalty",
|
14323
14384
|
"logit_bias",
|
14324
14385
|
"response_format",
|
14325
14386
|
"top_a"
|
@@ -15266,15 +15327,15 @@
|
|
15266
15327
|
"max_tokens",
|
15267
15328
|
"temperature",
|
15268
15329
|
"top_p",
|
15330
|
+
"response_format",
|
15269
15331
|
"stop",
|
15270
15332
|
"frequency_penalty",
|
15271
15333
|
"presence_penalty",
|
15272
|
-
"top_k",
|
15273
15334
|
"repetition_penalty",
|
15274
|
-
"
|
15275
|
-
"min_p",
|
15276
|
-
"response_format",
|
15335
|
+
"top_k",
|
15277
15336
|
"seed",
|
15337
|
+
"min_p",
|
15338
|
+
"logit_bias",
|
15278
15339
|
"logprobs",
|
15279
15340
|
"top_logprobs",
|
15280
15341
|
"structured_outputs"
|
@@ -15287,8 +15348,8 @@
|
|
15287
15348
|
"provider": "openrouter",
|
15288
15349
|
"family": "meta-llama",
|
15289
15350
|
"created_at": "2024-07-23 02:00:00 +0200",
|
15290
|
-
"context_window":
|
15291
|
-
"max_output_tokens":
|
15351
|
+
"context_window": 131000,
|
15352
|
+
"max_output_tokens": 131000,
|
15292
15353
|
"knowledge_cutoff": null,
|
15293
15354
|
"modalities": {
|
15294
15355
|
"input": [
|
@@ -15307,7 +15368,7 @@
|
|
15307
15368
|
"pricing": {
|
15308
15369
|
"text_tokens": {
|
15309
15370
|
"standard": {
|
15310
|
-
"input_per_million": 0.
|
15371
|
+
"input_per_million": 0.019000000000000003,
|
15311
15372
|
"output_per_million": 0.03
|
15312
15373
|
}
|
15313
15374
|
}
|
@@ -15326,8 +15387,8 @@
|
|
15326
15387
|
"instruct_type": "llama3"
|
15327
15388
|
},
|
15328
15389
|
"top_provider": {
|
15329
|
-
"context_length":
|
15330
|
-
"max_completion_tokens":
|
15390
|
+
"context_length": 131000,
|
15391
|
+
"max_completion_tokens": 131000,
|
15331
15392
|
"is_moderated": false
|
15332
15393
|
},
|
15333
15394
|
"per_request_limits": null,
|
@@ -15894,14 +15955,14 @@
|
|
15894
15955
|
"stop",
|
15895
15956
|
"frequency_penalty",
|
15896
15957
|
"presence_penalty",
|
15897
|
-
"
|
15958
|
+
"repetition_penalty",
|
15959
|
+
"response_format",
|
15898
15960
|
"top_k",
|
15961
|
+
"seed",
|
15899
15962
|
"min_p",
|
15900
|
-
"repetition_penalty",
|
15901
15963
|
"logit_bias",
|
15902
15964
|
"logprobs",
|
15903
15965
|
"top_logprobs",
|
15904
|
-
"response_format",
|
15905
15966
|
"structured_outputs"
|
15906
15967
|
]
|
15907
15968
|
}
|
@@ -15950,17 +16011,16 @@
|
|
15950
16011
|
},
|
15951
16012
|
"per_request_limits": null,
|
15952
16013
|
"supported_parameters": [
|
16014
|
+
"tools",
|
16015
|
+
"tool_choice",
|
15953
16016
|
"max_tokens",
|
15954
16017
|
"temperature",
|
15955
16018
|
"top_p",
|
16019
|
+
"repetition_penalty",
|
16020
|
+
"top_k",
|
15956
16021
|
"stop",
|
15957
16022
|
"frequency_penalty",
|
15958
16023
|
"presence_penalty",
|
15959
|
-
"seed",
|
15960
|
-
"tools",
|
15961
|
-
"tool_choice",
|
15962
|
-
"repetition_penalty",
|
15963
|
-
"top_k",
|
15964
16024
|
"logit_bias",
|
15965
16025
|
"min_p",
|
15966
16026
|
"response_format"
|
@@ -16078,12 +16138,12 @@
|
|
16078
16138
|
"max_tokens",
|
16079
16139
|
"temperature",
|
16080
16140
|
"top_p",
|
16081
|
-
"
|
16141
|
+
"stop",
|
16082
16142
|
"frequency_penalty",
|
16143
|
+
"presence_penalty",
|
16083
16144
|
"repetition_penalty",
|
16084
|
-
"top_k",
|
16085
|
-
"stop",
|
16086
16145
|
"response_format",
|
16146
|
+
"top_k",
|
16087
16147
|
"seed",
|
16088
16148
|
"min_p",
|
16089
16149
|
"logit_bias",
|
@@ -16422,11 +16482,12 @@
|
|
16422
16482
|
"presence_penalty",
|
16423
16483
|
"top_k",
|
16424
16484
|
"repetition_penalty",
|
16425
|
-
"logit_bias",
|
16426
|
-
"min_p",
|
16427
16485
|
"response_format",
|
16428
|
-
"
|
16486
|
+
"structured_outputs",
|
16487
|
+
"logit_bias",
|
16429
16488
|
"logprobs",
|
16489
|
+
"top_logprobs",
|
16490
|
+
"min_p",
|
16430
16491
|
"seed"
|
16431
16492
|
]
|
16432
16493
|
}
|
@@ -17170,13 +17231,205 @@
|
|
17170
17231
|
}
|
17171
17232
|
},
|
17172
17233
|
{
|
17173
|
-
"id": "mistralai/codestral-2501",
|
17174
|
-
"name": "Mistral: Codestral 2501",
|
17234
|
+
"id": "mistralai/codestral-2501",
|
17235
|
+
"name": "Mistral: Codestral 2501",
|
17236
|
+
"provider": "openrouter",
|
17237
|
+
"family": "mistralai",
|
17238
|
+
"created_at": "2025-01-14 23:58:42 +0100",
|
17239
|
+
"context_window": 262144,
|
17240
|
+
"max_output_tokens": null,
|
17241
|
+
"knowledge_cutoff": null,
|
17242
|
+
"modalities": {
|
17243
|
+
"input": [
|
17244
|
+
"text"
|
17245
|
+
],
|
17246
|
+
"output": [
|
17247
|
+
"text"
|
17248
|
+
]
|
17249
|
+
},
|
17250
|
+
"capabilities": [
|
17251
|
+
"streaming",
|
17252
|
+
"function_calling",
|
17253
|
+
"structured_output"
|
17254
|
+
],
|
17255
|
+
"pricing": {
|
17256
|
+
"text_tokens": {
|
17257
|
+
"standard": {
|
17258
|
+
"input_per_million": 0.3,
|
17259
|
+
"output_per_million": 0.8999999999999999
|
17260
|
+
}
|
17261
|
+
}
|
17262
|
+
},
|
17263
|
+
"metadata": {
|
17264
|
+
"description": "[Mistral](/mistralai)'s cutting-edge language model for coding. Codestral specializes in low-latency, high-frequency tasks such as fill-in-the-middle (FIM), code correction and test generation. \n\nLearn more on their blog post: https://mistral.ai/news/codestral-2501/",
|
17265
|
+
"architecture": {
|
17266
|
+
"modality": "text->text",
|
17267
|
+
"input_modalities": [
|
17268
|
+
"text"
|
17269
|
+
],
|
17270
|
+
"output_modalities": [
|
17271
|
+
"text"
|
17272
|
+
],
|
17273
|
+
"tokenizer": "Mistral",
|
17274
|
+
"instruct_type": null
|
17275
|
+
},
|
17276
|
+
"top_provider": {
|
17277
|
+
"context_length": 262144,
|
17278
|
+
"max_completion_tokens": null,
|
17279
|
+
"is_moderated": false
|
17280
|
+
},
|
17281
|
+
"per_request_limits": null,
|
17282
|
+
"supported_parameters": [
|
17283
|
+
"tools",
|
17284
|
+
"tool_choice",
|
17285
|
+
"max_tokens",
|
17286
|
+
"temperature",
|
17287
|
+
"top_p",
|
17288
|
+
"stop",
|
17289
|
+
"frequency_penalty",
|
17290
|
+
"presence_penalty",
|
17291
|
+
"response_format",
|
17292
|
+
"structured_outputs",
|
17293
|
+
"seed"
|
17294
|
+
]
|
17295
|
+
}
|
17296
|
+
},
|
17297
|
+
{
|
17298
|
+
"id": "mistralai/devstral-small",
|
17299
|
+
"name": "Mistral: Devstral Small",
|
17300
|
+
"provider": "openrouter",
|
17301
|
+
"family": "mistralai",
|
17302
|
+
"created_at": "2025-05-21 16:22:59 +0200",
|
17303
|
+
"context_window": 128000,
|
17304
|
+
"max_output_tokens": null,
|
17305
|
+
"knowledge_cutoff": null,
|
17306
|
+
"modalities": {
|
17307
|
+
"input": [
|
17308
|
+
"text"
|
17309
|
+
],
|
17310
|
+
"output": [
|
17311
|
+
"text"
|
17312
|
+
]
|
17313
|
+
},
|
17314
|
+
"capabilities": [
|
17315
|
+
"streaming",
|
17316
|
+
"function_calling",
|
17317
|
+
"structured_output"
|
17318
|
+
],
|
17319
|
+
"pricing": {
|
17320
|
+
"text_tokens": {
|
17321
|
+
"standard": {
|
17322
|
+
"input_per_million": 0.06,
|
17323
|
+
"output_per_million": 0.12
|
17324
|
+
}
|
17325
|
+
}
|
17326
|
+
},
|
17327
|
+
"metadata": {
|
17328
|
+
"description": "Devstral-Small-2505 is a 24B parameter agentic LLM fine-tuned from Mistral-Small-3.1, jointly developed by Mistral AI and All Hands AI for advanced software engineering tasks. It is optimized for codebase exploration, multi-file editing, and integration into coding agents, achieving state-of-the-art results on SWE-Bench Verified (46.8%).\n\nDevstral supports a 128k context window and uses a custom Tekken tokenizer. It is text-only, with the vision encoder removed, and is suitable for local deployment on high-end consumer hardware (e.g., RTX 4090, 32GB RAM Macs). Devstral is best used in agentic workflows via the OpenHands scaffold and is compatible with inference frameworks like vLLM, Transformers, and Ollama. It is released under the Apache 2.0 license.",
|
17329
|
+
"architecture": {
|
17330
|
+
"modality": "text->text",
|
17331
|
+
"input_modalities": [
|
17332
|
+
"text"
|
17333
|
+
],
|
17334
|
+
"output_modalities": [
|
17335
|
+
"text"
|
17336
|
+
],
|
17337
|
+
"tokenizer": "Other",
|
17338
|
+
"instruct_type": null
|
17339
|
+
},
|
17340
|
+
"top_provider": {
|
17341
|
+
"context_length": 128000,
|
17342
|
+
"max_completion_tokens": null,
|
17343
|
+
"is_moderated": false
|
17344
|
+
},
|
17345
|
+
"per_request_limits": null,
|
17346
|
+
"supported_parameters": [
|
17347
|
+
"max_tokens",
|
17348
|
+
"temperature",
|
17349
|
+
"top_p",
|
17350
|
+
"stop",
|
17351
|
+
"frequency_penalty",
|
17352
|
+
"presence_penalty",
|
17353
|
+
"repetition_penalty",
|
17354
|
+
"response_format",
|
17355
|
+
"top_k",
|
17356
|
+
"seed",
|
17357
|
+
"min_p",
|
17358
|
+
"tools",
|
17359
|
+
"tool_choice",
|
17360
|
+
"structured_outputs"
|
17361
|
+
]
|
17362
|
+
}
|
17363
|
+
},
|
17364
|
+
{
|
17365
|
+
"id": "mistralai/devstral-small:free",
|
17366
|
+
"name": "Mistral: Devstral Small (free)",
|
17367
|
+
"provider": "openrouter",
|
17368
|
+
"family": "mistralai",
|
17369
|
+
"created_at": "2025-05-21 16:22:59 +0200",
|
17370
|
+
"context_window": 131072,
|
17371
|
+
"max_output_tokens": null,
|
17372
|
+
"knowledge_cutoff": null,
|
17373
|
+
"modalities": {
|
17374
|
+
"input": [
|
17375
|
+
"text"
|
17376
|
+
],
|
17377
|
+
"output": [
|
17378
|
+
"text"
|
17379
|
+
]
|
17380
|
+
},
|
17381
|
+
"capabilities": [
|
17382
|
+
"streaming",
|
17383
|
+
"function_calling",
|
17384
|
+
"predicted_outputs"
|
17385
|
+
],
|
17386
|
+
"pricing": {},
|
17387
|
+
"metadata": {
|
17388
|
+
"description": "Devstral-Small-2505 is a 24B parameter agentic LLM fine-tuned from Mistral-Small-3.1, jointly developed by Mistral AI and All Hands AI for advanced software engineering tasks. It is optimized for codebase exploration, multi-file editing, and integration into coding agents, achieving state-of-the-art results on SWE-Bench Verified (46.8%).\n\nDevstral supports a 128k context window and uses a custom Tekken tokenizer. It is text-only, with the vision encoder removed, and is suitable for local deployment on high-end consumer hardware (e.g., RTX 4090, 32GB RAM Macs). Devstral is best used in agentic workflows via the OpenHands scaffold and is compatible with inference frameworks like vLLM, Transformers, and Ollama. It is released under the Apache 2.0 license.",
|
17389
|
+
"architecture": {
|
17390
|
+
"modality": "text->text",
|
17391
|
+
"input_modalities": [
|
17392
|
+
"text"
|
17393
|
+
],
|
17394
|
+
"output_modalities": [
|
17395
|
+
"text"
|
17396
|
+
],
|
17397
|
+
"tokenizer": "Other",
|
17398
|
+
"instruct_type": null
|
17399
|
+
},
|
17400
|
+
"top_provider": {
|
17401
|
+
"context_length": 131072,
|
17402
|
+
"max_completion_tokens": null,
|
17403
|
+
"is_moderated": false
|
17404
|
+
},
|
17405
|
+
"per_request_limits": null,
|
17406
|
+
"supported_parameters": [
|
17407
|
+
"tools",
|
17408
|
+
"tool_choice",
|
17409
|
+
"max_tokens",
|
17410
|
+
"temperature",
|
17411
|
+
"top_p",
|
17412
|
+
"stop",
|
17413
|
+
"frequency_penalty",
|
17414
|
+
"presence_penalty",
|
17415
|
+
"seed",
|
17416
|
+
"top_k",
|
17417
|
+
"min_p",
|
17418
|
+
"repetition_penalty",
|
17419
|
+
"logprobs",
|
17420
|
+
"logit_bias",
|
17421
|
+
"top_logprobs"
|
17422
|
+
]
|
17423
|
+
}
|
17424
|
+
},
|
17425
|
+
{
|
17426
|
+
"id": "mistralai/magistral-medium-2506",
|
17427
|
+
"name": "Mistral: Magistral Medium 2506",
|
17175
17428
|
"provider": "openrouter",
|
17176
17429
|
"family": "mistralai",
|
17177
|
-
"created_at": "2025-
|
17178
|
-
"context_window":
|
17179
|
-
"max_output_tokens":
|
17430
|
+
"created_at": "2025-06-08 05:40:54 +0200",
|
17431
|
+
"context_window": 40960,
|
17432
|
+
"max_output_tokens": 40000,
|
17180
17433
|
"knowledge_cutoff": null,
|
17181
17434
|
"modalities": {
|
17182
17435
|
"input": [
|
@@ -17194,13 +17447,13 @@
|
|
17194
17447
|
"pricing": {
|
17195
17448
|
"text_tokens": {
|
17196
17449
|
"standard": {
|
17197
|
-
"input_per_million": 0
|
17198
|
-
"output_per_million": 0
|
17450
|
+
"input_per_million": 2.0,
|
17451
|
+
"output_per_million": 5.0
|
17199
17452
|
}
|
17200
17453
|
}
|
17201
17454
|
},
|
17202
17455
|
"metadata": {
|
17203
|
-
"description": "
|
17456
|
+
"description": "Magistral is Mistral's first reasoning model. It is ideal for general purpose use requiring longer thought processing and better accuracy than with non-reasoning LLMs. From legal research and financial forecasting to software development and creative storytelling — this model solves multi-step challenges where transparency and precision are critical.",
|
17204
17457
|
"architecture": {
|
17205
17458
|
"modality": "text->text",
|
17206
17459
|
"input_modalities": [
|
@@ -17213,8 +17466,8 @@
|
|
17213
17466
|
"instruct_type": null
|
17214
17467
|
},
|
17215
17468
|
"top_provider": {
|
17216
|
-
"context_length":
|
17217
|
-
"max_completion_tokens":
|
17469
|
+
"context_length": 40960,
|
17470
|
+
"max_completion_tokens": 40000,
|
17218
17471
|
"is_moderated": false
|
17219
17472
|
},
|
17220
17473
|
"per_request_limits": null,
|
@@ -17224,23 +17477,25 @@
|
|
17224
17477
|
"max_tokens",
|
17225
17478
|
"temperature",
|
17226
17479
|
"top_p",
|
17480
|
+
"reasoning",
|
17481
|
+
"include_reasoning",
|
17482
|
+
"structured_outputs",
|
17483
|
+
"response_format",
|
17227
17484
|
"stop",
|
17228
17485
|
"frequency_penalty",
|
17229
17486
|
"presence_penalty",
|
17230
|
-
"response_format",
|
17231
|
-
"structured_outputs",
|
17232
17487
|
"seed"
|
17233
17488
|
]
|
17234
17489
|
}
|
17235
17490
|
},
|
17236
17491
|
{
|
17237
|
-
"id": "mistralai/
|
17238
|
-
"name": "Mistral:
|
17492
|
+
"id": "mistralai/magistral-medium-2506:thinking",
|
17493
|
+
"name": "Mistral: Magistral Medium 2506 (thinking)",
|
17239
17494
|
"provider": "openrouter",
|
17240
17495
|
"family": "mistralai",
|
17241
|
-
"created_at": "2025-
|
17242
|
-
"context_window":
|
17243
|
-
"max_output_tokens":
|
17496
|
+
"created_at": "2025-06-08 05:40:54 +0200",
|
17497
|
+
"context_window": 40960,
|
17498
|
+
"max_output_tokens": 40000,
|
17244
17499
|
"knowledge_cutoff": null,
|
17245
17500
|
"modalities": {
|
17246
17501
|
"input": [
|
@@ -17258,13 +17513,13 @@
|
|
17258
17513
|
"pricing": {
|
17259
17514
|
"text_tokens": {
|
17260
17515
|
"standard": {
|
17261
|
-
"input_per_million": 0
|
17262
|
-
"output_per_million": 0
|
17516
|
+
"input_per_million": 2.0,
|
17517
|
+
"output_per_million": 5.0
|
17263
17518
|
}
|
17264
17519
|
}
|
17265
17520
|
},
|
17266
17521
|
"metadata": {
|
17267
|
-
"description": "
|
17522
|
+
"description": "Magistral is Mistral's first reasoning model. It is ideal for general purpose use requiring longer thought processing and better accuracy than with non-reasoning LLMs. From legal research and financial forecasting to software development and creative storytelling — this model solves multi-step challenges where transparency and precision are critical.",
|
17268
17523
|
"architecture": {
|
17269
17524
|
"modality": "text->text",
|
17270
17525
|
"input_modalities": [
|
@@ -17273,41 +17528,40 @@
|
|
17273
17528
|
"output_modalities": [
|
17274
17529
|
"text"
|
17275
17530
|
],
|
17276
|
-
"tokenizer": "
|
17531
|
+
"tokenizer": "Mistral",
|
17277
17532
|
"instruct_type": null
|
17278
17533
|
},
|
17279
17534
|
"top_provider": {
|
17280
|
-
"context_length":
|
17281
|
-
"max_completion_tokens":
|
17535
|
+
"context_length": 40960,
|
17536
|
+
"max_completion_tokens": 40000,
|
17282
17537
|
"is_moderated": false
|
17283
17538
|
},
|
17284
17539
|
"per_request_limits": null,
|
17285
17540
|
"supported_parameters": [
|
17541
|
+
"tools",
|
17542
|
+
"tool_choice",
|
17286
17543
|
"max_tokens",
|
17287
17544
|
"temperature",
|
17288
17545
|
"top_p",
|
17546
|
+
"reasoning",
|
17547
|
+
"include_reasoning",
|
17548
|
+
"structured_outputs",
|
17549
|
+
"response_format",
|
17289
17550
|
"stop",
|
17290
17551
|
"frequency_penalty",
|
17291
17552
|
"presence_penalty",
|
17292
|
-
"
|
17293
|
-
"response_format",
|
17294
|
-
"top_k",
|
17295
|
-
"seed",
|
17296
|
-
"min_p",
|
17297
|
-
"tools",
|
17298
|
-
"tool_choice",
|
17299
|
-
"structured_outputs"
|
17553
|
+
"seed"
|
17300
17554
|
]
|
17301
17555
|
}
|
17302
17556
|
},
|
17303
17557
|
{
|
17304
|
-
"id": "mistralai/
|
17305
|
-
"name": "Mistral:
|
17558
|
+
"id": "mistralai/magistral-small-2506",
|
17559
|
+
"name": "Mistral: Magistral Small 2506",
|
17306
17560
|
"provider": "openrouter",
|
17307
17561
|
"family": "mistralai",
|
17308
|
-
"created_at": "2025-
|
17309
|
-
"context_window":
|
17310
|
-
"max_output_tokens":
|
17562
|
+
"created_at": "2025-06-10 17:32:41 +0200",
|
17563
|
+
"context_window": 40000,
|
17564
|
+
"max_output_tokens": 40000,
|
17311
17565
|
"knowledge_cutoff": null,
|
17312
17566
|
"modalities": {
|
17313
17567
|
"input": [
|
@@ -17320,11 +17574,18 @@
|
|
17320
17574
|
"capabilities": [
|
17321
17575
|
"streaming",
|
17322
17576
|
"function_calling",
|
17323
|
-
"
|
17577
|
+
"structured_output"
|
17324
17578
|
],
|
17325
|
-
"pricing": {
|
17579
|
+
"pricing": {
|
17580
|
+
"text_tokens": {
|
17581
|
+
"standard": {
|
17582
|
+
"input_per_million": 0.5,
|
17583
|
+
"output_per_million": 1.5
|
17584
|
+
}
|
17585
|
+
}
|
17586
|
+
},
|
17326
17587
|
"metadata": {
|
17327
|
-
"description": "
|
17588
|
+
"description": "Magistral Small is a 24B parameter instruction-tuned model based on Mistral-Small-3.1 (2503), enhanced through supervised fine-tuning on traces from Magistral Medium and further refined via reinforcement learning. It is optimized for reasoning and supports a wide multilingual range, including over 20 languages.",
|
17328
17589
|
"architecture": {
|
17329
17590
|
"modality": "text->text",
|
17330
17591
|
"input_modalities": [
|
@@ -17333,12 +17594,12 @@
|
|
17333
17594
|
"output_modalities": [
|
17334
17595
|
"text"
|
17335
17596
|
],
|
17336
|
-
"tokenizer": "
|
17597
|
+
"tokenizer": "Mistral",
|
17337
17598
|
"instruct_type": null
|
17338
17599
|
},
|
17339
17600
|
"top_provider": {
|
17340
|
-
"context_length":
|
17341
|
-
"max_completion_tokens":
|
17601
|
+
"context_length": 40000,
|
17602
|
+
"max_completion_tokens": 40000,
|
17342
17603
|
"is_moderated": false
|
17343
17604
|
},
|
17344
17605
|
"per_request_limits": null,
|
@@ -17348,16 +17609,14 @@
|
|
17348
17609
|
"max_tokens",
|
17349
17610
|
"temperature",
|
17350
17611
|
"top_p",
|
17612
|
+
"reasoning",
|
17613
|
+
"include_reasoning",
|
17614
|
+
"structured_outputs",
|
17615
|
+
"response_format",
|
17351
17616
|
"stop",
|
17352
17617
|
"frequency_penalty",
|
17353
17618
|
"presence_penalty",
|
17354
|
-
"seed"
|
17355
|
-
"top_k",
|
17356
|
-
"min_p",
|
17357
|
-
"repetition_penalty",
|
17358
|
-
"logprobs",
|
17359
|
-
"logit_bias",
|
17360
|
-
"top_logprobs"
|
17619
|
+
"seed"
|
17361
17620
|
]
|
17362
17621
|
}
|
17363
17622
|
},
|
@@ -18080,7 +18339,7 @@
|
|
18080
18339
|
"provider": "openrouter",
|
18081
18340
|
"family": "mistralai",
|
18082
18341
|
"created_at": "2025-05-07 16:15:41 +0200",
|
18083
|
-
"context_window":
|
18342
|
+
"context_window": 32768,
|
18084
18343
|
"max_output_tokens": null,
|
18085
18344
|
"knowledge_cutoff": null,
|
18086
18345
|
"modalities": {
|
@@ -18120,7 +18379,7 @@
|
|
18120
18379
|
"instruct_type": null
|
18121
18380
|
},
|
18122
18381
|
"top_provider": {
|
18123
|
-
"context_length":
|
18382
|
+
"context_length": 32768,
|
18124
18383
|
"max_completion_tokens": null,
|
18125
18384
|
"is_moderated": false
|
18126
18385
|
},
|
@@ -18166,8 +18425,8 @@
|
|
18166
18425
|
"pricing": {
|
18167
18426
|
"text_tokens": {
|
18168
18427
|
"standard": {
|
18169
|
-
"input_per_million": 0.
|
18170
|
-
"output_per_million": 0.
|
18428
|
+
"input_per_million": 0.01,
|
18429
|
+
"output_per_million": 0.028
|
18171
18430
|
}
|
18172
18431
|
}
|
18173
18432
|
},
|
@@ -18407,7 +18666,7 @@
|
|
18407
18666
|
"family": "mistralai",
|
18408
18667
|
"created_at": "2025-01-30 17:43:29 +0100",
|
18409
18668
|
"context_window": 32768,
|
18410
|
-
"max_output_tokens":
|
18669
|
+
"max_output_tokens": 32768,
|
18411
18670
|
"knowledge_cutoff": null,
|
18412
18671
|
"modalities": {
|
18413
18672
|
"input": [
|
@@ -18426,8 +18685,8 @@
|
|
18426
18685
|
"pricing": {
|
18427
18686
|
"text_tokens": {
|
18428
18687
|
"standard": {
|
18429
|
-
"input_per_million": 0.
|
18430
|
-
"output_per_million": 0.
|
18688
|
+
"input_per_million": 0.049999999999999996,
|
18689
|
+
"output_per_million": 0.09999999999999999
|
18431
18690
|
}
|
18432
18691
|
}
|
18433
18692
|
},
|
@@ -18446,7 +18705,7 @@
|
|
18446
18705
|
},
|
18447
18706
|
"top_provider": {
|
18448
18707
|
"context_length": 32768,
|
18449
|
-
"max_completion_tokens":
|
18708
|
+
"max_completion_tokens": 32768,
|
18450
18709
|
"is_moderated": false
|
18451
18710
|
},
|
18452
18711
|
"per_request_limits": null,
|
@@ -18457,16 +18716,17 @@
|
|
18457
18716
|
"stop",
|
18458
18717
|
"frequency_penalty",
|
18459
18718
|
"presence_penalty",
|
18460
|
-
"repetition_penalty",
|
18461
|
-
"response_format",
|
18462
18719
|
"top_k",
|
18463
|
-
"
|
18720
|
+
"repetition_penalty",
|
18721
|
+
"logit_bias",
|
18722
|
+
"logprobs",
|
18723
|
+
"top_logprobs",
|
18464
18724
|
"min_p",
|
18725
|
+
"seed",
|
18726
|
+
"response_format",
|
18465
18727
|
"tools",
|
18466
18728
|
"tool_choice",
|
18467
|
-
"structured_outputs"
|
18468
|
-
"logit_bias",
|
18469
|
-
"logprobs"
|
18729
|
+
"structured_outputs"
|
18470
18730
|
]
|
18471
18731
|
}
|
18472
18732
|
},
|
@@ -20722,142 +20982,13 @@
|
|
20722
20982
|
]
|
20723
20983
|
}
|
20724
20984
|
},
|
20725
|
-
{
|
20726
|
-
"id": "openai/gpt-3.5-turbo-instruct",
|
20727
|
-
"name": "OpenAI: GPT-3.5 Turbo Instruct",
|
20728
|
-
"provider": "openrouter",
|
20729
|
-
"family": "openai",
|
20730
|
-
"created_at": "2023-09-28 02:00:00 +0200",
|
20731
|
-
"context_window": 4095,
|
20732
|
-
"max_output_tokens": 4096,
|
20733
|
-
"knowledge_cutoff": null,
|
20734
|
-
"modalities": {
|
20735
|
-
"input": [
|
20736
|
-
"text"
|
20737
|
-
],
|
20738
|
-
"output": [
|
20739
|
-
"text"
|
20740
|
-
]
|
20741
|
-
},
|
20742
|
-
"capabilities": [
|
20743
|
-
"streaming",
|
20744
|
-
"structured_output"
|
20745
|
-
],
|
20746
|
-
"pricing": {
|
20747
|
-
"text_tokens": {
|
20748
|
-
"standard": {
|
20749
|
-
"input_per_million": 1.5,
|
20750
|
-
"output_per_million": 2.0
|
20751
|
-
}
|
20752
|
-
}
|
20753
|
-
},
|
20754
|
-
"metadata": {
|
20755
|
-
"description": "This model is a variant of GPT-3.5 Turbo tuned for instructional prompts and omitting chat-related optimizations. Training data: up to Sep 2021.",
|
20756
|
-
"architecture": {
|
20757
|
-
"modality": "text->text",
|
20758
|
-
"input_modalities": [
|
20759
|
-
"text"
|
20760
|
-
],
|
20761
|
-
"output_modalities": [
|
20762
|
-
"text"
|
20763
|
-
],
|
20764
|
-
"tokenizer": "GPT",
|
20765
|
-
"instruct_type": "chatml"
|
20766
|
-
},
|
20767
|
-
"top_provider": {
|
20768
|
-
"context_length": 4095,
|
20769
|
-
"max_completion_tokens": 4096,
|
20770
|
-
"is_moderated": true
|
20771
|
-
},
|
20772
|
-
"per_request_limits": null,
|
20773
|
-
"supported_parameters": [
|
20774
|
-
"max_tokens",
|
20775
|
-
"temperature",
|
20776
|
-
"top_p",
|
20777
|
-
"stop",
|
20778
|
-
"frequency_penalty",
|
20779
|
-
"presence_penalty",
|
20780
|
-
"seed",
|
20781
|
-
"logit_bias",
|
20782
|
-
"logprobs",
|
20783
|
-
"top_logprobs",
|
20784
|
-
"response_format"
|
20785
|
-
]
|
20786
|
-
}
|
20787
|
-
},
|
20788
|
-
{
|
20789
|
-
"id": "openai/gpt-4",
|
20790
|
-
"name": "OpenAI: GPT-4",
|
20791
|
-
"provider": "openrouter",
|
20792
|
-
"family": "openai",
|
20793
|
-
"created_at": "2023-05-28 02:00:00 +0200",
|
20794
|
-
"context_window": 8191,
|
20795
|
-
"max_output_tokens": 4096,
|
20796
|
-
"knowledge_cutoff": null,
|
20797
|
-
"modalities": {
|
20798
|
-
"input": [
|
20799
|
-
"text"
|
20800
|
-
],
|
20801
|
-
"output": [
|
20802
|
-
"text"
|
20803
|
-
]
|
20804
|
-
},
|
20805
|
-
"capabilities": [
|
20806
|
-
"streaming",
|
20807
|
-
"function_calling",
|
20808
|
-
"structured_output"
|
20809
|
-
],
|
20810
|
-
"pricing": {
|
20811
|
-
"text_tokens": {
|
20812
|
-
"standard": {
|
20813
|
-
"input_per_million": 30.0,
|
20814
|
-
"output_per_million": 60.0
|
20815
|
-
}
|
20816
|
-
}
|
20817
|
-
},
|
20818
|
-
"metadata": {
|
20819
|
-
"description": "OpenAI's flagship model, GPT-4 is a large-scale multimodal language model capable of solving difficult problems with greater accuracy than previous models due to its broader general knowledge and advanced reasoning capabilities. Training data: up to Sep 2021.",
|
20820
|
-
"architecture": {
|
20821
|
-
"modality": "text->text",
|
20822
|
-
"input_modalities": [
|
20823
|
-
"text"
|
20824
|
-
],
|
20825
|
-
"output_modalities": [
|
20826
|
-
"text"
|
20827
|
-
],
|
20828
|
-
"tokenizer": "GPT",
|
20829
|
-
"instruct_type": null
|
20830
|
-
},
|
20831
|
-
"top_provider": {
|
20832
|
-
"context_length": 8191,
|
20833
|
-
"max_completion_tokens": 4096,
|
20834
|
-
"is_moderated": true
|
20835
|
-
},
|
20836
|
-
"per_request_limits": null,
|
20837
|
-
"supported_parameters": [
|
20838
|
-
"tools",
|
20839
|
-
"tool_choice",
|
20840
|
-
"max_tokens",
|
20841
|
-
"temperature",
|
20842
|
-
"top_p",
|
20843
|
-
"stop",
|
20844
|
-
"frequency_penalty",
|
20845
|
-
"presence_penalty",
|
20846
|
-
"seed",
|
20847
|
-
"logit_bias",
|
20848
|
-
"logprobs",
|
20849
|
-
"top_logprobs",
|
20850
|
-
"response_format"
|
20851
|
-
]
|
20852
|
-
}
|
20853
|
-
},
|
20854
|
-
{
|
20855
|
-
"id": "openai/gpt-4-0314",
|
20856
|
-
"name": "OpenAI: GPT-4 (older v0314)",
|
20985
|
+
{
|
20986
|
+
"id": "openai/gpt-3.5-turbo-instruct",
|
20987
|
+
"name": "OpenAI: GPT-3.5 Turbo Instruct",
|
20857
20988
|
"provider": "openrouter",
|
20858
20989
|
"family": "openai",
|
20859
|
-
"created_at": "2023-
|
20860
|
-
"context_window":
|
20990
|
+
"created_at": "2023-09-28 02:00:00 +0200",
|
20991
|
+
"context_window": 4095,
|
20861
20992
|
"max_output_tokens": 4096,
|
20862
20993
|
"knowledge_cutoff": null,
|
20863
20994
|
"modalities": {
|
@@ -20870,19 +21001,18 @@
|
|
20870
21001
|
},
|
20871
21002
|
"capabilities": [
|
20872
21003
|
"streaming",
|
20873
|
-
"function_calling",
|
20874
21004
|
"structured_output"
|
20875
21005
|
],
|
20876
21006
|
"pricing": {
|
20877
21007
|
"text_tokens": {
|
20878
21008
|
"standard": {
|
20879
|
-
"input_per_million":
|
20880
|
-
"output_per_million":
|
21009
|
+
"input_per_million": 1.5,
|
21010
|
+
"output_per_million": 2.0
|
20881
21011
|
}
|
20882
21012
|
}
|
20883
21013
|
},
|
20884
21014
|
"metadata": {
|
20885
|
-
"description": "
|
21015
|
+
"description": "This model is a variant of GPT-3.5 Turbo tuned for instructional prompts and omitting chat-related optimizations. Training data: up to Sep 2021.",
|
20886
21016
|
"architecture": {
|
20887
21017
|
"modality": "text->text",
|
20888
21018
|
"input_modalities": [
|
@@ -20892,17 +21022,15 @@
|
|
20892
21022
|
"text"
|
20893
21023
|
],
|
20894
21024
|
"tokenizer": "GPT",
|
20895
|
-
"instruct_type":
|
21025
|
+
"instruct_type": "chatml"
|
20896
21026
|
},
|
20897
21027
|
"top_provider": {
|
20898
|
-
"context_length":
|
21028
|
+
"context_length": 4095,
|
20899
21029
|
"max_completion_tokens": 4096,
|
20900
21030
|
"is_moderated": true
|
20901
21031
|
},
|
20902
21032
|
"per_request_limits": null,
|
20903
21033
|
"supported_parameters": [
|
20904
|
-
"tools",
|
20905
|
-
"tool_choice",
|
20906
21034
|
"max_tokens",
|
20907
21035
|
"temperature",
|
20908
21036
|
"top_p",
|
@@ -20913,18 +21041,17 @@
|
|
20913
21041
|
"logit_bias",
|
20914
21042
|
"logprobs",
|
20915
21043
|
"top_logprobs",
|
20916
|
-
"response_format"
|
20917
|
-
"structured_outputs"
|
21044
|
+
"response_format"
|
20918
21045
|
]
|
20919
21046
|
}
|
20920
21047
|
},
|
20921
21048
|
{
|
20922
|
-
"id": "openai/gpt-4
|
20923
|
-
"name": "OpenAI: GPT-4
|
21049
|
+
"id": "openai/gpt-4",
|
21050
|
+
"name": "OpenAI: GPT-4",
|
20924
21051
|
"provider": "openrouter",
|
20925
21052
|
"family": "openai",
|
20926
|
-
"created_at": "2023-
|
20927
|
-
"context_window":
|
21053
|
+
"created_at": "2023-05-28 02:00:00 +0200",
|
21054
|
+
"context_window": 8191,
|
20928
21055
|
"max_output_tokens": 4096,
|
20929
21056
|
"knowledge_cutoff": null,
|
20930
21057
|
"modalities": {
|
@@ -20943,13 +21070,13 @@
|
|
20943
21070
|
"pricing": {
|
20944
21071
|
"text_tokens": {
|
20945
21072
|
"standard": {
|
20946
|
-
"input_per_million":
|
20947
|
-
"output_per_million":
|
21073
|
+
"input_per_million": 30.0,
|
21074
|
+
"output_per_million": 60.0
|
20948
21075
|
}
|
20949
21076
|
}
|
20950
21077
|
},
|
20951
21078
|
"metadata": {
|
20952
|
-
"description": "
|
21079
|
+
"description": "OpenAI's flagship model, GPT-4 is a large-scale multimodal language model capable of solving difficult problems with greater accuracy than previous models due to its broader general knowledge and advanced reasoning capabilities. Training data: up to Sep 2021.",
|
20953
21080
|
"architecture": {
|
20954
21081
|
"modality": "text->text",
|
20955
21082
|
"input_modalities": [
|
@@ -20962,7 +21089,7 @@
|
|
20962
21089
|
"instruct_type": null
|
20963
21090
|
},
|
20964
21091
|
"top_provider": {
|
20965
|
-
"context_length":
|
21092
|
+
"context_length": 8191,
|
20966
21093
|
"max_completion_tokens": 4096,
|
20967
21094
|
"is_moderated": true
|
20968
21095
|
},
|
@@ -20980,18 +21107,17 @@
|
|
20980
21107
|
"logit_bias",
|
20981
21108
|
"logprobs",
|
20982
21109
|
"top_logprobs",
|
20983
|
-
"response_format"
|
20984
|
-
"structured_outputs"
|
21110
|
+
"response_format"
|
20985
21111
|
]
|
20986
21112
|
}
|
20987
21113
|
},
|
20988
21114
|
{
|
20989
|
-
"id": "openai/gpt-4-
|
20990
|
-
"name": "OpenAI: GPT-4
|
21115
|
+
"id": "openai/gpt-4-0314",
|
21116
|
+
"name": "OpenAI: GPT-4 (older v0314)",
|
20991
21117
|
"provider": "openrouter",
|
20992
21118
|
"family": "openai",
|
20993
|
-
"created_at": "2023-
|
20994
|
-
"context_window":
|
21119
|
+
"created_at": "2023-05-28 02:00:00 +0200",
|
21120
|
+
"context_window": 8191,
|
20995
21121
|
"max_output_tokens": 4096,
|
20996
21122
|
"knowledge_cutoff": null,
|
20997
21123
|
"modalities": {
|
@@ -21010,13 +21136,13 @@
|
|
21010
21136
|
"pricing": {
|
21011
21137
|
"text_tokens": {
|
21012
21138
|
"standard": {
|
21013
|
-
"input_per_million":
|
21014
|
-
"output_per_million":
|
21139
|
+
"input_per_million": 30.0,
|
21140
|
+
"output_per_million": 60.0
|
21015
21141
|
}
|
21016
21142
|
}
|
21017
21143
|
},
|
21018
21144
|
"metadata": {
|
21019
|
-
"description": "GPT-4-
|
21145
|
+
"description": "GPT-4-0314 is the first version of GPT-4 released, with a context length of 8,192 tokens, and was supported until June 14. Training data: up to Sep 2021.",
|
21020
21146
|
"architecture": {
|
21021
21147
|
"modality": "text->text",
|
21022
21148
|
"input_modalities": [
|
@@ -21029,7 +21155,7 @@
|
|
21029
21155
|
"instruct_type": null
|
21030
21156
|
},
|
21031
21157
|
"top_provider": {
|
21032
|
-
"context_length":
|
21158
|
+
"context_length": 8191,
|
21033
21159
|
"max_completion_tokens": 4096,
|
21034
21160
|
"is_moderated": true
|
21035
21161
|
},
|
@@ -21047,17 +21173,18 @@
|
|
21047
21173
|
"logit_bias",
|
21048
21174
|
"logprobs",
|
21049
21175
|
"top_logprobs",
|
21050
|
-
"response_format"
|
21176
|
+
"response_format",
|
21177
|
+
"structured_outputs"
|
21051
21178
|
]
|
21052
21179
|
}
|
21053
21180
|
},
|
21054
21181
|
{
|
21055
|
-
"id": "openai/gpt-4-
|
21056
|
-
"name": "OpenAI: GPT-4
|
21182
|
+
"id": "openai/gpt-4-1106-preview",
|
21183
|
+
"name": "OpenAI: GPT-4 Turbo (older v1106)",
|
21057
21184
|
"provider": "openrouter",
|
21058
21185
|
"family": "openai",
|
21059
|
-
"created_at": "2023-
|
21060
|
-
"context_window":
|
21186
|
+
"created_at": "2023-11-06 01:00:00 +0100",
|
21187
|
+
"context_window": 128000,
|
21061
21188
|
"max_output_tokens": 4096,
|
21062
21189
|
"knowledge_cutoff": null,
|
21063
21190
|
"modalities": {
|
@@ -21076,13 +21203,13 @@
|
|
21076
21203
|
"pricing": {
|
21077
21204
|
"text_tokens": {
|
21078
21205
|
"standard": {
|
21079
|
-
"input_per_million":
|
21080
|
-
"output_per_million":
|
21206
|
+
"input_per_million": 10.0,
|
21207
|
+
"output_per_million": 30.0
|
21081
21208
|
}
|
21082
21209
|
}
|
21083
21210
|
},
|
21084
21211
|
"metadata": {
|
21085
|
-
"description": "GPT-4
|
21212
|
+
"description": "The latest GPT-4 Turbo model with vision capabilities. Vision requests can now use JSON mode and function calling.\n\nTraining data: up to April 2023.",
|
21086
21213
|
"architecture": {
|
21087
21214
|
"modality": "text->text",
|
21088
21215
|
"input_modalities": [
|
@@ -21095,7 +21222,7 @@
|
|
21095
21222
|
"instruct_type": null
|
21096
21223
|
},
|
21097
21224
|
"top_provider": {
|
21098
|
-
"context_length":
|
21225
|
+
"context_length": 128000,
|
21099
21226
|
"max_completion_tokens": 4096,
|
21100
21227
|
"is_moderated": true
|
21101
21228
|
},
|
@@ -21714,7 +21841,8 @@
|
|
21714
21841
|
"text_tokens": {
|
21715
21842
|
"standard": {
|
21716
21843
|
"input_per_million": 2.5,
|
21717
|
-
"output_per_million": 10.0
|
21844
|
+
"output_per_million": 10.0,
|
21845
|
+
"cached_input_per_million": 1.25
|
21718
21846
|
}
|
21719
21847
|
}
|
21720
21848
|
},
|
@@ -22524,9 +22652,9 @@
|
|
22524
22652
|
"pricing": {
|
22525
22653
|
"text_tokens": {
|
22526
22654
|
"standard": {
|
22527
|
-
"input_per_million":
|
22528
|
-
"output_per_million":
|
22529
|
-
"cached_input_per_million":
|
22655
|
+
"input_per_million": 2.0,
|
22656
|
+
"output_per_million": 8.0,
|
22657
|
+
"cached_input_per_million": 0.5
|
22530
22658
|
}
|
22531
22659
|
}
|
22532
22660
|
},
|
@@ -22681,6 +22809,69 @@
|
|
22681
22809
|
]
|
22682
22810
|
}
|
22683
22811
|
},
|
22812
|
+
{
|
22813
|
+
"id": "openai/o3-pro",
|
22814
|
+
"name": "OpenAI: o3 Pro",
|
22815
|
+
"provider": "openrouter",
|
22816
|
+
"family": "openai",
|
22817
|
+
"created_at": "2025-06-11 01:32:32 +0200",
|
22818
|
+
"context_window": 200000,
|
22819
|
+
"max_output_tokens": 100000,
|
22820
|
+
"knowledge_cutoff": null,
|
22821
|
+
"modalities": {
|
22822
|
+
"input": [
|
22823
|
+
"text",
|
22824
|
+
"file",
|
22825
|
+
"image"
|
22826
|
+
],
|
22827
|
+
"output": [
|
22828
|
+
"text"
|
22829
|
+
]
|
22830
|
+
},
|
22831
|
+
"capabilities": [
|
22832
|
+
"streaming",
|
22833
|
+
"function_calling",
|
22834
|
+
"structured_output"
|
22835
|
+
],
|
22836
|
+
"pricing": {
|
22837
|
+
"text_tokens": {
|
22838
|
+
"standard": {
|
22839
|
+
"input_per_million": 20.0,
|
22840
|
+
"output_per_million": 80.0
|
22841
|
+
}
|
22842
|
+
}
|
22843
|
+
},
|
22844
|
+
"metadata": {
|
22845
|
+
"description": "The o-series of models are trained with reinforcement learning to think before they answer and perform complex reasoning. The o3-pro model uses more compute to think harder and provide consistently better answers.\n\nNote that BYOK is required for this model. Set up here: https://openrouter.ai/settings/integrations",
|
22846
|
+
"architecture": {
|
22847
|
+
"modality": "text+image->text",
|
22848
|
+
"input_modalities": [
|
22849
|
+
"text",
|
22850
|
+
"file",
|
22851
|
+
"image"
|
22852
|
+
],
|
22853
|
+
"output_modalities": [
|
22854
|
+
"text"
|
22855
|
+
],
|
22856
|
+
"tokenizer": "Other",
|
22857
|
+
"instruct_type": null
|
22858
|
+
},
|
22859
|
+
"top_provider": {
|
22860
|
+
"context_length": 200000,
|
22861
|
+
"max_completion_tokens": 100000,
|
22862
|
+
"is_moderated": true
|
22863
|
+
},
|
22864
|
+
"per_request_limits": null,
|
22865
|
+
"supported_parameters": [
|
22866
|
+
"tools",
|
22867
|
+
"tool_choice",
|
22868
|
+
"seed",
|
22869
|
+
"max_tokens",
|
22870
|
+
"response_format",
|
22871
|
+
"structured_outputs"
|
22872
|
+
]
|
22873
|
+
}
|
22874
|
+
},
|
22684
22875
|
{
|
22685
22876
|
"id": "openai/o4-mini",
|
22686
22877
|
"name": "OpenAI: o4 Mini",
|
@@ -24702,7 +24893,7 @@
|
|
24702
24893
|
"pricing": {
|
24703
24894
|
"text_tokens": {
|
24704
24895
|
"standard": {
|
24705
|
-
"input_per_million": 0.
|
24896
|
+
"input_per_million": 0.06,
|
24706
24897
|
"output_per_million": 0.24
|
24707
24898
|
}
|
24708
24899
|
}
|
@@ -24727,19 +24918,19 @@
|
|
24727
24918
|
},
|
24728
24919
|
"per_request_limits": null,
|
24729
24920
|
"supported_parameters": [
|
24730
|
-
"tools",
|
24731
|
-
"tool_choice",
|
24732
24921
|
"max_tokens",
|
24733
24922
|
"temperature",
|
24734
24923
|
"top_p",
|
24735
24924
|
"reasoning",
|
24736
24925
|
"include_reasoning",
|
24737
|
-
"stop",
|
24738
|
-
"frequency_penalty",
|
24739
24926
|
"presence_penalty",
|
24927
|
+
"frequency_penalty",
|
24740
24928
|
"repetition_penalty",
|
24741
|
-
"response_format",
|
24742
24929
|
"top_k",
|
24930
|
+
"tools",
|
24931
|
+
"tool_choice",
|
24932
|
+
"stop",
|
24933
|
+
"response_format",
|
24743
24934
|
"seed",
|
24744
24935
|
"min_p",
|
24745
24936
|
"logit_bias",
|
@@ -24834,7 +25025,7 @@
|
|
24834
25025
|
"pricing": {
|
24835
25026
|
"text_tokens": {
|
24836
25027
|
"standard": {
|
24837
|
-
"input_per_million": 0.
|
25028
|
+
"input_per_million": 0.13,
|
24838
25029
|
"output_per_million": 0.6
|
24839
25030
|
}
|
24840
25031
|
}
|
@@ -24864,20 +25055,20 @@
|
|
24864
25055
|
"top_p",
|
24865
25056
|
"reasoning",
|
24866
25057
|
"include_reasoning",
|
24867
|
-
"
|
24868
|
-
"frequency_penalty",
|
25058
|
+
"seed",
|
24869
25059
|
"presence_penalty",
|
24870
|
-
"
|
25060
|
+
"frequency_penalty",
|
24871
25061
|
"repetition_penalty",
|
24872
|
-
"
|
24873
|
-
"min_p",
|
24874
|
-
"response_format",
|
24875
|
-
"seed",
|
25062
|
+
"top_k",
|
24876
25063
|
"tools",
|
24877
25064
|
"tool_choice",
|
25065
|
+
"stop",
|
25066
|
+
"response_format",
|
24878
25067
|
"structured_outputs",
|
25068
|
+
"logit_bias",
|
24879
25069
|
"logprobs",
|
24880
|
-
"top_logprobs"
|
25070
|
+
"top_logprobs",
|
25071
|
+
"min_p"
|
24881
25072
|
]
|
24882
25073
|
}
|
24883
25074
|
},
|
@@ -25130,20 +25321,20 @@
|
|
25130
25321
|
"top_p",
|
25131
25322
|
"reasoning",
|
25132
25323
|
"include_reasoning",
|
25133
|
-
"seed",
|
25134
|
-
"tools",
|
25135
|
-
"tool_choice",
|
25136
25324
|
"stop",
|
25137
25325
|
"frequency_penalty",
|
25138
25326
|
"presence_penalty",
|
25139
|
-
"repetition_penalty",
|
25140
25327
|
"response_format",
|
25328
|
+
"top_logprobs",
|
25329
|
+
"logprobs",
|
25330
|
+
"logit_bias",
|
25331
|
+
"seed",
|
25332
|
+
"tools",
|
25333
|
+
"tool_choice",
|
25334
|
+
"repetition_penalty",
|
25141
25335
|
"top_k",
|
25142
25336
|
"min_p",
|
25143
|
-
"structured_outputs"
|
25144
|
-
"logprobs",
|
25145
|
-
"top_logprobs",
|
25146
|
-
"logit_bias"
|
25337
|
+
"structured_outputs"
|
25147
25338
|
]
|
25148
25339
|
}
|
25149
25340
|
},
|
@@ -25969,64 +26160,6 @@
|
|
25969
26160
|
]
|
25970
26161
|
}
|
25971
26162
|
},
|
25972
|
-
{
|
25973
|
-
"id": "sarvamai/sarvam-m",
|
25974
|
-
"name": "Sarvam AI: Sarvam-M",
|
25975
|
-
"provider": "openrouter",
|
25976
|
-
"family": "sarvamai",
|
25977
|
-
"created_at": "2025-05-25 17:53:33 +0200",
|
25978
|
-
"context_window": 32768,
|
25979
|
-
"max_output_tokens": 32768,
|
25980
|
-
"knowledge_cutoff": null,
|
25981
|
-
"modalities": {
|
25982
|
-
"input": [
|
25983
|
-
"text"
|
25984
|
-
],
|
25985
|
-
"output": [
|
25986
|
-
"text"
|
25987
|
-
]
|
25988
|
-
},
|
25989
|
-
"capabilities": [
|
25990
|
-
"streaming"
|
25991
|
-
],
|
25992
|
-
"pricing": {
|
25993
|
-
"text_tokens": {
|
25994
|
-
"standard": {
|
25995
|
-
"input_per_million": 0.25,
|
25996
|
-
"output_per_million": 0.75
|
25997
|
-
}
|
25998
|
-
}
|
25999
|
-
},
|
26000
|
-
"metadata": {
|
26001
|
-
"description": "Sarvam-M is a 24 B-parameter, instruction-tuned derivative of Mistral-Small-3.1-24B-Base-2503, post-trained on English plus eleven major Indic languages (bn, hi, kn, gu, mr, ml, or, pa, ta, te). The model introduces a dual-mode interface: “non-think” for low-latency chat and a optional “think” phase that exposes chain-of-thought tokens for more demanding reasoning, math, and coding tasks. \n\nBenchmark reports show solid gains versus similarly sized open models on Indic-language QA, GSM-8K math, and SWE-Bench coding, making Sarvam-M a practical general-purpose choice for multilingual conversational agents as well as analytical workloads that mix English, native Indic scripts, or romanized text.",
|
26002
|
-
"architecture": {
|
26003
|
-
"modality": "text->text",
|
26004
|
-
"input_modalities": [
|
26005
|
-
"text"
|
26006
|
-
],
|
26007
|
-
"output_modalities": [
|
26008
|
-
"text"
|
26009
|
-
],
|
26010
|
-
"tokenizer": "Other",
|
26011
|
-
"instruct_type": null
|
26012
|
-
},
|
26013
|
-
"top_provider": {
|
26014
|
-
"context_length": 32768,
|
26015
|
-
"max_completion_tokens": 32768,
|
26016
|
-
"is_moderated": false
|
26017
|
-
},
|
26018
|
-
"per_request_limits": null,
|
26019
|
-
"supported_parameters": [
|
26020
|
-
"max_tokens",
|
26021
|
-
"temperature",
|
26022
|
-
"top_p",
|
26023
|
-
"presence_penalty",
|
26024
|
-
"frequency_penalty",
|
26025
|
-
"repetition_penalty",
|
26026
|
-
"top_k"
|
26027
|
-
]
|
26028
|
-
}
|
26029
|
-
},
|
26030
26163
|
{
|
26031
26164
|
"id": "sarvamai/sarvam-m:free",
|
26032
26165
|
"name": "Sarvam AI: Sarvam-M (free)",
|
@@ -26150,12 +26283,12 @@
|
|
26150
26283
|
}
|
26151
26284
|
},
|
26152
26285
|
{
|
26153
|
-
"id": "
|
26154
|
-
"name": "
|
26286
|
+
"id": "sentientagi/dobby-mini-unhinged-plus-llama-3.1-8b",
|
26287
|
+
"name": "SentientAGI: Dobby Mini Plus Llama 3.1 8B",
|
26155
26288
|
"provider": "openrouter",
|
26156
|
-
"family": "
|
26157
|
-
"created_at": "2025-
|
26158
|
-
"context_window":
|
26289
|
+
"family": "sentientagi",
|
26290
|
+
"created_at": "2025-06-02 19:33:39 +0200",
|
26291
|
+
"context_window": 131072,
|
26159
26292
|
"max_output_tokens": null,
|
26160
26293
|
"knowledge_cutoff": null,
|
26161
26294
|
"modalities": {
|
@@ -26174,13 +26307,13 @@
|
|
26174
26307
|
"pricing": {
|
26175
26308
|
"text_tokens": {
|
26176
26309
|
"standard": {
|
26177
|
-
"input_per_million": 0.
|
26178
|
-
"output_per_million": 0.
|
26310
|
+
"input_per_million": 0.19999999999999998,
|
26311
|
+
"output_per_million": 0.19999999999999998
|
26179
26312
|
}
|
26180
26313
|
}
|
26181
26314
|
},
|
26182
26315
|
"metadata": {
|
26183
|
-
"description": "
|
26316
|
+
"description": "Dobby-Mini-Leashed-Llama-3.1-8B and Dobby-Mini-Unhinged-Llama-3.1-8B are language models fine-tuned from Llama-3.1-8B-Instruct. Dobby models have a strong conviction towards personal freedom, decentralization, and all things crypto — even when coerced to speak otherwise. \n\nDobby-Mini-Leashed-Llama-3.1-8B and Dobby-Mini-Unhinged-Llama-3.1-8B have their own unique, uhh, personalities. The two versions are being released to be improved using the community’s feedback, which will steer the development of a 70B model.\n\n",
|
26184
26317
|
"architecture": {
|
26185
26318
|
"modality": "text->text",
|
26186
26319
|
"input_modalities": [
|
@@ -26189,11 +26322,11 @@
|
|
26189
26322
|
"output_modalities": [
|
26190
26323
|
"text"
|
26191
26324
|
],
|
26192
|
-
"tokenizer": "
|
26193
|
-
"instruct_type":
|
26325
|
+
"tokenizer": "Other",
|
26326
|
+
"instruct_type": null
|
26194
26327
|
},
|
26195
26328
|
"top_provider": {
|
26196
|
-
"context_length":
|
26329
|
+
"context_length": 131072,
|
26197
26330
|
"max_completion_tokens": null,
|
26198
26331
|
"is_moderated": false
|
26199
26332
|
},
|
@@ -26207,9 +26340,11 @@
|
|
26207
26340
|
"presence_penalty",
|
26208
26341
|
"top_k",
|
26209
26342
|
"repetition_penalty",
|
26343
|
+
"response_format",
|
26344
|
+
"structured_outputs",
|
26210
26345
|
"logit_bias",
|
26211
|
-
"
|
26212
|
-
"
|
26346
|
+
"logprobs",
|
26347
|
+
"top_logprobs"
|
26213
26348
|
]
|
26214
26349
|
}
|
26215
26350
|
},
|
@@ -26520,7 +26655,7 @@
|
|
26520
26655
|
"family": "thedrummer",
|
26521
26656
|
"created_at": "2024-11-08 23:04:08 +0100",
|
26522
26657
|
"context_window": 32000,
|
26523
|
-
"max_output_tokens":
|
26658
|
+
"max_output_tokens": 32000,
|
26524
26659
|
"knowledge_cutoff": null,
|
26525
26660
|
"modalities": {
|
26526
26661
|
"input": [
|
@@ -26532,6 +26667,7 @@
|
|
26532
26667
|
},
|
26533
26668
|
"capabilities": [
|
26534
26669
|
"streaming",
|
26670
|
+
"function_calling",
|
26535
26671
|
"predicted_outputs"
|
26536
26672
|
],
|
26537
26673
|
"pricing": {
|
@@ -26557,7 +26693,7 @@
|
|
26557
26693
|
},
|
26558
26694
|
"top_provider": {
|
26559
26695
|
"context_length": 32000,
|
26560
|
-
"max_completion_tokens":
|
26696
|
+
"max_completion_tokens": 32000,
|
26561
26697
|
"is_moderated": false
|
26562
26698
|
},
|
26563
26699
|
"per_request_limits": null,
|
@@ -26573,6 +26709,8 @@
|
|
26573
26709
|
"top_k",
|
26574
26710
|
"min_p",
|
26575
26711
|
"seed",
|
26712
|
+
"tools",
|
26713
|
+
"tool_choice",
|
26576
26714
|
"logprobs"
|
26577
26715
|
]
|
26578
26716
|
}
|
@@ -27288,7 +27426,8 @@
|
|
27288
27426
|
"text_tokens": {
|
27289
27427
|
"standard": {
|
27290
27428
|
"input_per_million": 3.0,
|
27291
|
-
"output_per_million": 15.0
|
27429
|
+
"output_per_million": 15.0,
|
27430
|
+
"cached_input_per_million": 0.75
|
27292
27431
|
}
|
27293
27432
|
}
|
27294
27433
|
},
|
@@ -27353,7 +27492,8 @@
|
|
27353
27492
|
"text_tokens": {
|
27354
27493
|
"standard": {
|
27355
27494
|
"input_per_million": 0.3,
|
27356
|
-
"output_per_million": 0.5
|
27495
|
+
"output_per_million": 0.5,
|
27496
|
+
"cached_input_per_million": 0.075
|
27357
27497
|
}
|
27358
27498
|
}
|
27359
27499
|
},
|