ruby_llm 0.1.0.pre38 → 0.1.0.pre39
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.github/workflows/cicd.yml +6 -0
- data/README.md +2 -0
- data/lib/ruby_llm/version.rb +1 -1
- data/ruby_llm.gemspec +1 -1
- metadata +1 -16
- data/docs/.gitignore +0 -7
- data/docs/Gemfile +0 -11
- data/docs/_config.yml +0 -43
- data/docs/_data/navigation.yml +0 -25
- data/docs/guides/chat.md +0 -206
- data/docs/guides/embeddings.md +0 -325
- data/docs/guides/error-handling.md +0 -301
- data/docs/guides/getting-started.md +0 -164
- data/docs/guides/image-generation.md +0 -274
- data/docs/guides/index.md +0 -45
- data/docs/guides/rails.md +0 -401
- data/docs/guides/streaming.md +0 -242
- data/docs/guides/tools.md +0 -247
- data/docs/index.md +0 -73
- data/docs/installation.md +0 -98
data/docs/guides/streaming.md
DELETED
@@ -1,242 +0,0 @@
|
|
1
|
-
---
|
2
|
-
layout: default
|
3
|
-
title: Streaming
|
4
|
-
parent: Guides
|
5
|
-
nav_order: 4
|
6
|
-
permalink: /guides/streaming
|
7
|
-
---
|
8
|
-
|
9
|
-
# Streaming Responses
|
10
|
-
|
11
|
-
RubyLLM provides streaming capabilities that allow you to receive AI responses in real-time as they're being generated, rather than waiting for the complete response. This creates a more interactive experience and is especially useful for long responses or applications with real-time UI updates.
|
12
|
-
|
13
|
-
## Basic Streaming
|
14
|
-
|
15
|
-
To stream responses, simply provide a block to the `ask` method:
|
16
|
-
|
17
|
-
```ruby
|
18
|
-
chat = RubyLLM.chat
|
19
|
-
|
20
|
-
chat.ask "Write a short story about a programmer" do |chunk|
|
21
|
-
# Each chunk contains a portion of the response
|
22
|
-
print chunk.content
|
23
|
-
$stdout.flush # Ensure content is displayed immediately
|
24
|
-
end
|
25
|
-
```
|
26
|
-
|
27
|
-
## Understanding Chunks
|
28
|
-
|
29
|
-
Each streamed chunk is an instance of `RubyLLM::Chunk` (which inherits from `RubyLLM::Message`) and provides:
|
30
|
-
|
31
|
-
```ruby
|
32
|
-
chunk.content # The text fragment in this chunk
|
33
|
-
chunk.role # Always :assistant for streamed chunks
|
34
|
-
chunk.model_id # The model generating the response
|
35
|
-
chunk.input_tokens # Input token count (usually only in the final chunk)
|
36
|
-
chunk.output_tokens # Output token count (usually only in the final chunk)
|
37
|
-
```
|
38
|
-
|
39
|
-
## Accumulated Response
|
40
|
-
|
41
|
-
Even when streaming, RubyLLM still returns the complete final message:
|
42
|
-
|
43
|
-
```ruby
|
44
|
-
final_message = chat.ask "Write a poem" do |chunk|
|
45
|
-
print chunk.content
|
46
|
-
end
|
47
|
-
|
48
|
-
# You can use the final message as normal
|
49
|
-
puts "\nFinal message length: #{final_message.content.length}"
|
50
|
-
puts "Token usage: #{final_message.output_tokens} tokens"
|
51
|
-
```
|
52
|
-
|
53
|
-
## Web Application Integration
|
54
|
-
|
55
|
-
### Rails with ActionCable
|
56
|
-
|
57
|
-
```ruby
|
58
|
-
# In your controller
|
59
|
-
def ask
|
60
|
-
@chat = Chat.find(params[:id])
|
61
|
-
|
62
|
-
@chat.ask(params[:message]) do |chunk|
|
63
|
-
ActionCable.server.broadcast(
|
64
|
-
"chat_#{@chat.id}",
|
65
|
-
{ content: chunk.content }
|
66
|
-
)
|
67
|
-
end
|
68
|
-
|
69
|
-
head :ok
|
70
|
-
end
|
71
|
-
|
72
|
-
# In your JavaScript
|
73
|
-
const channel = consumer.subscriptions.create({ channel: "ChatChannel", id: chatId }, {
|
74
|
-
received(data) {
|
75
|
-
// Append incoming chunk to the display
|
76
|
-
document.getElementById('response').innerHTML += data.content;
|
77
|
-
}
|
78
|
-
});
|
79
|
-
```
|
80
|
-
|
81
|
-
### Rails with Turbo Streams
|
82
|
-
|
83
|
-
```ruby
|
84
|
-
class ChatJob < ApplicationJob
|
85
|
-
queue_as :default
|
86
|
-
|
87
|
-
def perform(chat_id, message)
|
88
|
-
chat = Chat.find(chat_id)
|
89
|
-
|
90
|
-
chat.ask(message) do |chunk|
|
91
|
-
Turbo::StreamsChannel.broadcast_update_to(
|
92
|
-
"chat_#{chat.id}",
|
93
|
-
target: "response",
|
94
|
-
html: chunk.content,
|
95
|
-
append: true
|
96
|
-
)
|
97
|
-
end
|
98
|
-
end
|
99
|
-
end
|
100
|
-
```
|
101
|
-
|
102
|
-
### Sinatra with Server-Sent Events (SSE)
|
103
|
-
|
104
|
-
```ruby
|
105
|
-
get '/chat/:id/ask' do
|
106
|
-
content_type 'text/event-stream'
|
107
|
-
|
108
|
-
chat = Chat.find(params[:id])
|
109
|
-
|
110
|
-
chat.ask(params[:message]) do |chunk|
|
111
|
-
# Send chunk as SSE event
|
112
|
-
out << "data: #{chunk.content}\n\n"
|
113
|
-
end
|
114
|
-
|
115
|
-
# Send completion signal
|
116
|
-
out << "event: complete\ndata: {}\n\n"
|
117
|
-
end
|
118
|
-
```
|
119
|
-
|
120
|
-
## Error Handling
|
121
|
-
|
122
|
-
Errors that occur during streaming need special handling:
|
123
|
-
|
124
|
-
```ruby
|
125
|
-
begin
|
126
|
-
chat.ask("Tell me a story") do |chunk|
|
127
|
-
print chunk.content
|
128
|
-
end
|
129
|
-
rescue RubyLLM::Error => e
|
130
|
-
puts "\nError during streaming: #{e.message}"
|
131
|
-
end
|
132
|
-
```
|
133
|
-
|
134
|
-
Common errors during streaming:
|
135
|
-
|
136
|
-
- `ServiceUnavailableError` - The AI service is temporarily unavailable
|
137
|
-
- `RateLimitError` - You've exceeded your API rate limit
|
138
|
-
- `BadRequestError` - There was a problem with your request parameters
|
139
|
-
|
140
|
-
## Provider-Specific Considerations
|
141
|
-
|
142
|
-
### OpenAI
|
143
|
-
|
144
|
-
OpenAI's streaming implementation provides small, frequent chunks for a smooth experience.
|
145
|
-
|
146
|
-
### Anthropic
|
147
|
-
|
148
|
-
Claude models may return slightly larger chunks with potentially longer pauses between them.
|
149
|
-
|
150
|
-
### Google Gemini
|
151
|
-
|
152
|
-
Gemini streaming is highly responsive but may show slightly different chunking behavior.
|
153
|
-
|
154
|
-
## Streaming with Tools
|
155
|
-
|
156
|
-
When using tools, streaming works a bit differently:
|
157
|
-
|
158
|
-
```ruby
|
159
|
-
chat.with_tool(Calculator)
|
160
|
-
.ask("What's 123 * 456?") do |chunk|
|
161
|
-
# Tool call execution isn't streamed
|
162
|
-
# You'll receive chunks after tool execution completes
|
163
|
-
print chunk.content
|
164
|
-
end
|
165
|
-
```
|
166
|
-
|
167
|
-
The tool call execution introduces a pause in the streaming, as the model waits for the tool response before continuing.
|
168
|
-
|
169
|
-
## Performance Considerations
|
170
|
-
|
171
|
-
Streaming typically uses the same number of tokens as non-streaming responses but establishes longer-lived connections to the AI provider. Consider these best practices:
|
172
|
-
|
173
|
-
1. Set appropriate timeouts for streaming connections
|
174
|
-
2. Handle network interruptions gracefully
|
175
|
-
3. Consider background processing for long-running streams
|
176
|
-
4. Implement rate limiting to avoid overwhelming your servers
|
177
|
-
|
178
|
-
## Tracking Token Usage
|
179
|
-
|
180
|
-
Token usage information is typically only available in the final chunk or completed message:
|
181
|
-
|
182
|
-
```ruby
|
183
|
-
total_tokens = 0
|
184
|
-
|
185
|
-
chat.ask("Write a detailed explanation of quantum computing") do |chunk|
|
186
|
-
print chunk.content
|
187
|
-
|
188
|
-
# Only count tokens in the final chunk
|
189
|
-
if chunk.output_tokens
|
190
|
-
total_tokens = chunk.input_tokens + chunk.output_tokens
|
191
|
-
end
|
192
|
-
end
|
193
|
-
|
194
|
-
puts "\nTotal tokens: #{total_tokens}"
|
195
|
-
```
|
196
|
-
|
197
|
-
## Custom Processing of Streamed Content
|
198
|
-
|
199
|
-
You can process streamed content in real-time:
|
200
|
-
|
201
|
-
```ruby
|
202
|
-
accumulated_text = ""
|
203
|
-
|
204
|
-
chat.ask("Write a list of 10 fruits") do |chunk|
|
205
|
-
new_content = chunk.content
|
206
|
-
accumulated_text += new_content
|
207
|
-
|
208
|
-
# Count fruits as they come in
|
209
|
-
if new_content.include?("\n")
|
210
|
-
fruit_count = accumulated_text.scan(/\d+\./).count
|
211
|
-
print "\rFruits listed: #{fruit_count}/10"
|
212
|
-
end
|
213
|
-
end
|
214
|
-
```
|
215
|
-
|
216
|
-
## Rails Integration
|
217
|
-
|
218
|
-
When using RubyLLM's Rails integration with `acts_as_chat`, streaming still works seamlessly:
|
219
|
-
|
220
|
-
```ruby
|
221
|
-
class Chat < ApplicationRecord
|
222
|
-
acts_as_chat
|
223
|
-
end
|
224
|
-
|
225
|
-
chat = Chat.create!(model_id: 'gpt-4o-mini')
|
226
|
-
|
227
|
-
# Stream responses while persisting the final result
|
228
|
-
chat.ask("Tell me about Ruby") do |chunk|
|
229
|
-
ActionCable.server.broadcast("chat_#{chat.id}", { content: chunk.content })
|
230
|
-
end
|
231
|
-
|
232
|
-
# The complete message is saved in the database
|
233
|
-
puts chat.messages.last.content
|
234
|
-
```
|
235
|
-
|
236
|
-
## Next Steps
|
237
|
-
|
238
|
-
Now that you understand streaming, you might want to explore:
|
239
|
-
|
240
|
-
- [Using Tools]({% link guides/tools.md %}) to add capabilities to your AI interactions
|
241
|
-
- [Rails Integration]({% link guides/rails.md %}) to persist conversations
|
242
|
-
- [Error Handling]({% link guides/error-handling.md %}) for reliable applications
|
data/docs/guides/tools.md
DELETED
@@ -1,247 +0,0 @@
|
|
1
|
-
---
|
2
|
-
layout: default
|
3
|
-
title: Tools
|
4
|
-
parent: Guides
|
5
|
-
nav_order: 3
|
6
|
-
permalink: /guides/tools
|
7
|
-
---
|
8
|
-
|
9
|
-
# Using Tools with RubyLLM
|
10
|
-
|
11
|
-
Tools allow AI models to call your Ruby code to perform actions or retrieve information. This guide explains how to create and use tools with RubyLLM.
|
12
|
-
|
13
|
-
## What Are Tools?
|
14
|
-
|
15
|
-
Tools (also known as "functions" or "plugins") let AI models:
|
16
|
-
|
17
|
-
1. Recognize when external functionality is needed
|
18
|
-
2. Call your Ruby code with appropriate parameters
|
19
|
-
3. Use the results to enhance their responses
|
20
|
-
|
21
|
-
Common use cases include:
|
22
|
-
- Retrieving real-time data
|
23
|
-
- Performing calculations
|
24
|
-
- Accessing databases
|
25
|
-
- Controlling external systems
|
26
|
-
|
27
|
-
## Creating a Tool
|
28
|
-
|
29
|
-
Tools are defined as Ruby classes that inherit from `RubyLLM::Tool`:
|
30
|
-
|
31
|
-
```ruby
|
32
|
-
class Calculator < RubyLLM::Tool
|
33
|
-
description "Performs arithmetic calculations"
|
34
|
-
|
35
|
-
param :expression,
|
36
|
-
type: :string,
|
37
|
-
desc: "A mathematical expression to evaluate (e.g. '2 + 2')"
|
38
|
-
|
39
|
-
def execute(expression:)
|
40
|
-
eval(expression).to_s
|
41
|
-
rescue StandardError => e
|
42
|
-
"Error: #{e.message}"
|
43
|
-
end
|
44
|
-
end
|
45
|
-
```
|
46
|
-
|
47
|
-
### Tool Components
|
48
|
-
|
49
|
-
Each tool has these key elements:
|
50
|
-
|
51
|
-
1. **Description** - Explains what the tool does, helping the AI decide when to use it
|
52
|
-
2. **Parameters** - Define the inputs the tool expects
|
53
|
-
3. **Execute Method** - The code that runs when the tool is called
|
54
|
-
|
55
|
-
### Parameter Definition
|
56
|
-
|
57
|
-
Parameters accept several options:
|
58
|
-
|
59
|
-
```ruby
|
60
|
-
param :parameter_name,
|
61
|
-
type: :string, # Data type (:string, :integer, :boolean, :array, :object)
|
62
|
-
desc: "Description", # Description of what the parameter does
|
63
|
-
required: true # Whether the parameter is required (default: true)
|
64
|
-
```
|
65
|
-
|
66
|
-
## Using Tools in Chat
|
67
|
-
|
68
|
-
To use a tool, attach it to a chat:
|
69
|
-
|
70
|
-
```ruby
|
71
|
-
# Create the chat
|
72
|
-
chat = RubyLLM.chat
|
73
|
-
|
74
|
-
# Add a tool
|
75
|
-
chat.with_tool(Calculator)
|
76
|
-
|
77
|
-
# Now you can ask questions that might require calculation
|
78
|
-
response = chat.ask "What's 123 * 456?"
|
79
|
-
# => "Let me calculate that for you. 123 * 456 = 56088."
|
80
|
-
```
|
81
|
-
|
82
|
-
### Multiple Tools
|
83
|
-
|
84
|
-
You can provide multiple tools to a single chat:
|
85
|
-
|
86
|
-
```ruby
|
87
|
-
class Weather < RubyLLM::Tool
|
88
|
-
description "Gets current weather for a location"
|
89
|
-
|
90
|
-
param :location,
|
91
|
-
desc: "City name or zip code"
|
92
|
-
|
93
|
-
def execute(location:)
|
94
|
-
# Simulate weather lookup
|
95
|
-
"72°F and sunny in #{location}"
|
96
|
-
end
|
97
|
-
end
|
98
|
-
|
99
|
-
# Add multiple tools
|
100
|
-
chat = RubyLLM.chat
|
101
|
-
.with_tools(Calculator, Weather)
|
102
|
-
|
103
|
-
# Ask questions that might use either tool
|
104
|
-
chat.ask "What's the temperature in New York City?"
|
105
|
-
chat.ask "If it's 72°F in NYC and 54°F in Boston, what's the average?"
|
106
|
-
```
|
107
|
-
|
108
|
-
## Custom Initialization
|
109
|
-
|
110
|
-
Tools can have custom initialization:
|
111
|
-
|
112
|
-
```ruby
|
113
|
-
class DocumentSearch < RubyLLM::Tool
|
114
|
-
description "Searches documents by relevance"
|
115
|
-
|
116
|
-
param :query,
|
117
|
-
desc: "The search query"
|
118
|
-
|
119
|
-
param :limit,
|
120
|
-
type: :integer,
|
121
|
-
desc: "Maximum number of results",
|
122
|
-
required: false
|
123
|
-
|
124
|
-
def initialize(database)
|
125
|
-
@database = database
|
126
|
-
end
|
127
|
-
|
128
|
-
def execute(query:, limit: 5)
|
129
|
-
# Search in @database
|
130
|
-
@database.search(query, limit: limit)
|
131
|
-
end
|
132
|
-
end
|
133
|
-
|
134
|
-
# Initialize with dependencies
|
135
|
-
search_tool = DocumentSearch.new(MyDatabase)
|
136
|
-
chat.with_tool(search_tool)
|
137
|
-
```
|
138
|
-
|
139
|
-
## The Tool Execution Flow
|
140
|
-
|
141
|
-
Here's what happens when a tool is used:
|
142
|
-
|
143
|
-
1. You ask a question
|
144
|
-
2. The model decides a tool is needed
|
145
|
-
3. The model selects the tool and provides arguments
|
146
|
-
4. RubyLLM calls your tool's `execute` method
|
147
|
-
5. The result is sent back to the model
|
148
|
-
6. The model incorporates the result into its response
|
149
|
-
|
150
|
-
For example:
|
151
|
-
|
152
|
-
```ruby
|
153
|
-
response = chat.ask "What's 123 squared plus 456?"
|
154
|
-
|
155
|
-
# Behind the scenes:
|
156
|
-
# 1. Model decides it needs to calculate
|
157
|
-
# 2. Model calls Calculator with expression: "123 * 123 + 456"
|
158
|
-
# 3. Tool returns "15,585"
|
159
|
-
# 4. Model incorporates this in its response
|
160
|
-
```
|
161
|
-
|
162
|
-
## Debugging Tools
|
163
|
-
|
164
|
-
Enable debugging to see tool calls in action:
|
165
|
-
|
166
|
-
```ruby
|
167
|
-
# Enable debug logging
|
168
|
-
ENV['RUBY_LLM_DEBUG'] = 'true'
|
169
|
-
|
170
|
-
# Make a request
|
171
|
-
chat.ask "What's 15329 divided by 437?"
|
172
|
-
|
173
|
-
# Console output:
|
174
|
-
# D, -- RubyLLM: Tool calculator called with: {"expression"=>"15329 / 437"}
|
175
|
-
# D, -- RubyLLM: Tool calculator returned: "35.078719"
|
176
|
-
```
|
177
|
-
|
178
|
-
## Error Handling
|
179
|
-
|
180
|
-
Tools can handle errors gracefully:
|
181
|
-
|
182
|
-
```ruby
|
183
|
-
class Calculator < RubyLLM::Tool
|
184
|
-
description "Performs arithmetic calculations"
|
185
|
-
|
186
|
-
param :expression,
|
187
|
-
type: :string,
|
188
|
-
desc: "Math expression to evaluate"
|
189
|
-
|
190
|
-
def execute(expression:)
|
191
|
-
eval(expression).to_s
|
192
|
-
rescue StandardError => e
|
193
|
-
# Return error as a result
|
194
|
-
{ error: "Error calculating #{expression}: #{e.message}" }
|
195
|
-
end
|
196
|
-
end
|
197
|
-
|
198
|
-
# When there's an error, the model will receive and explain it
|
199
|
-
chat.ask "What's 1/0?"
|
200
|
-
# => "I tried to calculate 1/0, but there was an error: divided by 0"
|
201
|
-
```
|
202
|
-
|
203
|
-
## Advanced Tool Parameters
|
204
|
-
|
205
|
-
Tools can have complex parameter types:
|
206
|
-
|
207
|
-
```ruby
|
208
|
-
class DataAnalysis < RubyLLM::Tool
|
209
|
-
description "Analyzes numerical data"
|
210
|
-
|
211
|
-
param :data,
|
212
|
-
type: :array,
|
213
|
-
desc: "Array of numbers to analyze"
|
214
|
-
|
215
|
-
param :operations,
|
216
|
-
type: :object,
|
217
|
-
desc: "Analysis operations to perform",
|
218
|
-
required: false
|
219
|
-
|
220
|
-
def execute(data:, operations: {mean: true, median: false})
|
221
|
-
result = {}
|
222
|
-
|
223
|
-
result[:mean] = data.sum.to_f / data.size if operations[:mean]
|
224
|
-
result[:median] = calculate_median(data) if operations[:median]
|
225
|
-
|
226
|
-
result
|
227
|
-
end
|
228
|
-
|
229
|
-
private
|
230
|
-
|
231
|
-
def calculate_median(data)
|
232
|
-
sorted = data.sort
|
233
|
-
mid = sorted.size / 2
|
234
|
-
sorted.size.odd? ? sorted[mid] : (sorted[mid-1] + sorted[mid]) / 2.0
|
235
|
-
end
|
236
|
-
end
|
237
|
-
```
|
238
|
-
|
239
|
-
## When to Use Tools
|
240
|
-
|
241
|
-
Tools are best for:
|
242
|
-
|
243
|
-
1. **External data retrieval** - Getting real-time information like weather, prices, or database records
|
244
|
-
2. **Computation** - When calculations are complex or involve large numbers
|
245
|
-
3. **System integration** - Connecting to external APIs or services
|
246
|
-
4. **Data processing** - Working with files, formatting data, or analyzing information
|
247
|
-
5. **Stateful operations** - When you need to maintain state between calls
|
data/docs/index.md
DELETED
@@ -1,73 +0,0 @@
|
|
1
|
-
---
|
2
|
-
layout: default
|
3
|
-
title: Home
|
4
|
-
nav_order: 1
|
5
|
-
description: "RubyLLM is a delightful Ruby way to work with AI."
|
6
|
-
permalink: /
|
7
|
-
---
|
8
|
-
|
9
|
-
# RubyLLM
|
10
|
-
{: .fs-9 }
|
11
|
-
|
12
|
-
A delightful Ruby way to work with AI through a unified interface to OpenAI, Anthropic, Google, and DeepSeek.
|
13
|
-
{: .fs-6 .fw-300 }
|
14
|
-
|
15
|
-
[Get started now]({% link installation.md %}){: .btn .btn-primary .fs-5 .mb-4 .mb-md-0 .mr-2 }
|
16
|
-
[View on GitHub](https://github.com/crmne/ruby_llm){: .btn .fs-5 .mb-4 .mb-md-0 }
|
17
|
-
|
18
|
-
---
|
19
|
-
<p align="center">
|
20
|
-
<img src="https://upload.wikimedia.org/wikipedia/commons/4/4d/OpenAI_Logo.svg" alt="OpenAI" height="40" width="120">
|
21
|
-
|
22
|
-
<img src="https://upload.wikimedia.org/wikipedia/commons/7/78/Anthropic_logo.svg" alt="Anthropic" height="40" width="120">
|
23
|
-
|
24
|
-
<img src="https://upload.wikimedia.org/wikipedia/commons/8/8a/Google_Gemini_logo.svg" alt="Google" height="40" width="120">
|
25
|
-
|
26
|
-
<img src="https://upload.wikimedia.org/wikipedia/commons/e/ec/DeepSeek_logo.svg" alt="DeepSeek" height="40" width="120">
|
27
|
-
</p>
|
28
|
-
|
29
|
-
<p align="center">
|
30
|
-
<a href="https://badge.fury.io/rb/ruby_llm"><img src="https://badge.fury.io/rb/ruby_llm.svg" alt="Gem Version" /></a>
|
31
|
-
<a href="https://github.com/testdouble/standard"><img src="https://img.shields.io/badge/code_style-standard-brightgreen.svg" alt="Ruby Style Guide" /></a>
|
32
|
-
<a href="https://rubygems.org/gems/ruby_llm"><img alt="Gem Total Downloads" src="https://img.shields.io/gem/dt/ruby_llm"></a>
|
33
|
-
<a href="https://github.com/crmne/ruby_llm/actions/workflows/cicd.yml"><img src="https://github.com/crmne/ruby_llm/actions/workflows/cicd.yml/badge.svg" alt="CI" /></a>
|
34
|
-
<a href="https://codecov.io/gh/crmne/ruby_llm"><img src="https://codecov.io/gh/crmne/ruby_llm/branch/main/graph/badge.svg" alt="codecov" /></a>
|
35
|
-
</p>
|
36
|
-
|
37
|
-
---
|
38
|
-
|
39
|
-
## Overview
|
40
|
-
|
41
|
-
RubyLLM provides a beautiful, unified interface to modern AI services, including:
|
42
|
-
|
43
|
-
- 💬 **Chat** with OpenAI GPT, Anthropic Claude, Google Gemini, and DeepSeek models
|
44
|
-
- 🎵 **Vision and Audio** understanding
|
45
|
-
- 🖼️ **Image generation** with DALL-E and other providers
|
46
|
-
- 📊 **Embeddings** for vector search and semantic analysis
|
47
|
-
- 🔧 **Tools** that let AI use your Ruby code
|
48
|
-
- 🚂 **Rails integration** to persist chats and messages with ActiveRecord
|
49
|
-
- 🌊 **Streaming** responses with proper Ruby patterns
|
50
|
-
|
51
|
-
## Quick start
|
52
|
-
|
53
|
-
```ruby
|
54
|
-
require 'ruby_llm'
|
55
|
-
|
56
|
-
# Configure your API keys
|
57
|
-
RubyLLM.configure do |config|
|
58
|
-
config.openai_api_key = ENV['OPENAI_API_KEY']
|
59
|
-
end
|
60
|
-
|
61
|
-
# Start chatting
|
62
|
-
chat = RubyLLM.chat
|
63
|
-
response = chat.ask "What's the best way to learn Ruby?"
|
64
|
-
|
65
|
-
# Generate images
|
66
|
-
image = RubyLLM.paint "a sunset over mountains"
|
67
|
-
puts image.url
|
68
|
-
```
|
69
|
-
|
70
|
-
## Learn more
|
71
|
-
|
72
|
-
- [Installation]({% link installation.md %})
|
73
|
-
- [Guides]({% link guides/index.md %})
|
data/docs/installation.md
DELETED
@@ -1,98 +0,0 @@
|
|
1
|
-
---
|
2
|
-
layout: default
|
3
|
-
title: Installation
|
4
|
-
nav_order: 2
|
5
|
-
permalink: /installation
|
6
|
-
---
|
7
|
-
|
8
|
-
# Installation
|
9
|
-
|
10
|
-
RubyLLM is packaged as a Ruby gem, making it easy to install in your projects.
|
11
|
-
|
12
|
-
## Requirements
|
13
|
-
|
14
|
-
* Ruby 3.1 or later
|
15
|
-
* An API key from at least one of the supported providers:
|
16
|
-
* OpenAI
|
17
|
-
* Anthropic
|
18
|
-
* Google (Gemini)
|
19
|
-
* DeepSeek
|
20
|
-
|
21
|
-
## Installation Methods
|
22
|
-
|
23
|
-
### Using Bundler (recommended)
|
24
|
-
|
25
|
-
Add RubyLLM to your project's Gemfile:
|
26
|
-
|
27
|
-
```ruby
|
28
|
-
gem 'ruby_llm'
|
29
|
-
```
|
30
|
-
|
31
|
-
Then install the dependencies:
|
32
|
-
|
33
|
-
```bash
|
34
|
-
bundle install
|
35
|
-
```
|
36
|
-
|
37
|
-
### Manual Installation
|
38
|
-
|
39
|
-
If you're not using Bundler, you can install RubyLLM directly:
|
40
|
-
|
41
|
-
```bash
|
42
|
-
gem install ruby_llm
|
43
|
-
```
|
44
|
-
|
45
|
-
## Configuration
|
46
|
-
|
47
|
-
After installing RubyLLM, you'll need to configure it with your API keys:
|
48
|
-
|
49
|
-
```ruby
|
50
|
-
require 'ruby_llm'
|
51
|
-
|
52
|
-
RubyLLM.configure do |config|
|
53
|
-
# Required: At least one API key
|
54
|
-
config.openai_api_key = ENV['OPENAI_API_KEY']
|
55
|
-
config.anthropic_api_key = ENV['ANTHROPIC_API_KEY']
|
56
|
-
config.gemini_api_key = ENV['GEMINI_API_KEY']
|
57
|
-
config.deepseek_api_key = ENV['DEEPSEEK_API_KEY']
|
58
|
-
|
59
|
-
# Optional: Set default models
|
60
|
-
config.default_model = 'gpt-4o-mini' # Default chat model
|
61
|
-
config.default_embedding_model = 'text-embedding-3-small' # Default embedding model
|
62
|
-
config.default_image_model = 'dall-e-3' # Default image generation model
|
63
|
-
|
64
|
-
# Optional: Configure request settings
|
65
|
-
config.request_timeout = 120 # Request timeout in seconds
|
66
|
-
config.max_retries = 3 # Number of retries on failures
|
67
|
-
end
|
68
|
-
```
|
69
|
-
|
70
|
-
We recommend storing your API keys as environment variables rather than hardcoding them in your application.
|
71
|
-
|
72
|
-
## Verifying Installation
|
73
|
-
|
74
|
-
You can verify that RubyLLM is correctly installed and configured by running a simple test:
|
75
|
-
|
76
|
-
```ruby
|
77
|
-
require 'ruby_llm'
|
78
|
-
|
79
|
-
# Configure with at least one API key
|
80
|
-
RubyLLM.configure do |config|
|
81
|
-
config.openai_api_key = ENV['OPENAI_API_KEY']
|
82
|
-
end
|
83
|
-
|
84
|
-
# Try a simple query
|
85
|
-
chat = RubyLLM.chat
|
86
|
-
response = chat.ask "Hello, world!"
|
87
|
-
puts response.content
|
88
|
-
|
89
|
-
# Check available models
|
90
|
-
puts "Available models:"
|
91
|
-
RubyLLM.models.chat_models.each do |model|
|
92
|
-
puts "- #{model.id} (#{model.provider})"
|
93
|
-
end
|
94
|
-
```
|
95
|
-
|
96
|
-
## Next Steps
|
97
|
-
|
98
|
-
Once you've successfully installed RubyLLM, check out the [Getting Started guide]({% link guides/getting-started.md %}) to learn how to use it in your applications.
|