ruby_linear_regression 0.1.4 → 0.1.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (3) hide show
  1. checksums.yaml +5 -5
  2. data/lib/ruby_linear_regression.rb +26 -6
  3. metadata +34 -7
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
- SHA1:
3
- metadata.gz: 8cba2118afd13d70db9b3507b3cfee6a814b2e02
4
- data.tar.gz: ba65dab424b629bb81f04811c1ddf4e24a910a85
2
+ SHA256:
3
+ metadata.gz: 27d2da5667e20ab5feb1ebdd6e5fb9f4257c74084f0c71a9ef57fd4db6350202
4
+ data.tar.gz: 75059d3f1dbf63006f5da0099e98eb583cf51cb0a4c9264b81dcd00e28e19e61
5
5
  SHA512:
6
- metadata.gz: 9a4a4ebd99923983194a69c1cfeae6334ef0e6a7b9c5caa47c3f55ee92bddde8f8c30e735fd8b44bd3c38d4567ce4b6f3e0f1026277ebd1ecaac66b68df45b02
7
- data.tar.gz: 02c69eb19ac21ce780767e83c1e239cb11e30aa3ac75837fff3404793e26ae429d28a8633147146f52ec47d83cad3a1a6bc3624ff02fd4116d8133195bbe5031
6
+ metadata.gz: 26f57a6d1e4450dc27b87479c97634d089382f9a59431bb2344f195d4132522ab06be9ce541810ad3b93913d8aeb448b5d318fa2109b8bbcad6aaa4b9986d596
7
+ data.tar.gz: 8daa2f8bcd9c7b0ca74016d5494ac18c50eebba6bd3ee6ba5baaa9635aa630e47bb6069972fdc4519a5d2c484c48541ebfa49cdc288a0ba72598bef80f0782f2
@@ -32,12 +32,26 @@ class RubyLinearRegression
32
32
  end
33
33
 
34
34
  # Compute the mean squared cost / error function
35
- def compute_cost
35
+ def compute_cost test_x = nil, test_y = nil
36
+
37
+ if not test_x.nil?
38
+ test_x.each_index do |row|
39
+ test_x[row].each_index do |i|
40
+ test_x[row][i] = (test_x[row][i] - @mu[i]) / @sigma[i].to_f
41
+ end
42
+ end if @normalize
43
+ test_x = test_x.map { |r| [1].concat(r) }
44
+ end
45
+
46
+ # per default use training data to compute cost if no data is given
47
+ cost_x = test_x.nil? ? @x : Matrix.rows( test_x )
48
+ cost_y = test_y.nil? ? @y : Matrix.rows( test_y.collect { |e| [e] } )
49
+
36
50
  # First use matrix multiplication and vector subtracton to find errors
37
- errors = (@x * @theta) - @y
51
+ errors = (cost_x * @theta) - cost_y
38
52
 
39
53
  # Then square all errors
40
- errors = errors.map { |e| e * e }
54
+ errors = errors.map { |e| (e.to_f**2) }
41
55
 
42
56
  # Find the mean of the square errors
43
57
  mean_square_error = 0.5 * (errors.inject{ |sum, e| sum + e }.to_f / errors.row_size)
@@ -46,10 +60,16 @@ class RubyLinearRegression
46
60
  end
47
61
 
48
62
  # Calculate the optimal theta using the normal equation
49
- def train_normal_equation
63
+ def train_normal_equation l = 0
64
+
65
+ @lambda = l
66
+ lambda_matrix = Matrix.build(@theta.row_size,@theta.row_size) do |c,r|
67
+ (( c == 0 && r == 0) || c != r) ? 0 : 1;
68
+ end
69
+
50
70
  # Calculate the optimal theta using the normal equation
51
71
  # theta = ( X' * X )^1 * X' * y
52
- @theta = (@x.transpose * @x).inverse * @x.transpose * @y
72
+ @theta = (@x.transpose * @x + @lambda * lambda_matrix ).inverse * @x.transpose * @y
53
73
 
54
74
  return @theta
55
75
  end
@@ -97,7 +117,7 @@ class RubyLinearRegression
97
117
  end
98
118
 
99
119
  private
100
- def normalize_data x_data
120
+ def normalize_data(x_data, mu = nil, sigma = nil)
101
121
 
102
122
  row_size = x_data.size
103
123
  column_count = x_data[0].is_a?( Array) ? x_data[0].size : 1
metadata CHANGED
@@ -1,15 +1,43 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: ruby_linear_regression
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.4
4
+ version: 0.1.6
5
5
  platform: ruby
6
6
  authors:
7
7
  - Soren Blond Daugaard
8
- autorequire:
8
+ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2017-06-15 00:00:00.000000000 Z
11
+ date: 2024-09-04 00:00:00.000000000 Z
12
12
  dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: csv
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - ">="
18
+ - !ruby/object:Gem::Version
19
+ version: '0'
20
+ type: :runtime
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - ">="
25
+ - !ruby/object:Gem::Version
26
+ version: '0'
27
+ - !ruby/object:Gem::Dependency
28
+ name: matrix
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - ">="
32
+ - !ruby/object:Gem::Version
33
+ version: '0'
34
+ type: :runtime
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - ">="
39
+ - !ruby/object:Gem::Version
40
+ version: '0'
13
41
  - !ruby/object:Gem::Dependency
14
42
  name: minitest
15
43
  requirement: !ruby/object:Gem::Requirement
@@ -45,7 +73,7 @@ homepage: https://github.com/daugaard/linear-regression
45
73
  licenses:
46
74
  - MIT
47
75
  metadata: {}
48
- post_install_message:
76
+ post_install_message:
49
77
  rdoc_options: []
50
78
  require_paths:
51
79
  - lib
@@ -60,9 +88,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
60
88
  - !ruby/object:Gem::Version
61
89
  version: '0'
62
90
  requirements: []
63
- rubyforge_project:
64
- rubygems_version: 2.6.12
65
- signing_key:
91
+ rubygems_version: 3.5.16
92
+ signing_key:
66
93
  specification_version: 4
67
94
  summary: Linear regression implemented in Ruby.
68
95
  test_files: []