ruby-spacy 0.1.4 → 0.1.4.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -1
- data/Gemfile.lock +1 -1
- data/README.md +37 -33
- data/examples/get_started/most_similar.rb +28 -27
- data/examples/japanese/most_similar.rb +28 -27
- data/lib/ruby-spacy.rb +9 -1
- data/lib/ruby-spacy/version.rb +1 -1
- metadata +3 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 5fc769c4257e78333c3d6dc114d76b39c31b57365d032d7b741358f34b37099e
|
4
|
+
data.tar.gz: 281a9997a325d16819574c96a0696eeedb59af0709d8f25814e6fa0d39646757
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8b387962ee82b60499208225ab7cfca631a55a6eb305212f3b14a2c802f67cfa685b23e762a3877e4ba5ae01308c4909eb26286bcde2fc9683dedeee9059db88
|
7
|
+
data.tar.gz: d94e788a1458f6be22db486e43180f7cbcce516ad053baa8724ce6eacd7869c3123c9f292845fe7e400aa2115786617f5ad69bda5c71b403221c98c084dc9900
|
data/CHANGELOG.md
CHANGED
data/Gemfile.lock
CHANGED
data/README.md
CHANGED
@@ -448,32 +448,36 @@ france = nlp.get_lexeme("France")
|
|
448
448
|
|
449
449
|
query = tokyo.vector - japan.vector + france.vector
|
450
450
|
|
451
|
+
headings = ["rank", "text", "score"]
|
451
452
|
rows = []
|
452
453
|
|
453
|
-
results = nlp.most_similar(query,
|
454
|
-
results.
|
455
|
-
|
454
|
+
results = nlp.most_similar(query, 20)
|
455
|
+
results.each_with_index do |lexeme, i|
|
456
|
+
index = (i + 1).to_s
|
457
|
+
rows << [index, lexeme.text, lexeme.score]
|
456
458
|
end
|
457
459
|
|
458
|
-
headings = ["key", "text", "score"]
|
459
460
|
table = Terminal::Table.new rows: rows, headings: headings
|
460
461
|
puts table
|
461
462
|
```
|
462
463
|
|
463
464
|
Output:
|
464
465
|
|
465
|
-
|
|
466
|
-
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
|
|
466
|
+
| rank | text | score |
|
467
|
+
|:-----|:------------|:-------------------|
|
468
|
+
| 1 | FRANCE | 0.8346999883651733 |
|
469
|
+
| 2 | France | 0.8346999883651733 |
|
470
|
+
| 3 | france | 0.8346999883651733 |
|
471
|
+
| 4 | PARIS | 0.7703999876976013 |
|
472
|
+
| 5 | paris | 0.7703999876976013 |
|
473
|
+
| 6 | Paris | 0.7703999876976013 |
|
474
|
+
| 7 | TOULOUSE | 0.6381999850273132 |
|
475
|
+
| 8 | Toulouse | 0.6381999850273132 |
|
476
|
+
| 9 | toulouse | 0.6381999850273132 |
|
477
|
+
| 10 | marseille | 0.6370999813079834 |
|
478
|
+
|
479
|
+
|
480
|
+
|
477
481
|
|
478
482
|
|
479
483
|
### Word vector calculation (Japanese)
|
@@ -494,33 +498,33 @@ france = nlp.get_lexeme("フランス")
|
|
494
498
|
|
495
499
|
query = tokyo.vector - japan.vector + france.vector
|
496
500
|
|
501
|
+
headings = ["rank", "text", "score"]
|
497
502
|
rows = []
|
498
503
|
|
499
|
-
results = nlp.most_similar(query,
|
500
|
-
results.
|
501
|
-
|
504
|
+
results = nlp.most_similar(query, 20)
|
505
|
+
results.each_with_index do |lexeme, i|
|
506
|
+
index = (i + 1).to_s
|
507
|
+
rows << [index, lexeme.text, lexeme.score]
|
502
508
|
end
|
503
509
|
|
504
|
-
headings = ["key", "text", "score"]
|
505
510
|
table = Terminal::Table.new rows: rows, headings: headings
|
506
511
|
puts table
|
507
512
|
```
|
508
513
|
|
509
514
|
Output:
|
510
515
|
|
511
|
-
|
|
512
|
-
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
|
516
|
+
| rank | text | score |
|
517
|
+
|:-----|:---------------|:-------------------|
|
518
|
+
| 1 | パリ | 0.7376999855041504 |
|
519
|
+
| 2 | フランス | 0.7221999764442444 |
|
520
|
+
| 3 | 東京 | 0.6697999835014343 |
|
521
|
+
| 4 | ストラスブール | 0.631600022315979 |
|
522
|
+
| 5 | リヨン | 0.5939000248908997 |
|
523
|
+
| 6 | Paris | 0.574400007724762 |
|
524
|
+
| 7 | ベルギー | 0.5683000087738037 |
|
525
|
+
| 8 | ニース | 0.5679000020027161 |
|
526
|
+
| 9 | アルザス | 0.5644999742507935 |
|
527
|
+
| 10 | 南仏 | 0.5547999739646912 |
|
524
528
|
|
525
529
|
## Author
|
526
530
|
|
@@ -9,38 +9,39 @@ france = nlp.get_lexeme("France")
|
|
9
9
|
|
10
10
|
query = tokyo.vector - japan.vector + france.vector
|
11
11
|
|
12
|
-
headings = ["
|
12
|
+
headings = ["rank", "text", "score"]
|
13
13
|
rows = []
|
14
14
|
|
15
15
|
results = nlp.most_similar(query, 20)
|
16
|
-
results.
|
17
|
-
|
16
|
+
results.each_with_index do |lexeme, i|
|
17
|
+
index = (i + 1).to_s
|
18
|
+
rows << [index, lexeme.text, lexeme.score]
|
18
19
|
end
|
19
20
|
|
20
21
|
table = Terminal::Table.new rows: rows, headings: headings
|
21
22
|
puts table
|
22
23
|
|
23
|
-
#
|
24
|
-
# |
|
25
|
-
#
|
26
|
-
# |
|
27
|
-
# |
|
28
|
-
# |
|
29
|
-
# |
|
30
|
-
# |
|
31
|
-
# |
|
32
|
-
# |
|
33
|
-
# |
|
34
|
-
# |
|
35
|
-
# |
|
36
|
-
# |
|
37
|
-
# |
|
38
|
-
# |
|
39
|
-
# |
|
40
|
-
# |
|
41
|
-
# |
|
42
|
-
# |
|
43
|
-
# |
|
44
|
-
# |
|
45
|
-
# |
|
46
|
-
#
|
24
|
+
# +------+-------------+--------------------+
|
25
|
+
# | rank | text | score |
|
26
|
+
# +------+-------------+--------------------+
|
27
|
+
# | 1 | FRANCE | 0.8346999883651733 |
|
28
|
+
# | 2 | France | 0.8346999883651733 |
|
29
|
+
# | 3 | france | 0.8346999883651733 |
|
30
|
+
# | 4 | PARIS | 0.7703999876976013 |
|
31
|
+
# | 5 | paris | 0.7703999876976013 |
|
32
|
+
# | 6 | Paris | 0.7703999876976013 |
|
33
|
+
# | 7 | TOULOUSE | 0.6381999850273132 |
|
34
|
+
# | 8 | Toulouse | 0.6381999850273132 |
|
35
|
+
# | 9 | toulouse | 0.6381999850273132 |
|
36
|
+
# | 10 | marseille | 0.6370999813079834 |
|
37
|
+
# | 11 | Marseille | 0.6370999813079834 |
|
38
|
+
# | 12 | MARSEILLE | 0.6370999813079834 |
|
39
|
+
# | 13 | Bordeaux | 0.6096000075340271 |
|
40
|
+
# | 14 | BORDEAUX | 0.6096000075340271 |
|
41
|
+
# | 15 | bordeaux | 0.6096000075340271 |
|
42
|
+
# | 16 | prague | 0.6075000166893005 |
|
43
|
+
# | 17 | PRAGUE | 0.6075000166893005 |
|
44
|
+
# | 18 | Prague | 0.6075000166893005 |
|
45
|
+
# | 19 | SWITZERLAND | 0.6068000197410583 |
|
46
|
+
# | 20 | switzerland | 0.6068000197410583 |
|
47
|
+
# +------+-------------+--------------------+
|
@@ -9,38 +9,39 @@ france = nlp.get_lexeme("フランス")
|
|
9
9
|
|
10
10
|
query = tokyo.vector - japan.vector + france.vector
|
11
11
|
|
12
|
-
headings = ["
|
12
|
+
headings = ["rank", "text", "score"]
|
13
13
|
rows = []
|
14
14
|
|
15
15
|
results = nlp.most_similar(query, 20)
|
16
|
-
results.
|
17
|
-
|
16
|
+
results.each_with_index do |lexeme, i|
|
17
|
+
index = (i + 1).to_s
|
18
|
+
rows << [index, lexeme.text, lexeme.score]
|
18
19
|
end
|
19
20
|
|
20
21
|
table = Terminal::Table.new rows: rows, headings: headings
|
21
22
|
puts table
|
22
23
|
|
23
|
-
#
|
24
|
-
# |
|
25
|
-
#
|
26
|
-
# |
|
27
|
-
# |
|
28
|
-
# |
|
29
|
-
# |
|
30
|
-
# |
|
31
|
-
# |
|
32
|
-
# |
|
33
|
-
# |
|
34
|
-
# |
|
35
|
-
# |
|
36
|
-
# |
|
37
|
-
# |
|
38
|
-
# |
|
39
|
-
# |
|
40
|
-
# |
|
41
|
-
# |
|
42
|
-
# |
|
43
|
-
# |
|
44
|
-
# |
|
45
|
-
# |
|
46
|
-
#
|
24
|
+
# +------+----------------+--------------------+
|
25
|
+
# | rank | text | score |
|
26
|
+
# +------+----------------+--------------------+
|
27
|
+
# | 1 | パリ | 0.7376999855041504 |
|
28
|
+
# | 2 | フランス | 0.7221999764442444 |
|
29
|
+
# | 3 | 東京 | 0.6697999835014343 |
|
30
|
+
# | 4 | ストラスブール | 0.631600022315979 |
|
31
|
+
# | 5 | リヨン | 0.5939000248908997 |
|
32
|
+
# | 6 | Paris | 0.574400007724762 |
|
33
|
+
# | 7 | ベルギー | 0.5683000087738037 |
|
34
|
+
# | 8 | ニース | 0.5679000020027161 |
|
35
|
+
# | 9 | アルザス | 0.5644999742507935 |
|
36
|
+
# | 10 | 南仏 | 0.5547999739646912 |
|
37
|
+
# | 11 | ロンドン | 0.5525000095367432 |
|
38
|
+
# | 12 | モンマルトル | 0.5453000068664551 |
|
39
|
+
# | 13 | ブローニュ | 0.5338000059127808 |
|
40
|
+
# | 14 | トゥールーズ | 0.5275999903678894 |
|
41
|
+
# | 15 | バスティーユ | 0.5213000178337097 |
|
42
|
+
# | 16 | フランス人 | 0.5194000005722046 |
|
43
|
+
# | 17 | ロレーヌ | 0.5148000121116638 |
|
44
|
+
# | 18 | モンパルナス | 0.513700008392334 |
|
45
|
+
# | 19 | 渡仏 | 0.5131000280380249 |
|
46
|
+
# | 20 | イタリア | 0.5127000212669373 |
|
47
|
+
# +------+----------------+--------------------+
|
data/lib/ruby-spacy.rb
CHANGED
@@ -279,7 +279,15 @@ module Spacy
|
|
279
279
|
|
280
280
|
results = []
|
281
281
|
n.times do |i|
|
282
|
-
|
282
|
+
result = {key: keys[i].to_i,
|
283
|
+
text: texts[i],
|
284
|
+
best_row: best_rows[i],
|
285
|
+
score: scores[i]
|
286
|
+
}
|
287
|
+
result.each_key do |key|
|
288
|
+
result.define_singleton_method(key){ result[key] }
|
289
|
+
end
|
290
|
+
results << result
|
283
291
|
end
|
284
292
|
results
|
285
293
|
end
|
data/lib/ruby-spacy/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-spacy
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.4
|
4
|
+
version: 0.1.4.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Yoichiro Hasebe
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-07-
|
11
|
+
date: 2021-07-06 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: pycall
|
@@ -150,7 +150,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
150
150
|
- !ruby/object:Gem::Version
|
151
151
|
version: '0'
|
152
152
|
requirements: []
|
153
|
-
rubygems_version: 3.2.
|
153
|
+
rubygems_version: 3.2.3
|
154
154
|
signing_key:
|
155
155
|
specification_version: 4
|
156
156
|
summary: A wrapper module for using spaCy natural language processing library from
|