ruby-opencv 0.0.8.pre-x86-mingw32
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +25 -0
- data/Gemfile +8 -0
- data/History.txt +5 -0
- data/License.txt +30 -0
- data/Manifest.txt +225 -0
- data/README.rdoc +149 -0
- data/Rakefile +32 -0
- data/examples/alpha_blend.rb +21 -0
- data/examples/box.png +0 -0
- data/examples/box_in_scene.png +0 -0
- data/examples/contours/bitmap-contours-with-labels.png +0 -0
- data/examples/contours/bitmap-contours.png +0 -0
- data/examples/contours/bounding-box-detect-canny.rb +62 -0
- data/examples/contours/contour_retrieval_modes.rb +139 -0
- data/examples/contours/rotated-boxes.jpg +0 -0
- data/examples/convexhull.rb +47 -0
- data/examples/face_detect.rb +20 -0
- data/examples/find_obj.rb +169 -0
- data/examples/houghcircle.rb +22 -0
- data/examples/inpaint.png +0 -0
- data/examples/inpaint.rb +57 -0
- data/examples/lenna-rotated.jpg +0 -0
- data/examples/lenna.jpg +0 -0
- data/examples/match_kdtree.rb +88 -0
- data/examples/matching_to_many_images.rb +16 -0
- data/examples/matching_to_many_images/query.png +0 -0
- data/examples/matching_to_many_images/train/1.png +0 -0
- data/examples/matching_to_many_images/train/2.png +0 -0
- data/examples/matching_to_many_images/train/3.png +0 -0
- data/examples/matching_to_many_images/train/trainImages.txt +3 -0
- data/examples/paint.rb +70 -0
- data/examples/snake.rb +43 -0
- data/examples/stuff.jpg +0 -0
- data/examples/tiffany.jpg +0 -0
- data/ext/opencv/curve.cpp +112 -0
- data/ext/opencv/curve.h +34 -0
- data/ext/opencv/cvavgcomp.cpp +67 -0
- data/ext/opencv/cvavgcomp.h +39 -0
- data/ext/opencv/cvbox2d.cpp +197 -0
- data/ext/opencv/cvbox2d.h +61 -0
- data/ext/opencv/cvcapture.cpp +499 -0
- data/ext/opencv/cvcapture.h +72 -0
- data/ext/opencv/cvchain.cpp +233 -0
- data/ext/opencv/cvchain.h +46 -0
- data/ext/opencv/cvcircle32f.cpp +116 -0
- data/ext/opencv/cvcircle32f.h +52 -0
- data/ext/opencv/cvcondensation.cpp +282 -0
- data/ext/opencv/cvcondensation.h +49 -0
- data/ext/opencv/cvconnectedcomp.cpp +143 -0
- data/ext/opencv/cvconnectedcomp.h +49 -0
- data/ext/opencv/cvcontour.cpp +296 -0
- data/ext/opencv/cvcontour.h +48 -0
- data/ext/opencv/cvcontourtree.cpp +91 -0
- data/ext/opencv/cvcontourtree.h +41 -0
- data/ext/opencv/cvconvexitydefect.cpp +103 -0
- data/ext/opencv/cvconvexitydefect.h +42 -0
- data/ext/opencv/cverror.cpp +159 -0
- data/ext/opencv/cverror.h +28 -0
- data/ext/opencv/cvfeaturetree.cpp +125 -0
- data/ext/opencv/cvfeaturetree.h +55 -0
- data/ext/opencv/cvfont.cpp +208 -0
- data/ext/opencv/cvfont.h +64 -0
- data/ext/opencv/cvhaarclassifiercascade.cpp +168 -0
- data/ext/opencv/cvhaarclassifiercascade.h +39 -0
- data/ext/opencv/cvhistogram.cpp +546 -0
- data/ext/opencv/cvhistogram.h +73 -0
- data/ext/opencv/cvhumoments.cpp +139 -0
- data/ext/opencv/cvhumoments.h +51 -0
- data/ext/opencv/cvline.cpp +154 -0
- data/ext/opencv/cvline.h +54 -0
- data/ext/opencv/cvmat.cpp +5848 -0
- data/ext/opencv/cvmat.h +284 -0
- data/ext/opencv/cvmatnd.cpp +44 -0
- data/ext/opencv/cvmatnd.h +28 -0
- data/ext/opencv/cvmemstorage.cpp +68 -0
- data/ext/opencv/cvmemstorage.h +53 -0
- data/ext/opencv/cvmoments.cpp +287 -0
- data/ext/opencv/cvmoments.h +75 -0
- data/ext/opencv/cvpoint.cpp +228 -0
- data/ext/opencv/cvpoint.h +64 -0
- data/ext/opencv/cvpoint2d32f.cpp +211 -0
- data/ext/opencv/cvpoint2d32f.h +63 -0
- data/ext/opencv/cvpoint3d32f.cpp +245 -0
- data/ext/opencv/cvpoint3d32f.h +66 -0
- data/ext/opencv/cvrect.cpp +333 -0
- data/ext/opencv/cvrect.h +79 -0
- data/ext/opencv/cvscalar.cpp +236 -0
- data/ext/opencv/cvscalar.h +71 -0
- data/ext/opencv/cvseq.cpp +599 -0
- data/ext/opencv/cvseq.h +74 -0
- data/ext/opencv/cvsize.cpp +221 -0
- data/ext/opencv/cvsize.h +65 -0
- data/ext/opencv/cvsize2d32f.cpp +209 -0
- data/ext/opencv/cvsize2d32f.h +64 -0
- data/ext/opencv/cvslice.cpp +120 -0
- data/ext/opencv/cvslice.h +61 -0
- data/ext/opencv/cvsparsemat.cpp +44 -0
- data/ext/opencv/cvsparsemat.h +28 -0
- data/ext/opencv/cvsurfparams.cpp +199 -0
- data/ext/opencv/cvsurfparams.h +58 -0
- data/ext/opencv/cvsurfpoint.cpp +223 -0
- data/ext/opencv/cvsurfpoint.h +52 -0
- data/ext/opencv/cvtermcriteria.cpp +192 -0
- data/ext/opencv/cvtermcriteria.h +71 -0
- data/ext/opencv/cvtwopoints.cpp +116 -0
- data/ext/opencv/cvtwopoints.h +51 -0
- data/ext/opencv/cvutils.cpp +194 -0
- data/ext/opencv/cvutils.h +29 -0
- data/ext/opencv/cvvideowriter.cpp +137 -0
- data/ext/opencv/cvvideowriter.h +43 -0
- data/ext/opencv/gui.cpp +68 -0
- data/ext/opencv/gui.h +30 -0
- data/ext/opencv/iplconvkernel.cpp +192 -0
- data/ext/opencv/iplconvkernel.h +71 -0
- data/ext/opencv/iplimage.cpp +644 -0
- data/ext/opencv/iplimage.h +73 -0
- data/ext/opencv/lib/opencv.rb +3 -0
- data/ext/opencv/lib/opencv/psyched_yaml.rb +22 -0
- data/ext/opencv/lib/opencv/version.rb +3 -0
- data/ext/opencv/mouseevent.cpp +181 -0
- data/ext/opencv/mouseevent.h +56 -0
- data/ext/opencv/opencv.cpp +722 -0
- data/ext/opencv/opencv.h +400 -0
- data/ext/opencv/pointset.cpp +274 -0
- data/ext/opencv/pointset.h +68 -0
- data/ext/opencv/trackbar.cpp +121 -0
- data/ext/opencv/trackbar.h +69 -0
- data/ext/opencv/window.cpp +357 -0
- data/ext/opencv/window.h +66 -0
- data/extconf.rb +75 -0
- data/images/CvMat_sobel.png +0 -0
- data/images/CvMat_sub_rect.png +0 -0
- data/images/CvSeq_relationmap.png +0 -0
- data/images/face_detect_from_lena.jpg +0 -0
- data/lib/opencv.rb +3 -0
- data/lib/opencv/psyched_yaml.rb +22 -0
- data/lib/opencv/version.rb +3 -0
- data/ruby-opencv.gemspec +43 -0
- data/test/helper.rb +166 -0
- data/test/runner.rb +30 -0
- data/test/samples/airplane.jpg +0 -0
- data/test/samples/baboon.jpg +0 -0
- data/test/samples/baboon200.jpg +0 -0
- data/test/samples/baboon200_rotated.jpg +0 -0
- data/test/samples/blank0.jpg +0 -0
- data/test/samples/blank1.jpg +0 -0
- data/test/samples/blank2.jpg +0 -0
- data/test/samples/blank3.jpg +0 -0
- data/test/samples/blank4.jpg +0 -0
- data/test/samples/blank5.jpg +0 -0
- data/test/samples/blank6.jpg +0 -0
- data/test/samples/blank7.jpg +0 -0
- data/test/samples/blank8.jpg +0 -0
- data/test/samples/blank9.jpg +0 -0
- data/test/samples/cat.jpg +0 -0
- data/test/samples/chessboard.jpg +0 -0
- data/test/samples/contours.jpg +0 -0
- data/test/samples/fruits.jpg +0 -0
- data/test/samples/haarcascade_frontalface_alt.xml.gz +0 -0
- data/test/samples/inpaint-mask.bmp +0 -0
- data/test/samples/lena-256x256.jpg +0 -0
- data/test/samples/lena-32x32.jpg +0 -0
- data/test/samples/lena-eyes.jpg +0 -0
- data/test/samples/lena-inpaint.jpg +0 -0
- data/test/samples/lena.jpg +0 -0
- data/test/samples/lines.jpg +0 -0
- data/test/samples/messy0.jpg +0 -0
- data/test/samples/messy1.jpg +0 -0
- data/test/samples/movie_sample.avi +0 -0
- data/test/samples/one_way_train_0000.jpg +0 -0
- data/test/samples/one_way_train_0001.jpg +0 -0
- data/test/samples/partially_blank0.jpg +0 -0
- data/test/samples/partially_blank1.jpg +0 -0
- data/test/samples/smooth0.jpg +0 -0
- data/test/samples/smooth1.jpg +0 -0
- data/test/samples/smooth2.jpg +0 -0
- data/test/samples/smooth3.jpg +0 -0
- data/test/samples/smooth4.jpg +0 -0
- data/test/samples/smooth5.jpg +0 -0
- data/test/samples/smooth6.jpg +0 -0
- data/test/samples/str-cv-rotated.jpg +0 -0
- data/test/samples/str-cv.jpg +0 -0
- data/test/samples/str-ov.jpg +0 -0
- data/test/samples/stuff.jpg +0 -0
- data/test/test_curve.rb +43 -0
- data/test/test_cvavgcomp.rb +24 -0
- data/test/test_cvbox2d.rb +76 -0
- data/test/test_cvcapture.rb +183 -0
- data/test/test_cvchain.rb +108 -0
- data/test/test_cvcircle32f.rb +41 -0
- data/test/test_cvconnectedcomp.rb +61 -0
- data/test/test_cvcontour.rb +150 -0
- data/test/test_cvcontourtree.rb +43 -0
- data/test/test_cverror.rb +50 -0
- data/test/test_cvfeaturetree.rb +65 -0
- data/test/test_cvfont.rb +58 -0
- data/test/test_cvhaarclassifiercascade.rb +63 -0
- data/test/test_cvhistogram.rb +271 -0
- data/test/test_cvhumoments.rb +83 -0
- data/test/test_cvline.rb +50 -0
- data/test/test_cvmat.rb +2947 -0
- data/test/test_cvmat_drawing.rb +349 -0
- data/test/test_cvmat_dxt.rb +150 -0
- data/test/test_cvmat_imageprocessing.rb +2025 -0
- data/test/test_cvmat_matching.rb +57 -0
- data/test/test_cvmoments.rb +180 -0
- data/test/test_cvpoint.rb +75 -0
- data/test/test_cvpoint2d32f.rb +75 -0
- data/test/test_cvpoint3d32f.rb +93 -0
- data/test/test_cvrect.rb +144 -0
- data/test/test_cvscalar.rb +113 -0
- data/test/test_cvseq.rb +295 -0
- data/test/test_cvsize.rb +75 -0
- data/test/test_cvsize2d32f.rb +75 -0
- data/test/test_cvslice.rb +31 -0
- data/test/test_cvsurfparams.rb +57 -0
- data/test/test_cvsurfpoint.rb +66 -0
- data/test/test_cvtermcriteria.rb +56 -0
- data/test/test_cvtwopoints.rb +40 -0
- data/test/test_cvvideowriter.rb +58 -0
- data/test/test_iplconvkernel.rb +54 -0
- data/test/test_iplimage.rb +236 -0
- data/test/test_mouseevent.rb +17 -0
- data/test/test_opencv.rb +324 -0
- data/test/test_pointset.rb +126 -0
- data/test/test_preliminary.rb +130 -0
- data/test/test_trackbar.rb +47 -0
- data/test/test_window.rb +115 -0
- metadata +414 -0
@@ -0,0 +1,39 @@
|
|
1
|
+
/************************************************************
|
2
|
+
|
3
|
+
cvhaarclassifiercascade.h -
|
4
|
+
|
5
|
+
$Author: lsxi $
|
6
|
+
|
7
|
+
Copyright (C) 2005-2006 Masakazu Yonekura
|
8
|
+
|
9
|
+
************************************************************/
|
10
|
+
#ifndef RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H
|
11
|
+
#define RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H
|
12
|
+
|
13
|
+
#define __NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE namespace cCvHaarClassifierCascade {
|
14
|
+
#define __NAMESPACE_END_CVHAARCLASSIFERCASCADE }
|
15
|
+
|
16
|
+
#include "opencv.h"
|
17
|
+
|
18
|
+
__NAMESPACE_BEGIN_OPENCV
|
19
|
+
__NAMESPACE_BEGIN_CVHAARCLASSIFERCASCADE
|
20
|
+
|
21
|
+
VALUE rb_class();
|
22
|
+
|
23
|
+
void define_ruby_class();
|
24
|
+
|
25
|
+
VALUE rb_allocate(VALUE klass);
|
26
|
+
|
27
|
+
VALUE rb_load(VALUE klass, VALUE path);
|
28
|
+
VALUE rb_detect_objects(int argc, VALUE *argv, VALUE self);
|
29
|
+
|
30
|
+
__NAMESPACE_END_CVHAARCLASSIFERCASCADE
|
31
|
+
inline CvHaarClassifierCascade*
|
32
|
+
CVHAARCLASSIFIERCASCADE(VALUE object) {
|
33
|
+
CvHaarClassifierCascade *ptr;
|
34
|
+
Data_Get_Struct(object, CvHaarClassifierCascade, ptr);
|
35
|
+
return ptr;
|
36
|
+
}
|
37
|
+
__NAMESPACE_END_OPENCV
|
38
|
+
|
39
|
+
#endif // RUBY_OPENCV_CVHAARCLASSIFIERCASCADE_H
|
@@ -0,0 +1,546 @@
|
|
1
|
+
/************************************************************
|
2
|
+
|
3
|
+
cvhistogram.cpp -
|
4
|
+
|
5
|
+
$Author: lsxi $
|
6
|
+
|
7
|
+
Copyright (C) 2005-2008 Masakazu Yonekura
|
8
|
+
|
9
|
+
************************************************************/
|
10
|
+
#include "cvhistogram.h"
|
11
|
+
/*
|
12
|
+
* Document-class: OpenCV::CvHistogram
|
13
|
+
*
|
14
|
+
* Muti-dimensional histogram.
|
15
|
+
*/
|
16
|
+
__NAMESPACE_BEGIN_OPENCV
|
17
|
+
__NAMESPACE_BEGIN_CVHISTOGRAM
|
18
|
+
|
19
|
+
VALUE rb_klass;
|
20
|
+
|
21
|
+
VALUE
|
22
|
+
rb_class()
|
23
|
+
{
|
24
|
+
return rb_klass;
|
25
|
+
}
|
26
|
+
|
27
|
+
void
|
28
|
+
define_ruby_class()
|
29
|
+
{
|
30
|
+
if (rb_klass)
|
31
|
+
return;
|
32
|
+
/*
|
33
|
+
* opencv = rb_define_module("OpenCV");
|
34
|
+
*
|
35
|
+
* note: this comment is used by rdoc.
|
36
|
+
*/
|
37
|
+
VALUE opencv = rb_module_opencv();
|
38
|
+
rb_klass = rb_define_class_under(opencv, "CvHistogram", rb_cObject);
|
39
|
+
|
40
|
+
rb_define_alloc_func(rb_klass, rb_allocate);
|
41
|
+
rb_define_private_method(rb_klass, "initialize", RUBY_METHOD_FUNC(rb_initialize), -1);
|
42
|
+
rb_define_method(rb_klass, "is_uniform?", RUBY_METHOD_FUNC(rb_is_uniform), 0);
|
43
|
+
rb_define_method(rb_klass, "is_sparse?", RUBY_METHOD_FUNC(rb_is_sparse), 0);
|
44
|
+
rb_define_method(rb_klass, "has_range?", RUBY_METHOD_FUNC(rb_has_range), 0);
|
45
|
+
rb_define_method(rb_klass, "dims", RUBY_METHOD_FUNC(rb_dims), 0);
|
46
|
+
rb_define_method(rb_klass, "calc_hist", RUBY_METHOD_FUNC(rb_calc_hist), -1);
|
47
|
+
rb_define_method(rb_klass, "calc_hist!", RUBY_METHOD_FUNC(rb_calc_hist_bang), -1);
|
48
|
+
rb_define_method(rb_klass, "[]", RUBY_METHOD_FUNC(rb_aref), -2);
|
49
|
+
rb_define_alias(rb_klass, "query_hist_value", "[]");
|
50
|
+
rb_define_method(rb_klass, "min_max_value", RUBY_METHOD_FUNC(rb_min_max_value), 0);
|
51
|
+
rb_define_method(rb_klass, "copy_hist", RUBY_METHOD_FUNC(rb_copy_hist), 0);
|
52
|
+
|
53
|
+
rb_define_method(rb_klass, "clear_hist", RUBY_METHOD_FUNC(rb_clear_hist), 0);
|
54
|
+
rb_define_alias(rb_klass, "clear", "clear_hist");
|
55
|
+
rb_define_method(rb_klass, "clear_hist!", RUBY_METHOD_FUNC(rb_clear_hist_bang), 0);
|
56
|
+
rb_define_alias(rb_klass, "clear!", "clear_hist!");
|
57
|
+
|
58
|
+
rb_define_method(rb_klass, "normalize_hist", RUBY_METHOD_FUNC(rb_normalize_hist), 1);
|
59
|
+
rb_define_alias(rb_klass, "normalize", "normalize_hist");
|
60
|
+
rb_define_method(rb_klass, "normalize_hist!", RUBY_METHOD_FUNC(rb_normalize_hist_bang), 1);
|
61
|
+
rb_define_alias(rb_klass, "normalize!", "normalize_hist!");
|
62
|
+
|
63
|
+
rb_define_method(rb_klass, "thresh_hist", RUBY_METHOD_FUNC(rb_thresh_hist), 1);
|
64
|
+
rb_define_alias(rb_klass, "thresh", "thresh_hist");
|
65
|
+
rb_define_method(rb_klass, "thresh_hist!", RUBY_METHOD_FUNC(rb_thresh_hist_bang), 1);
|
66
|
+
rb_define_alias(rb_klass, "thresh!", "thresh_hist!");
|
67
|
+
|
68
|
+
rb_define_method(rb_klass, "set_hist_bin_ranges", RUBY_METHOD_FUNC(rb_set_hist_bin_ranges), -1);
|
69
|
+
rb_define_method(rb_klass, "set_hist_bin_ranges!", RUBY_METHOD_FUNC(rb_set_hist_bin_ranges_bang), -1);
|
70
|
+
|
71
|
+
rb_define_method(rb_klass, "calc_back_project", RUBY_METHOD_FUNC(rb_calc_back_project), 1);
|
72
|
+
rb_define_method(rb_klass, "calc_back_project_patch", RUBY_METHOD_FUNC(rb_calc_back_project_patch), 4);
|
73
|
+
|
74
|
+
rb_define_singleton_method(rb_klass, "calc_prob_density", RUBY_METHOD_FUNC(rb_calc_prob_density), -1);
|
75
|
+
rb_define_singleton_method(rb_klass, "compare_hist", RUBY_METHOD_FUNC(rb_compare_hist), 3);
|
76
|
+
}
|
77
|
+
|
78
|
+
void
|
79
|
+
release_hist(void* ptr)
|
80
|
+
{
|
81
|
+
if (ptr) {
|
82
|
+
try {
|
83
|
+
cvReleaseHist((CvHistogram**)&ptr);
|
84
|
+
}
|
85
|
+
catch (cv::Exception& e) {
|
86
|
+
raise_cverror(e);
|
87
|
+
}
|
88
|
+
}
|
89
|
+
}
|
90
|
+
|
91
|
+
VALUE
|
92
|
+
rb_allocate(VALUE klass)
|
93
|
+
{
|
94
|
+
CvHistogram* ptr = NULL;
|
95
|
+
return Data_Wrap_Struct(klass, 0, release_hist, ptr);
|
96
|
+
}
|
97
|
+
|
98
|
+
float*
|
99
|
+
ary2fltptr(VALUE ary, float* buff)
|
100
|
+
{
|
101
|
+
Check_Type(ary, T_ARRAY);
|
102
|
+
int size = RARRAY_LEN(ary);
|
103
|
+
VALUE* ary_ptr = RARRAY_PTR(ary);
|
104
|
+
for (int i = 0; i < size; ++i) {
|
105
|
+
buff[i] = NUM2DBL(ary_ptr[i]);
|
106
|
+
}
|
107
|
+
return buff;
|
108
|
+
}
|
109
|
+
|
110
|
+
int*
|
111
|
+
ary2intptr(VALUE ary, int* buff)
|
112
|
+
{
|
113
|
+
Check_Type(ary, T_ARRAY);
|
114
|
+
int size = RARRAY_LEN(ary);
|
115
|
+
VALUE* ary_ptr = RARRAY_PTR(ary);
|
116
|
+
for (int i = 0; i < size; ++i) {
|
117
|
+
buff[i] = NUM2INT(ary_ptr[i]);
|
118
|
+
}
|
119
|
+
return buff;
|
120
|
+
}
|
121
|
+
|
122
|
+
VALUE
|
123
|
+
rb_initialize(int argc, VALUE *argv, VALUE self)
|
124
|
+
{
|
125
|
+
VALUE _dims, _sizes, _type, _ranges, _uniform;
|
126
|
+
int uniform;
|
127
|
+
int* sizes;
|
128
|
+
float** ranges = NULL;
|
129
|
+
|
130
|
+
rb_scan_args(argc, argv, "32", &_dims, &_sizes, &_type, &_ranges, &_uniform);
|
131
|
+
int sizes_len = RARRAY_LEN(_sizes);
|
132
|
+
sizes = ALLOCA_N(int, sizes_len);
|
133
|
+
|
134
|
+
if (NIL_P(_ranges)) {
|
135
|
+
sizes = ary2intptr(_sizes, sizes);
|
136
|
+
ranges = NULL;
|
137
|
+
}
|
138
|
+
else {
|
139
|
+
ranges = ALLOCA_N(float*, sizes_len);
|
140
|
+
VALUE* range_ptr = RARRAY_PTR(_ranges);
|
141
|
+
int i;
|
142
|
+
for (i = 0; i < sizes_len; i++) {
|
143
|
+
sizes[i] = NUM2INT(RARRAY_PTR(_sizes)[i]);
|
144
|
+
ranges[i] = ary2fltptr(range_ptr[i], ALLOCA_N(float, 2));
|
145
|
+
}
|
146
|
+
}
|
147
|
+
uniform = TRUE_OR_FALSE(_uniform, 1);
|
148
|
+
|
149
|
+
try {
|
150
|
+
DATA_PTR(self) = cvCreateHist(NUM2INT(_dims), sizes, NUM2INT(_type), ranges, uniform);
|
151
|
+
}
|
152
|
+
catch (cv::Exception& e) {
|
153
|
+
raise_cverror(e);
|
154
|
+
}
|
155
|
+
|
156
|
+
return self;
|
157
|
+
}
|
158
|
+
|
159
|
+
/*
|
160
|
+
* call-seq:
|
161
|
+
* is_uniform? -> true or false
|
162
|
+
*
|
163
|
+
*/
|
164
|
+
VALUE
|
165
|
+
rb_is_uniform(VALUE self)
|
166
|
+
{
|
167
|
+
return CV_IS_UNIFORM_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
|
168
|
+
}
|
169
|
+
|
170
|
+
/*
|
171
|
+
* call-seq:
|
172
|
+
* is_sparse? -> true or false
|
173
|
+
*
|
174
|
+
*/
|
175
|
+
VALUE
|
176
|
+
rb_is_sparse(VALUE self)
|
177
|
+
{
|
178
|
+
return CV_IS_SPARSE_HIST(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
|
179
|
+
}
|
180
|
+
|
181
|
+
/*
|
182
|
+
* call-seq:
|
183
|
+
* has_range? -> true or false
|
184
|
+
*/
|
185
|
+
VALUE
|
186
|
+
rb_has_range(VALUE self)
|
187
|
+
{
|
188
|
+
return CV_HIST_HAS_RANGES(CVHISTOGRAM(self)) ? Qtrue : Qfalse;
|
189
|
+
}
|
190
|
+
|
191
|
+
VALUE
|
192
|
+
rb_calc_hist(int argc, VALUE* argv, VALUE self)
|
193
|
+
{
|
194
|
+
return rb_calc_hist_bang(argc, argv, rb_copy_hist(self));
|
195
|
+
}
|
196
|
+
|
197
|
+
VALUE
|
198
|
+
rb_calc_hist_bang(int argc, VALUE* argv, VALUE self)
|
199
|
+
{
|
200
|
+
VALUE images, accumulate, mask;
|
201
|
+
rb_scan_args(argc, argv, "12", &images, &accumulate, &mask);
|
202
|
+
Check_Type(images, T_ARRAY);
|
203
|
+
int num_images = RARRAY_LEN(images);
|
204
|
+
IplImage** img = ALLOCA_N(IplImage*, num_images);
|
205
|
+
VALUE* images_ptr = RARRAY_PTR(images);
|
206
|
+
for (int i = 0; i < num_images; i++) {
|
207
|
+
img[i] = IPLIMAGE_WITH_CHECK(images_ptr[i]);
|
208
|
+
}
|
209
|
+
CvMat* m = NIL_P(mask) ? NULL : CVMAT_WITH_CHECK(mask);
|
210
|
+
try {
|
211
|
+
cvCalcHist(img, CVHISTOGRAM(self), TRUE_OR_FALSE(accumulate, 0), m);
|
212
|
+
}
|
213
|
+
catch (cv::Exception& e) {
|
214
|
+
raise_cverror(e);
|
215
|
+
}
|
216
|
+
|
217
|
+
return self;
|
218
|
+
}
|
219
|
+
|
220
|
+
/*
|
221
|
+
* call-seq:
|
222
|
+
* [<i>idx1[,idx2]...</i>]
|
223
|
+
*/
|
224
|
+
VALUE
|
225
|
+
rb_aref(VALUE self, VALUE args)
|
226
|
+
{
|
227
|
+
int num_idx = RARRAY_LEN(args);
|
228
|
+
int* idx = ALLOCA_N(int, num_idx);
|
229
|
+
VALUE* args_ptr = RARRAY_PTR(args);
|
230
|
+
for (int i = 0; i < num_idx; i++) {
|
231
|
+
idx[i] = NUM2INT(args_ptr[i]);
|
232
|
+
}
|
233
|
+
|
234
|
+
float value = 0.0;
|
235
|
+
CvHistogram* self_ptr = CVHISTOGRAM(self);
|
236
|
+
try {
|
237
|
+
switch (num_idx) {
|
238
|
+
case 1:
|
239
|
+
value = cvQueryHistValue_1D(self_ptr, idx[0]);
|
240
|
+
break;
|
241
|
+
case 2:
|
242
|
+
value = cvQueryHistValue_2D(self_ptr, idx[0], idx[1]);
|
243
|
+
break;
|
244
|
+
case 3:
|
245
|
+
value = cvQueryHistValue_3D(self_ptr, idx[0], idx[1], idx[2]);
|
246
|
+
break;
|
247
|
+
default:
|
248
|
+
value = cvQueryHistValue_nD(self_ptr, idx);
|
249
|
+
break;
|
250
|
+
}
|
251
|
+
}
|
252
|
+
catch (cv::Exception& e) {
|
253
|
+
raise_cverror(e);
|
254
|
+
}
|
255
|
+
|
256
|
+
return rb_float_new((double)value);
|
257
|
+
}
|
258
|
+
|
259
|
+
VALUE
|
260
|
+
rb_min_max_value(VALUE self)
|
261
|
+
{
|
262
|
+
CvHistogram* self_ptr = CVHISTOGRAM(self);
|
263
|
+
int dims = 0;
|
264
|
+
float min_value = 0.0, max_value = 0.0;
|
265
|
+
int *min_idx = NULL;
|
266
|
+
int *max_idx = NULL;
|
267
|
+
try {
|
268
|
+
dims = cvGetDims(self_ptr->bins, NULL);
|
269
|
+
min_idx = ALLOCA_N(int, dims);
|
270
|
+
max_idx = ALLOCA_N(int, dims);
|
271
|
+
cvGetMinMaxHistValue(CVHISTOGRAM(self), &min_value, &max_value, min_idx, max_idx);
|
272
|
+
}
|
273
|
+
catch (cv::Exception& e) {
|
274
|
+
raise_cverror(e);
|
275
|
+
}
|
276
|
+
|
277
|
+
VALUE _min_idx = rb_ary_new2(dims);
|
278
|
+
VALUE _max_idx = rb_ary_new2(dims);
|
279
|
+
for (int i = 0; i < dims; i++) {
|
280
|
+
rb_ary_store(_min_idx, i, INT2NUM(min_idx[i]));
|
281
|
+
rb_ary_store(_max_idx, i, INT2NUM(max_idx[i]));
|
282
|
+
}
|
283
|
+
|
284
|
+
return rb_ary_new3(4, rb_float_new((double)min_value), rb_float_new((double)max_value),
|
285
|
+
_min_idx, _max_idx);
|
286
|
+
}
|
287
|
+
|
288
|
+
/*
|
289
|
+
* call-seq:
|
290
|
+
* dims -> [int[,int...]]
|
291
|
+
*/
|
292
|
+
VALUE
|
293
|
+
rb_dims(VALUE self)
|
294
|
+
{
|
295
|
+
VALUE _sizes = Qnil;
|
296
|
+
int size[CV_MAX_DIM];
|
297
|
+
int dims = 0;
|
298
|
+
try {
|
299
|
+
dims = cvGetDims(CVHISTOGRAM(self)->bins, size);
|
300
|
+
_sizes = rb_ary_new2(dims);
|
301
|
+
for (int i = 0; i < dims; ++i) {
|
302
|
+
rb_ary_store(_sizes, i, INT2NUM(size[i]));
|
303
|
+
}
|
304
|
+
}
|
305
|
+
catch (cv::Exception& e) {
|
306
|
+
raise_cverror(e);
|
307
|
+
}
|
308
|
+
return rb_assoc_new(INT2NUM(dims), _sizes);
|
309
|
+
}
|
310
|
+
|
311
|
+
/*
|
312
|
+
* call-seq:
|
313
|
+
* copy_hist -> cvhist
|
314
|
+
*
|
315
|
+
* Clone histogram.
|
316
|
+
*/
|
317
|
+
VALUE
|
318
|
+
rb_copy_hist(VALUE self)
|
319
|
+
{
|
320
|
+
CvHistogram* hist = NULL;
|
321
|
+
try {
|
322
|
+
cvCopyHist(CVHISTOGRAM(self), &hist);
|
323
|
+
}
|
324
|
+
catch (cv::Exception& e) {
|
325
|
+
raise_cverror(e);
|
326
|
+
}
|
327
|
+
return Data_Wrap_Struct(rb_klass, 0, release_hist, hist);
|
328
|
+
}
|
329
|
+
|
330
|
+
/*
|
331
|
+
* call-seq:
|
332
|
+
* clear_hist
|
333
|
+
*/
|
334
|
+
VALUE
|
335
|
+
rb_clear_hist(VALUE self)
|
336
|
+
{
|
337
|
+
return rb_clear_hist_bang(rb_copy_hist(self));
|
338
|
+
}
|
339
|
+
|
340
|
+
/*
|
341
|
+
* call-seq:
|
342
|
+
* clear_hist!
|
343
|
+
*
|
344
|
+
* Sets all histogram bins to 0 in case of dense histogram and removes all histogram bins in case of sparse array.
|
345
|
+
*/
|
346
|
+
VALUE
|
347
|
+
rb_clear_hist_bang(VALUE self)
|
348
|
+
{
|
349
|
+
try {
|
350
|
+
cvClearHist(CVHISTOGRAM(self));
|
351
|
+
}
|
352
|
+
catch (cv::Exception& e) {
|
353
|
+
raise_cverror(e);
|
354
|
+
}
|
355
|
+
return self;
|
356
|
+
}
|
357
|
+
|
358
|
+
/*
|
359
|
+
* call-seq:
|
360
|
+
* normalize(<i>factor</i>) -> cvhist
|
361
|
+
*
|
362
|
+
* Return normalized the histogram bins by scaling them, such that the sum of the bins becomes equal to <i>factor</i>.
|
363
|
+
*/
|
364
|
+
VALUE
|
365
|
+
rb_normalize_hist(VALUE self, VALUE factor)
|
366
|
+
{
|
367
|
+
return rb_normalize_hist_bang(rb_copy_hist(self), factor);
|
368
|
+
}
|
369
|
+
|
370
|
+
/*
|
371
|
+
* call-seq:
|
372
|
+
* normalize!(<i>factor</i>) -> self
|
373
|
+
*
|
374
|
+
* normalizes the histogram bins by scaling them, such that the sum of the bins becomes equal to <i>factor</i>.
|
375
|
+
*/
|
376
|
+
VALUE
|
377
|
+
rb_normalize_hist_bang(VALUE self, VALUE factor)
|
378
|
+
{
|
379
|
+
try {
|
380
|
+
cvNormalizeHist(CVHISTOGRAM(self), NUM2DBL(factor));
|
381
|
+
}
|
382
|
+
catch (cv::Exception& e) {
|
383
|
+
raise_cverror(e);
|
384
|
+
}
|
385
|
+
return self;
|
386
|
+
}
|
387
|
+
|
388
|
+
/*
|
389
|
+
* call-seq:
|
390
|
+
* thresh_hist(<i>threshold</i>) -> cvhist
|
391
|
+
*
|
392
|
+
* Return cleared histogram bins that are below the specified threshold.
|
393
|
+
*/
|
394
|
+
VALUE
|
395
|
+
rb_thresh_hist(VALUE self, VALUE threshold)
|
396
|
+
{
|
397
|
+
return rb_thresh_hist_bang(rb_copy_hist(self), threshold);
|
398
|
+
}
|
399
|
+
|
400
|
+
/*
|
401
|
+
* call-seq:
|
402
|
+
* thresh_hist!(<i>threshold</i>) -> self
|
403
|
+
*
|
404
|
+
* Cleares histogram bins that are below the specified threshold.
|
405
|
+
*/
|
406
|
+
VALUE
|
407
|
+
rb_thresh_hist_bang(VALUE self, VALUE threshold)
|
408
|
+
{
|
409
|
+
try {
|
410
|
+
cvThreshHist(CVHISTOGRAM(self), NUM2DBL(threshold));
|
411
|
+
}
|
412
|
+
catch (cv::Exception& e) {
|
413
|
+
raise_cverror(e);
|
414
|
+
}
|
415
|
+
return self;
|
416
|
+
}
|
417
|
+
|
418
|
+
VALUE
|
419
|
+
rb_set_hist_bin_ranges(int argc, VALUE* argv, VALUE self)
|
420
|
+
{
|
421
|
+
return rb_set_hist_bin_ranges_bang(argc, argv, rb_copy_hist(self));
|
422
|
+
}
|
423
|
+
|
424
|
+
VALUE
|
425
|
+
rb_set_hist_bin_ranges_bang(int argc, VALUE* argv, VALUE self)
|
426
|
+
{
|
427
|
+
VALUE _ranges, _uniform;
|
428
|
+
rb_scan_args(argc, argv, "11", &_ranges, &_uniform);
|
429
|
+
Check_Type(_ranges, T_ARRAY);
|
430
|
+
|
431
|
+
int ranges_size = RARRAY_LEN(_ranges);
|
432
|
+
float** ranges = ALLOCA_N(float*, ranges_size);
|
433
|
+
VALUE* range_ptr = RARRAY_PTR(_ranges);
|
434
|
+
for (int i = 0; i < ranges_size; ++i) {
|
435
|
+
ranges[i] = ary2fltptr(range_ptr[i], ALLOCA_N(float, 2));
|
436
|
+
}
|
437
|
+
int uniform = TRUE_OR_FALSE(_uniform, 1);
|
438
|
+
|
439
|
+
try {
|
440
|
+
cvSetHistBinRanges(CVHISTOGRAM(self), ranges, uniform);
|
441
|
+
}
|
442
|
+
catch (cv::Exception& e) {
|
443
|
+
raise_cverror(e);
|
444
|
+
}
|
445
|
+
|
446
|
+
return self;
|
447
|
+
}
|
448
|
+
|
449
|
+
VALUE
|
450
|
+
rb_calc_back_project(VALUE self, VALUE image)
|
451
|
+
{
|
452
|
+
Check_Type(image, T_ARRAY);
|
453
|
+
int num_images = RARRAY_LEN(image);
|
454
|
+
if (num_images == 0) {
|
455
|
+
return Qnil;
|
456
|
+
}
|
457
|
+
|
458
|
+
IplImage** img = ALLOCA_N(IplImage*, num_images);
|
459
|
+
VALUE* image_ptr = RARRAY_PTR(image);
|
460
|
+
for (int i = 0; i < num_images; ++i) {
|
461
|
+
img[i] = IPLIMAGE_WITH_CHECK(image_ptr[i]);
|
462
|
+
}
|
463
|
+
|
464
|
+
CvSize size;
|
465
|
+
size.width = img[0]->width;
|
466
|
+
size.height = img[0]->height;
|
467
|
+
VALUE back_project = cCvMat::new_mat_kind_object(size, image_ptr[0]);
|
468
|
+
try {
|
469
|
+
cvCalcBackProject(img, CVARR(back_project), CVHISTOGRAM(self));
|
470
|
+
}
|
471
|
+
catch (cv::Exception& e) {
|
472
|
+
raise_cverror(e);
|
473
|
+
}
|
474
|
+
|
475
|
+
return back_project;
|
476
|
+
}
|
477
|
+
|
478
|
+
VALUE
|
479
|
+
rb_calc_back_project_patch(VALUE self, VALUE image, VALUE patch_size, VALUE method, VALUE factor)
|
480
|
+
{
|
481
|
+
Check_Type(image, T_ARRAY);
|
482
|
+
int num_images = RARRAY_LEN(image);
|
483
|
+
if (num_images == 0) {
|
484
|
+
return Qnil;
|
485
|
+
}
|
486
|
+
|
487
|
+
IplImage** img = ALLOCA_N(IplImage*, num_images);
|
488
|
+
VALUE* image_ptr = RARRAY_PTR(image);
|
489
|
+
for (int i = 0; i < num_images; ++i) {
|
490
|
+
img[i] = IPLIMAGE_WITH_CHECK(image_ptr[i]);
|
491
|
+
}
|
492
|
+
|
493
|
+
CvSize patchsize = VALUE_TO_CVSIZE(patch_size);
|
494
|
+
CvSize dst_size;
|
495
|
+
dst_size.width = img[0]->width - patchsize.width + 1;
|
496
|
+
dst_size.height = img[0]->height - patchsize.height + 1;
|
497
|
+
|
498
|
+
VALUE dst = cCvMat::new_mat_kind_object(dst_size, image_ptr[0], CV_32F, 1);
|
499
|
+
try {
|
500
|
+
cvCalcBackProjectPatch(img, CVARR(dst), patchsize, CVHISTOGRAM(self),
|
501
|
+
NUM2INT(method), NUM2DBL(factor));
|
502
|
+
}
|
503
|
+
catch (cv::Exception& e) {
|
504
|
+
raise_cverror(e);
|
505
|
+
}
|
506
|
+
|
507
|
+
return dst;
|
508
|
+
}
|
509
|
+
|
510
|
+
VALUE
|
511
|
+
rb_compare_hist(VALUE self, VALUE hist1, VALUE hist2, VALUE method)
|
512
|
+
{
|
513
|
+
double result = 0;
|
514
|
+
try {
|
515
|
+
result = cvCompareHist(CVHISTOGRAM_WITH_CHECK(hist1), CVHISTOGRAM_WITH_CHECK(hist2),
|
516
|
+
NUM2INT(method));
|
517
|
+
}
|
518
|
+
catch (cv::Exception& e) {
|
519
|
+
raise_cverror(e);
|
520
|
+
}
|
521
|
+
|
522
|
+
return rb_float_new(result);
|
523
|
+
}
|
524
|
+
|
525
|
+
VALUE
|
526
|
+
rb_calc_prob_density(int argc, VALUE* argv, VALUE self)
|
527
|
+
{
|
528
|
+
VALUE hist1, hist2, scale;
|
529
|
+
rb_scan_args(argc, argv, "21", &hist1, &hist2, &scale);
|
530
|
+
double s = NIL_P(scale) ? 255 : NUM2DBL(scale);
|
531
|
+
|
532
|
+
CvHistogram* hist1_ptr = CVHISTOGRAM_WITH_CHECK(hist1);
|
533
|
+
VALUE dst_hist = rb_allocate(rb_klass);
|
534
|
+
try {
|
535
|
+
cvCopyHist(hist1_ptr, (CvHistogram**)&(DATA_PTR(dst_hist)));
|
536
|
+
cvCalcProbDensity(hist1_ptr, CVHISTOGRAM_WITH_CHECK(hist2), CVHISTOGRAM(dst_hist), s);
|
537
|
+
}
|
538
|
+
catch (cv::Exception& e) {
|
539
|
+
raise_cverror(e);
|
540
|
+
}
|
541
|
+
|
542
|
+
return dst_hist;
|
543
|
+
}
|
544
|
+
|
545
|
+
__NAMESPACE_END_CVHISTOGRAM
|
546
|
+
__NAMESPACE_END_OPENCV
|