ruby-opencv 0.0.10-i386-mingw32
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +15 -0
- data/.gitignore +26 -0
- data/DEVELOPERS_NOTE.md +137 -0
- data/Gemfile +8 -0
- data/History.txt +5 -0
- data/License.txt +30 -0
- data/Manifest.txt +227 -0
- data/README.md +98 -0
- data/Rakefile +90 -0
- data/config.yml +7 -0
- data/examples/alpha_blend.rb +21 -0
- data/examples/box.png +0 -0
- data/examples/box_in_scene.png +0 -0
- data/examples/contours/bitmap-contours-with-labels.png +0 -0
- data/examples/contours/bitmap-contours.png +0 -0
- data/examples/contours/bounding-box-detect-canny.rb +62 -0
- data/examples/contours/contour_retrieval_modes.rb +139 -0
- data/examples/contours/rotated-boxes.jpg +0 -0
- data/examples/convexhull.rb +47 -0
- data/examples/face_detect.rb +20 -0
- data/examples/find_obj.rb +169 -0
- data/examples/houghcircle.rb +22 -0
- data/examples/inpaint.png +0 -0
- data/examples/inpaint.rb +57 -0
- data/examples/lenna-rotated.jpg +0 -0
- data/examples/lenna.jpg +0 -0
- data/examples/match_kdtree.rb +88 -0
- data/examples/matching_to_many_images.rb +16 -0
- data/examples/matching_to_many_images/query.png +0 -0
- data/examples/matching_to_many_images/train/1.png +0 -0
- data/examples/matching_to_many_images/train/2.png +0 -0
- data/examples/matching_to_many_images/train/3.png +0 -0
- data/examples/matching_to_many_images/train/trainImages.txt +3 -0
- data/examples/paint.rb +70 -0
- data/examples/snake.rb +43 -0
- data/examples/stuff.jpg +0 -0
- data/examples/tiffany.jpg +0 -0
- data/ext/opencv/curve.cpp +112 -0
- data/ext/opencv/curve.h +34 -0
- data/ext/opencv/cvavgcomp.cpp +67 -0
- data/ext/opencv/cvavgcomp.h +39 -0
- data/ext/opencv/cvbox2d.cpp +197 -0
- data/ext/opencv/cvbox2d.h +61 -0
- data/ext/opencv/cvcapture.cpp +506 -0
- data/ext/opencv/cvcapture.h +72 -0
- data/ext/opencv/cvchain.cpp +233 -0
- data/ext/opencv/cvchain.h +46 -0
- data/ext/opencv/cvcircle32f.cpp +116 -0
- data/ext/opencv/cvcircle32f.h +52 -0
- data/ext/opencv/cvcondensation.cpp +282 -0
- data/ext/opencv/cvcondensation.h +49 -0
- data/ext/opencv/cvconnectedcomp.cpp +143 -0
- data/ext/opencv/cvconnectedcomp.h +49 -0
- data/ext/opencv/cvcontour.cpp +296 -0
- data/ext/opencv/cvcontour.h +48 -0
- data/ext/opencv/cvcontourtree.cpp +91 -0
- data/ext/opencv/cvcontourtree.h +41 -0
- data/ext/opencv/cvconvexitydefect.cpp +103 -0
- data/ext/opencv/cvconvexitydefect.h +42 -0
- data/ext/opencv/cverror.cpp +159 -0
- data/ext/opencv/cverror.h +28 -0
- data/ext/opencv/cvfeaturetree.cpp +125 -0
- data/ext/opencv/cvfeaturetree.h +55 -0
- data/ext/opencv/cvfont.cpp +208 -0
- data/ext/opencv/cvfont.h +64 -0
- data/ext/opencv/cvhaarclassifiercascade.cpp +168 -0
- data/ext/opencv/cvhaarclassifiercascade.h +39 -0
- data/ext/opencv/cvhistogram.cpp +546 -0
- data/ext/opencv/cvhistogram.h +73 -0
- data/ext/opencv/cvhumoments.cpp +139 -0
- data/ext/opencv/cvhumoments.h +51 -0
- data/ext/opencv/cvline.cpp +154 -0
- data/ext/opencv/cvline.h +54 -0
- data/ext/opencv/cvmat.cpp +5848 -0
- data/ext/opencv/cvmat.h +284 -0
- data/ext/opencv/cvmatnd.cpp +44 -0
- data/ext/opencv/cvmatnd.h +28 -0
- data/ext/opencv/cvmemstorage.cpp +68 -0
- data/ext/opencv/cvmemstorage.h +53 -0
- data/ext/opencv/cvmoments.cpp +287 -0
- data/ext/opencv/cvmoments.h +75 -0
- data/ext/opencv/cvpoint.cpp +228 -0
- data/ext/opencv/cvpoint.h +64 -0
- data/ext/opencv/cvpoint2d32f.cpp +211 -0
- data/ext/opencv/cvpoint2d32f.h +63 -0
- data/ext/opencv/cvpoint3d32f.cpp +245 -0
- data/ext/opencv/cvpoint3d32f.h +66 -0
- data/ext/opencv/cvrect.cpp +333 -0
- data/ext/opencv/cvrect.h +79 -0
- data/ext/opencv/cvscalar.cpp +236 -0
- data/ext/opencv/cvscalar.h +71 -0
- data/ext/opencv/cvseq.cpp +599 -0
- data/ext/opencv/cvseq.h +74 -0
- data/ext/opencv/cvsize.cpp +221 -0
- data/ext/opencv/cvsize.h +65 -0
- data/ext/opencv/cvsize2d32f.cpp +209 -0
- data/ext/opencv/cvsize2d32f.h +64 -0
- data/ext/opencv/cvslice.cpp +120 -0
- data/ext/opencv/cvslice.h +61 -0
- data/ext/opencv/cvsparsemat.cpp +44 -0
- data/ext/opencv/cvsparsemat.h +28 -0
- data/ext/opencv/cvsurfparams.cpp +199 -0
- data/ext/opencv/cvsurfparams.h +58 -0
- data/ext/opencv/cvsurfpoint.cpp +223 -0
- data/ext/opencv/cvsurfpoint.h +52 -0
- data/ext/opencv/cvtermcriteria.cpp +192 -0
- data/ext/opencv/cvtermcriteria.h +71 -0
- data/ext/opencv/cvtwopoints.cpp +116 -0
- data/ext/opencv/cvtwopoints.h +51 -0
- data/ext/opencv/cvutils.cpp +192 -0
- data/ext/opencv/cvutils.h +30 -0
- data/ext/opencv/cvvideowriter.cpp +137 -0
- data/ext/opencv/cvvideowriter.h +43 -0
- data/ext/opencv/extconf.rb +83 -0
- data/ext/opencv/gui.cpp +68 -0
- data/ext/opencv/gui.h +30 -0
- data/ext/opencv/iplconvkernel.cpp +192 -0
- data/ext/opencv/iplconvkernel.h +71 -0
- data/ext/opencv/iplimage.cpp +644 -0
- data/ext/opencv/iplimage.h +73 -0
- data/ext/opencv/mouseevent.cpp +181 -0
- data/ext/opencv/mouseevent.h +56 -0
- data/ext/opencv/opencv.cpp +727 -0
- data/ext/opencv/opencv.h +400 -0
- data/ext/opencv/pointset.cpp +274 -0
- data/ext/opencv/pointset.h +68 -0
- data/ext/opencv/trackbar.cpp +121 -0
- data/ext/opencv/trackbar.h +69 -0
- data/ext/opencv/window.cpp +357 -0
- data/ext/opencv/window.h +66 -0
- data/images/CvMat_sobel.png +0 -0
- data/images/CvMat_sub_rect.png +0 -0
- data/images/CvSeq_relationmap.png +0 -0
- data/images/face_detect_from_lena.jpg +0 -0
- data/lib/1.9/opencv.so +0 -0
- data/lib/2.0/opencv.so +0 -0
- data/lib/opencv.rb +12 -0
- data/lib/opencv/psyched_yaml.rb +22 -0
- data/lib/opencv/version.rb +3 -0
- data/ruby-opencv.gemspec +44 -0
- data/test/helper.rb +166 -0
- data/test/runner.rb +30 -0
- data/test/samples/airplane.jpg +0 -0
- data/test/samples/baboon.jpg +0 -0
- data/test/samples/baboon200.jpg +0 -0
- data/test/samples/baboon200_rotated.jpg +0 -0
- data/test/samples/blank0.jpg +0 -0
- data/test/samples/blank1.jpg +0 -0
- data/test/samples/blank2.jpg +0 -0
- data/test/samples/blank3.jpg +0 -0
- data/test/samples/blank4.jpg +0 -0
- data/test/samples/blank5.jpg +0 -0
- data/test/samples/blank6.jpg +0 -0
- data/test/samples/blank7.jpg +0 -0
- data/test/samples/blank8.jpg +0 -0
- data/test/samples/blank9.jpg +0 -0
- data/test/samples/cat.jpg +0 -0
- data/test/samples/chessboard.jpg +0 -0
- data/test/samples/contours.jpg +0 -0
- data/test/samples/fruits.jpg +0 -0
- data/test/samples/haarcascade_frontalface_alt.xml.gz +0 -0
- data/test/samples/inpaint-mask.bmp +0 -0
- data/test/samples/lena-256x256.jpg +0 -0
- data/test/samples/lena-32x32.jpg +0 -0
- data/test/samples/lena-eyes.jpg +0 -0
- data/test/samples/lena-inpaint.jpg +0 -0
- data/test/samples/lena.jpg +0 -0
- data/test/samples/lines.jpg +0 -0
- data/test/samples/messy0.jpg +0 -0
- data/test/samples/messy1.jpg +0 -0
- data/test/samples/movie_sample.avi +0 -0
- data/test/samples/one_way_train_0000.jpg +0 -0
- data/test/samples/one_way_train_0001.jpg +0 -0
- data/test/samples/partially_blank0.jpg +0 -0
- data/test/samples/partially_blank1.jpg +0 -0
- data/test/samples/smooth0.jpg +0 -0
- data/test/samples/smooth1.jpg +0 -0
- data/test/samples/smooth2.jpg +0 -0
- data/test/samples/smooth3.jpg +0 -0
- data/test/samples/smooth4.jpg +0 -0
- data/test/samples/smooth5.jpg +0 -0
- data/test/samples/smooth6.jpg +0 -0
- data/test/samples/str-cv-rotated.jpg +0 -0
- data/test/samples/str-cv.jpg +0 -0
- data/test/samples/str-ov.jpg +0 -0
- data/test/samples/stuff.jpg +0 -0
- data/test/test_curve.rb +43 -0
- data/test/test_cvavgcomp.rb +24 -0
- data/test/test_cvbox2d.rb +76 -0
- data/test/test_cvcapture.rb +183 -0
- data/test/test_cvchain.rb +108 -0
- data/test/test_cvcircle32f.rb +41 -0
- data/test/test_cvconnectedcomp.rb +61 -0
- data/test/test_cvcontour.rb +150 -0
- data/test/test_cvcontourtree.rb +43 -0
- data/test/test_cverror.rb +50 -0
- data/test/test_cvfeaturetree.rb +65 -0
- data/test/test_cvfont.rb +58 -0
- data/test/test_cvhaarclassifiercascade.rb +63 -0
- data/test/test_cvhistogram.rb +271 -0
- data/test/test_cvhumoments.rb +83 -0
- data/test/test_cvline.rb +50 -0
- data/test/test_cvmat.rb +2947 -0
- data/test/test_cvmat_drawing.rb +349 -0
- data/test/test_cvmat_dxt.rb +150 -0
- data/test/test_cvmat_imageprocessing.rb +2015 -0
- data/test/test_cvmat_matching.rb +57 -0
- data/test/test_cvmoments.rb +180 -0
- data/test/test_cvpoint.rb +75 -0
- data/test/test_cvpoint2d32f.rb +75 -0
- data/test/test_cvpoint3d32f.rb +93 -0
- data/test/test_cvrect.rb +144 -0
- data/test/test_cvscalar.rb +113 -0
- data/test/test_cvseq.rb +295 -0
- data/test/test_cvsize.rb +75 -0
- data/test/test_cvsize2d32f.rb +75 -0
- data/test/test_cvslice.rb +31 -0
- data/test/test_cvsurfparams.rb +57 -0
- data/test/test_cvsurfpoint.rb +66 -0
- data/test/test_cvtermcriteria.rb +56 -0
- data/test/test_cvtwopoints.rb +40 -0
- data/test/test_cvvideowriter.rb +58 -0
- data/test/test_iplconvkernel.rb +54 -0
- data/test/test_iplimage.rb +236 -0
- data/test/test_mouseevent.rb +17 -0
- data/test/test_opencv.rb +329 -0
- data/test/test_pointset.rb +126 -0
- data/test/test_preliminary.rb +130 -0
- data/test/test_trackbar.rb +47 -0
- data/test/test_window.rb +115 -0
- metadata +386 -0
data/test/test_cvmat.rb
ADDED
@@ -0,0 +1,2947 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# -*- mode: ruby; coding: utf-8 -*-
|
3
|
+
require 'test/unit'
|
4
|
+
require 'opencv'
|
5
|
+
require File.expand_path(File.dirname(__FILE__)) + '/helper'
|
6
|
+
|
7
|
+
include OpenCV
|
8
|
+
|
9
|
+
# Tests for OpenCV::CvMat
|
10
|
+
class TestCvMat < OpenCVTestCase
|
11
|
+
def test_initialize
|
12
|
+
m = CvMat.new(10, 20)
|
13
|
+
assert_equal(10, m.rows)
|
14
|
+
assert_equal(20, m.cols)
|
15
|
+
assert_equal(:cv8u, m.depth)
|
16
|
+
assert_equal(3, m.channel)
|
17
|
+
|
18
|
+
depth_table = {
|
19
|
+
CV_8U => :cv8u,
|
20
|
+
CV_8S => :cv8s,
|
21
|
+
CV_16U => :cv16u,
|
22
|
+
CV_16S => :cv16s,
|
23
|
+
CV_32S => :cv32s,
|
24
|
+
CV_32F => :cv32f,
|
25
|
+
CV_64F => :cv64f
|
26
|
+
}
|
27
|
+
|
28
|
+
[CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F,
|
29
|
+
:cv8u, :cv8s, :cv16u, :cv16s, :cv32s, :cv32f, :cv64f].each { |depth|
|
30
|
+
[1, 2, 3, 4].each { |ch|
|
31
|
+
m = CvMat.new(10, 20, depth, ch)
|
32
|
+
assert_equal(10, m.rows)
|
33
|
+
assert_equal(20, m.cols)
|
34
|
+
depth = depth_table[depth] unless depth.is_a? Symbol
|
35
|
+
assert_equal(depth, m.depth)
|
36
|
+
assert_equal(ch, m.channel)
|
37
|
+
}
|
38
|
+
}
|
39
|
+
|
40
|
+
assert_raise(TypeError) {
|
41
|
+
m = CvMat.new(DUMMY_OBJ, 20, :cv8u, 1)
|
42
|
+
}
|
43
|
+
assert_raise(TypeError) {
|
44
|
+
m = CvMat.new(10, DUMMY_OBJ, :cv8u, 1)
|
45
|
+
}
|
46
|
+
assert_raise(TypeError) {
|
47
|
+
m = CvMat.new(10, 20, :cv8u, DUMMY_OBJ)
|
48
|
+
}
|
49
|
+
end
|
50
|
+
|
51
|
+
def test_load
|
52
|
+
mat = CvMat.load(FILENAME_CAT)
|
53
|
+
assert_equal(CvMat, mat.class)
|
54
|
+
assert_equal(375, mat.cols)
|
55
|
+
assert_equal(500, mat.rows)
|
56
|
+
assert_equal(:cv8u, mat.depth)
|
57
|
+
assert_equal(3, mat.channel)
|
58
|
+
assert_equal('ebc0b85d3ac44ea60181c997f35d13df', hash_img(mat))
|
59
|
+
|
60
|
+
mat = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE)
|
61
|
+
assert_equal(CvMat, mat.class)
|
62
|
+
assert_equal(375, mat.cols)
|
63
|
+
assert_equal(500, mat.rows)
|
64
|
+
assert_equal(:cv8u, mat.depth)
|
65
|
+
assert_equal(1, mat.channel)
|
66
|
+
assert_equal('f0ae1d7f2d6b3a64d093e3181361f3a4', hash_img(mat))
|
67
|
+
|
68
|
+
mat = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR)
|
69
|
+
assert_equal(CvMat, mat.class)
|
70
|
+
assert_equal(375, mat.cols)
|
71
|
+
assert_equal(500, mat.rows)
|
72
|
+
assert_equal(:cv8u, mat.depth)
|
73
|
+
assert_equal(3, mat.channel)
|
74
|
+
assert_equal('ebc0b85d3ac44ea60181c997f35d13df', hash_img(mat))
|
75
|
+
|
76
|
+
assert_raise(ArgumentError) {
|
77
|
+
CvMat.load
|
78
|
+
}
|
79
|
+
assert_raise(TypeError) {
|
80
|
+
CvMat.load(DUMMY_OBJ)
|
81
|
+
}
|
82
|
+
assert_raise(TypeError) {
|
83
|
+
CvMat.load(FILENAME_CAT, DUMMY_OBJ)
|
84
|
+
}
|
85
|
+
assert_raise(StandardError) {
|
86
|
+
CvMat.load('file/does/not/exist')
|
87
|
+
}
|
88
|
+
end
|
89
|
+
|
90
|
+
def test_save_image
|
91
|
+
filename_jpg = 'save_image_test.jpg'
|
92
|
+
filename_png = 'save_image_test.png'
|
93
|
+
m = CvMat.new(20, 20, :cv8u, 1)
|
94
|
+
|
95
|
+
File.delete filename_jpg if File.exists? filename_jpg
|
96
|
+
m.save_image filename_jpg
|
97
|
+
assert(File.exists? filename_jpg)
|
98
|
+
|
99
|
+
File.delete filename_jpg if File.exists? filename_jpg
|
100
|
+
m.save_image(filename_jpg, CV_IMWRITE_JPEG_QUALITY => 10)
|
101
|
+
assert(File.exists? filename_jpg)
|
102
|
+
|
103
|
+
File.delete filename_png if File.exists? filename_png
|
104
|
+
m.save_image(filename_png, CV_IMWRITE_PNG_COMPRESSION => 9)
|
105
|
+
assert(File.exists? filename_png)
|
106
|
+
|
107
|
+
# Alias
|
108
|
+
File.delete filename_jpg if File.exists? filename_jpg
|
109
|
+
m.save filename_jpg
|
110
|
+
assert(File.exists? filename_jpg)
|
111
|
+
|
112
|
+
assert_raise(TypeError) {
|
113
|
+
m.save_image(DUMMY_OBJ)
|
114
|
+
}
|
115
|
+
assert_raise(TypeError) {
|
116
|
+
m.save_image(filename_jpg, DUMMY_OBJ)
|
117
|
+
}
|
118
|
+
|
119
|
+
File.delete filename_jpg if File.exists? filename_jpg
|
120
|
+
File.delete filename_png if File.exists? filename_png
|
121
|
+
end
|
122
|
+
|
123
|
+
def test_encode
|
124
|
+
mat = CvMat.load(FILENAME_CAT);
|
125
|
+
|
126
|
+
jpg = mat.encode('.jpg')
|
127
|
+
assert_equal('JFIF', jpg[6, 4].map(&:chr).join) # Is jpeg format?
|
128
|
+
|
129
|
+
jpg = mat.encode('.jpg', CV_IMWRITE_JPEG_QUALITY => 10)
|
130
|
+
assert_equal('JFIF', jpg[6, 4].map(&:chr).join)
|
131
|
+
|
132
|
+
png = mat.encode('.png')
|
133
|
+
assert_equal('PNG', png[1, 3].map(&:chr).join) # Is png format?
|
134
|
+
|
135
|
+
png = mat.encode('.png', CV_IMWRITE_PNG_COMPRESSION => 9)
|
136
|
+
assert_equal('PNG', png[1, 3].map(&:chr).join)
|
137
|
+
|
138
|
+
assert_raise(TypeError) {
|
139
|
+
mat.encode(DUMMY_OBJ)
|
140
|
+
}
|
141
|
+
assert_raise(TypeError) {
|
142
|
+
mat.encode('.jpg', DUMMY_OBJ)
|
143
|
+
}
|
144
|
+
|
145
|
+
# Uncomment the following lines to see the result images
|
146
|
+
#
|
147
|
+
# open('test-jpeg.jpg', 'wb') { |f|
|
148
|
+
# f.write jpg.pack("c*")
|
149
|
+
# }
|
150
|
+
# open('test-png.png', 'wb') { |f|
|
151
|
+
# f.write png.pack("c*")
|
152
|
+
# }
|
153
|
+
end
|
154
|
+
|
155
|
+
def test_decode
|
156
|
+
data = nil
|
157
|
+
open(FILENAME_CAT, 'rb') { |f|
|
158
|
+
data = f.read
|
159
|
+
}
|
160
|
+
data_ary = data.unpack("c*")
|
161
|
+
data_mat = CvMat.new(1, data_ary.size).set_data(data_ary)
|
162
|
+
expected = CvMat.load(FILENAME_CAT)
|
163
|
+
|
164
|
+
mat1 = CvMat.decode(data)
|
165
|
+
mat2 = CvMat.decode(data_ary)
|
166
|
+
mat3 = CvMat.decode(data_mat)
|
167
|
+
mat4 = CvMat.decode(data, CV_LOAD_IMAGE_COLOR)
|
168
|
+
mat5 = CvMat.decode(data_ary, CV_LOAD_IMAGE_COLOR)
|
169
|
+
mat6 = CvMat.decode(data_mat, CV_LOAD_IMAGE_COLOR)
|
170
|
+
expected_hash = hash_img(expected)
|
171
|
+
|
172
|
+
[mat1, mat2, mat3, mat4, mat5, mat6].each { |mat|
|
173
|
+
assert_equal(CvMat, mat.class)
|
174
|
+
assert_equal(expected.rows, mat.rows)
|
175
|
+
assert_equal(expected.cols, mat.cols)
|
176
|
+
assert_equal(expected.channel, mat.channel)
|
177
|
+
assert_equal(expected_hash, hash_img(mat))
|
178
|
+
}
|
179
|
+
|
180
|
+
expected_c1 = CvMat.load(FILENAME_CAT, CV_LOAD_IMAGE_GRAYSCALE)
|
181
|
+
mat1c1 = CvMat.decode(data, CV_LOAD_IMAGE_GRAYSCALE)
|
182
|
+
mat2c1 = CvMat.decode(data_ary, CV_LOAD_IMAGE_GRAYSCALE)
|
183
|
+
mat3c1 = CvMat.decode(data_mat, CV_LOAD_IMAGE_GRAYSCALE)
|
184
|
+
expected_hash_c1 = hash_img(expected_c1)
|
185
|
+
|
186
|
+
[mat1c1, mat2c1, mat3c1].each { |mat|
|
187
|
+
assert_equal(CvMat, mat.class)
|
188
|
+
assert_equal(expected_c1.rows, mat.rows)
|
189
|
+
assert_equal(expected_c1.cols, mat.cols)
|
190
|
+
assert_equal(expected_c1.channel, mat.channel)
|
191
|
+
assert_equal(expected_hash_c1, hash_img(mat))
|
192
|
+
}
|
193
|
+
|
194
|
+
assert_raise(TypeError) {
|
195
|
+
CvMat.decode(DUMMY_OBJ)
|
196
|
+
}
|
197
|
+
assert_raise(TypeError) {
|
198
|
+
CvMat.decode(data, DUMMY_OBJ)
|
199
|
+
}
|
200
|
+
|
201
|
+
# Uncomment the following line to show the result images
|
202
|
+
# snap mat1, mat2, mat3
|
203
|
+
end
|
204
|
+
|
205
|
+
def test_GOOD_FEATURES_TO_TRACK_OPTION
|
206
|
+
assert_equal(0xff, CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:max])
|
207
|
+
assert_nil(CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:mask])
|
208
|
+
assert_equal(3, CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:block_size])
|
209
|
+
assert((not CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:use_harris]))
|
210
|
+
assert_in_delta(0.04, CvMat::GOOD_FEATURES_TO_TRACK_OPTION[:k], 0.01)
|
211
|
+
end
|
212
|
+
|
213
|
+
def test_FIND_CONTOURS_OPTION
|
214
|
+
assert_equal(1, CvMat::FIND_CONTOURS_OPTION[:mode])
|
215
|
+
assert_equal(2, CvMat::FIND_CONTOURS_OPTION[:method])
|
216
|
+
assert_equal(0, CvMat::FIND_CONTOURS_OPTION[:offset].x)
|
217
|
+
assert_equal(0, CvMat::FIND_CONTOURS_OPTION[:offset].y)
|
218
|
+
end
|
219
|
+
|
220
|
+
def test_OPTICAL_FLOW_HS_OPTION
|
221
|
+
assert_in_delta(0.0005, CvMat::OPTICAL_FLOW_HS_OPTION[:lambda], 0.000001)
|
222
|
+
assert_equal(1, CvMat::OPTICAL_FLOW_HS_OPTION[:criteria].max)
|
223
|
+
assert_in_delta(0.001, CvMat::OPTICAL_FLOW_HS_OPTION[:criteria].eps, 0.00001)
|
224
|
+
end
|
225
|
+
|
226
|
+
def test_OPTICAL_FLOW_BM_OPTION
|
227
|
+
assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:block_size].width)
|
228
|
+
assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:block_size].height)
|
229
|
+
assert_equal(1, CvMat::OPTICAL_FLOW_BM_OPTION[:shift_size].width)
|
230
|
+
assert_equal(1, CvMat::OPTICAL_FLOW_BM_OPTION[:shift_size].height)
|
231
|
+
assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:max_range].width)
|
232
|
+
assert_equal(4, CvMat::OPTICAL_FLOW_BM_OPTION[:max_range].height)
|
233
|
+
end
|
234
|
+
|
235
|
+
def test_FIND_FUNDAMENTAL_MAT_OPTION
|
236
|
+
assert((not CvMat::FIND_FUNDAMENTAL_MAT_OPTION[:with_status]))
|
237
|
+
assert_in_delta(1.0, CvMat::FIND_FUNDAMENTAL_MAT_OPTION[:maximum_distance], 0.01)
|
238
|
+
assert_in_delta(0.99, CvMat::FIND_FUNDAMENTAL_MAT_OPTION[:desirable_level], 0.01)
|
239
|
+
end
|
240
|
+
|
241
|
+
def test_to_s
|
242
|
+
m = CvMat.new(10, 20)
|
243
|
+
assert_equal('<OpenCV::CvMat:20x10,depth=cv8u,channel=3>', m.to_s)
|
244
|
+
m = CvMat.new(10, 20, :cv16s)
|
245
|
+
assert_equal('<OpenCV::CvMat:20x10,depth=cv16s,channel=3>', m.to_s)
|
246
|
+
m = CvMat.new(10, 20, :cv32f, 1)
|
247
|
+
assert_equal('<OpenCV::CvMat:20x10,depth=cv32f,channel=1>', m.to_s)
|
248
|
+
end
|
249
|
+
|
250
|
+
def test_inside
|
251
|
+
m = CvMat.new(20, 10)
|
252
|
+
assert(m.inside? CvPoint.new(0, 0))
|
253
|
+
assert(m.inside? CvPoint.new(9, 19))
|
254
|
+
assert((not m.inside? CvPoint.new(10, 0)))
|
255
|
+
assert((not m.inside? CvPoint.new(0, 20)))
|
256
|
+
assert((not m.inside? CvPoint.new(10, 20)))
|
257
|
+
end
|
258
|
+
|
259
|
+
def test_to_IplConvKernel
|
260
|
+
kernel = CvMat.new(10, 20).to_IplConvKernel(CvPoint.new(2, 3))
|
261
|
+
assert_equal(10, kernel.rows)
|
262
|
+
assert_equal(20, kernel.cols)
|
263
|
+
assert_equal(2, kernel.anchor.x)
|
264
|
+
assert_equal(3, kernel.anchor.y)
|
265
|
+
assert_equal(2, kernel.anchor_x)
|
266
|
+
assert_equal(3, kernel.anchor_y)
|
267
|
+
end
|
268
|
+
|
269
|
+
def test_create_mask
|
270
|
+
mask = CvMat.new(10, 20).create_mask
|
271
|
+
assert_equal(20, mask.width)
|
272
|
+
assert_equal(10, mask.height)
|
273
|
+
assert_equal(:cv8u, mask.depth)
|
274
|
+
assert_equal(1, mask.channel)
|
275
|
+
end
|
276
|
+
|
277
|
+
def test_fields
|
278
|
+
m = CvMat.new(20, 10)
|
279
|
+
assert_equal(10, m.width)
|
280
|
+
assert_equal(10, m.columns)
|
281
|
+
assert_equal(10, m.cols)
|
282
|
+
assert_equal(20, m.height)
|
283
|
+
assert_equal(20, m.rows)
|
284
|
+
assert_equal(:cv8u, m.depth)
|
285
|
+
assert_equal(3, m.channel)
|
286
|
+
|
287
|
+
m = CvMat.new(20, 10, :cv16s, 1)
|
288
|
+
assert_equal(10, m.width)
|
289
|
+
assert_equal(10, m.columns)
|
290
|
+
assert_equal(10, m.cols)
|
291
|
+
assert_equal(20, m.height)
|
292
|
+
assert_equal(20, m.rows)
|
293
|
+
assert_equal(:cv16s, m.depth)
|
294
|
+
assert_equal(1, m.channel)
|
295
|
+
end
|
296
|
+
|
297
|
+
def test_clone
|
298
|
+
m1 = create_cvmat(10, 20)
|
299
|
+
m2 = m1.clone
|
300
|
+
assert_equal(m1.data, m2.data)
|
301
|
+
end
|
302
|
+
|
303
|
+
def test_copy
|
304
|
+
m1 = create_cvmat(10, 20, CV_32F, 1) { |j, i, c| CvScalar.new(c) }
|
305
|
+
|
306
|
+
m2 = m1.copy
|
307
|
+
assert_equal(m1.data, m2.data)
|
308
|
+
|
309
|
+
m2 = create_cvmat(10, 20, CV_32F, 1).zero
|
310
|
+
m3 = m1.copy(m2)
|
311
|
+
assert_equal(m1.data, m2.data)
|
312
|
+
assert_equal(m1.data, m3.data)
|
313
|
+
|
314
|
+
rows, cols = m1.rows, m1.cols
|
315
|
+
mask = create_cvmat(rows, cols, CV_8U, 1) { |j, i, c|
|
316
|
+
val = (i > cols / 2) ? 0 : 255
|
317
|
+
CvScalar.new(val)
|
318
|
+
}
|
319
|
+
|
320
|
+
m2_orig = m2.copy
|
321
|
+
m3 = m1.copy(m2, mask)
|
322
|
+
rows.times { |j|
|
323
|
+
cols.times { |i|
|
324
|
+
expected = (mask[j, i][0] == 0) ? m2_orig[j, i] : m1[j, i]
|
325
|
+
assert_cvscalar_equal(expected, m2[j, i])
|
326
|
+
assert_cvscalar_equal(expected, m3[j, i])
|
327
|
+
}
|
328
|
+
}
|
329
|
+
|
330
|
+
assert_raise(TypeError) {
|
331
|
+
m1.copy(DUMMY_OBJ)
|
332
|
+
}
|
333
|
+
end
|
334
|
+
|
335
|
+
def test_convert_depth
|
336
|
+
m = CvMat.new(10, 20, :cv32f)
|
337
|
+
assert_equal(:cv8u, m.to_8u.depth)
|
338
|
+
assert_equal(:cv8s, m.to_8s.depth)
|
339
|
+
assert_equal(:cv16u, m.to_16u.depth)
|
340
|
+
assert_equal(:cv16s, m.to_16s.depth)
|
341
|
+
assert_equal(:cv32s, m.to_32s.depth)
|
342
|
+
assert_equal(:cv32f, m.to_32f.depth)
|
343
|
+
assert_equal(:cv64f, m.to_64f.depth)
|
344
|
+
end
|
345
|
+
|
346
|
+
def test_vector
|
347
|
+
m = CvMat.new(1, 2)
|
348
|
+
assert(m.vector?)
|
349
|
+
|
350
|
+
m = CvMat.new(2, 2)
|
351
|
+
assert((not m.vector?))
|
352
|
+
end
|
353
|
+
|
354
|
+
def test_square
|
355
|
+
m = CvMat.new(2, 2)
|
356
|
+
assert(m.square?)
|
357
|
+
m = CvMat.new(1, 2)
|
358
|
+
assert((not m.square?))
|
359
|
+
end
|
360
|
+
|
361
|
+
def test_to_CvMat
|
362
|
+
m1 = CvMat.new(2, 3, :cv32f, 4)
|
363
|
+
m2 = m1.to_CvMat
|
364
|
+
assert_equal(CvMat, m2.class)
|
365
|
+
assert_equal(m1.rows, m2.rows)
|
366
|
+
assert_equal(m1.cols, m2.cols)
|
367
|
+
assert_equal(m1.depth, m2.depth)
|
368
|
+
assert_equal(m1.channel, m2.channel)
|
369
|
+
assert_equal(m1.data, m2.data)
|
370
|
+
end
|
371
|
+
|
372
|
+
def test_sub_rect
|
373
|
+
m1 = create_cvmat(10, 10)
|
374
|
+
|
375
|
+
assert_raise(ArgumentError) {
|
376
|
+
m1.sub_rect
|
377
|
+
}
|
378
|
+
|
379
|
+
m2 = m1.sub_rect(CvRect.new(0, 0, 2, 3))
|
380
|
+
assert_equal(2, m2.width)
|
381
|
+
assert_equal(3, m2.height)
|
382
|
+
m2.height.times { |j|
|
383
|
+
m2.width.times { |i|
|
384
|
+
assert_cvscalar_equal(m1[j, i], m2[j, i])
|
385
|
+
}
|
386
|
+
}
|
387
|
+
|
388
|
+
topleft = CvPoint.new(2, 3)
|
389
|
+
m2 = m1.sub_rect(topleft, CvSize.new(4, 5))
|
390
|
+
assert_equal(4, m2.width)
|
391
|
+
assert_equal(5, m2.height)
|
392
|
+
m2.height.times { |j|
|
393
|
+
m2.width.times { |i|
|
394
|
+
assert_cvscalar_equal(m1[topleft.y + j, topleft.x + i], m2[j, i])
|
395
|
+
}
|
396
|
+
}
|
397
|
+
|
398
|
+
topleft = CvPoint.new(1, 2)
|
399
|
+
m2 = m1.sub_rect(topleft.x, topleft.y, 3, 4)
|
400
|
+
assert_equal(3, m2.width)
|
401
|
+
assert_equal(4, m2.height)
|
402
|
+
m2.height.times { |j|
|
403
|
+
m2.width.times { |i|
|
404
|
+
assert_cvscalar_equal(m1[topleft.y + j, topleft.x + i], m2[j, i])
|
405
|
+
}
|
406
|
+
}
|
407
|
+
|
408
|
+
# Alias
|
409
|
+
m2 = m1.subrect(CvRect.new(0, 0, 2, 3))
|
410
|
+
assert_equal(2, m2.width)
|
411
|
+
assert_equal(3, m2.height)
|
412
|
+
m2.height.times { |j|
|
413
|
+
m2.width.times { |i|
|
414
|
+
assert_cvscalar_equal(m1[j, i], m2[j, i])
|
415
|
+
}
|
416
|
+
}
|
417
|
+
|
418
|
+
assert_raise(TypeError) {
|
419
|
+
m1.sub_rect(DUMMY_OBJ)
|
420
|
+
}
|
421
|
+
assert_raise(TypeError) {
|
422
|
+
m1.sub_rect(DUMMY_OBJ, CvSize.new(1, 2))
|
423
|
+
}
|
424
|
+
assert_raise(TypeError) {
|
425
|
+
m1.sub_rect(CvPoint.new(1, 2), DUMMY_OBJ)
|
426
|
+
}
|
427
|
+
assert_raise(TypeError) {
|
428
|
+
m1.sub_rect(DUMMY_OBJ, 2, 3, 4)
|
429
|
+
}
|
430
|
+
assert_raise(TypeError) {
|
431
|
+
m1.sub_rect(1, DUMMY_OBJ, 3, 4)
|
432
|
+
}
|
433
|
+
assert_raise(TypeError) {
|
434
|
+
m1.sub_rect(1, 2, DUMMY_OBJ, 4)
|
435
|
+
}
|
436
|
+
assert_raise(TypeError) {
|
437
|
+
m1.sub_rect(1, 2, 3, DUMMY_OBJ)
|
438
|
+
}
|
439
|
+
end
|
440
|
+
|
441
|
+
def test_get_rows
|
442
|
+
m1 = create_cvmat(10, 20) { |j, i, c| CvScalar.new(c) }
|
443
|
+
|
444
|
+
row = 2
|
445
|
+
m2 = m1.get_rows(row)
|
446
|
+
assert_equal(1, m2.rows)
|
447
|
+
assert_equal(m1.cols, m2.cols)
|
448
|
+
m1.cols.times { |i|
|
449
|
+
assert_cvscalar_equal(m1[row, i], m2[i])
|
450
|
+
}
|
451
|
+
|
452
|
+
row1 = 3..7
|
453
|
+
row2 = 2...8
|
454
|
+
[row1, row2].each { |row|
|
455
|
+
m3 = m1.get_rows(row)
|
456
|
+
w = (row.exclude_end?) ? row.last - row.begin : row.last - row.begin + 1
|
457
|
+
assert_equal(w, m3.rows)
|
458
|
+
assert_equal(m1.cols, m3.cols)
|
459
|
+
|
460
|
+
m3.rows.times { |j|
|
461
|
+
m3.cols.times { |i|
|
462
|
+
assert_cvscalar_equal(m1[row.begin + j, i], m3[j, i])
|
463
|
+
}
|
464
|
+
}
|
465
|
+
}
|
466
|
+
|
467
|
+
[row1, row2].each { |row|
|
468
|
+
delta = 2
|
469
|
+
m3 = m1.get_rows(row, 2)
|
470
|
+
w = (((row.exclude_end?) ? row.last - row.begin : row.last - row.begin + 1).to_f / delta).ceil
|
471
|
+
assert_equal(w, m3.rows)
|
472
|
+
assert_equal(m1.cols, m3.cols)
|
473
|
+
|
474
|
+
m3.rows.times { |j|
|
475
|
+
m3.cols.times { |i|
|
476
|
+
assert_cvscalar_equal(m1[row.begin + j * delta, i], m3[j, i])
|
477
|
+
}
|
478
|
+
}
|
479
|
+
}
|
480
|
+
|
481
|
+
assert_raise(TypeError) {
|
482
|
+
m1.get_rows(DUMMY_OBJ)
|
483
|
+
}
|
484
|
+
assert_raise(TypeError) {
|
485
|
+
m1.get_rows(1, DUMMY_OBJ)
|
486
|
+
}
|
487
|
+
end
|
488
|
+
|
489
|
+
def test_get_cols
|
490
|
+
m1 = create_cvmat(10, 20) { |j, i, c| CvScalar.new(c) }
|
491
|
+
|
492
|
+
col = 2
|
493
|
+
m2 = m1.get_cols(col)
|
494
|
+
assert_equal(m1.rows, m2.rows)
|
495
|
+
assert_equal(1, m2.cols)
|
496
|
+
m1.height.times { |j|
|
497
|
+
assert_cvscalar_equal(m1[j, col], m2[j])
|
498
|
+
}
|
499
|
+
|
500
|
+
col1 = 3..7
|
501
|
+
col2 = 2...8
|
502
|
+
[col1, col2].each { |col|
|
503
|
+
m3 = m1.get_cols(col)
|
504
|
+
w = (col.exclude_end?) ? col.last - col.begin : col.last - col.begin + 1
|
505
|
+
assert_equal(m1.rows, m3.rows)
|
506
|
+
assert_equal(w, m3.cols)
|
507
|
+
|
508
|
+
m3.rows.times { |j|
|
509
|
+
m3.cols.times { |i|
|
510
|
+
assert_cvscalar_equal(m1[j, col.begin + i], m3[j, i])
|
511
|
+
}
|
512
|
+
}
|
513
|
+
}
|
514
|
+
|
515
|
+
assert_raise(TypeError) {
|
516
|
+
m1.get_cols(DUMMY_OBJ)
|
517
|
+
}
|
518
|
+
end
|
519
|
+
|
520
|
+
def test_each_row
|
521
|
+
m1 = create_cvmat(2, 3)
|
522
|
+
a = [[1, 2, 3], [4, 5, 6]]
|
523
|
+
a.map! { |a1|
|
524
|
+
a1.map! { |a2|
|
525
|
+
CvScalar.new(a2, a2, a2, a2).to_ary
|
526
|
+
}
|
527
|
+
}
|
528
|
+
|
529
|
+
j = 0
|
530
|
+
m1.each_row { |r|
|
531
|
+
a[j].size.times { |i|
|
532
|
+
assert_cvscalar_equal(a[j][i], r[i])
|
533
|
+
}
|
534
|
+
j += 1
|
535
|
+
}
|
536
|
+
end
|
537
|
+
|
538
|
+
def test_each_col
|
539
|
+
m1 = create_cvmat(2, 3)
|
540
|
+
a = [[1, 4], [2, 5], [3, 6]]
|
541
|
+
a.map! { |a1|
|
542
|
+
a1.map! { |a2|
|
543
|
+
CvScalar.new(a2, a2, a2, a2).to_ary
|
544
|
+
}
|
545
|
+
}
|
546
|
+
|
547
|
+
j = 0
|
548
|
+
m1.each_col { |c|
|
549
|
+
a[j].size.times { |i|
|
550
|
+
assert_cvscalar_equal(a[j][i], c[i])
|
551
|
+
}
|
552
|
+
j += 1
|
553
|
+
}
|
554
|
+
|
555
|
+
# Alias
|
556
|
+
j = 0
|
557
|
+
m1.each_column { |c|
|
558
|
+
a[j].size.times { |i|
|
559
|
+
assert_cvscalar_equal(a[j][i], c[i])
|
560
|
+
}
|
561
|
+
j += 1
|
562
|
+
}
|
563
|
+
end
|
564
|
+
|
565
|
+
def test_diag
|
566
|
+
m = create_cvmat(5, 5)
|
567
|
+
a = [1, 7, 13, 19, 25].map { |x| CvScalar.new(x, x, x, x) }
|
568
|
+
d = m.diag
|
569
|
+
|
570
|
+
a.each_with_index { |s, i|
|
571
|
+
assert_cvscalar_equal(s, d[i])
|
572
|
+
}
|
573
|
+
|
574
|
+
a = [2, 8, 14, 20].map { |x| CvScalar.new(x, x, x, x) }
|
575
|
+
d = m.diag(1)
|
576
|
+
a.each_with_index { |s, i|
|
577
|
+
assert_cvscalar_equal(s, d[i])
|
578
|
+
}
|
579
|
+
|
580
|
+
a = [6, 12, 18, 24].map { |x| CvScalar.new(x, x, x, x) }
|
581
|
+
d = m.diag(-1)
|
582
|
+
a.each_with_index { |s, i|
|
583
|
+
assert_cvscalar_equal(s, d[i])
|
584
|
+
}
|
585
|
+
|
586
|
+
# Alias
|
587
|
+
a = [1, 7, 13, 19, 25].map { |x| CvScalar.new(x, x, x, x) }
|
588
|
+
d = m.diagonal
|
589
|
+
a.each_with_index { |s, i|
|
590
|
+
assert_cvscalar_equal(s, d[i])
|
591
|
+
}
|
592
|
+
|
593
|
+
[m.rows, m.cols, -m.rows, -m.cols].each { |d|
|
594
|
+
assert_raise(CvStsOutOfRange) {
|
595
|
+
m.diag(d)
|
596
|
+
}
|
597
|
+
}
|
598
|
+
end
|
599
|
+
|
600
|
+
def test_size
|
601
|
+
m = CvMat.new(2, 3)
|
602
|
+
assert_equal(3, m.size.width)
|
603
|
+
assert_equal(2, m.size.height)
|
604
|
+
end
|
605
|
+
|
606
|
+
def test_dims
|
607
|
+
m = CvMat.new(2, 3)
|
608
|
+
assert_equal([2, 3], m.dims)
|
609
|
+
end
|
610
|
+
|
611
|
+
def test_dim_size
|
612
|
+
m = CvMat.new(2, 3)
|
613
|
+
assert_equal(2, m.dim_size(0))
|
614
|
+
assert_equal(3, m.dim_size(1))
|
615
|
+
|
616
|
+
assert_raise(TypeError) {
|
617
|
+
m.dim_size(DUMMY_OBJ)
|
618
|
+
}
|
619
|
+
end
|
620
|
+
|
621
|
+
def test_aref
|
622
|
+
m = create_cvmat(2, 3)
|
623
|
+
assert_cvscalar_equal(CvScalar.new(1, 1, 1, 1), m[0])
|
624
|
+
assert_cvscalar_equal(CvScalar.new(5, 5, 5, 5), m[4])
|
625
|
+
assert_cvscalar_equal(CvScalar.new(2, 2, 2, 2), m[0, 1])
|
626
|
+
assert_cvscalar_equal(CvScalar.new(4, 4, 4, 4), m[1, 0])
|
627
|
+
assert_cvscalar_equal(CvScalar.new(2, 2, 2, 2), m[0, 1, 2])
|
628
|
+
assert_cvscalar_equal(CvScalar.new(4, 4, 4, 4), m[1, 0, 3, 4])
|
629
|
+
|
630
|
+
# Alias
|
631
|
+
assert_cvscalar_equal(CvScalar.new(1, 1, 1, 1), m.at(0))
|
632
|
+
|
633
|
+
assert_raise(TypeError) {
|
634
|
+
m[DUMMY_OBJ]
|
635
|
+
}
|
636
|
+
|
637
|
+
assert_raise(CvStsOutOfRange) {
|
638
|
+
m[-1]
|
639
|
+
}
|
640
|
+
assert_raise(CvStsOutOfRange) {
|
641
|
+
m[6]
|
642
|
+
}
|
643
|
+
assert_raise(CvStsOutOfRange) {
|
644
|
+
m[2, 2]
|
645
|
+
}
|
646
|
+
assert_raise(CvStsOutOfRange) {
|
647
|
+
m[1, 3]
|
648
|
+
}
|
649
|
+
assert_raise(CvStsOutOfRange) {
|
650
|
+
m[2, 2, 1]
|
651
|
+
}
|
652
|
+
assert_raise(CvStsOutOfRange) {
|
653
|
+
m[1, 3, 1]
|
654
|
+
}
|
655
|
+
end
|
656
|
+
|
657
|
+
def test_aset
|
658
|
+
m = create_cvmat(2, 3)
|
659
|
+
m[0] = CvScalar.new(10, 10, 10, 10)
|
660
|
+
assert_cvscalar_equal(CvScalar.new(10, 10, 10, 10), m[0])
|
661
|
+
m[1, 0] = CvScalar.new(20, 20, 20, 20)
|
662
|
+
assert_cvscalar_equal(CvScalar.new(20, 20, 20, 20), m[1, 0])
|
663
|
+
m[1, 0, 2] = CvScalar.new(4, 4, 4, 4)
|
664
|
+
assert_cvscalar_equal(CvScalar.new(4, 4, 4, 4), m[1, 0])
|
665
|
+
m[1, 0, 2, 4] = CvScalar.new(5, 5, 5, 5)
|
666
|
+
assert_cvscalar_equal(CvScalar.new(5, 5, 5, 5), m[1, 0])
|
667
|
+
|
668
|
+
assert_raise(TypeError) {
|
669
|
+
m[DUMMY_OBJ] = CvScalar.new(10, 10, 10, 10)
|
670
|
+
}
|
671
|
+
assert_raise(TypeError) {
|
672
|
+
m[0] = DUMMY_OBJ
|
673
|
+
}
|
674
|
+
|
675
|
+
assert_raise(CvStsOutOfRange) {
|
676
|
+
m[-1]
|
677
|
+
}
|
678
|
+
assert_raise(CvStsOutOfRange) {
|
679
|
+
m[6]
|
680
|
+
}
|
681
|
+
assert_raise(CvStsOutOfRange) {
|
682
|
+
m[2, 2]
|
683
|
+
}
|
684
|
+
assert_raise(CvStsOutOfRange) {
|
685
|
+
m[1, 3]
|
686
|
+
}
|
687
|
+
assert_raise(CvStsOutOfRange) {
|
688
|
+
m[2, 2, 1]
|
689
|
+
}
|
690
|
+
assert_raise(CvStsOutOfRange) {
|
691
|
+
m[1, 3, 1]
|
692
|
+
}
|
693
|
+
end
|
694
|
+
|
695
|
+
def test_set_data
|
696
|
+
[CV_8U, CV_8S, CV_16U, CV_16S, CV_32S].each { |depth|
|
697
|
+
a = [10, 20, 30, 40, 50, 60]
|
698
|
+
m = CvMat.new(2, 3, depth, 1)
|
699
|
+
m.set_data(a)
|
700
|
+
(m.rows * m.cols).times { |i|
|
701
|
+
assert_equal(a[i], m[i][0])
|
702
|
+
}
|
703
|
+
}
|
704
|
+
|
705
|
+
[CV_32F, CV_64F].each { |depth|
|
706
|
+
a = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
|
707
|
+
m = CvMat.new(2, 3, depth, 1)
|
708
|
+
m.set_data(a)
|
709
|
+
(m.rows * m.cols).times { |i|
|
710
|
+
assert_in_delta(a[i], m[i][0], 1.0e-5)
|
711
|
+
}
|
712
|
+
}
|
713
|
+
|
714
|
+
a = [[10, 20, 30], [40, 50, 60]]
|
715
|
+
m = CvMat.new(2, 3, CV_8U, 1)
|
716
|
+
m.set_data(a)
|
717
|
+
(m.rows * m.cols).times { |i|
|
718
|
+
assert_equal(a.flatten[i], m[i][0])
|
719
|
+
}
|
720
|
+
|
721
|
+
[CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F].each { |depth|
|
722
|
+
m = CvMat.new(2, 3, depth, 1)
|
723
|
+
assert_raise(TypeError) {
|
724
|
+
a = [DUMMY_OBJ] * 6
|
725
|
+
m.set_data(a)
|
726
|
+
}
|
727
|
+
}
|
728
|
+
end
|
729
|
+
|
730
|
+
def test_fill
|
731
|
+
m1 = create_cvmat(2, 3)
|
732
|
+
m2 = m1.fill(CvScalar.new(1, 2, 3, 4))
|
733
|
+
m1.fill!(CvScalar.new(1, 2, 3, 4))
|
734
|
+
m2.height.times { |j|
|
735
|
+
m2.width.times { |i|
|
736
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i])
|
737
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i])
|
738
|
+
}
|
739
|
+
}
|
740
|
+
|
741
|
+
m1 = create_cvmat(5, 5)
|
742
|
+
m0 = m1.clone
|
743
|
+
mask = CvMat.new(m1.height, m1.width, :cv8u, 1).clear
|
744
|
+
2.times { |j|
|
745
|
+
2.times { |i|
|
746
|
+
mask[j, i] = CvScalar.new(1, 1, 1, 1)
|
747
|
+
}
|
748
|
+
}
|
749
|
+
|
750
|
+
m2 = m1.fill(CvScalar.new(1, 2, 3, 4), mask)
|
751
|
+
m1.fill!(CvScalar.new(1, 2, 3, 4), mask)
|
752
|
+
m2.height.times { |j|
|
753
|
+
m2.width.times { |i|
|
754
|
+
if i < 2 and j < 2
|
755
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i])
|
756
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i])
|
757
|
+
else
|
758
|
+
assert_cvscalar_equal(m0[j, i], m1[j, i])
|
759
|
+
assert_cvscalar_equal(m0[j, i], m2[j, i])
|
760
|
+
end
|
761
|
+
}
|
762
|
+
}
|
763
|
+
|
764
|
+
# Alias
|
765
|
+
m1 = create_cvmat(2, 3)
|
766
|
+
m2 = m1.set(CvScalar.new(1, 2, 3, 4))
|
767
|
+
m1.set!(CvScalar.new(1, 2, 3, 4))
|
768
|
+
m2.height.times { |j|
|
769
|
+
m2.width.times { |i|
|
770
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i])
|
771
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i])
|
772
|
+
}
|
773
|
+
}
|
774
|
+
|
775
|
+
m1 = create_cvmat(5, 5)
|
776
|
+
m0 = m1.clone
|
777
|
+
mask = CvMat.new(m1.height, m1.width, CV_8U, 1).clear
|
778
|
+
2.times { |j|
|
779
|
+
2.times { |i|
|
780
|
+
mask[j, i] = CvScalar.new(1, 1, 1, 1)
|
781
|
+
}
|
782
|
+
}
|
783
|
+
|
784
|
+
m2 = m1.set(CvScalar.new(1, 2, 3, 4), mask)
|
785
|
+
m1.set!(CvScalar.new(1, 2, 3, 4), mask)
|
786
|
+
m2.height.times { |j|
|
787
|
+
m2.width.times { |i|
|
788
|
+
if i < 2 and j < 2
|
789
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m1[j, i])
|
790
|
+
assert_cvscalar_equal(CvScalar.new(1, 2, 3, 4), m2[j, i])
|
791
|
+
else
|
792
|
+
assert_cvscalar_equal(m0[j, i], m1[j, i])
|
793
|
+
assert_cvscalar_equal(m0[j, i], m2[j, i])
|
794
|
+
end
|
795
|
+
}
|
796
|
+
}
|
797
|
+
|
798
|
+
assert_raise(TypeError) {
|
799
|
+
m1.fill(DUMMY_OBJ)
|
800
|
+
}
|
801
|
+
assert_raise(TypeError) {
|
802
|
+
m1.fill(CvScalar.new(1), DUMMY_OBJ)
|
803
|
+
}
|
804
|
+
end
|
805
|
+
|
806
|
+
def test_clear
|
807
|
+
m1 = create_cvmat(2, 3)
|
808
|
+
m2 = m1.clear
|
809
|
+
m1.clear!
|
810
|
+
m2.height.times { |j|
|
811
|
+
m2.width.times { |i|
|
812
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i])
|
813
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i])
|
814
|
+
}
|
815
|
+
}
|
816
|
+
|
817
|
+
# Alias
|
818
|
+
m1 = create_cvmat(2, 3)
|
819
|
+
m2 = m1.set_zero
|
820
|
+
m1.set_zero!
|
821
|
+
m3 = create_cvmat(2, 3)
|
822
|
+
m4 = m3.zero
|
823
|
+
m3.zero!
|
824
|
+
m2.height.times { |j|
|
825
|
+
m2.width.times { |i|
|
826
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i])
|
827
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i])
|
828
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m3[j, i])
|
829
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m4[j, i])
|
830
|
+
}
|
831
|
+
}
|
832
|
+
end
|
833
|
+
|
834
|
+
def test_identity
|
835
|
+
m1 = create_cvmat(5, 5)
|
836
|
+
m2 = m1.identity
|
837
|
+
m1.identity!
|
838
|
+
m2.height.times { |j|
|
839
|
+
m2.width.times { |i|
|
840
|
+
if i == j
|
841
|
+
assert_cvscalar_equal(CvScalar.new(1, 0, 0, 0), m1[j, i])
|
842
|
+
assert_cvscalar_equal(CvScalar.new(1, 0, 0, 0), m2[j, i])
|
843
|
+
else
|
844
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i])
|
845
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i])
|
846
|
+
end
|
847
|
+
}
|
848
|
+
}
|
849
|
+
|
850
|
+
m1 = CvMat.new(5, 5, :cv8u, 4)
|
851
|
+
s = CvScalar.new(1, 2, 3, 4)
|
852
|
+
m2 = m1.identity(s)
|
853
|
+
m1.identity!(s)
|
854
|
+
m2.height.times { |j|
|
855
|
+
m2.width.times { |i|
|
856
|
+
if i == j
|
857
|
+
assert_cvscalar_equal(s, m1[j, i])
|
858
|
+
assert_cvscalar_equal(s, m2[j, i])
|
859
|
+
else
|
860
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i])
|
861
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m2[j, i])
|
862
|
+
end
|
863
|
+
}
|
864
|
+
}
|
865
|
+
|
866
|
+
assert_raise(TypeError) {
|
867
|
+
m1.identity(DUMMY_OBJ)
|
868
|
+
}
|
869
|
+
end
|
870
|
+
|
871
|
+
def test_range
|
872
|
+
m1 = CvMat.new(1, 10, CV_32S, 1)
|
873
|
+
m2 = m1.range(0, m1.cols)
|
874
|
+
m1.range!(0, m1.cols)
|
875
|
+
m2.width.times { |i|
|
876
|
+
assert_cvscalar_equal(CvScalar.new(i, 0, 0, 0), m1[0, i])
|
877
|
+
assert_cvscalar_equal(CvScalar.new(i, 0, 0, 0), m2[0, i])
|
878
|
+
}
|
879
|
+
|
880
|
+
assert_raise(TypeError) {
|
881
|
+
m1.range(DUMMY_OBJ, 2)
|
882
|
+
}
|
883
|
+
assert_raise(TypeError) {
|
884
|
+
m1.range(1, DUMMY_OBJ)
|
885
|
+
}
|
886
|
+
end
|
887
|
+
|
888
|
+
def test_reshape
|
889
|
+
m = create_cvmat(2, 3, CV_8U, 3)
|
890
|
+
|
891
|
+
vec = m.reshape(:rows => 1)
|
892
|
+
assert_equal(6, vec.width)
|
893
|
+
assert_equal(1, vec.height)
|
894
|
+
size = m.width * m.height
|
895
|
+
size.times { |i|
|
896
|
+
assert_cvscalar_equal(m[i], vec[i])
|
897
|
+
}
|
898
|
+
|
899
|
+
ch1 = m.reshape(:channel => 1)
|
900
|
+
assert_equal(9, ch1.width)
|
901
|
+
assert_equal(2, ch1.height)
|
902
|
+
|
903
|
+
m.height.times { |j|
|
904
|
+
m.width.times { |i|
|
905
|
+
s1 = ch1[j, i * 3][0]
|
906
|
+
s2 = ch1[j, i * 3 + 1][0]
|
907
|
+
s3 = ch1[j, i * 3 + 2][0]
|
908
|
+
assert_cvscalar_equal(m[j, i], CvScalar.new(s1, s2, s3, 0))
|
909
|
+
}
|
910
|
+
}
|
911
|
+
|
912
|
+
[DUMMY_OBJ, { :rows => DUMMY_OBJ }, { :channel => DUMMY_OBJ }].each { |arg|
|
913
|
+
assert_raise(TypeError) {
|
914
|
+
m.reshape(arg)
|
915
|
+
}
|
916
|
+
}
|
917
|
+
end
|
918
|
+
|
919
|
+
def test_repeat
|
920
|
+
m1 = create_cvmat(2, 3, :cv8u, 3)
|
921
|
+
m2 = CvMat.new(6, 9, :cv8u, 3)
|
922
|
+
m2 = m1.repeat(m2)
|
923
|
+
m2.height.times { |j|
|
924
|
+
m2.width.times { |i|
|
925
|
+
a = m1[j % m1.height, i % m1.width]
|
926
|
+
assert_cvscalar_equal(m2[j, i], a)
|
927
|
+
}
|
928
|
+
}
|
929
|
+
assert_raise(TypeError) {
|
930
|
+
m1.repeat(DUMMY_OBJ)
|
931
|
+
}
|
932
|
+
end
|
933
|
+
|
934
|
+
def test_flip
|
935
|
+
m0 = create_cvmat(2, 3)
|
936
|
+
|
937
|
+
m1 = m0.clone
|
938
|
+
m1.flip!(:x)
|
939
|
+
m2 = m0.flip(:x)
|
940
|
+
m3 = m0.clone
|
941
|
+
m3.flip!(:y)
|
942
|
+
m4 = m0.flip(:y)
|
943
|
+
m5 = m0.clone
|
944
|
+
m5.flip!(:xy)
|
945
|
+
m6 = m0.flip(:xy)
|
946
|
+
m7 = m0.clone
|
947
|
+
m7.flip!
|
948
|
+
m8 = m0.flip
|
949
|
+
|
950
|
+
[m1, m2, m3, m4, m5, m6, m7, m8].each { |m|
|
951
|
+
assert_equal(m0.height, m.height)
|
952
|
+
assert_equal(m0.width, m.width)
|
953
|
+
}
|
954
|
+
m0.height.times { |j|
|
955
|
+
m0.width.times { |i|
|
956
|
+
ri = m0.width - i - 1
|
957
|
+
rj = m0.height - j - 1
|
958
|
+
assert_cvscalar_equal(m0[j, ri], m1[j, i])
|
959
|
+
assert_cvscalar_equal(m0[j, ri], m2[j, i])
|
960
|
+
assert_cvscalar_equal(m0[rj, i], m3[j, i])
|
961
|
+
assert_cvscalar_equal(m0[rj, i], m4[j, i])
|
962
|
+
assert_cvscalar_equal(m0[rj, ri], m5[j, i])
|
963
|
+
assert_cvscalar_equal(m0[rj, ri], m6[j, i])
|
964
|
+
assert_cvscalar_equal(m0[j, ri], m7[j, i])
|
965
|
+
assert_cvscalar_equal(m0[j, ri], m8[j, i])
|
966
|
+
}
|
967
|
+
}
|
968
|
+
|
969
|
+
assert_raise(TypeError) {
|
970
|
+
m0.flip(DUMMY_OBJ)
|
971
|
+
}
|
972
|
+
assert_raise(TypeError) {
|
973
|
+
m0.flip!(DUMMY_OBJ)
|
974
|
+
}
|
975
|
+
end
|
976
|
+
|
977
|
+
def test_split
|
978
|
+
m0 = create_cvmat(2, 3, :cv8u, 3) { |j, i, c|
|
979
|
+
CvScalar.new(c * 10, c * 20, c * 30)
|
980
|
+
}
|
981
|
+
|
982
|
+
splitted = m0.split
|
983
|
+
assert_equal(m0.channel, splitted.size)
|
984
|
+
splitted.each_with_index { |m, idx|
|
985
|
+
assert_equal(CvMat, m.class)
|
986
|
+
assert_equal(m0.height, m.height)
|
987
|
+
assert_equal(m0.width, m.width)
|
988
|
+
assert_equal(1, m.channel)
|
989
|
+
|
990
|
+
c = 0
|
991
|
+
m0.height.times { |j|
|
992
|
+
m0.width.times { |i|
|
993
|
+
val = c * 10 * (idx + 1)
|
994
|
+
assert_cvscalar_equal(CvScalar.new(val), m[j, i])
|
995
|
+
c += 1
|
996
|
+
}
|
997
|
+
}
|
998
|
+
}
|
999
|
+
|
1000
|
+
# IplImage#split should return Array<IplImage>
|
1001
|
+
image = create_iplimage(2, 3, :cv8u, 3) { |j, i, c|
|
1002
|
+
CvScalar.new(c * 10, c * 20, c * 30)
|
1003
|
+
}
|
1004
|
+
|
1005
|
+
splitted = image.split
|
1006
|
+
assert_equal(3, splitted.size)
|
1007
|
+
splitted.each_with_index { |img, channel|
|
1008
|
+
assert_equal(IplImage, img.class)
|
1009
|
+
assert_equal(image.height, img.height)
|
1010
|
+
assert_equal(image.width, img.width)
|
1011
|
+
assert_equal(1, img.channel)
|
1012
|
+
|
1013
|
+
img.height.times { |j|
|
1014
|
+
img.width.times { |i|
|
1015
|
+
val = image[j, i][channel]
|
1016
|
+
assert_cvscalar_equal(CvScalar.new(val), img[j, i])
|
1017
|
+
}
|
1018
|
+
}
|
1019
|
+
}
|
1020
|
+
end
|
1021
|
+
|
1022
|
+
def test_merge
|
1023
|
+
m0 = create_cvmat(2, 3, :cv8u, 4) { |j, i, c|
|
1024
|
+
CvScalar.new(c * 10, c * 20, c * 30, c * 40)
|
1025
|
+
}
|
1026
|
+
m1 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c|
|
1027
|
+
CvScalar.new(c * 10)
|
1028
|
+
}
|
1029
|
+
m2 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c|
|
1030
|
+
CvScalar.new(c * 20)
|
1031
|
+
}
|
1032
|
+
m3 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c|
|
1033
|
+
CvScalar.new(c * 30)
|
1034
|
+
}
|
1035
|
+
m4 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c|
|
1036
|
+
CvScalar.new(c * 40)
|
1037
|
+
}
|
1038
|
+
|
1039
|
+
m = CvMat.merge(m1, m2, m3, m4)
|
1040
|
+
|
1041
|
+
assert_equal(m0.height, m.height)
|
1042
|
+
assert_equal(m0.width, m.width)
|
1043
|
+
m0.height.times { |j|
|
1044
|
+
m0.width.times { |i|
|
1045
|
+
assert_cvscalar_equal(m0[j, i], m[j, i])
|
1046
|
+
}
|
1047
|
+
}
|
1048
|
+
|
1049
|
+
m5 = create_cvmat(2, 3, :cv8u, 1) { |j, i, c|
|
1050
|
+
CvScalar.new(c * 50)
|
1051
|
+
}
|
1052
|
+
|
1053
|
+
assert_raise(TypeError) {
|
1054
|
+
CvMat.merge(DUMMY_OBJ)
|
1055
|
+
}
|
1056
|
+
assert_raise(ArgumentError) {
|
1057
|
+
CvMat.merge
|
1058
|
+
}
|
1059
|
+
assert_raise(ArgumentError) {
|
1060
|
+
CvMat.merge(m1, m2, m3, m4, m5)
|
1061
|
+
}
|
1062
|
+
assert_raise(ArgumentError) {
|
1063
|
+
CvMat.merge(CvMat.new(1, 2, :cv8u, 2))
|
1064
|
+
}
|
1065
|
+
assert_raise(ArgumentError) {
|
1066
|
+
CvMat.merge(CvMat.new(1, 2, :cv8u, 1),
|
1067
|
+
CvMat.new(2, 2, :cv8u, 1))
|
1068
|
+
}
|
1069
|
+
assert_raise(ArgumentError) {
|
1070
|
+
CvMat.merge(CvMat.new(1, 2, :cv8u, 1),
|
1071
|
+
CvMat.new(1, 2, :cv32f, 1))
|
1072
|
+
}
|
1073
|
+
end
|
1074
|
+
|
1075
|
+
def test_rand_shuffle
|
1076
|
+
m0 = create_cvmat(2, 3)
|
1077
|
+
m1 = m0.clone
|
1078
|
+
m1.rand_shuffle!
|
1079
|
+
m2 = m0.rand_shuffle
|
1080
|
+
m3 = m0.clone
|
1081
|
+
m3.rand_shuffle!(123, 234)
|
1082
|
+
m4 = m0.rand_shuffle(123, 234)
|
1083
|
+
|
1084
|
+
assert_shuffled_equal = lambda { |src, shuffled|
|
1085
|
+
assert_equal(src.width, shuffled.width)
|
1086
|
+
assert_equal(src.height, shuffled.height)
|
1087
|
+
mat0, mat1 = [], []
|
1088
|
+
src.height { |j|
|
1089
|
+
src.width { |i|
|
1090
|
+
mat0 << src[j, i].to_s
|
1091
|
+
mat1 << shuffled[j, i].to_s
|
1092
|
+
}
|
1093
|
+
}
|
1094
|
+
assert_equal(0, (mat0 - mat1).size)
|
1095
|
+
}
|
1096
|
+
|
1097
|
+
[m1, m2, m3, m4].each { |m|
|
1098
|
+
assert_shuffled_equal.call(m0, m)
|
1099
|
+
}
|
1100
|
+
|
1101
|
+
assert_raise(TypeError) {
|
1102
|
+
m0.rand_shuffle(DUMMY_OBJ)
|
1103
|
+
}
|
1104
|
+
assert_raise(TypeError) {
|
1105
|
+
m0.rand_shuffle(123, DUMMY_OBJ)
|
1106
|
+
}
|
1107
|
+
end
|
1108
|
+
|
1109
|
+
def test_lut
|
1110
|
+
m0 = create_cvmat(2, 3, :cv8u, 3)
|
1111
|
+
lut_mat = create_cvmat(1, 256, :cv8u, 3) { |j, i, c|
|
1112
|
+
CvScalar.new(255 - c, 255 - c, 255 - c)
|
1113
|
+
}
|
1114
|
+
|
1115
|
+
m = m0.lut(lut_mat)
|
1116
|
+
assert_equal(m0.height, m.height)
|
1117
|
+
assert_equal(m0.width, m.width)
|
1118
|
+
m0.height.times { |j|
|
1119
|
+
m0.width.times { |i|
|
1120
|
+
r, g, b = m0[j, i].to_ary.map { |c| 255 - c }
|
1121
|
+
assert_cvscalar_equal(CvScalar.new(r, g, b, 0), m[j, i])
|
1122
|
+
}
|
1123
|
+
}
|
1124
|
+
|
1125
|
+
assert_raise(TypeError) {
|
1126
|
+
m0.lut(DUMMY_OBJ)
|
1127
|
+
}
|
1128
|
+
end
|
1129
|
+
|
1130
|
+
def test_convert_scale
|
1131
|
+
m0 = create_cvmat(2, 3, :cv32f, 4) { |j, i, c|
|
1132
|
+
CvScalar.new(-c, -c, -c, -c)
|
1133
|
+
}
|
1134
|
+
|
1135
|
+
m1 = m0.convert_scale(:depth => :cv8u)
|
1136
|
+
m2 = m0.convert_scale(:scale => 1.5)
|
1137
|
+
m3 = m0.convert_scale(:shift => 10.0)
|
1138
|
+
m4 = m0.convert_scale(:depth => CV_16U)
|
1139
|
+
|
1140
|
+
[m1, m2, m3, m4].each { |m|
|
1141
|
+
assert_equal(m0.height, m.height)
|
1142
|
+
assert_equal(m0.width, m.width)
|
1143
|
+
}
|
1144
|
+
m0.height.times { |j|
|
1145
|
+
m0.width.times { |i|
|
1146
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m1[j, i])
|
1147
|
+
a = m0[j, i].to_ary.map { |x| x * 1.5 }
|
1148
|
+
assert_in_delta(a, m2[j, i], 0.001)
|
1149
|
+
a = m0[j, i].to_ary.map { |x| x + 10.0 }
|
1150
|
+
assert_in_delta(a, m3[j, i], 0.001)
|
1151
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), m4[j, i])
|
1152
|
+
}
|
1153
|
+
}
|
1154
|
+
|
1155
|
+
assert_raise(TypeError) {
|
1156
|
+
m0.convert_scale(DUMMY_OBJ)
|
1157
|
+
}
|
1158
|
+
end
|
1159
|
+
|
1160
|
+
def test_convert_scale_abs
|
1161
|
+
m0 = create_cvmat(2, 3, :cv8u, 4) { |j, i, c|
|
1162
|
+
CvScalar.new(c, c, c, c)
|
1163
|
+
}
|
1164
|
+
|
1165
|
+
m1 = m0.convert_scale_abs(:depth => :cv64f)
|
1166
|
+
m2 = m0.convert_scale_abs(:scale => 2)
|
1167
|
+
m3 = m0.convert_scale_abs(:shift => 10.0)
|
1168
|
+
m4 = m0.convert_scale_abs(:depth => CV_64F)
|
1169
|
+
|
1170
|
+
[m1, m2, m3, m4].each { |m|
|
1171
|
+
assert_equal(m0.height, m.height)
|
1172
|
+
assert_equal(m0.width, m.width)
|
1173
|
+
}
|
1174
|
+
m0.height.times { |j|
|
1175
|
+
m0.width.times { |i|
|
1176
|
+
assert_cvscalar_equal(m0[j, i], m1[j, i])
|
1177
|
+
a = m0[j, i].to_ary.map { |x| (x * 2).abs }
|
1178
|
+
assert_in_delta(a, m2[j, i], 0.001)
|
1179
|
+
a = m0[j, i].to_ary.map { |x| (x + 10.0).abs }
|
1180
|
+
assert_in_delta(a, m3[j, i], 0.001)
|
1181
|
+
assert_cvscalar_equal(m0[j, i], m4[j, i])
|
1182
|
+
}
|
1183
|
+
}
|
1184
|
+
|
1185
|
+
assert_raise(TypeError) {
|
1186
|
+
m0.convert_scale(DUMMY_OBJ)
|
1187
|
+
}
|
1188
|
+
end
|
1189
|
+
|
1190
|
+
def test_add
|
1191
|
+
m1 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
1192
|
+
CvScalar.new(c * 0.1, c * 0.2, c * 0.3, c * 0.4)
|
1193
|
+
}
|
1194
|
+
m2 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
1195
|
+
CvScalar.new(c * 1, c * 2, c * 3, c * 4)
|
1196
|
+
}
|
1197
|
+
|
1198
|
+
# CvMat + CvMat
|
1199
|
+
m3 = m1.add(m2)
|
1200
|
+
assert_equal(m1.height, m3.height)
|
1201
|
+
assert_equal(m1.width, m3.width)
|
1202
|
+
n = 0
|
1203
|
+
m1.height.times { |j|
|
1204
|
+
m1.width.times { |i|
|
1205
|
+
s = CvScalar.new(n * 1.1, n * 2.2, n * 3.3, n * 4.4)
|
1206
|
+
assert_in_delta(s, m3[j, i], 0.001)
|
1207
|
+
n += 1
|
1208
|
+
}
|
1209
|
+
}
|
1210
|
+
|
1211
|
+
# CvMat + CvScalar
|
1212
|
+
s1 = CvScalar.new(1, 2, 3, 4)
|
1213
|
+
m3 = m1.add(s1)
|
1214
|
+
assert_equal(m1.height, m3.height)
|
1215
|
+
assert_equal(m1.width, m3.width)
|
1216
|
+
n = 0
|
1217
|
+
m1.height.times { |j|
|
1218
|
+
m1.width.times { |i|
|
1219
|
+
s = CvScalar.new(n * 0.1 + 1, n * 0.2 + 2, n * 0.3 + 3, n * 0.4 + 4)
|
1220
|
+
assert_in_delta(s, m3[j, i], 0.001)
|
1221
|
+
n += 1
|
1222
|
+
}
|
1223
|
+
}
|
1224
|
+
|
1225
|
+
# Alias
|
1226
|
+
m3 = m1 + m2
|
1227
|
+
assert_equal(m1.height, m3.height)
|
1228
|
+
assert_equal(m1.width, m3.width)
|
1229
|
+
n = 0
|
1230
|
+
m1.height.times { |j|
|
1231
|
+
m1.width.times { |i|
|
1232
|
+
s = CvScalar.new(n * 1.1, n * 2.2, n * 3.3, n * 4.4)
|
1233
|
+
assert_in_delta(s, m3[j, i], 0.001)
|
1234
|
+
n += 1
|
1235
|
+
}
|
1236
|
+
}
|
1237
|
+
|
1238
|
+
# CvMat + CvMat with Mask
|
1239
|
+
mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1240
|
+
(i < 3 and j < 2) ? 1 : 0
|
1241
|
+
}
|
1242
|
+
|
1243
|
+
m4 = m1.add(m2, mask)
|
1244
|
+
assert_equal(m1.height, m4.height)
|
1245
|
+
assert_equal(m1.width, m4.width)
|
1246
|
+
n = 0
|
1247
|
+
m1.height.times { |j|
|
1248
|
+
m1.width.times { |i|
|
1249
|
+
if i < 3 and j < 2
|
1250
|
+
s = CvScalar.new(n * 1.1, n * 2.2, n * 3.3, n * 4.4)
|
1251
|
+
else
|
1252
|
+
s = m1[j, i]
|
1253
|
+
end
|
1254
|
+
assert_in_delta(s, m4[j, i], 0.001)
|
1255
|
+
n += 1
|
1256
|
+
}
|
1257
|
+
}
|
1258
|
+
|
1259
|
+
# CvMat + CvScalar with Mask
|
1260
|
+
m4 = m1.add(s1, mask)
|
1261
|
+
assert_equal(m1.height, m4.height)
|
1262
|
+
assert_equal(m1.width, m4.width)
|
1263
|
+
n = 0
|
1264
|
+
m1.height.times { |j|
|
1265
|
+
m1.width.times { |i|
|
1266
|
+
if i < 3 and j < 2
|
1267
|
+
s = CvScalar.new(n * 0.1 + 1, n * 0.2 + 2, n * 0.3 + 3, n * 0.4 + 4)
|
1268
|
+
else
|
1269
|
+
s = m1[j, i]
|
1270
|
+
end
|
1271
|
+
assert_in_delta(s, m4[j, i], 0.001)
|
1272
|
+
n += 1
|
1273
|
+
}
|
1274
|
+
}
|
1275
|
+
|
1276
|
+
assert_raise(TypeError) {
|
1277
|
+
m1.add(DUMMY_OBJ)
|
1278
|
+
}
|
1279
|
+
assert_raise(TypeError) {
|
1280
|
+
m1.add(CvScalar.new(1), DUMMY_OBJ)
|
1281
|
+
}
|
1282
|
+
end
|
1283
|
+
|
1284
|
+
def test_sub
|
1285
|
+
m1 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
1286
|
+
CvScalar.new(c * 0.1, c * 0.2, c * 0.3, c * 0.4)
|
1287
|
+
}
|
1288
|
+
m2 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
1289
|
+
CvScalar.new(c * 1, c * 2, c * 3, c * 4)
|
1290
|
+
}
|
1291
|
+
|
1292
|
+
# CvMat - CvMat
|
1293
|
+
m3 = m1.sub(m2)
|
1294
|
+
assert_equal(m1.height, m3.height)
|
1295
|
+
assert_equal(m1.width, m3.width)
|
1296
|
+
n = 0
|
1297
|
+
m1.height.times { |j|
|
1298
|
+
m1.width.times { |i|
|
1299
|
+
s = CvScalar.new(-n * 0.9, -n * 1.8, -n * 2.7, -n * 3.6)
|
1300
|
+
assert_in_delta(s, m3[j, i], 0.001)
|
1301
|
+
n += 1
|
1302
|
+
}
|
1303
|
+
}
|
1304
|
+
|
1305
|
+
# CvMat - CvScalar
|
1306
|
+
s1 = CvScalar.new(1, 2, 3, 4)
|
1307
|
+
m3 = m1.sub(s1)
|
1308
|
+
assert_equal(m1.height, m3.height)
|
1309
|
+
assert_equal(m1.width, m3.width)
|
1310
|
+
n = 0
|
1311
|
+
m1.height.times { |j|
|
1312
|
+
m1.width.times { |i|
|
1313
|
+
s = CvScalar.new(n * 0.1 - 1, n * 0.2 - 2, n * 0.3 - 3, n * 0.4 - 4)
|
1314
|
+
assert_in_delta(s, m3[j, i], 0.001)
|
1315
|
+
n += 1
|
1316
|
+
}
|
1317
|
+
}
|
1318
|
+
|
1319
|
+
# Alias
|
1320
|
+
m3 = m1 - m2
|
1321
|
+
assert_equal(m1.height, m3.height)
|
1322
|
+
assert_equal(m1.width, m3.width)
|
1323
|
+
n = 0
|
1324
|
+
m1.height.times { |j|
|
1325
|
+
m1.width.times { |i|
|
1326
|
+
s = CvScalar.new(-n * 0.9, -n * 1.8, -n * 2.7, -n * 3.6)
|
1327
|
+
assert_in_delta(s, m3[j, i], 0.001)
|
1328
|
+
n += 1
|
1329
|
+
}
|
1330
|
+
}
|
1331
|
+
|
1332
|
+
mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1333
|
+
(i < 3 and j < 2) ? 1 : 0
|
1334
|
+
}
|
1335
|
+
|
1336
|
+
# CvMat - CvMat with Mask
|
1337
|
+
m4 = m1.sub(m2, mask)
|
1338
|
+
assert_equal(m1.height, m4.height)
|
1339
|
+
assert_equal(m1.width, m4.width)
|
1340
|
+
n = 0
|
1341
|
+
m1.height.times { |j|
|
1342
|
+
m1.width.times { |i|
|
1343
|
+
if i < 3 and j < 2
|
1344
|
+
s = CvScalar.new(-n * 0.9, -n * 1.8, -n * 2.7, -n * 3.6)
|
1345
|
+
else
|
1346
|
+
s = m1[j, i]
|
1347
|
+
end
|
1348
|
+
assert_in_delta(s, m4[j, i], 0.001)
|
1349
|
+
n += 1
|
1350
|
+
}
|
1351
|
+
}
|
1352
|
+
|
1353
|
+
# CvMat - CvScalar with Mask
|
1354
|
+
m4 = m1.sub(s1, mask)
|
1355
|
+
assert_equal(m1.height, m4.height)
|
1356
|
+
assert_equal(m1.width, m4.width)
|
1357
|
+
n = 0
|
1358
|
+
m1.height.times { |j|
|
1359
|
+
m1.width.times { |i|
|
1360
|
+
if i < 3 and j < 2
|
1361
|
+
s = CvScalar.new(n * 0.1 - 1, n * 0.2 - 2, n * 0.3 - 3, n * 0.4 - 4)
|
1362
|
+
else
|
1363
|
+
s = m1[j, i]
|
1364
|
+
end
|
1365
|
+
assert_in_delta(s, m4[j, i], 0.001)
|
1366
|
+
n += 1
|
1367
|
+
}
|
1368
|
+
}
|
1369
|
+
|
1370
|
+
assert_raise(TypeError) {
|
1371
|
+
m1.sub(DUMMY_OBJ)
|
1372
|
+
}
|
1373
|
+
assert_raise(TypeError) {
|
1374
|
+
m1.sub(CvScalar.new(1), DUMMY_OBJ)
|
1375
|
+
}
|
1376
|
+
end
|
1377
|
+
|
1378
|
+
def test_mul
|
1379
|
+
m1 = create_cvmat(3, 3, :cv32f)
|
1380
|
+
s1 = CvScalar.new(0.1, 0.2, 0.3, 0.4)
|
1381
|
+
m2 = create_cvmat(3, 3, :cv32f) { s1 }
|
1382
|
+
|
1383
|
+
# CvMat * CvMat
|
1384
|
+
m3 = m1.mul(m2)
|
1385
|
+
assert_equal(m1.height, m3.height)
|
1386
|
+
assert_equal(m1.width, m3.width)
|
1387
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1388
|
+
n = c + 1
|
1389
|
+
CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4)
|
1390
|
+
}
|
1391
|
+
|
1392
|
+
# CvMat * CvMat * scale
|
1393
|
+
scale = 2.5
|
1394
|
+
m3 = m1.mul(m2, scale)
|
1395
|
+
assert_equal(m1.height, m3.height)
|
1396
|
+
assert_equal(m1.width, m3.width)
|
1397
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1398
|
+
n = (c + 1) * scale
|
1399
|
+
CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4)
|
1400
|
+
}
|
1401
|
+
|
1402
|
+
# CvMat * CvScalar
|
1403
|
+
scale = 2.5
|
1404
|
+
m3 = m1.mul(s1)
|
1405
|
+
assert_equal(m1.height, m3.height)
|
1406
|
+
assert_equal(m1.width, m3.width)
|
1407
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1408
|
+
n = c + 1
|
1409
|
+
CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4)
|
1410
|
+
}
|
1411
|
+
|
1412
|
+
# CvMat * CvScalar * scale
|
1413
|
+
m3 = m1.mul(s1, scale)
|
1414
|
+
assert_equal(m1.height, m3.height)
|
1415
|
+
assert_equal(m1.width, m3.width)
|
1416
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1417
|
+
n = (c + 1) * scale
|
1418
|
+
CvScalar.new(n * 0.1, n * 0.2, n * 0.3, n * 0.4)
|
1419
|
+
}
|
1420
|
+
|
1421
|
+
assert_raise(TypeError) {
|
1422
|
+
m1.mul(DUMMY_OBJ)
|
1423
|
+
}
|
1424
|
+
assert_raise(TypeError) {
|
1425
|
+
m1.mul(m2, DUMMY_OBJ)
|
1426
|
+
}
|
1427
|
+
end
|
1428
|
+
|
1429
|
+
def test_mat_mul
|
1430
|
+
m0 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c|
|
1431
|
+
CvScalar.new(c * 0.1)
|
1432
|
+
}
|
1433
|
+
m1 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c|
|
1434
|
+
CvScalar.new(c)
|
1435
|
+
}
|
1436
|
+
m2 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c|
|
1437
|
+
CvScalar.new(c + 1)
|
1438
|
+
}
|
1439
|
+
|
1440
|
+
m3 = m0.mat_mul(m1)
|
1441
|
+
m4 = m0 * m1
|
1442
|
+
|
1443
|
+
[m3, m4].each { |m|
|
1444
|
+
assert_equal(m1.width, m.width)
|
1445
|
+
assert_equal(m1.height, m.height)
|
1446
|
+
assert_in_delta(1.5, m[0, 0][0], 0.001)
|
1447
|
+
assert_in_delta(1.8, m[0, 1][0], 0.001)
|
1448
|
+
assert_in_delta(2.1, m[0, 2][0], 0.001)
|
1449
|
+
assert_in_delta(4.2, m[1, 0][0], 0.001)
|
1450
|
+
assert_in_delta(5.4, m[1, 1][0], 0.001)
|
1451
|
+
assert_in_delta(6.6, m[1, 2][0], 0.001)
|
1452
|
+
assert_in_delta(6.9, m[2, 0][0], 0.001)
|
1453
|
+
assert_in_delta(9, m[2, 1][0], 0.001)
|
1454
|
+
assert_in_delta(11.1, m[2, 2][0], 0.001)
|
1455
|
+
}
|
1456
|
+
|
1457
|
+
m5 = m0.mat_mul(m1, m2)
|
1458
|
+
[m5].each { |m|
|
1459
|
+
assert_equal(m1.width, m.width)
|
1460
|
+
assert_equal(m1.height, m.height)
|
1461
|
+
assert_in_delta(2.5, m[0, 0][0], 0.001)
|
1462
|
+
assert_in_delta(3.8, m[0, 1][0], 0.001)
|
1463
|
+
assert_in_delta(5.1, m[0, 2][0], 0.001)
|
1464
|
+
assert_in_delta(8.2, m[1, 0][0], 0.001)
|
1465
|
+
assert_in_delta(10.4, m[1, 1][0], 0.001)
|
1466
|
+
assert_in_delta(12.6, m[1, 2][0], 0.001)
|
1467
|
+
assert_in_delta(13.9, m[2, 0][0], 0.001)
|
1468
|
+
assert_in_delta(17, m[2, 1][0], 0.001)
|
1469
|
+
assert_in_delta(20.1, m[2, 2][0], 0.001)
|
1470
|
+
}
|
1471
|
+
|
1472
|
+
assert_raise(TypeError) {
|
1473
|
+
m0.mat_mul(DUMMY_OBJ)
|
1474
|
+
}
|
1475
|
+
assert_raise(TypeError) {
|
1476
|
+
m0.mat_mul(m1, DUMMY_OBJ)
|
1477
|
+
}
|
1478
|
+
end
|
1479
|
+
|
1480
|
+
def test_div
|
1481
|
+
m1 = create_cvmat(3, 3, :cv32f)
|
1482
|
+
s1 = CvScalar.new(0.1, 0.2, 0.3, 0.4)
|
1483
|
+
m2 = create_cvmat(3, 3, :cv32f) { s1 }
|
1484
|
+
|
1485
|
+
# CvMat / CvMat
|
1486
|
+
m3 = m1.div(m2)
|
1487
|
+
assert_equal(m1.height, m3.height)
|
1488
|
+
assert_equal(m1.width, m3.width)
|
1489
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1490
|
+
n = c + 1
|
1491
|
+
CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4)
|
1492
|
+
}
|
1493
|
+
|
1494
|
+
# scale * CvMat / CvMat
|
1495
|
+
scale = 2.5
|
1496
|
+
m3 = m1.div(m2, scale)
|
1497
|
+
assert_equal(m1.height, m3.height)
|
1498
|
+
assert_equal(m1.width, m3.width)
|
1499
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1500
|
+
n = (c + 1) * scale
|
1501
|
+
CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4)
|
1502
|
+
}
|
1503
|
+
|
1504
|
+
# CvMat / CvScalar
|
1505
|
+
scale = 2.5
|
1506
|
+
m3 = m1.div(s1)
|
1507
|
+
assert_equal(m1.height, m3.height)
|
1508
|
+
assert_equal(m1.width, m3.width)
|
1509
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1510
|
+
n = c + 1
|
1511
|
+
CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4)
|
1512
|
+
}
|
1513
|
+
|
1514
|
+
# scale * CvMat / CvScalar
|
1515
|
+
m3 = m1.div(s1, scale)
|
1516
|
+
assert_equal(m1.height, m3.height)
|
1517
|
+
assert_equal(m1.width, m3.width)
|
1518
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1519
|
+
n = (c + 1) * scale
|
1520
|
+
CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4)
|
1521
|
+
}
|
1522
|
+
|
1523
|
+
# Alias
|
1524
|
+
m3 = m1 / m2
|
1525
|
+
assert_equal(m1.height, m3.height)
|
1526
|
+
assert_equal(m1.width, m3.width)
|
1527
|
+
assert_each_cvscalar(m3, 0.001) { |j, i, c|
|
1528
|
+
n = c + 1
|
1529
|
+
CvScalar.new(n / 0.1, n / 0.2, n / 0.3, n / 0.4)
|
1530
|
+
}
|
1531
|
+
|
1532
|
+
assert_raise(TypeError) {
|
1533
|
+
m1.div(DUMMY_OBJ)
|
1534
|
+
}
|
1535
|
+
assert_raise(TypeError) {
|
1536
|
+
m1.div(m2, DUMMY_OBJ)
|
1537
|
+
}
|
1538
|
+
end
|
1539
|
+
|
1540
|
+
def test_add_weighted
|
1541
|
+
m1 = create_cvmat(3, 2, :cv8u) { |j, i, c| c + 1 }
|
1542
|
+
m2 = create_cvmat(3, 2, :cv8u) { |j, i, c| (c + 1) * 10 }
|
1543
|
+
a = 2.0
|
1544
|
+
b = 0.1
|
1545
|
+
g = 100
|
1546
|
+
m3 = CvMat.add_weighted(m1, a, m2, b, g)
|
1547
|
+
assert_equal(m1.class, m3.class)
|
1548
|
+
assert_equal(m1.rows, m3.rows)
|
1549
|
+
assert_equal(m1.cols, m3.cols)
|
1550
|
+
assert_equal(m1.depth, m3.depth)
|
1551
|
+
assert_equal(m1.channel, m3.channel)
|
1552
|
+
|
1553
|
+
m1.rows.times { |j|
|
1554
|
+
m1.cols.times { |i|
|
1555
|
+
expected = m1[j, i][0] * a + m2[j, i][0] * b + g
|
1556
|
+
assert_equal(expected, m3[j, i][0])
|
1557
|
+
}
|
1558
|
+
}
|
1559
|
+
|
1560
|
+
assert_raise(TypeError) {
|
1561
|
+
CvMat.add_weighted(DUMMY_OBJ, a, m2, b, g)
|
1562
|
+
}
|
1563
|
+
assert_raise(TypeError) {
|
1564
|
+
CvMat.add_weighted(m1, DUMMY_OBJ, m2, b, g)
|
1565
|
+
}
|
1566
|
+
assert_raise(TypeError) {
|
1567
|
+
CvMat.add_weighted(m1, a, DUMMY_OBJ, b, g)
|
1568
|
+
}
|
1569
|
+
assert_raise(TypeError) {
|
1570
|
+
CvMat.add_weighted(m1, a, m2, DUMMY_OBJ, g)
|
1571
|
+
}
|
1572
|
+
assert_raise(TypeError) {
|
1573
|
+
CvMat.add_weighted(m1, a, m2, b, DUMMY_OBJ)
|
1574
|
+
}
|
1575
|
+
end
|
1576
|
+
|
1577
|
+
def test_and
|
1578
|
+
m1 = create_cvmat(6, 4)
|
1579
|
+
s1 = CvScalar.new(1, 2, 3, 4)
|
1580
|
+
m2 = create_cvmat(6, 4) { s1 }
|
1581
|
+
mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1582
|
+
s = (i < 3 and j < 2) ? 1 : 0
|
1583
|
+
CvScalar.new(s)
|
1584
|
+
}
|
1585
|
+
|
1586
|
+
# CvMat & CvMat
|
1587
|
+
m3 = m1.and(m2)
|
1588
|
+
assert_equal(m1.height, m3.height)
|
1589
|
+
assert_equal(m1.width, m3.width)
|
1590
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1591
|
+
n = c + 1
|
1592
|
+
CvScalar.new(n & 1, n & 2, n & 3, n & 4)
|
1593
|
+
}
|
1594
|
+
|
1595
|
+
# CvMat & CvMat with mask
|
1596
|
+
m3 = m1.and(m2, mask)
|
1597
|
+
assert_equal(m1.height, m3.height)
|
1598
|
+
assert_equal(m1.width, m3.width)
|
1599
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1600
|
+
n = c + 1
|
1601
|
+
if i < 3 and j < 2
|
1602
|
+
CvScalar.new(n & 1, n & 2, n & 3, n & 4)
|
1603
|
+
else
|
1604
|
+
CvScalar.new(n, n, n, n)
|
1605
|
+
end
|
1606
|
+
}
|
1607
|
+
|
1608
|
+
# CvMat & CvScalar
|
1609
|
+
m3 = m1.and(s1)
|
1610
|
+
assert_equal(m1.height, m3.height)
|
1611
|
+
assert_equal(m1.width, m3.width)
|
1612
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1613
|
+
n = c + 1
|
1614
|
+
CvScalar.new(n & 1, n & 2, n & 3, n & 4)
|
1615
|
+
}
|
1616
|
+
|
1617
|
+
# CvMat & CvScalar with mask
|
1618
|
+
m3 = m1.and(s1, mask)
|
1619
|
+
assert_equal(m1.height, m3.height)
|
1620
|
+
assert_equal(m1.width, m3.width)
|
1621
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1622
|
+
n = c + 1
|
1623
|
+
if i < 3 and j < 2
|
1624
|
+
CvScalar.new(n & 1, n & 2, n & 3, n & 4)
|
1625
|
+
else
|
1626
|
+
CvScalar.new(n, n, n, n)
|
1627
|
+
end
|
1628
|
+
}
|
1629
|
+
|
1630
|
+
# Alias
|
1631
|
+
m3 = m1 & m2
|
1632
|
+
assert_equal(m1.height, m3.height)
|
1633
|
+
assert_equal(m1.width, m3.width)
|
1634
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1635
|
+
n = c + 1
|
1636
|
+
CvScalar.new(n & 1, n & 2, n & 3, n & 4)
|
1637
|
+
}
|
1638
|
+
|
1639
|
+
m3 = m1 & s1
|
1640
|
+
assert_equal(m1.height, m3.height)
|
1641
|
+
assert_equal(m1.width, m3.width)
|
1642
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1643
|
+
n = c + 1
|
1644
|
+
CvScalar.new(n & 1, n & 2, n & 3, n & 4)
|
1645
|
+
}
|
1646
|
+
|
1647
|
+
assert_raise(TypeError) {
|
1648
|
+
m1.and(DUMMY_OBJ)
|
1649
|
+
}
|
1650
|
+
assert_raise(TypeError) {
|
1651
|
+
m1.and(m2, DUMMY_OBJ)
|
1652
|
+
}
|
1653
|
+
end
|
1654
|
+
|
1655
|
+
def test_or
|
1656
|
+
m1 = create_cvmat(6, 4)
|
1657
|
+
s1 = CvScalar.new(1, 2, 3, 4)
|
1658
|
+
m2 = create_cvmat(6, 4) { s1 }
|
1659
|
+
mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1660
|
+
s = (i < 3 and j < 2) ? 1 : 0
|
1661
|
+
CvScalar.new(s)
|
1662
|
+
}
|
1663
|
+
|
1664
|
+
# CvMat | CvMat
|
1665
|
+
m3 = m1.or(m2)
|
1666
|
+
assert_equal(m1.height, m3.height)
|
1667
|
+
assert_equal(m1.width, m3.width)
|
1668
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1669
|
+
n = c + 1
|
1670
|
+
CvScalar.new(n | 1, n | 2, n | 3, n | 4)
|
1671
|
+
}
|
1672
|
+
|
1673
|
+
# CvMat | CvMat with mask
|
1674
|
+
m3 = m1.or(m2, mask)
|
1675
|
+
assert_equal(m1.height, m3.height)
|
1676
|
+
assert_equal(m1.width, m3.width)
|
1677
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1678
|
+
n = c + 1
|
1679
|
+
if i < 3 and j < 2
|
1680
|
+
CvScalar.new(n | 1, n | 2, n | 3, n | 4)
|
1681
|
+
else
|
1682
|
+
CvScalar.new(n, n, n, n)
|
1683
|
+
end
|
1684
|
+
}
|
1685
|
+
|
1686
|
+
# CvMat | CvScalar
|
1687
|
+
m3 = m1.or(s1)
|
1688
|
+
assert_equal(m1.height, m3.height)
|
1689
|
+
assert_equal(m1.width, m3.width)
|
1690
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1691
|
+
n = c + 1
|
1692
|
+
CvScalar.new(n | 1, n | 2, n | 3, n | 4)
|
1693
|
+
}
|
1694
|
+
|
1695
|
+
# CvMat | CvScalar with mask
|
1696
|
+
m3 = m1.or(s1, mask)
|
1697
|
+
assert_equal(m1.height, m3.height)
|
1698
|
+
assert_equal(m1.width, m3.width)
|
1699
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1700
|
+
n = c + 1
|
1701
|
+
if i < 3 and j < 2
|
1702
|
+
CvScalar.new(n | 1, n | 2, n | 3, n | 4)
|
1703
|
+
else
|
1704
|
+
CvScalar.new(n, n, n, n)
|
1705
|
+
end
|
1706
|
+
}
|
1707
|
+
|
1708
|
+
# Alias
|
1709
|
+
m3 = m1 | m2
|
1710
|
+
assert_equal(m1.height, m3.height)
|
1711
|
+
assert_equal(m1.width, m3.width)
|
1712
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1713
|
+
n = c + 1
|
1714
|
+
CvScalar.new(n | 1, n | 2, n | 3, n | 4)
|
1715
|
+
}
|
1716
|
+
|
1717
|
+
m3 = m1 | s1
|
1718
|
+
assert_equal(m1.height, m3.height)
|
1719
|
+
assert_equal(m1.width, m3.width)
|
1720
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1721
|
+
n = c + 1
|
1722
|
+
CvScalar.new(n | 1, n | 2, n | 3, n | 4)
|
1723
|
+
}
|
1724
|
+
|
1725
|
+
assert_raise(TypeError) {
|
1726
|
+
m1.or(DUMMY_OBJ)
|
1727
|
+
}
|
1728
|
+
assert_raise(TypeError) {
|
1729
|
+
m1.or(m2, DUMMY_OBJ)
|
1730
|
+
}
|
1731
|
+
end
|
1732
|
+
|
1733
|
+
def test_xor
|
1734
|
+
m1 = create_cvmat(6, 4)
|
1735
|
+
s1 = CvScalar.new(1, 2, 3, 4)
|
1736
|
+
m2 = create_cvmat(6, 4) { s1 }
|
1737
|
+
mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1738
|
+
s = (i < 3 and j < 2) ? 1 : 0
|
1739
|
+
CvScalar.new(s)
|
1740
|
+
}
|
1741
|
+
|
1742
|
+
# CvMat ^ CvMat
|
1743
|
+
m3 = m1.xor(m2)
|
1744
|
+
assert_equal(m1.height, m3.height)
|
1745
|
+
assert_equal(m1.width, m3.width)
|
1746
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1747
|
+
n = c + 1
|
1748
|
+
CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4)
|
1749
|
+
}
|
1750
|
+
|
1751
|
+
# CvMat ^ CvMat with mask
|
1752
|
+
m3 = m1.xor(m2, mask)
|
1753
|
+
assert_equal(m1.height, m3.height)
|
1754
|
+
assert_equal(m1.width, m3.width)
|
1755
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1756
|
+
n = c + 1
|
1757
|
+
if i < 3 and j < 2
|
1758
|
+
CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4)
|
1759
|
+
else
|
1760
|
+
CvScalar.new(n, n, n, n)
|
1761
|
+
end
|
1762
|
+
}
|
1763
|
+
|
1764
|
+
# CvMat ^ CvScalar
|
1765
|
+
m3 = m1.xor(s1)
|
1766
|
+
assert_equal(m1.height, m3.height)
|
1767
|
+
assert_equal(m1.width, m3.width)
|
1768
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1769
|
+
n = c + 1
|
1770
|
+
CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4)
|
1771
|
+
}
|
1772
|
+
|
1773
|
+
# CvMat ^ CvScalar with mask
|
1774
|
+
m3 = m1.xor(s1, mask)
|
1775
|
+
assert_equal(m1.height, m3.height)
|
1776
|
+
assert_equal(m1.width, m3.width)
|
1777
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1778
|
+
n = c + 1
|
1779
|
+
if i < 3 and j < 2
|
1780
|
+
CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4)
|
1781
|
+
else
|
1782
|
+
CvScalar.new(n, n, n, n)
|
1783
|
+
end
|
1784
|
+
}
|
1785
|
+
|
1786
|
+
# Alias
|
1787
|
+
m3 = m1 ^ m2
|
1788
|
+
assert_equal(m1.height, m3.height)
|
1789
|
+
assert_equal(m1.width, m3.width)
|
1790
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1791
|
+
n = c + 1
|
1792
|
+
CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4)
|
1793
|
+
}
|
1794
|
+
|
1795
|
+
m3 = m1 ^ s1
|
1796
|
+
assert_equal(m1.height, m3.height)
|
1797
|
+
assert_equal(m1.width, m3.width)
|
1798
|
+
assert_each_cvscalar(m3) { |j, i, c|
|
1799
|
+
n = c + 1
|
1800
|
+
CvScalar.new(n ^ 1, n ^ 2, n ^ 3, n ^ 4)
|
1801
|
+
}
|
1802
|
+
|
1803
|
+
assert_raise(TypeError) {
|
1804
|
+
m1.xor(DUMMY_OBJ)
|
1805
|
+
}
|
1806
|
+
assert_raise(TypeError) {
|
1807
|
+
m1.xor(m2, DUMMY_OBJ)
|
1808
|
+
}
|
1809
|
+
end
|
1810
|
+
|
1811
|
+
def test_not
|
1812
|
+
m1 = create_cvmat(6, 4, :cv8s)
|
1813
|
+
m2 = m1.not;
|
1814
|
+
m3 = m1.clone
|
1815
|
+
m3.not!
|
1816
|
+
[m2, m3].each { |m|
|
1817
|
+
assert_equal(m1.height, m.height)
|
1818
|
+
assert_equal(m1.width, m.width)
|
1819
|
+
assert_each_cvscalar(m) { |j, i, c|
|
1820
|
+
n = c + 1
|
1821
|
+
CvScalar.new(~n, ~n, ~n, ~n)
|
1822
|
+
}
|
1823
|
+
}
|
1824
|
+
end
|
1825
|
+
|
1826
|
+
def test_eq
|
1827
|
+
m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1828
|
+
n = (c.even?) ? 10 : c
|
1829
|
+
CvScalar.new(n, 0, 0, 0)
|
1830
|
+
}
|
1831
|
+
m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1832
|
+
CvScalar.new(10, 0, 0, 0)
|
1833
|
+
}
|
1834
|
+
s1 = CvScalar.new(10, 0, 0, 0)
|
1835
|
+
m3 = m1.eq(m2)
|
1836
|
+
m4 = m1.eq(s1)
|
1837
|
+
m5 = m1.eq(10)
|
1838
|
+
|
1839
|
+
[m3, m4, m5].each { |m|
|
1840
|
+
assert_equal(m1.height, m.height)
|
1841
|
+
assert_equal(m1.width, m.width)
|
1842
|
+
assert_each_cvscalar(m) { |j, i, c|
|
1843
|
+
n = (c.even?) ? 0xff : 0
|
1844
|
+
CvScalar.new(n, 0, 0, 0)
|
1845
|
+
}
|
1846
|
+
}
|
1847
|
+
|
1848
|
+
assert_raise(TypeError) {
|
1849
|
+
m1.eq(DUMMY_OBJ)
|
1850
|
+
}
|
1851
|
+
end
|
1852
|
+
|
1853
|
+
def test_gt
|
1854
|
+
m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1855
|
+
CvScalar.new(c, 0, 0, 0)
|
1856
|
+
}
|
1857
|
+
m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1858
|
+
CvScalar.new(10, 0, 0, 0)
|
1859
|
+
}
|
1860
|
+
s1 = CvScalar.new(10, 0, 0, 0)
|
1861
|
+
m3 = m1.gt(m2)
|
1862
|
+
m4 = m1.gt(s1)
|
1863
|
+
m5 = m1.gt(10)
|
1864
|
+
|
1865
|
+
[m3, m4, m5].each { |m|
|
1866
|
+
assert_equal(m1.height, m.height)
|
1867
|
+
assert_equal(m1.width, m.width)
|
1868
|
+
assert_each_cvscalar(m) { |j, i, c|
|
1869
|
+
n = (c > 10) ? 0xff : 0
|
1870
|
+
CvScalar.new(n, 0, 0, 0)
|
1871
|
+
}
|
1872
|
+
}
|
1873
|
+
|
1874
|
+
assert_raise(TypeError) {
|
1875
|
+
m1.gt(DUMMY_OBJ)
|
1876
|
+
}
|
1877
|
+
end
|
1878
|
+
|
1879
|
+
def test_ge
|
1880
|
+
m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1881
|
+
CvScalar.new(c, 0, 0, 0)
|
1882
|
+
}
|
1883
|
+
m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1884
|
+
CvScalar.new(10, 0, 0, 0)
|
1885
|
+
}
|
1886
|
+
s1 = CvScalar.new(10, 0, 0, 0)
|
1887
|
+
m3 = m1.ge(m2)
|
1888
|
+
m4 = m1.ge(s1)
|
1889
|
+
m5 = m1.ge(10)
|
1890
|
+
|
1891
|
+
[m3, m4, m5].each { |m|
|
1892
|
+
assert_equal(m1.height, m.height)
|
1893
|
+
assert_equal(m1.width, m.width)
|
1894
|
+
assert_each_cvscalar(m) { |j, i, c|
|
1895
|
+
n = (c >= 10) ? 0xff : 0
|
1896
|
+
CvScalar.new(n, 0, 0, 0)
|
1897
|
+
}
|
1898
|
+
}
|
1899
|
+
|
1900
|
+
assert_raise(TypeError) {
|
1901
|
+
m1.ge(DUMMY_OBJ)
|
1902
|
+
}
|
1903
|
+
end
|
1904
|
+
|
1905
|
+
def test_lt
|
1906
|
+
m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1907
|
+
CvScalar.new(c, 0, 0, 0)
|
1908
|
+
}
|
1909
|
+
m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1910
|
+
CvScalar.new(10, 0, 0, 0)
|
1911
|
+
}
|
1912
|
+
s1 = CvScalar.new(10, 0, 0, 0)
|
1913
|
+
m3 = m1.lt(m2)
|
1914
|
+
m4 = m1.lt(s1)
|
1915
|
+
m5 = m1.lt(10)
|
1916
|
+
|
1917
|
+
[m3, m4, m5].each { |m|
|
1918
|
+
assert_equal(m1.height, m.height)
|
1919
|
+
assert_equal(m1.width, m.width)
|
1920
|
+
assert_each_cvscalar(m) { |j, i, c|
|
1921
|
+
n = (c < 10) ? 0xff : 0
|
1922
|
+
CvScalar.new(n, 0, 0, 0)
|
1923
|
+
}
|
1924
|
+
}
|
1925
|
+
|
1926
|
+
assert_raise(TypeError) {
|
1927
|
+
m1.lt(DUMMY_OBJ)
|
1928
|
+
}
|
1929
|
+
end
|
1930
|
+
|
1931
|
+
def test_le
|
1932
|
+
m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1933
|
+
CvScalar.new(c, 0, 0, 0)
|
1934
|
+
}
|
1935
|
+
m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1936
|
+
CvScalar.new(10, 0, 0, 0)
|
1937
|
+
}
|
1938
|
+
s1 = CvScalar.new(10, 0, 0, 0)
|
1939
|
+
m3 = m1.le(m2)
|
1940
|
+
m4 = m1.le(s1)
|
1941
|
+
m5 = m1.le(10)
|
1942
|
+
|
1943
|
+
[m3, m4, m5].each { |m|
|
1944
|
+
assert_equal(m1.height, m.height)
|
1945
|
+
assert_equal(m1.width, m.width)
|
1946
|
+
assert_each_cvscalar(m) { |j, i, c|
|
1947
|
+
n = (c <= 10) ? 0xff : 0
|
1948
|
+
CvScalar.new(n, 0, 0, 0)
|
1949
|
+
}
|
1950
|
+
}
|
1951
|
+
|
1952
|
+
assert_raise(TypeError) {
|
1953
|
+
m1.le(DUMMY_OBJ)
|
1954
|
+
}
|
1955
|
+
end
|
1956
|
+
|
1957
|
+
def test_in_range
|
1958
|
+
lower, upper = 10, 20
|
1959
|
+
m0 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1960
|
+
CvScalar.new(c + 5, 0, 0, 0)
|
1961
|
+
}
|
1962
|
+
m1 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1963
|
+
CvScalar.new(lower, 0, 0, 0)
|
1964
|
+
}
|
1965
|
+
m2 = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
1966
|
+
CvScalar.new(upper, 0, 0, 0)
|
1967
|
+
}
|
1968
|
+
s1 = CvScalar.new(lower, 0, 0, 0)
|
1969
|
+
s2 = CvScalar.new(upper, 0, 0, 0)
|
1970
|
+
|
1971
|
+
m3 = m0.in_range(m1, m2)
|
1972
|
+
m4 = m0.in_range(s1, s2)
|
1973
|
+
m5 = m0.in_range(lower, upper)
|
1974
|
+
|
1975
|
+
[m3, m4, m5].each { |m|
|
1976
|
+
assert_equal(m0.height, m.height)
|
1977
|
+
assert_equal(m0.width, m.width)
|
1978
|
+
assert_each_cvscalar(m) { |j, i, c|
|
1979
|
+
val = m0[j, i][0]
|
1980
|
+
n = ((lower..upper).include? val) ? 0xff : 0
|
1981
|
+
CvScalar.new(n, 0, 0, 0)
|
1982
|
+
}
|
1983
|
+
}
|
1984
|
+
|
1985
|
+
assert_raise(TypeError) {
|
1986
|
+
m0.in_range(DUMMY_OBJ, m2)
|
1987
|
+
}
|
1988
|
+
assert_raise(TypeError) {
|
1989
|
+
m0.in_range(m1, DUMMY_OBJ)
|
1990
|
+
}
|
1991
|
+
end
|
1992
|
+
|
1993
|
+
def test_abs_diff
|
1994
|
+
m0 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
1995
|
+
CvScalar.new(-10 + 10.5, 20 + 10.5, -30 + 10.5, 40 - 10.5)
|
1996
|
+
}
|
1997
|
+
m1 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
1998
|
+
CvScalar.new(c + 10.5, c - 10.5, c + 10.5, c - 10.5)
|
1999
|
+
}
|
2000
|
+
m2 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
2001
|
+
CvScalar.new(c, c, c, c)
|
2002
|
+
}
|
2003
|
+
|
2004
|
+
s1 = CvScalar.new(-10, 20, -30, 40)
|
2005
|
+
m3 = m1.abs_diff(m2)
|
2006
|
+
m4 = m0.abs_diff(s1)
|
2007
|
+
|
2008
|
+
[m3, m4].each { |m|
|
2009
|
+
assert_equal(m1.width, m.width)
|
2010
|
+
assert_equal(m1.height, m.height)
|
2011
|
+
assert_each_cvscalar(m, 0.001) {
|
2012
|
+
CvScalar.new(10.5, 10.5, 10.5, 10.5)
|
2013
|
+
}
|
2014
|
+
}
|
2015
|
+
|
2016
|
+
assert_raise(TypeError) {
|
2017
|
+
m0.abs_diff(DUMMY_OBJ)
|
2018
|
+
}
|
2019
|
+
end
|
2020
|
+
|
2021
|
+
def test_normalize
|
2022
|
+
mat = create_cvmat(2, 2, :cv32f, 1) { |j, i, c|
|
2023
|
+
CvScalar.new(c, 0, 0, 0)
|
2024
|
+
}
|
2025
|
+
|
2026
|
+
m = mat.normalize
|
2027
|
+
expected = [0.0, 0.267, 0.534, 0.801]
|
2028
|
+
expected.each_with_index { |x, i|
|
2029
|
+
assert_in_delta(x, m[i][0], 0.001)
|
2030
|
+
}
|
2031
|
+
|
2032
|
+
minf = mat.normalize(1, 0, CV_NORM_INF)
|
2033
|
+
expected = [0.0, 0.333, 0.666, 1.0]
|
2034
|
+
expected.each_with_index { |x, i|
|
2035
|
+
assert_in_delta(x, minf[i][0], 0.001)
|
2036
|
+
}
|
2037
|
+
|
2038
|
+
ml1 = mat.normalize(1, 0, CV_NORM_L1)
|
2039
|
+
expected = [0.0, 0.166, 0.333, 0.5]
|
2040
|
+
expected.each_with_index { |x, i|
|
2041
|
+
assert_in_delta(x, ml1[i][0], 0.001)
|
2042
|
+
}
|
2043
|
+
|
2044
|
+
ml2 = mat.normalize(1, 0, CV_NORM_L2)
|
2045
|
+
expected = [0.0, 0.267, 0.534, 0.801]
|
2046
|
+
expected.each_with_index { |x, i|
|
2047
|
+
assert_in_delta(x, ml2[i][0], 0.001)
|
2048
|
+
}
|
2049
|
+
|
2050
|
+
mminmax = mat.normalize(10, 5, CV_NORM_MINMAX)
|
2051
|
+
expected = [5.0, 6.666, 8.333, 10.0]
|
2052
|
+
expected.each_with_index { |x, i|
|
2053
|
+
assert_in_delta(x, mminmax[i][0], 0.001)
|
2054
|
+
}
|
2055
|
+
|
2056
|
+
mask = mat.to_8u.zero
|
2057
|
+
mask[0, 0] = CvScalar.new(255, 0, 0)
|
2058
|
+
mask[1, 0] = CvScalar.new(255, 0, 0)
|
2059
|
+
minf = mat.normalize(1, 0, CV_NORM_INF, mask)
|
2060
|
+
expected = [0.0, 0.0, 1.0, 0.0]
|
2061
|
+
expected.each_with_index { |x, i|
|
2062
|
+
assert_in_delta(x, minf[i][0], 0.001)
|
2063
|
+
}
|
2064
|
+
|
2065
|
+
assert_raise(TypeError) {
|
2066
|
+
mat.normalize(DUMMY_OBJ, 0, CV_NORM_INF)
|
2067
|
+
}
|
2068
|
+
assert_raise(TypeError) {
|
2069
|
+
mat.normalize(1, DUMMY_OBJ, CV_NORM_INF)
|
2070
|
+
}
|
2071
|
+
assert_raise(TypeError) {
|
2072
|
+
mat.normalize(1, 0, DUMMY_OBJ)
|
2073
|
+
}
|
2074
|
+
assert_raise(TypeError) {
|
2075
|
+
mat.normalize(1, 0, CV_NORM_INF, DUMMY_OBJ)
|
2076
|
+
}
|
2077
|
+
end
|
2078
|
+
|
2079
|
+
def test_count_non_zero
|
2080
|
+
m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c|
|
2081
|
+
n = 0
|
2082
|
+
n = 1 if i == 0
|
2083
|
+
CvScalar.new(n, 0, 0, 0)
|
2084
|
+
}
|
2085
|
+
assert_equal(6, m0.count_non_zero)
|
2086
|
+
end
|
2087
|
+
|
2088
|
+
def test_sum
|
2089
|
+
m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c|
|
2090
|
+
CvScalar.new(c, c, c, c)
|
2091
|
+
}
|
2092
|
+
assert_cvscalar_equal(CvScalar.new(276, 0, 0, 0), m0.sum)
|
2093
|
+
|
2094
|
+
m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c|
|
2095
|
+
CvScalar.new(-c)
|
2096
|
+
}
|
2097
|
+
assert_cvscalar_equal(CvScalar.new(-276, 0, 0, 0), m0.sum)
|
2098
|
+
end
|
2099
|
+
|
2100
|
+
def test_avg_sdv
|
2101
|
+
m0 = create_cvmat(6, 4, :cv32f, 4) { |j, i, c|
|
2102
|
+
CvScalar.new(c * 0.1, -c * 0.1, c, -c)
|
2103
|
+
}
|
2104
|
+
# CvMat#avg
|
2105
|
+
assert_in_delta(CvScalar.new(1.15, -1.15, 11.5, -11.5), m0.avg, 0.001)
|
2106
|
+
# CvMat#sdv
|
2107
|
+
assert_in_delta(CvScalar.new(0.69221, 0.69221, 6.9221, 6.9221), m0.sdv, 0.001)
|
2108
|
+
# CvMat#avg_sdv
|
2109
|
+
avg, sdv = m0.avg_sdv
|
2110
|
+
assert_in_delta(CvScalar.new(1.15, -1.15, 11.5, -11.5), avg, 0.001)
|
2111
|
+
assert_in_delta(CvScalar.new(0.69221, 0.69221, 6.9221, 6.9221), sdv, 0.001)
|
2112
|
+
|
2113
|
+
mask = create_cvmat(6, 4, :cv8u, 1) { |j, i, c|
|
2114
|
+
n = (i == j) ? 1 : 0
|
2115
|
+
CvScalar.new(n)
|
2116
|
+
}
|
2117
|
+
# CvMat#avg
|
2118
|
+
assert_in_delta(CvScalar.new(0.75, -0.75, 7.5, -7.5), m0.avg(mask), 0.001)
|
2119
|
+
# CvMat#sdv
|
2120
|
+
assert_in_delta(CvScalar.new(0.55901, 0.55901, 5.5901, 5.5901), m0.sdv(mask), 0.001)
|
2121
|
+
# CvMat#avg_sdv
|
2122
|
+
avg, sdv = m0.avg_sdv(mask)
|
2123
|
+
assert_in_delta(CvScalar.new(0.75, -0.75, 7.5, -7.5), avg, 0.001)
|
2124
|
+
assert_in_delta(CvScalar.new(0.55901, 0.55901, 5.5901, 5.5901), sdv, 0.001)
|
2125
|
+
|
2126
|
+
assert_raise(TypeError) {
|
2127
|
+
m0.avg(DUMMY_OBJ)
|
2128
|
+
}
|
2129
|
+
assert_raise(TypeError) {
|
2130
|
+
m0.sdv(DUMMY_OBJ)
|
2131
|
+
}
|
2132
|
+
assert_raise(TypeError) {
|
2133
|
+
m0.avg_sdv(DUMMY_OBJ)
|
2134
|
+
}
|
2135
|
+
end
|
2136
|
+
|
2137
|
+
def test_min_max_loc
|
2138
|
+
m0 = create_cvmat(6, 4, :cv32f, 1) { |j, i, c|
|
2139
|
+
CvScalar.new(c * 0.5)
|
2140
|
+
}
|
2141
|
+
m0[2, 3] = CvScalar.new(100.5) # Max
|
2142
|
+
m0[5, 1] = CvScalar.new(-100.5) # Min
|
2143
|
+
|
2144
|
+
min_val, max_val, min_loc, max_loc = m0.min_max_loc
|
2145
|
+
assert_equal(-100.5, min_val)
|
2146
|
+
assert_equal(5, min_loc.y)
|
2147
|
+
assert_equal(1, min_loc.x)
|
2148
|
+
assert_equal(100.5, max_val)
|
2149
|
+
assert_equal(2, max_loc.y)
|
2150
|
+
assert_equal(3, max_loc.x)
|
2151
|
+
|
2152
|
+
assert_raise(TypeError) {
|
2153
|
+
m0.min_max_loc(DUMMY_OBJ)
|
2154
|
+
}
|
2155
|
+
end
|
2156
|
+
|
2157
|
+
def test_dot_product
|
2158
|
+
m1 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c|
|
2159
|
+
CvScalar.new(c * 0.5)
|
2160
|
+
}
|
2161
|
+
m2 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c|
|
2162
|
+
CvScalar.new(c * 1.5)
|
2163
|
+
}
|
2164
|
+
assert_in_delta(10.5, m1.dot_product(m2), 0.001)
|
2165
|
+
|
2166
|
+
m1 = create_cvmat(2, 2, :cv32f) { |j, i, c|
|
2167
|
+
CvScalar.new(c * 0.5, c * 0.6, c * 0.7, c * 0.8)
|
2168
|
+
}
|
2169
|
+
m2 = create_cvmat(2, 2, :cv32f) { |j, i, c|
|
2170
|
+
CvScalar.new(c * 1.5, c * 2.0, c * 2.5, c * 3.0)
|
2171
|
+
}
|
2172
|
+
assert_in_delta(85.39999, m1.dot_product(m2), 0.001)
|
2173
|
+
|
2174
|
+
assert_raise(TypeError) {
|
2175
|
+
m1.dot_product(DUMMY_OBJ)
|
2176
|
+
}
|
2177
|
+
end
|
2178
|
+
|
2179
|
+
def test_cross_product
|
2180
|
+
m1 = create_cvmat(1, 3, :cv32f, 1) { |j, i, c|
|
2181
|
+
CvScalar.new(c * 0.5)
|
2182
|
+
}
|
2183
|
+
m2 = create_cvmat(1, 3, :cv32f, 1) { |j, i, c|
|
2184
|
+
CvScalar.new(c + 1)
|
2185
|
+
}
|
2186
|
+
m3 = m1.cross_product(m2)
|
2187
|
+
|
2188
|
+
assert_in_delta(CvScalar.new(-0.5), m3[0, 0], 0.001)
|
2189
|
+
assert_in_delta(CvScalar.new(1), m3[0, 1], 0.001)
|
2190
|
+
assert_in_delta(CvScalar.new(-0.5), m3[0, 2], 0.001)
|
2191
|
+
|
2192
|
+
assert_raise(TypeError) {
|
2193
|
+
m1.cross_product(DUMMY_OBJ)
|
2194
|
+
}
|
2195
|
+
end
|
2196
|
+
|
2197
|
+
def test_transform
|
2198
|
+
m0 = create_cvmat(5, 5, :cv32f, 3) { |j, i, c|
|
2199
|
+
CvScalar.new(c * 0.5, c * 1.0, c * 1.5)
|
2200
|
+
}
|
2201
|
+
transmat = CvMat.new(3, 3, :cv32f, 1);
|
2202
|
+
transmat[0, 0] = CvScalar.new(0.0)
|
2203
|
+
transmat[1, 0] = CvScalar.new(0.0)
|
2204
|
+
transmat[2, 0] = CvScalar.new(0.0)
|
2205
|
+
|
2206
|
+
transmat[0, 1] = CvScalar.new(0.0)
|
2207
|
+
transmat[1, 1] = CvScalar.new(0.0)
|
2208
|
+
transmat[2, 1] = CvScalar.new(1.0)
|
2209
|
+
|
2210
|
+
transmat[0, 2] = CvScalar.new(1.0)
|
2211
|
+
transmat[1, 2] = CvScalar.new(0.0)
|
2212
|
+
transmat[2, 2] = CvScalar.new(0.0)
|
2213
|
+
|
2214
|
+
m1 = m0.transform(transmat)
|
2215
|
+
assert_each_cvscalar(m1, 0.01) { |j, i, c|
|
2216
|
+
CvScalar.new(c * 1.5, 0, c, 0)
|
2217
|
+
}
|
2218
|
+
|
2219
|
+
stf = CvMat.new(3, 1, :cv32f, 1)
|
2220
|
+
stf[0, 0] = CvScalar.new(-10)
|
2221
|
+
stf[1, 0] = CvScalar.new(0.0)
|
2222
|
+
stf[2, 0] = CvScalar.new(5)
|
2223
|
+
|
2224
|
+
m1 = m0.transform(transmat, stf)
|
2225
|
+
assert_each_cvscalar(m1, 0.01) { |j, i, c|
|
2226
|
+
CvScalar.new(c * 1.5 - 10, 0, c + 5, 0)
|
2227
|
+
}
|
2228
|
+
|
2229
|
+
assert_raise(TypeError) {
|
2230
|
+
m0.transform(DUMMY_OBJ)
|
2231
|
+
}
|
2232
|
+
assert_raise(TypeError) {
|
2233
|
+
m0.transform(transmat, DUMMY_OBJ)
|
2234
|
+
}
|
2235
|
+
end
|
2236
|
+
|
2237
|
+
def test_perspective_transform
|
2238
|
+
mat = CvMat.new(1, 1, :cv32f, 2)
|
2239
|
+
mat[0] = CvScalar.new(2, 3)
|
2240
|
+
transmat = CvMat.new(3, 3, :cv32f, 1).clear
|
2241
|
+
mat.channel.times { |c|
|
2242
|
+
transmat[c, c] = CvScalar.new(1.0)
|
2243
|
+
}
|
2244
|
+
transmat[2, 2] = CvScalar.new(0.5)
|
2245
|
+
|
2246
|
+
m = mat.perspective_transform(transmat)
|
2247
|
+
assert_equal(1, m.height)
|
2248
|
+
assert_equal(1, m.width)
|
2249
|
+
assert_equal(:cv32f, m.depth)
|
2250
|
+
assert_equal(2, m.channel)
|
2251
|
+
assert_in_delta(CvScalar.new(4, 6), m[0], 0.001);
|
2252
|
+
|
2253
|
+
mat = CvMat.new(1, 1, :cv32f, 3)
|
2254
|
+
mat[0] = CvScalar.new(2, 3, 4)
|
2255
|
+
transmat = CvMat.new(4, 4, :cv32f, 1).clear
|
2256
|
+
mat.channel.times { |c|
|
2257
|
+
transmat[c, c] = CvScalar.new(1.0)
|
2258
|
+
}
|
2259
|
+
transmat[3, 3] = CvScalar.new(0.5)
|
2260
|
+
|
2261
|
+
m = mat.perspective_transform(transmat)
|
2262
|
+
assert_equal(1, m.height)
|
2263
|
+
assert_equal(1, m.width)
|
2264
|
+
assert_equal(:cv32f, m.depth)
|
2265
|
+
assert_equal(3, m.channel)
|
2266
|
+
assert_in_delta(CvScalar.new(4, 6, 8), m[0], 0.001);
|
2267
|
+
|
2268
|
+
assert_raise(TypeError) {
|
2269
|
+
mat.perspective_transform(DUMMY_OBJ)
|
2270
|
+
}
|
2271
|
+
assert_raise(CvStsAssert) {
|
2272
|
+
mat.perspective_transform(CvMat.new(3, 3, :cv32f, 3))
|
2273
|
+
}
|
2274
|
+
end
|
2275
|
+
|
2276
|
+
def test_mul_transposed
|
2277
|
+
mat0 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c|
|
2278
|
+
CvScalar.new((c + 1) * 2)
|
2279
|
+
}
|
2280
|
+
delta = create_cvmat(2, 2, :cv32f, 1) { |j, i, c|
|
2281
|
+
CvScalar.new(c + 1)
|
2282
|
+
}
|
2283
|
+
|
2284
|
+
[mat0.mul_transposed,
|
2285
|
+
mat0.mul_transposed(:delta => nil),
|
2286
|
+
mat0.mul_transposed(:order => 0),
|
2287
|
+
mat0.mul_transposed(:scale => 1.0)].each { |m|
|
2288
|
+
expected = [20, 44,
|
2289
|
+
44, 100]
|
2290
|
+
assert_equal(2, m.rows)
|
2291
|
+
assert_equal(2, m.cols)
|
2292
|
+
assert_equal(:cv32f, m.depth)
|
2293
|
+
expected.each_with_index { |x, i|
|
2294
|
+
assert_in_delta(x, m[i][0], 0.1)
|
2295
|
+
}
|
2296
|
+
}
|
2297
|
+
|
2298
|
+
m = mat0.mul_transposed(:delta => delta)
|
2299
|
+
expected = [5, 11,
|
2300
|
+
11, 25]
|
2301
|
+
assert_equal(2, m.rows)
|
2302
|
+
assert_equal(2, m.cols)
|
2303
|
+
assert_equal(:cv32f, m.depth)
|
2304
|
+
expected.each_with_index { |x, i|
|
2305
|
+
assert_in_delta(x, m[i][0], 0.1)
|
2306
|
+
}
|
2307
|
+
|
2308
|
+
m = mat0.mul_transposed(:delta => delta, :order => 1, :scale => 2.0)
|
2309
|
+
expected = [20, 28,
|
2310
|
+
28, 40]
|
2311
|
+
assert_equal(2, m.rows)
|
2312
|
+
assert_equal(2, m.cols)
|
2313
|
+
assert_equal(:cv32f, m.depth)
|
2314
|
+
expected.each_with_index { |x, i|
|
2315
|
+
assert_in_delta(x, m[i][0], 0.1)
|
2316
|
+
}
|
2317
|
+
end
|
2318
|
+
|
2319
|
+
def test_trace
|
2320
|
+
m0 = create_cvmat(5, 5, :cv32f, 4) { |j, i, c|
|
2321
|
+
CvScalar.new(c * 0.5, c * 1.0, c * 1.5, c * 2.0)
|
2322
|
+
}
|
2323
|
+
assert_in_delta(CvScalar.new(30, 60, 90, 120), m0.trace, 0.001)
|
2324
|
+
end
|
2325
|
+
|
2326
|
+
def test_transpose
|
2327
|
+
m0 = create_cvmat(2, 3, :cv32f, 4) { |j, i, c|
|
2328
|
+
CvScalar.new(c * 0.5, c * 1.0, c * 1.5, c * 2.0)
|
2329
|
+
}
|
2330
|
+
m1 = m0.transpose
|
2331
|
+
m2 = m0.t
|
2332
|
+
|
2333
|
+
[m1, m2].each { |m|
|
2334
|
+
assert_equal(m0.rows, m.cols)
|
2335
|
+
assert_equal(m0.cols, m.rows)
|
2336
|
+
assert_each_cvscalar(m, 0.001) { |j, i, c|
|
2337
|
+
m0[i, j]
|
2338
|
+
}
|
2339
|
+
}
|
2340
|
+
end
|
2341
|
+
|
2342
|
+
def test_det
|
2343
|
+
elems = [2.5, 4.5, 2.0,
|
2344
|
+
3.0, 2.5, -0.5,
|
2345
|
+
1.0, 0.5, 1.5]
|
2346
|
+
m0 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c|
|
2347
|
+
CvScalar.new(elems[c])
|
2348
|
+
}
|
2349
|
+
assert_in_delta(-14.5, m0.det, 0.001)
|
2350
|
+
end
|
2351
|
+
|
2352
|
+
def test_invert
|
2353
|
+
elems = [1, 2, 3,
|
2354
|
+
2, 6, 9,
|
2355
|
+
1, 4, 7]
|
2356
|
+
m0 = create_cvmat(3, 3, :cv32f, 1) { |j, i, c|
|
2357
|
+
CvScalar.new(elems[c])
|
2358
|
+
}
|
2359
|
+
m1 = m0.invert
|
2360
|
+
m2 = m0.invert(:lu)
|
2361
|
+
m3 = m0.invert(:svd)
|
2362
|
+
m4 = m0.invert(:svd_sym)
|
2363
|
+
m5 = m0.invert(:svd_symmetric)
|
2364
|
+
|
2365
|
+
expected = [3, -1, 0, -2.5, 2, -1.5, 1, -1, 1]
|
2366
|
+
[m1, m2, m3].each { |m|
|
2367
|
+
assert_equal(m0.width, m.width)
|
2368
|
+
assert_equal(m0.height, m.height)
|
2369
|
+
assert_each_cvscalar(m, 0.001) { |j, i, c|
|
2370
|
+
CvScalar.new(expected[c])
|
2371
|
+
}
|
2372
|
+
}
|
2373
|
+
|
2374
|
+
expected = [3, -1, 0, -1.0, 0.15, 0.23, 0, 0.23, -0.15]
|
2375
|
+
[m4, m5].each { |m|
|
2376
|
+
assert_equal(m0.width, m.width)
|
2377
|
+
assert_equal(m0.height, m.height)
|
2378
|
+
assert_each_cvscalar(m, 0.1) { |j, i, c|
|
2379
|
+
CvScalar.new(expected[c])
|
2380
|
+
}
|
2381
|
+
}
|
2382
|
+
|
2383
|
+
assert_raise(TypeError) {
|
2384
|
+
m0.invert(DUMMY_OBJ)
|
2385
|
+
}
|
2386
|
+
end
|
2387
|
+
|
2388
|
+
def test_solve
|
2389
|
+
elems1 = [3, 4, 5,
|
2390
|
+
8, 9, 6,
|
2391
|
+
3, 5, 9]
|
2392
|
+
elems2 = [3,
|
2393
|
+
4,
|
2394
|
+
5]
|
2395
|
+
a = create_cvmat(3, 3, :cv32f, 1) { |j, i, c|
|
2396
|
+
CvScalar.new(elems1[c])
|
2397
|
+
}
|
2398
|
+
b = create_cvmat(3, 1, :cv32f, 1) { |j, i, c|
|
2399
|
+
CvScalar.new(elems2[c])
|
2400
|
+
}
|
2401
|
+
|
2402
|
+
m1 = CvMat.solve(a, b)
|
2403
|
+
m2 = CvMat.solve(a, b, :lu)
|
2404
|
+
m3 = CvMat.solve(a, b, :svd)
|
2405
|
+
m4 = CvMat.solve(a, b, :svd_sym)
|
2406
|
+
m5 = CvMat.solve(a, b, :svd_symmetric)
|
2407
|
+
expected = [2, -2, 1]
|
2408
|
+
[m1, m2, m3].each { |m|
|
2409
|
+
assert_equal(b.width, m.width)
|
2410
|
+
assert_equal(a.height, m.height)
|
2411
|
+
assert_each_cvscalar(m, 0.001) { |j, i, c|
|
2412
|
+
CvScalar.new(expected[c])
|
2413
|
+
}
|
2414
|
+
}
|
2415
|
+
|
2416
|
+
assert_raise(TypeError) {
|
2417
|
+
CvMat.solve(DUMMY_OBJ, b)
|
2418
|
+
}
|
2419
|
+
assert_raise(TypeError) {
|
2420
|
+
CvMat.solve(a, DUMMY_OBJ)
|
2421
|
+
}
|
2422
|
+
assert_raise(TypeError) {
|
2423
|
+
CvMat.solve(a, b, DUMMY_OBJ)
|
2424
|
+
}
|
2425
|
+
end
|
2426
|
+
|
2427
|
+
def test_svd
|
2428
|
+
rows = 2
|
2429
|
+
cols = 3
|
2430
|
+
m0 = create_cvmat(rows, cols, :cv32f, 1) { |j, i, c|
|
2431
|
+
CvScalar.new(c + 1)
|
2432
|
+
}
|
2433
|
+
|
2434
|
+
[m0.svd, m0.clone.svd(CV_SVD_MODIFY_A)].each { |w, u, v|
|
2435
|
+
expected = [0.38632, -0.92237,
|
2436
|
+
0.92237, 0.38632]
|
2437
|
+
assert_equal(rows, u.rows)
|
2438
|
+
assert_equal(rows, u.cols)
|
2439
|
+
expected.each_with_index { |x, i|
|
2440
|
+
assert_in_delta(x, u[i][0], 0.0001)
|
2441
|
+
}
|
2442
|
+
|
2443
|
+
assert_equal(rows, w.rows)
|
2444
|
+
assert_equal(cols, w.cols)
|
2445
|
+
expected = [9.50803, 0, 0,
|
2446
|
+
0, 0.77287, 0]
|
2447
|
+
expected.each_with_index { |x, i|
|
2448
|
+
assert_in_delta(x, w[i][0], 0.0001)
|
2449
|
+
}
|
2450
|
+
|
2451
|
+
assert_equal(cols, v.rows)
|
2452
|
+
assert_equal(rows, v.cols)
|
2453
|
+
expected = [0.42867, 0.80596,
|
2454
|
+
0.56631, 0.11238,
|
2455
|
+
0.70395, -0.58120]
|
2456
|
+
|
2457
|
+
expected.each_with_index { |x, i|
|
2458
|
+
assert_in_delta(x, v[i][0], 0.0001)
|
2459
|
+
}
|
2460
|
+
}
|
2461
|
+
|
2462
|
+
w, ut, v = m0.svd(CV_SVD_U_T)
|
2463
|
+
expected = [0.38632, 0.92237,
|
2464
|
+
-0.92237, 0.38632]
|
2465
|
+
assert_equal(rows, ut.rows)
|
2466
|
+
assert_equal(rows, ut.cols)
|
2467
|
+
expected.each_with_index { |x, i|
|
2468
|
+
assert_in_delta(x, ut[i][0], 0.0001)
|
2469
|
+
}
|
2470
|
+
|
2471
|
+
assert_equal(rows, w.rows)
|
2472
|
+
assert_equal(cols, w.cols)
|
2473
|
+
expected = [9.50803, 0, 0,
|
2474
|
+
0, 0.77287, 0]
|
2475
|
+
expected.each_with_index { |x, i|
|
2476
|
+
assert_in_delta(x, w[i][0], 0.0001)
|
2477
|
+
}
|
2478
|
+
|
2479
|
+
assert_equal(cols, v.rows)
|
2480
|
+
assert_equal(rows, v.cols)
|
2481
|
+
expected = [0.42867, 0.80596,
|
2482
|
+
0.56631, 0.11238,
|
2483
|
+
0.70395, -0.58120]
|
2484
|
+
|
2485
|
+
expected.each_with_index { |x, i|
|
2486
|
+
assert_in_delta(x, v[i][0], 0.0001)
|
2487
|
+
}
|
2488
|
+
|
2489
|
+
w, u, vt = m0.svd(CV_SVD_V_T)
|
2490
|
+
expected = [0.38632, -0.92237,
|
2491
|
+
0.92237, 0.38632]
|
2492
|
+
assert_equal(rows, u.rows)
|
2493
|
+
assert_equal(rows, u.cols)
|
2494
|
+
expected.each_with_index { |x, i|
|
2495
|
+
assert_in_delta(x, u[i][0], 0.0001)
|
2496
|
+
}
|
2497
|
+
|
2498
|
+
assert_equal(rows, w.rows)
|
2499
|
+
assert_equal(cols, w.cols)
|
2500
|
+
expected = [9.50803, 0, 0,
|
2501
|
+
0, 0.77287, 0]
|
2502
|
+
expected.each_with_index { |x, i|
|
2503
|
+
assert_in_delta(x, w[i][0], 0.0001)
|
2504
|
+
}
|
2505
|
+
|
2506
|
+
assert_equal(rows, vt.rows)
|
2507
|
+
assert_equal(cols, vt.cols)
|
2508
|
+
expected = [0.42867, 0.56631, 0.70395,
|
2509
|
+
0.80596, 0.11238, -0.58120]
|
2510
|
+
expected.each_with_index { |x, i|
|
2511
|
+
assert_in_delta(x, vt[i][0], 0.0001)
|
2512
|
+
}
|
2513
|
+
end
|
2514
|
+
|
2515
|
+
def test_eigenvv
|
2516
|
+
elems = [6, -2, -3, 7]
|
2517
|
+
m0 = create_cvmat(2, 2, :cv32f, 1) { |j, i, c|
|
2518
|
+
CvScalar.new(elems[c])
|
2519
|
+
}
|
2520
|
+
|
2521
|
+
v1 = m0.eigenvv
|
2522
|
+
v2 = m0.eigenvv(10 ** -15)
|
2523
|
+
v3 = m0.eigenvv(10 ** -15, 1, 1)
|
2524
|
+
|
2525
|
+
[v1, v2].each { |vec, val|
|
2526
|
+
assert_in_delta(-0.615, vec[0, 0][0], 0.01)
|
2527
|
+
assert_in_delta(0.788, vec[0, 1][0], 0.01)
|
2528
|
+
assert_in_delta(0.788, vec[1, 0][0], 0.01)
|
2529
|
+
assert_in_delta(0.615, vec[1, 1][0], 0.01)
|
2530
|
+
assert_in_delta(8.562, val[0][0], 0.01)
|
2531
|
+
assert_in_delta(4.438, val[1][0], 0.01)
|
2532
|
+
}
|
2533
|
+
|
2534
|
+
vec3, val3 = v3
|
2535
|
+
assert_in_delta(-0.615, vec3[0, 0][0], 0.01)
|
2536
|
+
assert_in_delta(0.788, vec3[0, 1][0], 0.01)
|
2537
|
+
assert_in_delta(8.562, val3[0][0], 0.01)
|
2538
|
+
|
2539
|
+
assert_raise(TypeError) {
|
2540
|
+
m0.eigenvv(DUMMY_OBJ)
|
2541
|
+
}
|
2542
|
+
assert_raise(TypeError) {
|
2543
|
+
m0.eigenvv(nil, DUMMY_OBJ)
|
2544
|
+
}
|
2545
|
+
assert_raise(TypeError) {
|
2546
|
+
m0.eigenvv(nil, nil, DUMMY_OBJ)
|
2547
|
+
}
|
2548
|
+
end
|
2549
|
+
|
2550
|
+
def test_find_homography
|
2551
|
+
# Nx2
|
2552
|
+
src = CvMat.new(4, 2, :cv32f, 1)
|
2553
|
+
dst = CvMat.new(4, 2, :cv32f, 1)
|
2554
|
+
|
2555
|
+
# Nx3 (Homogeneous coordinates)
|
2556
|
+
src2 = CvMat.new(4, 3, :cv32f, 1)
|
2557
|
+
dst2 = CvMat.new(4, 3, :cv32f, 1)
|
2558
|
+
|
2559
|
+
# Homography
|
2560
|
+
# <src> => <dst>
|
2561
|
+
# (0, 0) => (50, 0)
|
2562
|
+
# (255, 0) => (205, 0)
|
2563
|
+
# (255, 255) => (255, 220)
|
2564
|
+
# (0, 255) => (0, 275)
|
2565
|
+
[[0, 0], [255, 0], [255, 255], [0, 255]].each_with_index { |coord, i|
|
2566
|
+
src[i, 0] = coord[0]
|
2567
|
+
src[i, 1] = coord[1]
|
2568
|
+
|
2569
|
+
src2[i, 0] = coord[0] * 2
|
2570
|
+
src2[i, 1] = coord[1] * 2
|
2571
|
+
src2[i, 2] = 2
|
2572
|
+
}
|
2573
|
+
[[50, 0], [205, 0], [255, 220], [0, 275]].each_with_index { |coord, i|
|
2574
|
+
dst[i, 0] = coord[0]
|
2575
|
+
dst[i, 1] = coord[1]
|
2576
|
+
|
2577
|
+
dst2[i, 0] = coord[0] * 2
|
2578
|
+
dst2[i, 1] = coord[1] * 2
|
2579
|
+
dst2[i, 2] = 2
|
2580
|
+
}
|
2581
|
+
|
2582
|
+
mat1 = CvMat.find_homography(src, dst)
|
2583
|
+
mat2 = CvMat.find_homography(src, dst, :all)
|
2584
|
+
mat3 = CvMat.find_homography(src, dst, :ransac)
|
2585
|
+
mat4 = CvMat.find_homography(src, dst, :lmeds)
|
2586
|
+
mat5, status5 = CvMat.find_homography(src, dst, :ransac, 5, true)
|
2587
|
+
mat6, status6 = CvMat.find_homography(src, dst, :ransac, 5, true)
|
2588
|
+
mat7 = CvMat.find_homography(src, dst, :ransac, 5, false)
|
2589
|
+
mat8 = CvMat.find_homography(src, dst, :ransac, 5, nil)
|
2590
|
+
mat9 = CvMat.find_homography(src, dst, :all, 5, true)
|
2591
|
+
mat10, status10 = CvMat.find_homography(src2, dst2, :ransac, 5, true)
|
2592
|
+
|
2593
|
+
[mat1, mat2, mat3, mat4, mat5, mat6, mat7, mat8, mat9, mat10].each { |mat|
|
2594
|
+
assert_equal(3, mat.rows)
|
2595
|
+
assert_equal(3, mat.cols)
|
2596
|
+
assert_equal(:cv32f, mat.depth)
|
2597
|
+
assert_equal(1, mat.channel)
|
2598
|
+
[0.72430, -0.19608, 50.0,
|
2599
|
+
0.0, 0.62489, 0.0,
|
2600
|
+
0.00057, -0.00165, 1.0].each_with_index { |x, i|
|
2601
|
+
assert_in_delta(x, mat[i][0], 0.0001)
|
2602
|
+
}
|
2603
|
+
}
|
2604
|
+
|
2605
|
+
[status5, status6, status10].each { |status|
|
2606
|
+
assert_equal(1, status.rows)
|
2607
|
+
assert_equal(4, status.cols)
|
2608
|
+
assert_equal(:cv8u, status.depth)
|
2609
|
+
assert_equal(1, status.channel)
|
2610
|
+
4.times { |i|
|
2611
|
+
assert_in_delta(1.0, status[i][0], 0.0001)
|
2612
|
+
}
|
2613
|
+
}
|
2614
|
+
|
2615
|
+
assert_raise(TypeError) {
|
2616
|
+
CvMat.find_homography(DUMMY_OBJ, dst, :ransac, 5, true)
|
2617
|
+
}
|
2618
|
+
assert_raise(TypeError) {
|
2619
|
+
CvMat.find_homography(src, DUMMY_OBJ, :ransac, 5, true)
|
2620
|
+
}
|
2621
|
+
assert_raise(TypeError) {
|
2622
|
+
CvMat.find_homography(src, dst, DUMMY_OBJ, 5, true)
|
2623
|
+
}
|
2624
|
+
assert_raise(TypeError) {
|
2625
|
+
CvMat.find_homography(src, dst, :ransac, DUMMY_OBJ, true)
|
2626
|
+
}
|
2627
|
+
CvMat.find_homography(src, dst, :ransac, 5, DUMMY_OBJ)
|
2628
|
+
end
|
2629
|
+
|
2630
|
+
def test_find_fundamental_mat
|
2631
|
+
points1 = [[488.362, 169.911],
|
2632
|
+
[449.488, 174.44],
|
2633
|
+
[408.565, 179.669],
|
2634
|
+
[364.512, 184.56],
|
2635
|
+
[491.483, 122.366],
|
2636
|
+
[451.512, 126.56],
|
2637
|
+
[409.502, 130.342],
|
2638
|
+
[365.5, 134.0],
|
2639
|
+
[494.335, 74.544],
|
2640
|
+
[453.5, 76.5],
|
2641
|
+
[411.646, 79.5901],
|
2642
|
+
[366.498, 81.6577],
|
2643
|
+
[453.5, 76.5],
|
2644
|
+
[411.646, 79.5901],
|
2645
|
+
[366.498, 81.6577]]
|
2646
|
+
|
2647
|
+
points2 = [[526.605, 213.332],
|
2648
|
+
[470.485, 207.632],
|
2649
|
+
[417.5, 201.0],
|
2650
|
+
[367.485, 195.632],
|
2651
|
+
[530.673, 156.417],
|
2652
|
+
[473.749, 151.39],
|
2653
|
+
[419.503, 146.656],
|
2654
|
+
[368.669, 142.565],
|
2655
|
+
[534.632, 97.5152],
|
2656
|
+
[475.84, 94.6777],
|
2657
|
+
[421.16, 90.3223],
|
2658
|
+
[368.5, 87.5],
|
2659
|
+
[475.84, 94.6777],
|
2660
|
+
[421.16, 90.3223],
|
2661
|
+
[368.5, 87.5]]
|
2662
|
+
|
2663
|
+
# 7 point
|
2664
|
+
num_points = 7
|
2665
|
+
mat1 = CvMat.new(num_points, 2, :cv64f, 1)
|
2666
|
+
mat2 = CvMat.new(num_points, 2, :cv64f, 1)
|
2667
|
+
|
2668
|
+
points1[0...num_points].each_with_index { |pt, i|
|
2669
|
+
mat1[i, 0] = CvScalar.new(pt[0])
|
2670
|
+
mat1[i, 1] = CvScalar.new(pt[1])
|
2671
|
+
}
|
2672
|
+
points2[0...num_points].each_with_index { |pt, i|
|
2673
|
+
mat2[i, 0] = CvScalar.new(pt[0])
|
2674
|
+
mat2[i, 1] = CvScalar.new(pt[1])
|
2675
|
+
}
|
2676
|
+
f_mat1 = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_7POINT)
|
2677
|
+
f_mat2, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_7POINT, :with_status => true)
|
2678
|
+
|
2679
|
+
expected = [0.000009, 0.000029, -0.010343,
|
2680
|
+
-0.000033, 0.000000, 0.014590,
|
2681
|
+
0.004415, -0.013420, 1.000000,
|
2682
|
+
0.000000, 0.000001, -0.000223,
|
2683
|
+
-0.000001, 0.000036, -0.005309,
|
2684
|
+
-0.000097, -0.006463, 1.000000,
|
2685
|
+
0.000002, 0.000005, -0.001621,
|
2686
|
+
-0.000005, 0.000031, -0.002559,
|
2687
|
+
0.000527, -0.007424, 1.000000]
|
2688
|
+
[f_mat1, f_mat2].each { |f_mat|
|
2689
|
+
assert_equal(9, f_mat.rows)
|
2690
|
+
assert_equal(3, f_mat.cols)
|
2691
|
+
expected.each_with_index { |val, i|
|
2692
|
+
assert_in_delta(val, f_mat[i][0], 1.0e-5)
|
2693
|
+
}
|
2694
|
+
}
|
2695
|
+
assert_equal(num_points, status.cols)
|
2696
|
+
num_points.times { |i|
|
2697
|
+
assert_in_delta(1, status[i][0], 1.0e-5)
|
2698
|
+
}
|
2699
|
+
|
2700
|
+
# 8 point
|
2701
|
+
num_points = 8
|
2702
|
+
mat1 = CvMat.new(num_points, 2, :cv64f, 1)
|
2703
|
+
mat2 = CvMat.new(num_points, 2, :cv64f, 1)
|
2704
|
+
|
2705
|
+
points1[0...num_points].each_with_index { |pt, i|
|
2706
|
+
mat1[i, 0] = CvScalar.new(pt[0])
|
2707
|
+
mat1[i, 1] = CvScalar.new(pt[1])
|
2708
|
+
}
|
2709
|
+
points2[0...num_points].each_with_index { |pt, i|
|
2710
|
+
mat2[i, 0] = CvScalar.new(pt[0])
|
2711
|
+
mat2[i, 1] = CvScalar.new(pt[1])
|
2712
|
+
}
|
2713
|
+
|
2714
|
+
f_mat1 = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_8POINT)
|
2715
|
+
f_mat2, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_8POINT, :with_status => true)
|
2716
|
+
|
2717
|
+
expected = [0.000001, 0.000004, -0.001127,
|
2718
|
+
-0.000005, 0.000038, -0.003778,
|
2719
|
+
0.000819, -0.008325, 1.000000]
|
2720
|
+
[f_mat1, f_mat2].each { |f_mat|
|
2721
|
+
assert_equal(3, f_mat.rows)
|
2722
|
+
assert_equal(3, f_mat.cols)
|
2723
|
+
expected.each_with_index { |val, i|
|
2724
|
+
assert_in_delta(val, f_mat[i][0], 1.0e-5)
|
2725
|
+
}
|
2726
|
+
}
|
2727
|
+
assert_equal(num_points, status.cols)
|
2728
|
+
num_points.times { |i|
|
2729
|
+
assert_in_delta(1, status[i][0], 1.0e-5)
|
2730
|
+
}
|
2731
|
+
|
2732
|
+
# RANSAC default
|
2733
|
+
num_points = points1.size
|
2734
|
+
mat1 = CvMat.new(num_points, 2, :cv64f, 1)
|
2735
|
+
mat2 = CvMat.new(num_points, 2, :cv64f, 1)
|
2736
|
+
|
2737
|
+
points1[0...num_points].each_with_index { |pt, i|
|
2738
|
+
mat1[i, 0] = CvScalar.new(pt[0])
|
2739
|
+
mat1[i, 1] = CvScalar.new(pt[1])
|
2740
|
+
}
|
2741
|
+
points2[0...num_points].each_with_index { |pt, i|
|
2742
|
+
mat2[i, 0] = CvScalar.new(pt[0])
|
2743
|
+
mat2[i, 1] = CvScalar.new(pt[1])
|
2744
|
+
}
|
2745
|
+
|
2746
|
+
[CvMat.find_fundamental_mat(mat1, mat2, CV_FM_RANSAC, :with_status => false,
|
2747
|
+
:maximum_distance => 1.0, :desirable_level => 0.99),
|
2748
|
+
CvMat.find_fundamental_mat(mat1, mat2, CV_FM_RANSAC)].each { |f_mat|
|
2749
|
+
assert_equal(3, f_mat.rows)
|
2750
|
+
assert_equal(3, f_mat.cols)
|
2751
|
+
expected = [0.000010, 0.000039, -0.011141,
|
2752
|
+
-0.000045, -0.000001, 0.019631,
|
2753
|
+
0.004873, -0.017604, 1.000000]
|
2754
|
+
expected.each_with_index { |val, i|
|
2755
|
+
assert_in_delta(val, f_mat[i][0], 1.0e-5)
|
2756
|
+
}
|
2757
|
+
}
|
2758
|
+
|
2759
|
+
# RANSAC with options
|
2760
|
+
f_mat, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_RANSAC, :with_status => true,
|
2761
|
+
:maximum_distance => 2.0, :desirable_level => 0.8)
|
2762
|
+
assert_equal(3, f_mat.rows)
|
2763
|
+
assert_equal(3, f_mat.cols)
|
2764
|
+
assert_equal(1, status.rows)
|
2765
|
+
assert_equal(num_points, status.cols)
|
2766
|
+
|
2767
|
+
expected_f_mat = [0.000009, 0.000030, -0.010692,
|
2768
|
+
-0.000039, 0.000000, 0.020567,
|
2769
|
+
0.004779, -0.018064, 1.000000]
|
2770
|
+
expected_f_mat.each_with_index { |val, i|
|
2771
|
+
assert_in_delta(val, f_mat[i][0], 1.0e-5)
|
2772
|
+
}
|
2773
|
+
expected_status = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
2774
|
+
expected_status.each_with_index { |val, i|
|
2775
|
+
assert_in_delta(val, status[i][0], 1.0e-5)
|
2776
|
+
}
|
2777
|
+
|
2778
|
+
# LMedS default
|
2779
|
+
num_points = 12
|
2780
|
+
mat1 = CvMat.new(num_points, 2, :cv64f, 1)
|
2781
|
+
mat2 = CvMat.new(num_points, 2, :cv64f, 1)
|
2782
|
+
|
2783
|
+
points1[0...num_points].each_with_index { |pt, i|
|
2784
|
+
mat1[i, 0] = CvScalar.new(pt[0])
|
2785
|
+
mat1[i, 1] = CvScalar.new(pt[1])
|
2786
|
+
}
|
2787
|
+
points2[0...num_points].each_with_index { |pt, i|
|
2788
|
+
mat2[i, 0] = CvScalar.new(pt[0])
|
2789
|
+
mat2[i, 1] = CvScalar.new(pt[1])
|
2790
|
+
}
|
2791
|
+
|
2792
|
+
[CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS, :with_status => false,
|
2793
|
+
:maximum_distance => 1.0, :desirable_level => 0.99),
|
2794
|
+
CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS)].each { |f_mat|
|
2795
|
+
assert_equal(3, f_mat.rows)
|
2796
|
+
assert_equal(3, f_mat.cols)
|
2797
|
+
expected = [-2.79e-05, -0.0009362, 0.0396139,
|
2798
|
+
0.0010285, -2.48e-05, -0.3946452,
|
2799
|
+
-0.0322220, 0.3695115, 1.0]
|
2800
|
+
expected.each_with_index { |val, i|
|
2801
|
+
assert_in_delta(val, f_mat[i][0], 1.0e-5)
|
2802
|
+
}
|
2803
|
+
}
|
2804
|
+
|
2805
|
+
# LMedS with options
|
2806
|
+
f_mat, status = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS, :with_status => true,
|
2807
|
+
:desirable_level => 0.8)
|
2808
|
+
assert_equal(3, f_mat.rows)
|
2809
|
+
assert_equal(3, f_mat.cols)
|
2810
|
+
assert_equal(1, status.rows)
|
2811
|
+
assert_equal(num_points, status.cols)
|
2812
|
+
|
2813
|
+
expected_f_mat = [6.48e-05, 0.001502, -0.086036,
|
2814
|
+
-0.001652, 3.86e-05, 0.638690,
|
2815
|
+
0.059998, -0.597778, 1.0]
|
2816
|
+
expected_f_mat.each_with_index { |val, i|
|
2817
|
+
assert_in_delta(val, f_mat[i][0], 1.0e-5)
|
2818
|
+
}
|
2819
|
+
expected_status = [1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0]
|
2820
|
+
expected_status.each_with_index { |val, i|
|
2821
|
+
assert_equal(val, status[i][0].to_i)
|
2822
|
+
}
|
2823
|
+
|
2824
|
+
[CV_FM_7POINT, CV_FM_8POINT, CV_FM_RANSAC, CV_FM_LMEDS].each { |method|
|
2825
|
+
assert_raise(TypeError) {
|
2826
|
+
CvMat.find_fundamental_mat(DUMMY_OBJ, mat2, method, :with_status => true)
|
2827
|
+
}
|
2828
|
+
assert_raise(TypeError) {
|
2829
|
+
CvMat.find_fundamental_mat(mat1, DUMMY_OBJ, method, :with_status => true)
|
2830
|
+
}
|
2831
|
+
assert_raise(TypeError) {
|
2832
|
+
CvMat.find_fundamental_mat(mat1, mat2, method, DUMMY_OBJ)
|
2833
|
+
}
|
2834
|
+
}
|
2835
|
+
assert_raise(TypeError) {
|
2836
|
+
CvMat.find_fundamental_mat(mat1, mat2, DUMMY_OBJ, :with_status => true)
|
2837
|
+
}
|
2838
|
+
end
|
2839
|
+
|
2840
|
+
def test_compute_correspond_epilines
|
2841
|
+
test_func = lambda { |mat1, mat2, f_mat_arr, num_points|
|
2842
|
+
f_mat = CvMat.new(3, 3, CV_64F, 1)
|
2843
|
+
f_mat_arr.each_with_index { |a, i|
|
2844
|
+
f_mat[i] = CvScalar.new(a)
|
2845
|
+
}
|
2846
|
+
|
2847
|
+
line = CvMat.compute_correspond_epilines(mat1, 1, f_mat)
|
2848
|
+
assert_equal(num_points, line.rows)
|
2849
|
+
assert_equal(3, line.cols)
|
2850
|
+
|
2851
|
+
expected = [[-0.221257, -0.975215, 6.03758],
|
2852
|
+
[0.359337, -0.933208, -3.61419],
|
2853
|
+
[0.958304, -0.28575, -15.0573],
|
2854
|
+
[0.73415, -0.678987, -10.4037],
|
2855
|
+
[0.0208539, -0.999783, 2.11625],
|
2856
|
+
[0.284451, -0.958691, -2.31993],
|
2857
|
+
[0.624647, -0.780907, -8.35208],
|
2858
|
+
[0.618494, -0.785789, -8.23888],
|
2859
|
+
[0.766694, -0.642012, -11.0298],
|
2860
|
+
[0.700293, -0.713855, -9.76109]]
|
2861
|
+
|
2862
|
+
expected.size.times { |i|
|
2863
|
+
assert_in_delta(expected[i][0], line[i, 0][0], 1.0e-3)
|
2864
|
+
assert_in_delta(expected[i][1], line[i, 1][0], 1.0e-3)
|
2865
|
+
assert_in_delta(expected[i][2], line[i, 2][0], 1.0e-3)
|
2866
|
+
}
|
2867
|
+
|
2868
|
+
assert_raise(ArgumentError) {
|
2869
|
+
m = CvMat.new(10, 10, CV_32F, 1)
|
2870
|
+
CvMat.compute_correspond_epilines(m, 1, f_mat)
|
2871
|
+
}
|
2872
|
+
}
|
2873
|
+
|
2874
|
+
num_points = 10
|
2875
|
+
# input points are Nx2 matrix
|
2876
|
+
points1 =[[17, 175],
|
2877
|
+
[370, 24],
|
2878
|
+
[192, 456],
|
2879
|
+
[614, 202],
|
2880
|
+
[116, 111],
|
2881
|
+
[305, 32],
|
2882
|
+
[249, 268],
|
2883
|
+
[464, 157],
|
2884
|
+
[259, 333],
|
2885
|
+
[460, 224]]
|
2886
|
+
|
2887
|
+
points2 = [[295, 28],
|
2888
|
+
[584, 221],
|
2889
|
+
[67, 172],
|
2890
|
+
[400, 443],
|
2891
|
+
[330, 9],
|
2892
|
+
[480, 140],
|
2893
|
+
[181, 140],
|
2894
|
+
[350, 265],
|
2895
|
+
[176, 193],
|
2896
|
+
[333, 313]]
|
2897
|
+
|
2898
|
+
mat1 = CvMat.new(num_points, 2, CV_64F, 1)
|
2899
|
+
mat2 = CvMat.new(num_points, 2, CV_64F, 1)
|
2900
|
+
points1.flatten.each_with_index { |pt, i|
|
2901
|
+
mat1[i] = CvScalar.new(pt)
|
2902
|
+
}
|
2903
|
+
points2.flatten.each_with_index { |pt, i|
|
2904
|
+
mat2[i] = CvScalar.new(pt)
|
2905
|
+
}
|
2906
|
+
|
2907
|
+
# pre computed f matrix from points1, points2
|
2908
|
+
# f_mat = CvMat.find_fundamental_mat(mat1, mat2, CV_FM_LMEDS)
|
2909
|
+
f_mat_arr = [0.000266883, 0.000140277, -0.0445223,
|
2910
|
+
-0.00012592, 0.000245543, -0.108868,
|
2911
|
+
-0.00407942, -0.00291097, 1]
|
2912
|
+
test_func.call(mat1, mat2, f_mat_arr, num_points)
|
2913
|
+
|
2914
|
+
# input points are 2xN matrix
|
2915
|
+
points1 = [[17, 370, 192, 614, 116, 305, 249, 464, 259, 460],
|
2916
|
+
[175, 24, 456, 202, 111, 32, 268, 157, 333, 224]]
|
2917
|
+
|
2918
|
+
points2 = [[295, 584, 67, 400, 330, 480, 181, 350, 176, 333],
|
2919
|
+
[28, 221, 172, 443, 9, 140, 140, 265, 193, 313]]
|
2920
|
+
|
2921
|
+
mat1 = CvMat.new(2, num_points, CV_64F, 1)
|
2922
|
+
mat2 = CvMat.new(2, num_points, CV_64F, 1)
|
2923
|
+
points1.flatten.each_with_index { |pt, i|
|
2924
|
+
mat1[i] = CvScalar.new(pt)
|
2925
|
+
}
|
2926
|
+
points2.flatten.each_with_index { |pt, i|
|
2927
|
+
mat2[i] = CvScalar.new(pt)
|
2928
|
+
}
|
2929
|
+
test_func.call(mat1, mat2, f_mat_arr, num_points)
|
2930
|
+
|
2931
|
+
|
2932
|
+
f_mat = CvMat.new(3, 3, CV_64F, 1)
|
2933
|
+
f_mat_arr.each_with_index { |a, i|
|
2934
|
+
f_mat[i] = CvScalar.new(a)
|
2935
|
+
}
|
2936
|
+
assert_raise(TypeError) {
|
2937
|
+
CvMat.compute_correspond_epilines(DUMMY_OBJ, 1, f_mat)
|
2938
|
+
}
|
2939
|
+
assert_raise(TypeError) {
|
2940
|
+
CvMat.compute_correspond_epilines(mat1, DUMMY_OBJ, f_mat)
|
2941
|
+
}
|
2942
|
+
assert_raise(TypeError) {
|
2943
|
+
CvMat.compute_correspond_epilines(mat1, 1, DUMMY_OBJ)
|
2944
|
+
}
|
2945
|
+
end
|
2946
|
+
end
|
2947
|
+
|