ruby-openai 7.3.1 → 8.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.circleci/config.yml +1 -1
- data/.gitignore +3 -0
- data/CHANGELOG.md +29 -0
- data/Gemfile +6 -5
- data/Gemfile.lock +34 -28
- data/README.md +574 -262
- data/lib/openai/batches.rb +1 -1
- data/lib/openai/client.rb +24 -12
- data/lib/openai/files.rb +7 -3
- data/lib/openai/http.rb +16 -11
- data/lib/openai/models.rb +4 -0
- data/lib/openai/responses.rb +23 -0
- data/lib/openai/usage.rb +70 -0
- data/lib/openai/version.rb +1 -1
- data/lib/openai.rb +36 -24
- data/lib/ruby/openai.rb +0 -1
- metadata +4 -3
- data/lib/openai/compatibility.rb +0 -10
data/README.md
CHANGED
@@ -1,14 +1,17 @@
|
|
1
1
|
# Ruby OpenAI
|
2
|
-
|
3
2
|
[](https://rubygems.org/gems/ruby-openai)
|
4
3
|
[](https://github.com/alexrudall/ruby-openai/blob/main/LICENSE.txt)
|
5
4
|
[](https://circleci.com/gh/alexrudall/ruby-openai)
|
6
5
|
|
7
6
|
Use the [OpenAI API](https://openai.com/blog/openai-api/) with Ruby! 🤖❤️
|
8
7
|
|
9
|
-
Stream text with GPT-
|
8
|
+
Stream text with GPT-4, transcribe and translate audio with Whisper, or create images with DALL·E...
|
9
|
+
|
10
|
+
💥 Click [subscribe now](https://mailchi.mp/8c7b574726a9/ruby-openai) to hear first about new releases in the Rails AI newsletter!
|
11
|
+
|
12
|
+
[](https://mailchi.mp/8c7b574726a9/ruby-openai)
|
10
13
|
|
11
|
-
[
|
14
|
+
[🎮 Ruby AI Builders Discord](https://discord.gg/k4Uc224xVD) | [🐦 X](https://x.com/alexrudall) | [🧠 Anthropic Gem](https://github.com/alexrudall/anthropic) | [🚂 Midjourney Gem](https://github.com/alexrudall/midjourney)
|
12
15
|
|
13
16
|
## Contents
|
14
17
|
|
@@ -17,7 +20,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
17
20
|
- [Installation](#installation)
|
18
21
|
- [Bundler](#bundler)
|
19
22
|
- [Gem install](#gem-install)
|
20
|
-
- [
|
23
|
+
- [How to use](#how-to-use)
|
21
24
|
- [Quickstart](#quickstart)
|
22
25
|
- [With Config](#with-config)
|
23
26
|
- [Custom timeout or base URI](#custom-timeout-or-base-uri)
|
@@ -26,6 +29,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
26
29
|
- [Errors](#errors)
|
27
30
|
- [Faraday middleware](#faraday-middleware)
|
28
31
|
- [Azure](#azure)
|
32
|
+
- [Deepseek](#deepseek)
|
29
33
|
- [Ollama](#ollama)
|
30
34
|
- [Groq](#groq)
|
31
35
|
- [Counting Tokens](#counting-tokens)
|
@@ -34,6 +38,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
34
38
|
- [Streaming Chat](#streaming-chat)
|
35
39
|
- [Vision](#vision)
|
36
40
|
- [JSON Mode](#json-mode)
|
41
|
+
- [Responses API](#responses-api)
|
37
42
|
- [Functions](#functions)
|
38
43
|
- [Completions](#completions)
|
39
44
|
- [Embeddings](#embeddings)
|
@@ -49,6 +54,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
49
54
|
- [Threads and Messages](#threads-and-messages)
|
50
55
|
- [Runs](#runs)
|
51
56
|
- [Create and Run](#create-and-run)
|
57
|
+
- [Vision in a thread](#vision-in-a-thread)
|
52
58
|
- [Runs involving function tools](#runs-involving-function-tools)
|
53
59
|
- [Exploring chunks used in File Search](#exploring-chunks-used-in-file-search)
|
54
60
|
- [Image Generation](#image-generation)
|
@@ -61,6 +67,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
61
67
|
- [Translate](#translate)
|
62
68
|
- [Transcribe](#transcribe)
|
63
69
|
- [Speech](#speech)
|
70
|
+
- [Usage](#usage)
|
64
71
|
- [Errors](#errors-1)
|
65
72
|
- [Development](#development)
|
66
73
|
- [Release](#release)
|
@@ -98,7 +105,7 @@ and require with:
|
|
98
105
|
require "openai"
|
99
106
|
```
|
100
107
|
|
101
|
-
##
|
108
|
+
## How to use
|
102
109
|
|
103
110
|
- Get your API key from [https://platform.openai.com/account/api-keys](https://platform.openai.com/account/api-keys)
|
104
111
|
- If you belong to multiple organizations, you can get your Organization ID from [https://platform.openai.com/account/org-settings](https://platform.openai.com/account/org-settings)
|
@@ -121,6 +128,7 @@ For a more robust setup, you can configure the gem with your API keys, for examp
|
|
121
128
|
```ruby
|
122
129
|
OpenAI.configure do |config|
|
123
130
|
config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
|
131
|
+
config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN") # Optional, used for admin endpoints, created here: https://platform.openai.com/settings/organization/admin-keys
|
124
132
|
config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
|
125
133
|
config.log_errors = true # Highly recommended in development, so you can see what errors OpenAI is returning. Not recommended in production because it could leak private data to your logs.
|
126
134
|
end
|
@@ -132,10 +140,10 @@ Then you can create a client like this:
|
|
132
140
|
client = OpenAI::Client.new
|
133
141
|
```
|
134
142
|
|
135
|
-
You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token overridden:
|
143
|
+
You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token and admin_token overridden:
|
136
144
|
|
137
145
|
```ruby
|
138
|
-
client = OpenAI::Client.new(access_token: "access_token_goes_here")
|
146
|
+
client = OpenAI::Client.new(access_token: "access_token_goes_here", admin_token: "admin_token_goes_here")
|
139
147
|
```
|
140
148
|
|
141
149
|
#### Custom timeout or base URI
|
@@ -146,15 +154,15 @@ client = OpenAI::Client.new(access_token: "access_token_goes_here")
|
|
146
154
|
|
147
155
|
```ruby
|
148
156
|
client = OpenAI::Client.new(
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
157
|
+
access_token: "access_token_goes_here",
|
158
|
+
uri_base: "https://oai.hconeai.com/",
|
159
|
+
request_timeout: 240,
|
160
|
+
extra_headers: {
|
161
|
+
"X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
|
162
|
+
"X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
|
163
|
+
"Helicone-Auth": "Bearer HELICONE_API_KEY", # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
|
164
|
+
"helicone-stream-force-format" => "true", # Use this with Helicone otherwise streaming drops chunks # https://github.com/alexrudall/ruby-openai/issues/251
|
165
|
+
}
|
158
166
|
)
|
159
167
|
```
|
160
168
|
|
@@ -162,16 +170,17 @@ or when configuring the gem:
|
|
162
170
|
|
163
171
|
```ruby
|
164
172
|
OpenAI.configure do |config|
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
173
|
+
config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
|
174
|
+
config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN") # Optional, used for admin endpoints, created here: https://platform.openai.com/settings/organization/admin-keys
|
175
|
+
config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
|
176
|
+
config.log_errors = true # Optional
|
177
|
+
config.uri_base = "https://oai.hconeai.com/" # Optional
|
178
|
+
config.request_timeout = 240 # Optional
|
179
|
+
config.extra_headers = {
|
180
|
+
"X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
|
181
|
+
"X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
|
182
|
+
"Helicone-Auth": "Bearer HELICONE_API_KEY" # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
|
183
|
+
} # Optional
|
175
184
|
end
|
176
185
|
```
|
177
186
|
|
@@ -193,7 +202,7 @@ By default, `ruby-openai` does not log any `Faraday::Error`s encountered while e
|
|
193
202
|
If you would like to enable this functionality, you can set `log_errors` to `true` when configuring the client:
|
194
203
|
|
195
204
|
```ruby
|
196
|
-
|
205
|
+
client = OpenAI::Client.new(log_errors: true)
|
197
206
|
```
|
198
207
|
|
199
208
|
##### Faraday middleware
|
@@ -201,9 +210,9 @@ If you would like to enable this functionality, you can set `log_errors` to `tru
|
|
201
210
|
You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middleware/index) to the client in a block, eg. to enable verbose logging with Ruby's [Logger](https://ruby-doc.org/3.2.2/stdlibs/logger/Logger.html):
|
202
211
|
|
203
212
|
```ruby
|
204
|
-
|
205
|
-
|
206
|
-
|
213
|
+
client = OpenAI::Client.new do |f|
|
214
|
+
f.response :logger, Logger.new($stdout), bodies: true
|
215
|
+
end
|
207
216
|
```
|
208
217
|
|
209
218
|
#### Azure
|
@@ -211,16 +220,38 @@ You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middlew
|
|
211
220
|
To use the [Azure OpenAI Service](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) API, you can configure the gem like this:
|
212
221
|
|
213
222
|
```ruby
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
223
|
+
OpenAI.configure do |config|
|
224
|
+
config.access_token = ENV.fetch("AZURE_OPENAI_API_KEY")
|
225
|
+
config.uri_base = ENV.fetch("AZURE_OPENAI_URI")
|
226
|
+
config.api_type = :azure
|
227
|
+
config.api_version = "2023-03-15-preview"
|
228
|
+
end
|
220
229
|
```
|
221
230
|
|
222
231
|
where `AZURE_OPENAI_URI` is e.g. `https://custom-domain.openai.azure.com/openai/deployments/gpt-35-turbo`
|
223
232
|
|
233
|
+
#### Deepseek
|
234
|
+
|
235
|
+
[Deepseek](https://api-docs.deepseek.com/) is compatible with the OpenAI chat API. Get an access token from [here](https://platform.deepseek.com/api_keys), then:
|
236
|
+
|
237
|
+
```ruby
|
238
|
+
client = OpenAI::Client.new(
|
239
|
+
access_token: "deepseek_access_token_goes_here",
|
240
|
+
uri_base: "https://api.deepseek.com/"
|
241
|
+
)
|
242
|
+
|
243
|
+
client.chat(
|
244
|
+
parameters: {
|
245
|
+
model: "deepseek-chat", # Required.
|
246
|
+
messages: [{ role: "user", content: "Hello!"}], # Required.
|
247
|
+
temperature: 0.7,
|
248
|
+
stream: proc do |chunk, _bytesize|
|
249
|
+
print chunk.dig("choices", 0, "delta", "content")
|
250
|
+
end
|
251
|
+
}
|
252
|
+
)
|
253
|
+
```
|
254
|
+
|
224
255
|
#### Ollama
|
225
256
|
|
226
257
|
Ollama allows you to run open-source LLMs, such as Llama 3, locally. It [offers chat compatibility](https://github.com/ollama/ollama/blob/main/docs/openai.md) with the OpenAI API.
|
@@ -241,14 +272,15 @@ client = OpenAI::Client.new(
|
|
241
272
|
)
|
242
273
|
|
243
274
|
client.chat(
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
275
|
+
parameters: {
|
276
|
+
model: "llama3", # Required.
|
277
|
+
messages: [{ role: "user", content: "Hello!"}], # Required.
|
278
|
+
temperature: 0.7,
|
279
|
+
stream: proc do |chunk, _bytesize|
|
280
|
+
print chunk.dig("choices", 0, "delta", "content")
|
281
|
+
end
|
282
|
+
}
|
283
|
+
)
|
252
284
|
|
253
285
|
# => Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
|
254
286
|
```
|
@@ -258,20 +290,21 @@ client.chat(
|
|
258
290
|
[Groq API Chat](https://console.groq.com/docs/quickstart) is broadly compatible with the OpenAI API, with a [few minor differences](https://console.groq.com/docs/openai). Get an access token from [here](https://console.groq.com/keys), then:
|
259
291
|
|
260
292
|
```ruby
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
293
|
+
client = OpenAI::Client.new(
|
294
|
+
access_token: "groq_access_token_goes_here",
|
295
|
+
uri_base: "https://api.groq.com/openai"
|
296
|
+
)
|
265
297
|
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
298
|
+
client.chat(
|
299
|
+
parameters: {
|
300
|
+
model: "llama3-8b-8192", # Required.
|
301
|
+
messages: [{ role: "user", content: "Hello!"}], # Required.
|
302
|
+
temperature: 0.7,
|
303
|
+
stream: proc do |chunk, _bytesize|
|
304
|
+
print chunk.dig("choices", 0, "delta", "content")
|
305
|
+
end
|
306
|
+
}
|
307
|
+
)
|
275
308
|
```
|
276
309
|
|
277
310
|
### Counting Tokens
|
@@ -295,17 +328,24 @@ client.models.list
|
|
295
328
|
client.models.retrieve(id: "gpt-4o")
|
296
329
|
```
|
297
330
|
|
331
|
+
You can also delete any finetuned model you generated, if you're an account Owner on your OpenAI organization:
|
332
|
+
|
333
|
+
```ruby
|
334
|
+
client.models.delete(id: "ft:gpt-4o-mini:acemeco:suffix:abc123")
|
335
|
+
```
|
336
|
+
|
298
337
|
### Chat
|
299
338
|
|
300
339
|
GPT is a model that can be used to generate text in a conversational style. You can use it to [generate a response](https://platform.openai.com/docs/api-reference/chat/create) to a sequence of [messages](https://platform.openai.com/docs/guides/chat/introduction):
|
301
340
|
|
302
341
|
```ruby
|
303
342
|
response = client.chat(
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
343
|
+
parameters: {
|
344
|
+
model: "gpt-4o", # Required.
|
345
|
+
messages: [{ role: "user", content: "Hello!"}], # Required.
|
346
|
+
temperature: 0.7,
|
347
|
+
}
|
348
|
+
)
|
309
349
|
puts response.dig("choices", 0, "message", "content")
|
310
350
|
# => "Hello! How may I assist you today?"
|
311
351
|
```
|
@@ -318,14 +358,15 @@ You can stream from the API in realtime, which can be much faster and used to cr
|
|
318
358
|
|
319
359
|
```ruby
|
320
360
|
client.chat(
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
361
|
+
parameters: {
|
362
|
+
model: "gpt-4o", # Required.
|
363
|
+
messages: [{ role: "user", content: "Describe a character called Anna!"}], # Required.
|
364
|
+
temperature: 0.7,
|
365
|
+
stream: proc do |chunk, _bytesize|
|
366
|
+
print chunk.dig("choices", 0, "delta", "content")
|
367
|
+
end
|
368
|
+
}
|
369
|
+
)
|
329
370
|
# => "Anna is a young woman in her mid-twenties, with wavy chestnut hair that falls to her shoulders..."
|
330
371
|
```
|
331
372
|
|
@@ -334,12 +375,13 @@ Note: In order to get usage information, you can provide the [`stream_options` p
|
|
334
375
|
```ruby
|
335
376
|
stream_proc = proc { |chunk, _bytesize| puts "--------------"; puts chunk.inspect; }
|
336
377
|
client.chat(
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
378
|
+
parameters: {
|
379
|
+
model: "gpt-4o",
|
380
|
+
stream: stream_proc,
|
381
|
+
stream_options: { include_usage: true },
|
382
|
+
messages: [{ role: "user", content: "Hello!"}],
|
383
|
+
}
|
384
|
+
)
|
343
385
|
# => --------------
|
344
386
|
# => {"id"=>"chatcmpl-7bbq05PiZqlHxjV1j7OHnKKDURKaf", "object"=>"chat.completion.chunk", "created"=>1718750612, "model"=>"gpt-4o-2024-05-13", "system_fingerprint"=>"fp_9cb5d38cf7", "choices"=>[{"index"=>0, "delta"=>{"role"=>"assistant", "content"=>""}, "logprobs"=>nil, "finish_reason"=>nil}], "usage"=>nil}
|
345
387
|
# => --------------
|
@@ -366,10 +408,11 @@ messages = [
|
|
366
408
|
}
|
367
409
|
]
|
368
410
|
response = client.chat(
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
411
|
+
parameters: {
|
412
|
+
model: "gpt-4-vision-preview", # Required.
|
413
|
+
messages: [{ role: "user", content: messages}], # Required.
|
414
|
+
}
|
415
|
+
)
|
373
416
|
puts response.dig("choices", 0, "message", "content")
|
374
417
|
# => "The image depicts a serene natural landscape featuring a long wooden boardwalk extending straight ahead"
|
375
418
|
```
|
@@ -379,21 +422,22 @@ puts response.dig("choices", 0, "message", "content")
|
|
379
422
|
You can set the response_format to ask for responses in JSON:
|
380
423
|
|
381
424
|
```ruby
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
425
|
+
response = client.chat(
|
426
|
+
parameters: {
|
427
|
+
model: "gpt-4o",
|
428
|
+
response_format: { type: "json_object" },
|
429
|
+
messages: [{ role: "user", content: "Hello! Give me some JSON please."}],
|
430
|
+
temperature: 0.7,
|
431
|
+
})
|
432
|
+
puts response.dig("choices", 0, "message", "content")
|
433
|
+
# =>
|
434
|
+
# {
|
435
|
+
# "name": "John",
|
436
|
+
# "age": 30,
|
437
|
+
# "city": "New York",
|
438
|
+
# "hobbies": ["reading", "traveling", "hiking"],
|
439
|
+
# "isStudent": false
|
440
|
+
# }
|
397
441
|
```
|
398
442
|
|
399
443
|
You can stream it as well!
|
@@ -403,26 +447,116 @@ You can stream it as well!
|
|
403
447
|
parameters: {
|
404
448
|
model: "gpt-4o",
|
405
449
|
messages: [{ role: "user", content: "Can I have some JSON please?"}],
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
450
|
+
response_format: { type: "json_object" },
|
451
|
+
stream: proc do |chunk, _bytesize|
|
452
|
+
print chunk.dig("choices", 0, "delta", "content")
|
453
|
+
end
|
454
|
+
}
|
455
|
+
)
|
456
|
+
# =>
|
457
|
+
# {
|
458
|
+
# "message": "Sure, please let me know what specific JSON data you are looking for.",
|
459
|
+
# "JSON_data": {
|
460
|
+
# "example_1": {
|
461
|
+
# "key_1": "value_1",
|
462
|
+
# "key_2": "value_2",
|
463
|
+
# "key_3": "value_3"
|
464
|
+
# },
|
465
|
+
# "example_2": {
|
466
|
+
# "key_4": "value_4",
|
467
|
+
# "key_5": "value_5",
|
468
|
+
# "key_6": "value_6"
|
469
|
+
# }
|
470
|
+
# }
|
471
|
+
# }
|
472
|
+
```
|
473
|
+
|
474
|
+
### Responses API
|
475
|
+
[OpenAI's most advanced interface for generating model responses](https://platform.openai.com/docs/api-reference/responses). Supports text and image inputs, and text outputs. Create stateful interactions with the model, using the output of previous responses as input. Extend the model's capabilities with built-in tools for file search, web search, computer use, and more. Allow the model access to external systems and data using function calling.
|
476
|
+
|
477
|
+
#### Create a Response
|
478
|
+
```ruby
|
479
|
+
response = client.responses.create(parameters: {
|
480
|
+
model: "gpt-4o",
|
481
|
+
input: "Hello! I'm Szymon!"
|
482
|
+
})
|
483
|
+
puts response.dig("output", 0, "content", 0, "text")
|
484
|
+
# => Hello Szymon! How can I assist you today?
|
485
|
+
```
|
486
|
+
|
487
|
+
#### Follow-up Messages
|
488
|
+
```ruby
|
489
|
+
followup = client.responses.create(parameters: {
|
490
|
+
model: "gpt-4o",
|
491
|
+
input: "Remind me, what is my name?",
|
492
|
+
previous_response_id: response["id"]
|
493
|
+
})
|
494
|
+
puts followup.dig("output", 0, "content", 0, "text")
|
495
|
+
# => Your name is Szymon! How can I help you today?
|
496
|
+
```
|
497
|
+
|
498
|
+
#### Tool Calls
|
499
|
+
```ruby
|
500
|
+
response = client.responses.create(parameters: {
|
501
|
+
model: "gpt-4o",
|
502
|
+
input: "What's the weather in Paris?",
|
503
|
+
tools: [
|
504
|
+
{
|
505
|
+
"type" => "function",
|
506
|
+
"name" => "get_current_weather",
|
507
|
+
"description" => "Get the current weather in a given location",
|
508
|
+
"parameters" => {
|
509
|
+
"type" => "object",
|
510
|
+
"properties" => {
|
511
|
+
"location" => {
|
512
|
+
"type" => "string",
|
513
|
+
"description" => "The geographic location to get the weather for"
|
514
|
+
}
|
515
|
+
},
|
516
|
+
"required" => ["location"]
|
423
517
|
}
|
424
518
|
}
|
519
|
+
]
|
520
|
+
})
|
521
|
+
puts response.dig("output", 0, "name")
|
522
|
+
# => "get_current_weather"
|
523
|
+
```
|
524
|
+
|
525
|
+
#### Streaming
|
526
|
+
```ruby
|
527
|
+
client.responses.create(
|
528
|
+
parameters: {
|
529
|
+
model: "gpt-4o", # Required.
|
530
|
+
input: "Hello!", # Required.
|
531
|
+
stream: proc do |chunk, _bytesize|
|
532
|
+
if chunk["type"] == "response.output_text.delta"
|
533
|
+
print chunk["delta"]
|
534
|
+
$stdout.flush # Ensure output is displayed immediately
|
535
|
+
end
|
536
|
+
end
|
425
537
|
}
|
538
|
+
)
|
539
|
+
# => "Hi there! How can I assist you today?..."
|
540
|
+
```
|
541
|
+
|
542
|
+
#### Retrieve a Response
|
543
|
+
```ruby
|
544
|
+
retrieved_response = client.responses.retrieve(response_id: response["id"])
|
545
|
+
puts retrieved_response["object"]
|
546
|
+
# => "response"
|
547
|
+
```
|
548
|
+
|
549
|
+
#### Delete a Response
|
550
|
+
```ruby
|
551
|
+
deletion = client.responses.delete(response_id: response["id"])
|
552
|
+
puts deletion["deleted"]
|
553
|
+
# => true
|
554
|
+
```
|
555
|
+
|
556
|
+
#### List Input Items
|
557
|
+
```ruby
|
558
|
+
input_items = client.responses.input_items(response_id: response["id"])
|
559
|
+
puts input_items["object"] # => "list"
|
426
560
|
```
|
427
561
|
|
428
562
|
### Functions
|
@@ -430,7 +564,6 @@ You can stream it as well!
|
|
430
564
|
You can describe and pass in functions and the model will intelligently choose to output a JSON object containing arguments to call them - eg., to use your method `get_current_weather` to get the weather in a given location. Note that tool_choice is optional, but if you exclude it, the model will choose whether to use the function or not ([see here](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice)).
|
431
565
|
|
432
566
|
```ruby
|
433
|
-
|
434
567
|
def get_current_weather(location:, unit: "fahrenheit")
|
435
568
|
# Here you could use a weather api to fetch the weather.
|
436
569
|
"The weather in #{location} is nice 🌞 #{unit}"
|
@@ -471,8 +604,9 @@ response =
|
|
471
604
|
},
|
472
605
|
}
|
473
606
|
],
|
474
|
-
|
475
|
-
|
607
|
+
# Optional, defaults to "auto"
|
608
|
+
# Can also put "none" or specific functions, see docs
|
609
|
+
tool_choice: "required"
|
476
610
|
},
|
477
611
|
)
|
478
612
|
|
@@ -486,12 +620,13 @@ if message["role"] == "assistant" && message["tool_calls"]
|
|
486
620
|
tool_call.dig("function", "arguments"),
|
487
621
|
{ symbolize_names: true },
|
488
622
|
)
|
489
|
-
function_response =
|
623
|
+
function_response =
|
624
|
+
case function_name
|
490
625
|
when "get_current_weather"
|
491
626
|
get_current_weather(**function_args) # => "The weather is nice 🌞"
|
492
627
|
else
|
493
628
|
# decide how to handle
|
494
|
-
|
629
|
+
end
|
495
630
|
|
496
631
|
# For a subsequent message with the role "tool", OpenAI requires the preceding message to have a tool_calls argument.
|
497
632
|
messages << message
|
@@ -508,7 +643,8 @@ if message["role"] == "assistant" && message["tool_calls"]
|
|
508
643
|
parameters: {
|
509
644
|
model: "gpt-4o",
|
510
645
|
messages: messages
|
511
|
-
|
646
|
+
}
|
647
|
+
)
|
512
648
|
|
513
649
|
puts second_response.dig("choices", 0, "message", "content")
|
514
650
|
|
@@ -524,11 +660,12 @@ Hit the OpenAI API for a completion using other GPT-3 models:
|
|
524
660
|
|
525
661
|
```ruby
|
526
662
|
response = client.completions(
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
663
|
+
parameters: {
|
664
|
+
model: "gpt-4o",
|
665
|
+
prompt: "Once upon a time",
|
666
|
+
max_tokens: 5
|
667
|
+
}
|
668
|
+
)
|
532
669
|
puts response["choices"].map { |c| c["text"] }
|
533
670
|
# => [", there lived a great"]
|
534
671
|
```
|
@@ -539,10 +676,10 @@ You can use the embeddings endpoint to get a vector of numbers representing an i
|
|
539
676
|
|
540
677
|
```ruby
|
541
678
|
response = client.embeddings(
|
542
|
-
|
543
|
-
|
544
|
-
|
545
|
-
|
679
|
+
parameters: {
|
680
|
+
model: "text-embedding-ada-002",
|
681
|
+
input: "The food was delicious and the waiter..."
|
682
|
+
}
|
546
683
|
)
|
547
684
|
|
548
685
|
puts response.dig("data", 0, "embedding")
|
@@ -688,9 +825,9 @@ You can then use this file ID to create a fine tuning job:
|
|
688
825
|
|
689
826
|
```ruby
|
690
827
|
response = client.finetunes.create(
|
691
|
-
|
692
|
-
|
693
|
-
|
828
|
+
parameters: {
|
829
|
+
training_file: file_id,
|
830
|
+
model: "gpt-4o"
|
694
831
|
})
|
695
832
|
fine_tune_id = response["id"]
|
696
833
|
```
|
@@ -713,20 +850,26 @@ This fine-tuned model name can then be used in chat completions:
|
|
713
850
|
|
714
851
|
```ruby
|
715
852
|
response = client.chat(
|
716
|
-
|
717
|
-
|
718
|
-
|
719
|
-
|
853
|
+
parameters: {
|
854
|
+
model: fine_tuned_model,
|
855
|
+
messages: [{ role: "user", content: "I love Mondays!" }]
|
856
|
+
}
|
720
857
|
)
|
721
858
|
response.dig("choices", 0, "message", "content")
|
722
859
|
```
|
723
860
|
|
724
861
|
You can also capture the events for a job:
|
725
862
|
|
726
|
-
```
|
863
|
+
```ruby
|
727
864
|
client.finetunes.list_events(id: fine_tune_id)
|
728
865
|
```
|
729
866
|
|
867
|
+
You can also delete any finetuned model you generated, if you're an account Owner on your OpenAI organization:
|
868
|
+
|
869
|
+
```ruby
|
870
|
+
client.models.delete(id: fine_tune_id)
|
871
|
+
```
|
872
|
+
|
730
873
|
### Vector Stores
|
731
874
|
|
732
875
|
Vector Store objects give the File Search tool the ability to search your files.
|
@@ -868,25 +1011,26 @@ To create a new assistant:
|
|
868
1011
|
|
869
1012
|
```ruby
|
870
1013
|
response = client.assistants.create(
|
871
|
-
|
872
|
-
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
|
877
|
-
|
878
|
-
|
879
|
-
|
880
|
-
|
881
|
-
|
882
|
-
|
883
|
-
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
1014
|
+
parameters: {
|
1015
|
+
model: "gpt-4o",
|
1016
|
+
name: "OpenAI-Ruby test assistant",
|
1017
|
+
description: nil,
|
1018
|
+
instructions: "You are a Ruby dev bot. When asked a question, write and run Ruby code to answer the question",
|
1019
|
+
tools: [
|
1020
|
+
{ type: "code_interpreter" },
|
1021
|
+
{ type: "file_search" }
|
1022
|
+
],
|
1023
|
+
tool_resources: {
|
1024
|
+
code_interpreter: {
|
1025
|
+
file_ids: [] # See Files section above for how to upload files
|
1026
|
+
},
|
1027
|
+
file_search: {
|
1028
|
+
vector_store_ids: [] # See Vector Stores section above for how to add vector stores
|
1029
|
+
}
|
1030
|
+
},
|
1031
|
+
"metadata": { my_internal_version_id: "1.0.0" }
|
1032
|
+
}
|
1033
|
+
)
|
890
1034
|
assistant_id = response["id"]
|
891
1035
|
```
|
892
1036
|
|
@@ -906,16 +1050,17 @@ You can modify an existing assistant using the assistant's id (see [API document
|
|
906
1050
|
|
907
1051
|
```ruby
|
908
1052
|
response = client.assistants.modify(
|
909
|
-
|
910
|
-
|
911
|
-
|
912
|
-
|
913
|
-
|
1053
|
+
id: assistant_id,
|
1054
|
+
parameters: {
|
1055
|
+
name: "Modified Test Assistant for OpenAI-Ruby",
|
1056
|
+
metadata: { my_internal_version_id: '1.0.1' }
|
1057
|
+
}
|
1058
|
+
)
|
914
1059
|
```
|
915
1060
|
|
916
1061
|
You can delete assistants:
|
917
1062
|
|
918
|
-
```
|
1063
|
+
```ruby
|
919
1064
|
client.assistants.delete(id: assistant_id)
|
920
1065
|
```
|
921
1066
|
|
@@ -931,11 +1076,12 @@ thread_id = response["id"]
|
|
931
1076
|
|
932
1077
|
# Add initial message from user (see https://platform.openai.com/docs/api-reference/messages/createMessage)
|
933
1078
|
message_id = client.messages.create(
|
934
|
-
|
935
|
-
|
936
|
-
|
937
|
-
|
938
|
-
|
1079
|
+
thread_id: thread_id,
|
1080
|
+
parameters: {
|
1081
|
+
role: "user", # Required for manually created messages
|
1082
|
+
content: "Can you help me write an API library to interact with the OpenAI API please?"
|
1083
|
+
}
|
1084
|
+
)["id"]
|
939
1085
|
|
940
1086
|
# Retrieve individual message
|
941
1087
|
message = client.messages.retrieve(thread_id: thread_id, id: message_id)
|
@@ -959,32 +1105,38 @@ To submit a thread to be evaluated with the model of an assistant, create a `Run
|
|
959
1105
|
|
960
1106
|
```ruby
|
961
1107
|
# Create run (will use instruction/model/tools from Assistant's definition)
|
962
|
-
response = client.runs.create(
|
963
|
-
|
964
|
-
|
965
|
-
|
966
|
-
|
967
|
-
|
1108
|
+
response = client.runs.create(
|
1109
|
+
thread_id: thread_id,
|
1110
|
+
parameters: {
|
1111
|
+
assistant_id: assistant_id,
|
1112
|
+
max_prompt_tokens: 256,
|
1113
|
+
max_completion_tokens: 16
|
1114
|
+
}
|
1115
|
+
)
|
968
1116
|
run_id = response['id']
|
969
1117
|
```
|
970
1118
|
|
971
1119
|
You can stream the message chunks as they come through:
|
972
1120
|
|
973
1121
|
```ruby
|
974
|
-
client.runs.create(
|
975
|
-
|
976
|
-
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
981
|
-
|
982
|
-
|
1122
|
+
client.runs.create(
|
1123
|
+
thread_id: thread_id,
|
1124
|
+
parameters: {
|
1125
|
+
assistant_id: assistant_id,
|
1126
|
+
max_prompt_tokens: 256,
|
1127
|
+
max_completion_tokens: 16,
|
1128
|
+
stream: proc do |chunk, _bytesize|
|
1129
|
+
if chunk["object"] == "thread.message.delta"
|
1130
|
+
print chunk.dig("delta", "content", 0, "text", "value")
|
1131
|
+
end
|
1132
|
+
end
|
1133
|
+
}
|
1134
|
+
)
|
983
1135
|
```
|
984
1136
|
|
985
1137
|
To get the status of a Run:
|
986
1138
|
|
987
|
-
```
|
1139
|
+
```ruby
|
988
1140
|
response = client.runs.retrieve(id: run_id, thread_id: thread_id)
|
989
1141
|
status = response['status']
|
990
1142
|
```
|
@@ -993,23 +1145,23 @@ The `status` response can include the following strings `queued`, `in_progress`,
|
|
993
1145
|
|
994
1146
|
```ruby
|
995
1147
|
while true do
|
996
|
-
|
997
|
-
|
998
|
-
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1002
|
-
|
1003
|
-
|
1004
|
-
|
1005
|
-
|
1006
|
-
|
1007
|
-
|
1008
|
-
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
1012
|
-
|
1148
|
+
response = client.runs.retrieve(id: run_id, thread_id: thread_id)
|
1149
|
+
status = response['status']
|
1150
|
+
|
1151
|
+
case status
|
1152
|
+
when 'queued', 'in_progress', 'cancelling'
|
1153
|
+
puts 'Sleeping'
|
1154
|
+
sleep 1 # Wait one second and poll again
|
1155
|
+
when 'completed'
|
1156
|
+
break # Exit loop and report result to user
|
1157
|
+
when 'requires_action'
|
1158
|
+
# Handle tool calls (see below)
|
1159
|
+
when 'cancelled', 'failed', 'expired'
|
1160
|
+
puts response['last_error'].inspect
|
1161
|
+
break # or `exit`
|
1162
|
+
else
|
1163
|
+
puts "Unknown status response: #{status}"
|
1164
|
+
end
|
1013
1165
|
end
|
1014
1166
|
```
|
1015
1167
|
|
@@ -1021,30 +1173,30 @@ messages = client.messages.list(thread_id: thread_id, parameters: { order: 'asc'
|
|
1021
1173
|
|
1022
1174
|
# Alternatively retrieve the `run steps` for the run which link to the messages:
|
1023
1175
|
run_steps = client.run_steps.list(thread_id: thread_id, run_id: run_id, parameters: { order: 'asc' })
|
1024
|
-
new_message_ids = run_steps['data'].filter_map
|
1176
|
+
new_message_ids = run_steps['data'].filter_map do |step|
|
1025
1177
|
if step['type'] == 'message_creation'
|
1026
1178
|
step.dig('step_details', "message_creation", "message_id")
|
1027
1179
|
end # Ignore tool calls, because they don't create new messages.
|
1028
|
-
|
1180
|
+
end
|
1029
1181
|
|
1030
1182
|
# Retrieve the individual messages
|
1031
|
-
new_messages = new_message_ids.map
|
1183
|
+
new_messages = new_message_ids.map do |msg_id|
|
1032
1184
|
client.messages.retrieve(id: msg_id, thread_id: thread_id)
|
1033
|
-
|
1185
|
+
end
|
1034
1186
|
|
1035
1187
|
# Find the actual response text in the content array of the messages
|
1036
|
-
new_messages.each
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1040
|
-
|
1041
|
-
|
1042
|
-
|
1043
|
-
|
1044
|
-
|
1045
|
-
|
1046
|
-
|
1047
|
-
|
1188
|
+
new_messages.each do |msg|
|
1189
|
+
msg['content'].each do |content_item|
|
1190
|
+
case content_item['type']
|
1191
|
+
when 'text'
|
1192
|
+
puts content_item.dig('text', 'value')
|
1193
|
+
# Also handle annotations
|
1194
|
+
when 'image_file'
|
1195
|
+
# Use File endpoint to retrieve file contents via id
|
1196
|
+
id = content_item.dig('image_file', 'file_id')
|
1197
|
+
end
|
1198
|
+
end
|
1199
|
+
end
|
1048
1200
|
```
|
1049
1201
|
|
1050
1202
|
You can also update the metadata on messages, including messages that come from the assistant.
|
@@ -1053,7 +1205,11 @@ You can also update the metadata on messages, including messages that come from
|
|
1053
1205
|
metadata = {
|
1054
1206
|
user_id: "abc123"
|
1055
1207
|
}
|
1056
|
-
message = client.messages.modify(
|
1208
|
+
message = client.messages.modify(
|
1209
|
+
id: message_id,
|
1210
|
+
thread_id: thread_id,
|
1211
|
+
parameters: { metadata: metadata },
|
1212
|
+
)
|
1057
1213
|
```
|
1058
1214
|
|
1059
1215
|
At any time you can list all runs which have been performed on a particular thread or are currently running:
|
@@ -1072,41 +1228,117 @@ run_id = response['id']
|
|
1072
1228
|
thread_id = response['thread_id']
|
1073
1229
|
```
|
1074
1230
|
|
1231
|
+
#### Vision in a thread
|
1232
|
+
|
1233
|
+
You can include images in a thread and they will be described & read by the LLM. In this example I'm using [this file](https://upload.wikimedia.org/wikipedia/commons/7/70/Example.png):
|
1234
|
+
|
1235
|
+
```ruby
|
1236
|
+
require "openai"
|
1237
|
+
|
1238
|
+
# Make a client
|
1239
|
+
client = OpenAI::Client.new(
|
1240
|
+
access_token: "access_token_goes_here",
|
1241
|
+
log_errors: true # Don't log errors in production.
|
1242
|
+
)
|
1243
|
+
|
1244
|
+
# Upload image as a file
|
1245
|
+
file_id = client.files.upload(
|
1246
|
+
parameters: {
|
1247
|
+
file: "path/to/example.png",
|
1248
|
+
purpose: "assistants",
|
1249
|
+
}
|
1250
|
+
)["id"]
|
1251
|
+
|
1252
|
+
# Create assistant (You could also use an existing one here)
|
1253
|
+
assistant_id = client.assistants.create(
|
1254
|
+
parameters: {
|
1255
|
+
model: "gpt-4o",
|
1256
|
+
name: "Image reader",
|
1257
|
+
instructions: "You are an image describer. You describe the contents of images.",
|
1258
|
+
}
|
1259
|
+
)["id"]
|
1260
|
+
|
1261
|
+
# Create thread
|
1262
|
+
thread_id = client.threads.create["id"]
|
1263
|
+
|
1264
|
+
# Add image in message
|
1265
|
+
client.messages.create(
|
1266
|
+
thread_id: thread_id,
|
1267
|
+
parameters: {
|
1268
|
+
role: "user", # Required for manually created messages
|
1269
|
+
content: [
|
1270
|
+
{
|
1271
|
+
"type": "text",
|
1272
|
+
"text": "What's in this image?"
|
1273
|
+
},
|
1274
|
+
{
|
1275
|
+
"type": "image_file",
|
1276
|
+
"image_file": { "file_id": file_id }
|
1277
|
+
}
|
1278
|
+
]
|
1279
|
+
}
|
1280
|
+
)
|
1281
|
+
|
1282
|
+
# Run thread
|
1283
|
+
run_id = client.runs.create(
|
1284
|
+
thread_id: thread_id,
|
1285
|
+
parameters: { assistant_id: assistant_id }
|
1286
|
+
)["id"]
|
1287
|
+
|
1288
|
+
# Wait until run in complete
|
1289
|
+
status = nil
|
1290
|
+
until status == "completed" do
|
1291
|
+
sleep(0.1)
|
1292
|
+
status = client.runs.retrieve(id: run_id, thread_id: thread_id)['status']
|
1293
|
+
end
|
1294
|
+
|
1295
|
+
# Get the response
|
1296
|
+
messages = client.messages.list(thread_id: thread_id, parameters: { order: 'asc' })
|
1297
|
+
messages.dig("data", -1, "content", 0, "text", "value")
|
1298
|
+
=> "The image contains a placeholder graphic with a tilted, stylized representation of a postage stamp in the top part, which includes an abstract landscape with hills and a sun. Below the stamp, in the middle of the image, there is italicized text in a light golden color that reads, \"This is just an example.\" The background is a light pastel shade, and a yellow border frames the entire image."
|
1299
|
+
```
|
1300
|
+
|
1075
1301
|
#### Runs involving function tools
|
1076
1302
|
|
1077
1303
|
In case you are allowing the assistant to access `function` tools (they are defined in the same way as functions during chat completion), you might get a status code of `requires_action` when the assistant wants you to evaluate one or more function tools:
|
1078
1304
|
|
1079
1305
|
```ruby
|
1080
1306
|
def get_current_weather(location:, unit: "celsius")
|
1081
|
-
|
1082
|
-
|
1083
|
-
|
1084
|
-
|
1085
|
-
|
1086
|
-
|
1307
|
+
# Your function code goes here
|
1308
|
+
if location =~ /San Francisco/i
|
1309
|
+
return unit == "celsius" ? "The weather is nice 🌞 at 27°C" : "The weather is nice 🌞 at 80°F"
|
1310
|
+
else
|
1311
|
+
return unit == "celsius" ? "The weather is icy 🥶 at -5°C" : "The weather is icy 🥶 at 23°F"
|
1312
|
+
end
|
1087
1313
|
end
|
1088
1314
|
|
1089
1315
|
if status == 'requires_action'
|
1316
|
+
tools_to_call = response.dig('required_action', 'submit_tool_outputs', 'tool_calls')
|
1090
1317
|
|
1091
|
-
|
1092
|
-
|
1093
|
-
|
1094
|
-
|
1095
|
-
|
1096
|
-
|
1097
|
-
|
1098
|
-
{ symbolize_names: true },
|
1099
|
-
)
|
1318
|
+
my_tool_outputs = tools_to_call.map { |tool|
|
1319
|
+
# Call the functions based on the tool's name
|
1320
|
+
function_name = tool.dig('function', 'name')
|
1321
|
+
arguments = JSON.parse(
|
1322
|
+
tool.dig("function", "arguments"),
|
1323
|
+
{ symbolize_names: true },
|
1324
|
+
)
|
1100
1325
|
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
1326
|
+
tool_output = case function_name
|
1327
|
+
when "get_current_weather"
|
1328
|
+
get_current_weather(**arguments)
|
1329
|
+
end
|
1105
1330
|
|
1106
|
-
|
1331
|
+
{
|
1332
|
+
tool_call_id: tool['id'],
|
1333
|
+
output: tool_output,
|
1107
1334
|
}
|
1335
|
+
}
|
1108
1336
|
|
1109
|
-
|
1337
|
+
client.runs.submit_tool_outputs(
|
1338
|
+
thread_id: thread_id,
|
1339
|
+
run_id: run_id,
|
1340
|
+
parameters: { tool_outputs: my_tool_outputs }
|
1341
|
+
)
|
1110
1342
|
end
|
1111
1343
|
```
|
1112
1344
|
|
@@ -1122,13 +1354,13 @@ An example spec can be found [here](https://github.com/alexrudall/ruby-openai/bl
|
|
1122
1354
|
|
1123
1355
|
Here's how to get the chunks used in a file search. In this example I'm using [this file](https://css4.pub/2015/textbook/somatosensory.pdf):
|
1124
1356
|
|
1125
|
-
```
|
1357
|
+
```ruby
|
1126
1358
|
require "openai"
|
1127
1359
|
|
1128
1360
|
# Make a client
|
1129
1361
|
client = OpenAI::Client.new(
|
1130
1362
|
access_token: "access_token_goes_here",
|
1131
|
-
log_errors: true # Don't
|
1363
|
+
log_errors: true # Don't log errors in production.
|
1132
1364
|
)
|
1133
1365
|
|
1134
1366
|
# Upload your file(s)
|
@@ -1228,7 +1460,12 @@ Generate images using DALL·E 2 or DALL·E 3!
|
|
1228
1460
|
For DALL·E 2 the size of any generated images must be one of `256x256`, `512x512` or `1024x1024` - if not specified the image will default to `1024x1024`.
|
1229
1461
|
|
1230
1462
|
```ruby
|
1231
|
-
response = client.images.generate(
|
1463
|
+
response = client.images.generate(
|
1464
|
+
parameters: {
|
1465
|
+
prompt: "A baby sea otter cooking pasta wearing a hat of some sort",
|
1466
|
+
size: "256x256",
|
1467
|
+
}
|
1468
|
+
)
|
1232
1469
|
puts response.dig("data", 0, "url")
|
1233
1470
|
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
|
1234
1471
|
```
|
@@ -1240,7 +1477,14 @@ puts response.dig("data", 0, "url")
|
|
1240
1477
|
For DALL·E 3 the size of any generated images must be one of `1024x1024`, `1024x1792` or `1792x1024`. Additionally the quality of the image can be specified to either `standard` or `hd`.
|
1241
1478
|
|
1242
1479
|
```ruby
|
1243
|
-
response = client.images.generate(
|
1480
|
+
response = client.images.generate(
|
1481
|
+
parameters: {
|
1482
|
+
prompt: "A springer spaniel cooking pasta wearing a hat of some sort",
|
1483
|
+
model: "dall-e-3",
|
1484
|
+
size: "1024x1792",
|
1485
|
+
quality: "standard",
|
1486
|
+
}
|
1487
|
+
)
|
1244
1488
|
puts response.dig("data", 0, "url")
|
1245
1489
|
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
|
1246
1490
|
```
|
@@ -1252,7 +1496,13 @@ puts response.dig("data", 0, "url")
|
|
1252
1496
|
Fill in the transparent part of an image, or upload a mask with transparent sections to indicate the parts of an image that can be changed according to your prompt...
|
1253
1497
|
|
1254
1498
|
```ruby
|
1255
|
-
response = client.images.edit(
|
1499
|
+
response = client.images.edit(
|
1500
|
+
parameters: {
|
1501
|
+
prompt: "A solid red Ruby on a blue background",
|
1502
|
+
image: "image.png",
|
1503
|
+
mask: "mask.png",
|
1504
|
+
}
|
1505
|
+
)
|
1256
1506
|
puts response.dig("data", 0, "url")
|
1257
1507
|
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
|
1258
1508
|
```
|
@@ -1292,10 +1542,11 @@ The translations API takes as input the audio file in any of the supported langu
|
|
1292
1542
|
|
1293
1543
|
```ruby
|
1294
1544
|
response = client.audio.translate(
|
1295
|
-
|
1296
|
-
|
1297
|
-
|
1298
|
-
|
1545
|
+
parameters: {
|
1546
|
+
model: "whisper-1",
|
1547
|
+
file: File.open("path_to_file", "rb"),
|
1548
|
+
}
|
1549
|
+
)
|
1299
1550
|
puts response["text"]
|
1300
1551
|
# => "Translation of the text"
|
1301
1552
|
```
|
@@ -1308,11 +1559,12 @@ You can pass the language of the audio file to improve transcription quality. Su
|
|
1308
1559
|
|
1309
1560
|
```ruby
|
1310
1561
|
response = client.audio.transcribe(
|
1311
|
-
|
1312
|
-
|
1313
|
-
|
1314
|
-
|
1315
|
-
|
1562
|
+
parameters: {
|
1563
|
+
model: "whisper-1",
|
1564
|
+
file: File.open("path_to_file", "rb"),
|
1565
|
+
language: "en", # Optional
|
1566
|
+
}
|
1567
|
+
)
|
1316
1568
|
puts response["text"]
|
1317
1569
|
# => "Transcription of the text"
|
1318
1570
|
```
|
@@ -1328,23 +1580,81 @@ response = client.audio.speech(
|
|
1328
1580
|
input: "This is a speech test!",
|
1329
1581
|
voice: "alloy",
|
1330
1582
|
response_format: "mp3", # Optional
|
1331
|
-
speed: 1.0 # Optional
|
1583
|
+
speed: 1.0, # Optional
|
1332
1584
|
}
|
1333
1585
|
)
|
1334
1586
|
File.binwrite('demo.mp3', response)
|
1335
1587
|
# => mp3 file that plays: "This is a speech test!"
|
1336
1588
|
```
|
1337
1589
|
|
1338
|
-
###
|
1590
|
+
### Usage
|
1591
|
+
The Usage API provides information about the cost of various OpenAI services within your organization.
|
1592
|
+
To use Admin APIs like Usage, you need to set an OPENAI_ADMIN_TOKEN, which can be generated [here](https://platform.openai.com/settings/organization/admin-keys).
|
1339
1593
|
|
1340
|
-
|
1594
|
+
```ruby
|
1595
|
+
OpenAI.configure do |config|
|
1596
|
+
config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN")
|
1597
|
+
end
|
1341
1598
|
|
1599
|
+
# or
|
1600
|
+
|
1601
|
+
client = OpenAI::Client.new(admin_token: "123abc")
|
1342
1602
|
```
|
1343
|
-
|
1344
|
-
|
1345
|
-
|
1346
|
-
|
1603
|
+
|
1604
|
+
You can retrieve usage data for different endpoints and time periods:
|
1605
|
+
|
1606
|
+
```ruby
|
1607
|
+
one_day_ago = Time.now.to_i - 86_400
|
1608
|
+
|
1609
|
+
# Retrieve costs data
|
1610
|
+
response = client.usage.costs(parameters: { start_time: one_day_ago })
|
1611
|
+
response["data"].each do |bucket|
|
1612
|
+
bucket["results"].each do |result|
|
1613
|
+
puts "#{Time.at(bucket["start_time"]).to_date}: $#{result.dig("amount", "value").round(2)}"
|
1347
1614
|
end
|
1615
|
+
end
|
1616
|
+
=> 2025-02-09: $0.0
|
1617
|
+
=> 2025-02-10: $0.42
|
1618
|
+
|
1619
|
+
# Retrieve completions usage data
|
1620
|
+
response = client.usage.completions(parameters: { start_time: one_day_ago })
|
1621
|
+
puts response["data"]
|
1622
|
+
|
1623
|
+
# Retrieve embeddings usage data
|
1624
|
+
response = client.usage.embeddings(parameters: { start_time: one_day_ago })
|
1625
|
+
puts response["data"]
|
1626
|
+
|
1627
|
+
# Retrieve moderations usage data
|
1628
|
+
response = client.usage.moderations(parameters: { start_time: one_day_ago })
|
1629
|
+
puts response["data"]
|
1630
|
+
|
1631
|
+
# Retrieve image generation usage data
|
1632
|
+
response = client.usage.images(parameters: { start_time: one_day_ago })
|
1633
|
+
puts response["data"]
|
1634
|
+
|
1635
|
+
# Retrieve audio speech usage data
|
1636
|
+
response = client.usage.audio_speeches(parameters: { start_time: one_day_ago })
|
1637
|
+
puts response["data"]
|
1638
|
+
|
1639
|
+
# Retrieve audio transcription usage data
|
1640
|
+
response = client.usage.audio_transcriptions(parameters: { start_time: one_day_ago })
|
1641
|
+
puts response["data"]
|
1642
|
+
|
1643
|
+
# Retrieve vector stores usage data
|
1644
|
+
response = client.usage.vector_stores(parameters: { start_time: one_day_ago })
|
1645
|
+
puts response["data"]
|
1646
|
+
```
|
1647
|
+
|
1648
|
+
### Errors
|
1649
|
+
|
1650
|
+
HTTP errors can be caught like this:
|
1651
|
+
|
1652
|
+
```ruby
|
1653
|
+
begin
|
1654
|
+
OpenAI::Client.new.models.retrieve(id: "gpt-4o")
|
1655
|
+
rescue Faraday::Error => e
|
1656
|
+
raise "Got a Faraday error: #{e}"
|
1657
|
+
end
|
1348
1658
|
```
|
1349
1659
|
|
1350
1660
|
## Development
|
@@ -1356,16 +1666,18 @@ To install this gem onto your local machine, run `bundle exec rake install`.
|
|
1356
1666
|
To run all tests, execute the command `bundle exec rake`, which will also run the linter (Rubocop). This repository uses [VCR](https://github.com/vcr/vcr) to log API requests.
|
1357
1667
|
|
1358
1668
|
> [!WARNING]
|
1359
|
-
> If you have an `OPENAI_ACCESS_TOKEN` in your `ENV`, running the specs will
|
1360
|
-
|
1361
|
-
## Release
|
1669
|
+
> If you have an `OPENAI_ACCESS_TOKEN` and `OPENAI_ADMIN_TOKEN` in your `ENV`, running the specs will hit the actual API, which will be slow and cost you money - 2 cents or more! Remove them from your environment with `unset` or similar if you just want to run the specs against the stored VCR responses.
|
1362
1670
|
|
1363
|
-
|
1671
|
+
### To check for deprecations
|
1364
1672
|
|
1365
1673
|
```
|
1366
|
-
|
1674
|
+
bundle exec ruby -e "Warning[:deprecated] = true; require 'rspec'; exit RSpec::Core::Runner.run(['spec/openai/client/http_spec.rb:25'])"
|
1367
1675
|
```
|
1368
1676
|
|
1677
|
+
## Release
|
1678
|
+
|
1679
|
+
First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN and OPENAI_ADMIN_TOKEN in your environment.
|
1680
|
+
|
1369
1681
|
Then update the version number in `version.rb`, update `CHANGELOG.md`, run `bundle install` to update Gemfile.lock, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
1370
1682
|
|
1371
1683
|
## Contributing
|