ruby-openai 7.3.1 → 8.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/README.md CHANGED
@@ -1,14 +1,17 @@
1
1
  # Ruby OpenAI
2
-
3
2
  [![Gem Version](https://img.shields.io/gem/v/ruby-openai.svg)](https://rubygems.org/gems/ruby-openai)
4
3
  [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/alexrudall/ruby-openai/blob/main/LICENSE.txt)
5
4
  [![CircleCI Build Status](https://circleci.com/gh/alexrudall/ruby-openai.svg?style=shield)](https://circleci.com/gh/alexrudall/ruby-openai)
6
5
 
7
6
  Use the [OpenAI API](https://openai.com/blog/openai-api/) with Ruby! 🤖❤️
8
7
 
9
- Stream text with GPT-4o, transcribe and translate audio with Whisper, or create images with DALL·E...
8
+ Stream text with GPT-4, transcribe and translate audio with Whisper, or create images with DALL·E...
9
+
10
+ 💥 Click [subscribe now](https://mailchi.mp/8c7b574726a9/ruby-openai) to hear first about new releases in the Rails AI newsletter!
11
+
12
+ [![RailsAI Newsletter](https://github.com/user-attachments/assets/737cbb99-6029-42b8-9f22-a106725a4b1f)](https://mailchi.mp/8c7b574726a9/ruby-openai)
10
13
 
11
- [📚 Rails AI (FREE Book)](https://railsai.com) | [🎮 Ruby AI Builders Discord](https://discord.gg/k4Uc224xVD) | [🐦 X](https://x.com/alexrudall) | [🧠 Anthropic Gem](https://github.com/alexrudall/anthropic) | [🚂 Midjourney Gem](https://github.com/alexrudall/midjourney)
14
+ [🎮 Ruby AI Builders Discord](https://discord.gg/k4Uc224xVD) | [🐦 X](https://x.com/alexrudall) | [🧠 Anthropic Gem](https://github.com/alexrudall/anthropic) | [🚂 Midjourney Gem](https://github.com/alexrudall/midjourney)
12
15
 
13
16
  ## Contents
14
17
 
@@ -17,7 +20,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
17
20
  - [Installation](#installation)
18
21
  - [Bundler](#bundler)
19
22
  - [Gem install](#gem-install)
20
- - [Usage](#usage)
23
+ - [How to use](#how-to-use)
21
24
  - [Quickstart](#quickstart)
22
25
  - [With Config](#with-config)
23
26
  - [Custom timeout or base URI](#custom-timeout-or-base-uri)
@@ -26,6 +29,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
26
29
  - [Errors](#errors)
27
30
  - [Faraday middleware](#faraday-middleware)
28
31
  - [Azure](#azure)
32
+ - [Deepseek](#deepseek)
29
33
  - [Ollama](#ollama)
30
34
  - [Groq](#groq)
31
35
  - [Counting Tokens](#counting-tokens)
@@ -34,6 +38,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
34
38
  - [Streaming Chat](#streaming-chat)
35
39
  - [Vision](#vision)
36
40
  - [JSON Mode](#json-mode)
41
+ - [Responses API](#responses-api)
37
42
  - [Functions](#functions)
38
43
  - [Completions](#completions)
39
44
  - [Embeddings](#embeddings)
@@ -49,6 +54,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
49
54
  - [Threads and Messages](#threads-and-messages)
50
55
  - [Runs](#runs)
51
56
  - [Create and Run](#create-and-run)
57
+ - [Vision in a thread](#vision-in-a-thread)
52
58
  - [Runs involving function tools](#runs-involving-function-tools)
53
59
  - [Exploring chunks used in File Search](#exploring-chunks-used-in-file-search)
54
60
  - [Image Generation](#image-generation)
@@ -61,6 +67,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
61
67
  - [Translate](#translate)
62
68
  - [Transcribe](#transcribe)
63
69
  - [Speech](#speech)
70
+ - [Usage](#usage)
64
71
  - [Errors](#errors-1)
65
72
  - [Development](#development)
66
73
  - [Release](#release)
@@ -98,7 +105,7 @@ and require with:
98
105
  require "openai"
99
106
  ```
100
107
 
101
- ## Usage
108
+ ## How to use
102
109
 
103
110
  - Get your API key from [https://platform.openai.com/account/api-keys](https://platform.openai.com/account/api-keys)
104
111
  - If you belong to multiple organizations, you can get your Organization ID from [https://platform.openai.com/account/org-settings](https://platform.openai.com/account/org-settings)
@@ -121,6 +128,7 @@ For a more robust setup, you can configure the gem with your API keys, for examp
121
128
  ```ruby
122
129
  OpenAI.configure do |config|
123
130
  config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
131
+ config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN") # Optional, used for admin endpoints, created here: https://platform.openai.com/settings/organization/admin-keys
124
132
  config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
125
133
  config.log_errors = true # Highly recommended in development, so you can see what errors OpenAI is returning. Not recommended in production because it could leak private data to your logs.
126
134
  end
@@ -132,10 +140,10 @@ Then you can create a client like this:
132
140
  client = OpenAI::Client.new
133
141
  ```
134
142
 
135
- You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token overridden:
143
+ You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token and admin_token overridden:
136
144
 
137
145
  ```ruby
138
- client = OpenAI::Client.new(access_token: "access_token_goes_here")
146
+ client = OpenAI::Client.new(access_token: "access_token_goes_here", admin_token: "admin_token_goes_here")
139
147
  ```
140
148
 
141
149
  #### Custom timeout or base URI
@@ -146,15 +154,15 @@ client = OpenAI::Client.new(access_token: "access_token_goes_here")
146
154
 
147
155
  ```ruby
148
156
  client = OpenAI::Client.new(
149
- access_token: "access_token_goes_here",
150
- uri_base: "https://oai.hconeai.com/",
151
- request_timeout: 240,
152
- extra_headers: {
153
- "X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
154
- "X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
155
- "Helicone-Auth": "Bearer HELICONE_API_KEY", # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
156
- "helicone-stream-force-format" => "true", # Use this with Helicone otherwise streaming drops chunks # https://github.com/alexrudall/ruby-openai/issues/251
157
- }
157
+ access_token: "access_token_goes_here",
158
+ uri_base: "https://oai.hconeai.com/",
159
+ request_timeout: 240,
160
+ extra_headers: {
161
+ "X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
162
+ "X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
163
+ "Helicone-Auth": "Bearer HELICONE_API_KEY", # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
164
+ "helicone-stream-force-format" => "true", # Use this with Helicone otherwise streaming drops chunks # https://github.com/alexrudall/ruby-openai/issues/251
165
+ }
158
166
  )
159
167
  ```
160
168
 
@@ -162,16 +170,17 @@ or when configuring the gem:
162
170
 
163
171
  ```ruby
164
172
  OpenAI.configure do |config|
165
- config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
166
- config.log_errors = true # Optional
167
- config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
168
- config.uri_base = "https://oai.hconeai.com/" # Optional
169
- config.request_timeout = 240 # Optional
170
- config.extra_headers = {
171
- "X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
172
- "X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
173
- "Helicone-Auth": "Bearer HELICONE_API_KEY" # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
174
- } # Optional
173
+ config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
174
+ config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN") # Optional, used for admin endpoints, created here: https://platform.openai.com/settings/organization/admin-keys
175
+ config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
176
+ config.log_errors = true # Optional
177
+ config.uri_base = "https://oai.hconeai.com/" # Optional
178
+ config.request_timeout = 240 # Optional
179
+ config.extra_headers = {
180
+ "X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
181
+ "X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
182
+ "Helicone-Auth": "Bearer HELICONE_API_KEY" # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
183
+ } # Optional
175
184
  end
176
185
  ```
177
186
 
@@ -193,7 +202,7 @@ By default, `ruby-openai` does not log any `Faraday::Error`s encountered while e
193
202
  If you would like to enable this functionality, you can set `log_errors` to `true` when configuring the client:
194
203
 
195
204
  ```ruby
196
- client = OpenAI::Client.new(log_errors: true)
205
+ client = OpenAI::Client.new(log_errors: true)
197
206
  ```
198
207
 
199
208
  ##### Faraday middleware
@@ -201,9 +210,9 @@ If you would like to enable this functionality, you can set `log_errors` to `tru
201
210
  You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middleware/index) to the client in a block, eg. to enable verbose logging with Ruby's [Logger](https://ruby-doc.org/3.2.2/stdlibs/logger/Logger.html):
202
211
 
203
212
  ```ruby
204
- client = OpenAI::Client.new do |f|
205
- f.response :logger, Logger.new($stdout), bodies: true
206
- end
213
+ client = OpenAI::Client.new do |f|
214
+ f.response :logger, Logger.new($stdout), bodies: true
215
+ end
207
216
  ```
208
217
 
209
218
  #### Azure
@@ -211,16 +220,38 @@ You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middlew
211
220
  To use the [Azure OpenAI Service](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) API, you can configure the gem like this:
212
221
 
213
222
  ```ruby
214
- OpenAI.configure do |config|
215
- config.access_token = ENV.fetch("AZURE_OPENAI_API_KEY")
216
- config.uri_base = ENV.fetch("AZURE_OPENAI_URI")
217
- config.api_type = :azure
218
- config.api_version = "2023-03-15-preview"
219
- end
223
+ OpenAI.configure do |config|
224
+ config.access_token = ENV.fetch("AZURE_OPENAI_API_KEY")
225
+ config.uri_base = ENV.fetch("AZURE_OPENAI_URI")
226
+ config.api_type = :azure
227
+ config.api_version = "2023-03-15-preview"
228
+ end
220
229
  ```
221
230
 
222
231
  where `AZURE_OPENAI_URI` is e.g. `https://custom-domain.openai.azure.com/openai/deployments/gpt-35-turbo`
223
232
 
233
+ #### Deepseek
234
+
235
+ [Deepseek](https://api-docs.deepseek.com/) is compatible with the OpenAI chat API. Get an access token from [here](https://platform.deepseek.com/api_keys), then:
236
+
237
+ ```ruby
238
+ client = OpenAI::Client.new(
239
+ access_token: "deepseek_access_token_goes_here",
240
+ uri_base: "https://api.deepseek.com/"
241
+ )
242
+
243
+ client.chat(
244
+ parameters: {
245
+ model: "deepseek-chat", # Required.
246
+ messages: [{ role: "user", content: "Hello!"}], # Required.
247
+ temperature: 0.7,
248
+ stream: proc do |chunk, _bytesize|
249
+ print chunk.dig("choices", 0, "delta", "content")
250
+ end
251
+ }
252
+ )
253
+ ```
254
+
224
255
  #### Ollama
225
256
 
226
257
  Ollama allows you to run open-source LLMs, such as Llama 3, locally. It [offers chat compatibility](https://github.com/ollama/ollama/blob/main/docs/openai.md) with the OpenAI API.
@@ -241,14 +272,15 @@ client = OpenAI::Client.new(
241
272
  )
242
273
 
243
274
  client.chat(
244
- parameters: {
245
- model: "llama3", # Required.
246
- messages: [{ role: "user", content: "Hello!"}], # Required.
247
- temperature: 0.7,
248
- stream: proc do |chunk, _bytesize|
249
- print chunk.dig("choices", 0, "delta", "content")
250
- end
251
- })
275
+ parameters: {
276
+ model: "llama3", # Required.
277
+ messages: [{ role: "user", content: "Hello!"}], # Required.
278
+ temperature: 0.7,
279
+ stream: proc do |chunk, _bytesize|
280
+ print chunk.dig("choices", 0, "delta", "content")
281
+ end
282
+ }
283
+ )
252
284
 
253
285
  # => Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
254
286
  ```
@@ -258,20 +290,21 @@ client.chat(
258
290
  [Groq API Chat](https://console.groq.com/docs/quickstart) is broadly compatible with the OpenAI API, with a [few minor differences](https://console.groq.com/docs/openai). Get an access token from [here](https://console.groq.com/keys), then:
259
291
 
260
292
  ```ruby
261
- client = OpenAI::Client.new(
262
- access_token: "groq_access_token_goes_here",
263
- uri_base: "https://api.groq.com/openai"
264
- )
293
+ client = OpenAI::Client.new(
294
+ access_token: "groq_access_token_goes_here",
295
+ uri_base: "https://api.groq.com/openai"
296
+ )
265
297
 
266
- client.chat(
267
- parameters: {
268
- model: "llama3-8b-8192", # Required.
269
- messages: [{ role: "user", content: "Hello!"}], # Required.
270
- temperature: 0.7,
271
- stream: proc do |chunk, _bytesize|
272
- print chunk.dig("choices", 0, "delta", "content")
273
- end
274
- })
298
+ client.chat(
299
+ parameters: {
300
+ model: "llama3-8b-8192", # Required.
301
+ messages: [{ role: "user", content: "Hello!"}], # Required.
302
+ temperature: 0.7,
303
+ stream: proc do |chunk, _bytesize|
304
+ print chunk.dig("choices", 0, "delta", "content")
305
+ end
306
+ }
307
+ )
275
308
  ```
276
309
 
277
310
  ### Counting Tokens
@@ -295,17 +328,24 @@ client.models.list
295
328
  client.models.retrieve(id: "gpt-4o")
296
329
  ```
297
330
 
331
+ You can also delete any finetuned model you generated, if you're an account Owner on your OpenAI organization:
332
+
333
+ ```ruby
334
+ client.models.delete(id: "ft:gpt-4o-mini:acemeco:suffix:abc123")
335
+ ```
336
+
298
337
  ### Chat
299
338
 
300
339
  GPT is a model that can be used to generate text in a conversational style. You can use it to [generate a response](https://platform.openai.com/docs/api-reference/chat/create) to a sequence of [messages](https://platform.openai.com/docs/guides/chat/introduction):
301
340
 
302
341
  ```ruby
303
342
  response = client.chat(
304
- parameters: {
305
- model: "gpt-4o", # Required.
306
- messages: [{ role: "user", content: "Hello!"}], # Required.
307
- temperature: 0.7,
308
- })
343
+ parameters: {
344
+ model: "gpt-4o", # Required.
345
+ messages: [{ role: "user", content: "Hello!"}], # Required.
346
+ temperature: 0.7,
347
+ }
348
+ )
309
349
  puts response.dig("choices", 0, "message", "content")
310
350
  # => "Hello! How may I assist you today?"
311
351
  ```
@@ -318,14 +358,15 @@ You can stream from the API in realtime, which can be much faster and used to cr
318
358
 
319
359
  ```ruby
320
360
  client.chat(
321
- parameters: {
322
- model: "gpt-4o", # Required.
323
- messages: [{ role: "user", content: "Describe a character called Anna!"}], # Required.
324
- temperature: 0.7,
325
- stream: proc do |chunk, _bytesize|
326
- print chunk.dig("choices", 0, "delta", "content")
327
- end
328
- })
361
+ parameters: {
362
+ model: "gpt-4o", # Required.
363
+ messages: [{ role: "user", content: "Describe a character called Anna!"}], # Required.
364
+ temperature: 0.7,
365
+ stream: proc do |chunk, _bytesize|
366
+ print chunk.dig("choices", 0, "delta", "content")
367
+ end
368
+ }
369
+ )
329
370
  # => "Anna is a young woman in her mid-twenties, with wavy chestnut hair that falls to her shoulders..."
330
371
  ```
331
372
 
@@ -334,12 +375,13 @@ Note: In order to get usage information, you can provide the [`stream_options` p
334
375
  ```ruby
335
376
  stream_proc = proc { |chunk, _bytesize| puts "--------------"; puts chunk.inspect; }
336
377
  client.chat(
337
- parameters: {
338
- model: "gpt-4o",
339
- stream: stream_proc,
340
- stream_options: { include_usage: true },
341
- messages: [{ role: "user", content: "Hello!"}],
342
- })
378
+ parameters: {
379
+ model: "gpt-4o",
380
+ stream: stream_proc,
381
+ stream_options: { include_usage: true },
382
+ messages: [{ role: "user", content: "Hello!"}],
383
+ }
384
+ )
343
385
  # => --------------
344
386
  # => {"id"=>"chatcmpl-7bbq05PiZqlHxjV1j7OHnKKDURKaf", "object"=>"chat.completion.chunk", "created"=>1718750612, "model"=>"gpt-4o-2024-05-13", "system_fingerprint"=>"fp_9cb5d38cf7", "choices"=>[{"index"=>0, "delta"=>{"role"=>"assistant", "content"=>""}, "logprobs"=>nil, "finish_reason"=>nil}], "usage"=>nil}
345
387
  # => --------------
@@ -366,10 +408,11 @@ messages = [
366
408
  }
367
409
  ]
368
410
  response = client.chat(
369
- parameters: {
370
- model: "gpt-4-vision-preview", # Required.
371
- messages: [{ role: "user", content: messages}], # Required.
372
- })
411
+ parameters: {
412
+ model: "gpt-4-vision-preview", # Required.
413
+ messages: [{ role: "user", content: messages}], # Required.
414
+ }
415
+ )
373
416
  puts response.dig("choices", 0, "message", "content")
374
417
  # => "The image depicts a serene natural landscape featuring a long wooden boardwalk extending straight ahead"
375
418
  ```
@@ -379,21 +422,22 @@ puts response.dig("choices", 0, "message", "content")
379
422
  You can set the response_format to ask for responses in JSON:
380
423
 
381
424
  ```ruby
382
- response = client.chat(
383
- parameters: {
384
- model: "gpt-4o",
385
- response_format: { type: "json_object" },
386
- messages: [{ role: "user", content: "Hello! Give me some JSON please."}],
387
- temperature: 0.7,
388
- })
389
- puts response.dig("choices", 0, "message", "content")
390
- {
391
- "name": "John",
392
- "age": 30,
393
- "city": "New York",
394
- "hobbies": ["reading", "traveling", "hiking"],
395
- "isStudent": false
396
- }
425
+ response = client.chat(
426
+ parameters: {
427
+ model: "gpt-4o",
428
+ response_format: { type: "json_object" },
429
+ messages: [{ role: "user", content: "Hello! Give me some JSON please."}],
430
+ temperature: 0.7,
431
+ })
432
+ puts response.dig("choices", 0, "message", "content")
433
+ # =>
434
+ # {
435
+ # "name": "John",
436
+ # "age": 30,
437
+ # "city": "New York",
438
+ # "hobbies": ["reading", "traveling", "hiking"],
439
+ # "isStudent": false
440
+ # }
397
441
  ```
398
442
 
399
443
  You can stream it as well!
@@ -403,26 +447,116 @@ You can stream it as well!
403
447
  parameters: {
404
448
  model: "gpt-4o",
405
449
  messages: [{ role: "user", content: "Can I have some JSON please?"}],
406
- response_format: { type: "json_object" },
407
- stream: proc do |chunk, _bytesize|
408
- print chunk.dig("choices", 0, "delta", "content")
409
- end
410
- })
411
- {
412
- "message": "Sure, please let me know what specific JSON data you are looking for.",
413
- "JSON_data": {
414
- "example_1": {
415
- "key_1": "value_1",
416
- "key_2": "value_2",
417
- "key_3": "value_3"
418
- },
419
- "example_2": {
420
- "key_4": "value_4",
421
- "key_5": "value_5",
422
- "key_6": "value_6"
450
+ response_format: { type: "json_object" },
451
+ stream: proc do |chunk, _bytesize|
452
+ print chunk.dig("choices", 0, "delta", "content")
453
+ end
454
+ }
455
+ )
456
+ # =>
457
+ # {
458
+ # "message": "Sure, please let me know what specific JSON data you are looking for.",
459
+ # "JSON_data": {
460
+ # "example_1": {
461
+ # "key_1": "value_1",
462
+ # "key_2": "value_2",
463
+ # "key_3": "value_3"
464
+ # },
465
+ # "example_2": {
466
+ # "key_4": "value_4",
467
+ # "key_5": "value_5",
468
+ # "key_6": "value_6"
469
+ # }
470
+ # }
471
+ # }
472
+ ```
473
+
474
+ ### Responses API
475
+ [OpenAI's most advanced interface for generating model responses](https://platform.openai.com/docs/api-reference/responses). Supports text and image inputs, and text outputs. Create stateful interactions with the model, using the output of previous responses as input. Extend the model's capabilities with built-in tools for file search, web search, computer use, and more. Allow the model access to external systems and data using function calling.
476
+
477
+ #### Create a Response
478
+ ```ruby
479
+ response = client.responses.create(parameters: {
480
+ model: "gpt-4o",
481
+ input: "Hello! I'm Szymon!"
482
+ })
483
+ puts response.dig("output", 0, "content", 0, "text")
484
+ # => Hello Szymon! How can I assist you today?
485
+ ```
486
+
487
+ #### Follow-up Messages
488
+ ```ruby
489
+ followup = client.responses.create(parameters: {
490
+ model: "gpt-4o",
491
+ input: "Remind me, what is my name?",
492
+ previous_response_id: response["id"]
493
+ })
494
+ puts followup.dig("output", 0, "content", 0, "text")
495
+ # => Your name is Szymon! How can I help you today?
496
+ ```
497
+
498
+ #### Tool Calls
499
+ ```ruby
500
+ response = client.responses.create(parameters: {
501
+ model: "gpt-4o",
502
+ input: "What's the weather in Paris?",
503
+ tools: [
504
+ {
505
+ "type" => "function",
506
+ "name" => "get_current_weather",
507
+ "description" => "Get the current weather in a given location",
508
+ "parameters" => {
509
+ "type" => "object",
510
+ "properties" => {
511
+ "location" => {
512
+ "type" => "string",
513
+ "description" => "The geographic location to get the weather for"
514
+ }
515
+ },
516
+ "required" => ["location"]
423
517
  }
424
518
  }
519
+ ]
520
+ })
521
+ puts response.dig("output", 0, "name")
522
+ # => "get_current_weather"
523
+ ```
524
+
525
+ #### Streaming
526
+ ```ruby
527
+ client.responses.create(
528
+ parameters: {
529
+ model: "gpt-4o", # Required.
530
+ input: "Hello!", # Required.
531
+ stream: proc do |chunk, _bytesize|
532
+ if chunk["type"] == "response.output_text.delta"
533
+ print chunk["delta"]
534
+ $stdout.flush # Ensure output is displayed immediately
535
+ end
536
+ end
425
537
  }
538
+ )
539
+ # => "Hi there! How can I assist you today?..."
540
+ ```
541
+
542
+ #### Retrieve a Response
543
+ ```ruby
544
+ retrieved_response = client.responses.retrieve(response_id: response["id"])
545
+ puts retrieved_response["object"]
546
+ # => "response"
547
+ ```
548
+
549
+ #### Delete a Response
550
+ ```ruby
551
+ deletion = client.responses.delete(response_id: response["id"])
552
+ puts deletion["deleted"]
553
+ # => true
554
+ ```
555
+
556
+ #### List Input Items
557
+ ```ruby
558
+ input_items = client.responses.input_items(response_id: response["id"])
559
+ puts input_items["object"] # => "list"
426
560
  ```
427
561
 
428
562
  ### Functions
@@ -430,7 +564,6 @@ You can stream it as well!
430
564
  You can describe and pass in functions and the model will intelligently choose to output a JSON object containing arguments to call them - eg., to use your method `get_current_weather` to get the weather in a given location. Note that tool_choice is optional, but if you exclude it, the model will choose whether to use the function or not ([see here](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice)).
431
565
 
432
566
  ```ruby
433
-
434
567
  def get_current_weather(location:, unit: "fahrenheit")
435
568
  # Here you could use a weather api to fetch the weather.
436
569
  "The weather in #{location} is nice 🌞 #{unit}"
@@ -471,8 +604,9 @@ response =
471
604
  },
472
605
  }
473
606
  ],
474
- tool_choice: "required" # Optional, defaults to "auto"
475
- # Can also put "none" or specific functions, see docs
607
+ # Optional, defaults to "auto"
608
+ # Can also put "none" or specific functions, see docs
609
+ tool_choice: "required"
476
610
  },
477
611
  )
478
612
 
@@ -486,12 +620,13 @@ if message["role"] == "assistant" && message["tool_calls"]
486
620
  tool_call.dig("function", "arguments"),
487
621
  { symbolize_names: true },
488
622
  )
489
- function_response = case function_name
623
+ function_response =
624
+ case function_name
490
625
  when "get_current_weather"
491
626
  get_current_weather(**function_args) # => "The weather is nice 🌞"
492
627
  else
493
628
  # decide how to handle
494
- end
629
+ end
495
630
 
496
631
  # For a subsequent message with the role "tool", OpenAI requires the preceding message to have a tool_calls argument.
497
632
  messages << message
@@ -508,7 +643,8 @@ if message["role"] == "assistant" && message["tool_calls"]
508
643
  parameters: {
509
644
  model: "gpt-4o",
510
645
  messages: messages
511
- })
646
+ }
647
+ )
512
648
 
513
649
  puts second_response.dig("choices", 0, "message", "content")
514
650
 
@@ -524,11 +660,12 @@ Hit the OpenAI API for a completion using other GPT-3 models:
524
660
 
525
661
  ```ruby
526
662
  response = client.completions(
527
- parameters: {
528
- model: "gpt-4o",
529
- prompt: "Once upon a time",
530
- max_tokens: 5
531
- })
663
+ parameters: {
664
+ model: "gpt-4o",
665
+ prompt: "Once upon a time",
666
+ max_tokens: 5
667
+ }
668
+ )
532
669
  puts response["choices"].map { |c| c["text"] }
533
670
  # => [", there lived a great"]
534
671
  ```
@@ -539,10 +676,10 @@ You can use the embeddings endpoint to get a vector of numbers representing an i
539
676
 
540
677
  ```ruby
541
678
  response = client.embeddings(
542
- parameters: {
543
- model: "text-embedding-ada-002",
544
- input: "The food was delicious and the waiter..."
545
- }
679
+ parameters: {
680
+ model: "text-embedding-ada-002",
681
+ input: "The food was delicious and the waiter..."
682
+ }
546
683
  )
547
684
 
548
685
  puts response.dig("data", 0, "embedding")
@@ -688,9 +825,9 @@ You can then use this file ID to create a fine tuning job:
688
825
 
689
826
  ```ruby
690
827
  response = client.finetunes.create(
691
- parameters: {
692
- training_file: file_id,
693
- model: "gpt-4o"
828
+ parameters: {
829
+ training_file: file_id,
830
+ model: "gpt-4o"
694
831
  })
695
832
  fine_tune_id = response["id"]
696
833
  ```
@@ -713,20 +850,26 @@ This fine-tuned model name can then be used in chat completions:
713
850
 
714
851
  ```ruby
715
852
  response = client.chat(
716
- parameters: {
717
- model: fine_tuned_model,
718
- messages: [{ role: "user", content: "I love Mondays!"}]
719
- }
853
+ parameters: {
854
+ model: fine_tuned_model,
855
+ messages: [{ role: "user", content: "I love Mondays!" }]
856
+ }
720
857
  )
721
858
  response.dig("choices", 0, "message", "content")
722
859
  ```
723
860
 
724
861
  You can also capture the events for a job:
725
862
 
726
- ```
863
+ ```ruby
727
864
  client.finetunes.list_events(id: fine_tune_id)
728
865
  ```
729
866
 
867
+ You can also delete any finetuned model you generated, if you're an account Owner on your OpenAI organization:
868
+
869
+ ```ruby
870
+ client.models.delete(id: fine_tune_id)
871
+ ```
872
+
730
873
  ### Vector Stores
731
874
 
732
875
  Vector Store objects give the File Search tool the ability to search your files.
@@ -868,25 +1011,26 @@ To create a new assistant:
868
1011
 
869
1012
  ```ruby
870
1013
  response = client.assistants.create(
871
- parameters: {
872
- model: "gpt-4o",
873
- name: "OpenAI-Ruby test assistant",
874
- description: nil,
875
- instructions: "You are a Ruby dev bot. When asked a question, write and run Ruby code to answer the question",
876
- tools: [
877
- { type: "code_interpreter" },
878
- { type: "file_search" }
879
- ],
880
- tool_resources: {
881
- code_interpreter: {
882
- file_ids: [] # See Files section above for how to upload files
883
- },
884
- file_search: {
885
- vector_store_ids: [] # See Vector Stores section above for how to add vector stores
886
- }
887
- },
888
- "metadata": { my_internal_version_id: "1.0.0" }
889
- })
1014
+ parameters: {
1015
+ model: "gpt-4o",
1016
+ name: "OpenAI-Ruby test assistant",
1017
+ description: nil,
1018
+ instructions: "You are a Ruby dev bot. When asked a question, write and run Ruby code to answer the question",
1019
+ tools: [
1020
+ { type: "code_interpreter" },
1021
+ { type: "file_search" }
1022
+ ],
1023
+ tool_resources: {
1024
+ code_interpreter: {
1025
+ file_ids: [] # See Files section above for how to upload files
1026
+ },
1027
+ file_search: {
1028
+ vector_store_ids: [] # See Vector Stores section above for how to add vector stores
1029
+ }
1030
+ },
1031
+ "metadata": { my_internal_version_id: "1.0.0" }
1032
+ }
1033
+ )
890
1034
  assistant_id = response["id"]
891
1035
  ```
892
1036
 
@@ -906,16 +1050,17 @@ You can modify an existing assistant using the assistant's id (see [API document
906
1050
 
907
1051
  ```ruby
908
1052
  response = client.assistants.modify(
909
- id: assistant_id,
910
- parameters: {
911
- name: "Modified Test Assistant for OpenAI-Ruby",
912
- metadata: { my_internal_version_id: '1.0.1' }
913
- })
1053
+ id: assistant_id,
1054
+ parameters: {
1055
+ name: "Modified Test Assistant for OpenAI-Ruby",
1056
+ metadata: { my_internal_version_id: '1.0.1' }
1057
+ }
1058
+ )
914
1059
  ```
915
1060
 
916
1061
  You can delete assistants:
917
1062
 
918
- ```
1063
+ ```ruby
919
1064
  client.assistants.delete(id: assistant_id)
920
1065
  ```
921
1066
 
@@ -931,11 +1076,12 @@ thread_id = response["id"]
931
1076
 
932
1077
  # Add initial message from user (see https://platform.openai.com/docs/api-reference/messages/createMessage)
933
1078
  message_id = client.messages.create(
934
- thread_id: thread_id,
935
- parameters: {
936
- role: "user", # Required for manually created messages
937
- content: "Can you help me write an API library to interact with the OpenAI API please?"
938
- })["id"]
1079
+ thread_id: thread_id,
1080
+ parameters: {
1081
+ role: "user", # Required for manually created messages
1082
+ content: "Can you help me write an API library to interact with the OpenAI API please?"
1083
+ }
1084
+ )["id"]
939
1085
 
940
1086
  # Retrieve individual message
941
1087
  message = client.messages.retrieve(thread_id: thread_id, id: message_id)
@@ -959,32 +1105,38 @@ To submit a thread to be evaluated with the model of an assistant, create a `Run
959
1105
 
960
1106
  ```ruby
961
1107
  # Create run (will use instruction/model/tools from Assistant's definition)
962
- response = client.runs.create(thread_id: thread_id,
963
- parameters: {
964
- assistant_id: assistant_id,
965
- max_prompt_tokens: 256,
966
- max_completion_tokens: 16
967
- })
1108
+ response = client.runs.create(
1109
+ thread_id: thread_id,
1110
+ parameters: {
1111
+ assistant_id: assistant_id,
1112
+ max_prompt_tokens: 256,
1113
+ max_completion_tokens: 16
1114
+ }
1115
+ )
968
1116
  run_id = response['id']
969
1117
  ```
970
1118
 
971
1119
  You can stream the message chunks as they come through:
972
1120
 
973
1121
  ```ruby
974
- client.runs.create(thread_id: thread_id,
975
- parameters: {
976
- assistant_id: assistant_id,
977
- max_prompt_tokens: 256,
978
- max_completion_tokens: 16,
979
- stream: proc do |chunk, _bytesize|
980
- print chunk.dig("delta", "content", 0, "text", "value") if chunk["object"] == "thread.message.delta"
981
- end
982
- })
1122
+ client.runs.create(
1123
+ thread_id: thread_id,
1124
+ parameters: {
1125
+ assistant_id: assistant_id,
1126
+ max_prompt_tokens: 256,
1127
+ max_completion_tokens: 16,
1128
+ stream: proc do |chunk, _bytesize|
1129
+ if chunk["object"] == "thread.message.delta"
1130
+ print chunk.dig("delta", "content", 0, "text", "value")
1131
+ end
1132
+ end
1133
+ }
1134
+ )
983
1135
  ```
984
1136
 
985
1137
  To get the status of a Run:
986
1138
 
987
- ```
1139
+ ```ruby
988
1140
  response = client.runs.retrieve(id: run_id, thread_id: thread_id)
989
1141
  status = response['status']
990
1142
  ```
@@ -993,23 +1145,23 @@ The `status` response can include the following strings `queued`, `in_progress`,
993
1145
 
994
1146
  ```ruby
995
1147
  while true do
996
- response = client.runs.retrieve(id: run_id, thread_id: thread_id)
997
- status = response['status']
998
-
999
- case status
1000
- when 'queued', 'in_progress', 'cancelling'
1001
- puts 'Sleeping'
1002
- sleep 1 # Wait one second and poll again
1003
- when 'completed'
1004
- break # Exit loop and report result to user
1005
- when 'requires_action'
1006
- # Handle tool calls (see below)
1007
- when 'cancelled', 'failed', 'expired'
1008
- puts response['last_error'].inspect
1009
- break # or `exit`
1010
- else
1011
- puts "Unknown status response: #{status}"
1012
- end
1148
+ response = client.runs.retrieve(id: run_id, thread_id: thread_id)
1149
+ status = response['status']
1150
+
1151
+ case status
1152
+ when 'queued', 'in_progress', 'cancelling'
1153
+ puts 'Sleeping'
1154
+ sleep 1 # Wait one second and poll again
1155
+ when 'completed'
1156
+ break # Exit loop and report result to user
1157
+ when 'requires_action'
1158
+ # Handle tool calls (see below)
1159
+ when 'cancelled', 'failed', 'expired'
1160
+ puts response['last_error'].inspect
1161
+ break # or `exit`
1162
+ else
1163
+ puts "Unknown status response: #{status}"
1164
+ end
1013
1165
  end
1014
1166
  ```
1015
1167
 
@@ -1021,30 +1173,30 @@ messages = client.messages.list(thread_id: thread_id, parameters: { order: 'asc'
1021
1173
 
1022
1174
  # Alternatively retrieve the `run steps` for the run which link to the messages:
1023
1175
  run_steps = client.run_steps.list(thread_id: thread_id, run_id: run_id, parameters: { order: 'asc' })
1024
- new_message_ids = run_steps['data'].filter_map { |step|
1176
+ new_message_ids = run_steps['data'].filter_map do |step|
1025
1177
  if step['type'] == 'message_creation'
1026
1178
  step.dig('step_details', "message_creation", "message_id")
1027
1179
  end # Ignore tool calls, because they don't create new messages.
1028
- }
1180
+ end
1029
1181
 
1030
1182
  # Retrieve the individual messages
1031
- new_messages = new_message_ids.map { |msg_id|
1183
+ new_messages = new_message_ids.map do |msg_id|
1032
1184
  client.messages.retrieve(id: msg_id, thread_id: thread_id)
1033
- }
1185
+ end
1034
1186
 
1035
1187
  # Find the actual response text in the content array of the messages
1036
- new_messages.each { |msg|
1037
- msg['content'].each { |content_item|
1038
- case content_item['type']
1039
- when 'text'
1040
- puts content_item.dig('text', 'value')
1041
- # Also handle annotations
1042
- when 'image_file'
1043
- # Use File endpoint to retrieve file contents via id
1044
- id = content_item.dig('image_file', 'file_id')
1045
- end
1046
- }
1047
- }
1188
+ new_messages.each do |msg|
1189
+ msg['content'].each do |content_item|
1190
+ case content_item['type']
1191
+ when 'text'
1192
+ puts content_item.dig('text', 'value')
1193
+ # Also handle annotations
1194
+ when 'image_file'
1195
+ # Use File endpoint to retrieve file contents via id
1196
+ id = content_item.dig('image_file', 'file_id')
1197
+ end
1198
+ end
1199
+ end
1048
1200
  ```
1049
1201
 
1050
1202
  You can also update the metadata on messages, including messages that come from the assistant.
@@ -1053,7 +1205,11 @@ You can also update the metadata on messages, including messages that come from
1053
1205
  metadata = {
1054
1206
  user_id: "abc123"
1055
1207
  }
1056
- message = client.messages.modify(id: message_id, thread_id: thread_id, parameters: { metadata: metadata })
1208
+ message = client.messages.modify(
1209
+ id: message_id,
1210
+ thread_id: thread_id,
1211
+ parameters: { metadata: metadata },
1212
+ )
1057
1213
  ```
1058
1214
 
1059
1215
  At any time you can list all runs which have been performed on a particular thread or are currently running:
@@ -1072,41 +1228,117 @@ run_id = response['id']
1072
1228
  thread_id = response['thread_id']
1073
1229
  ```
1074
1230
 
1231
+ #### Vision in a thread
1232
+
1233
+ You can include images in a thread and they will be described & read by the LLM. In this example I'm using [this file](https://upload.wikimedia.org/wikipedia/commons/7/70/Example.png):
1234
+
1235
+ ```ruby
1236
+ require "openai"
1237
+
1238
+ # Make a client
1239
+ client = OpenAI::Client.new(
1240
+ access_token: "access_token_goes_here",
1241
+ log_errors: true # Don't log errors in production.
1242
+ )
1243
+
1244
+ # Upload image as a file
1245
+ file_id = client.files.upload(
1246
+ parameters: {
1247
+ file: "path/to/example.png",
1248
+ purpose: "assistants",
1249
+ }
1250
+ )["id"]
1251
+
1252
+ # Create assistant (You could also use an existing one here)
1253
+ assistant_id = client.assistants.create(
1254
+ parameters: {
1255
+ model: "gpt-4o",
1256
+ name: "Image reader",
1257
+ instructions: "You are an image describer. You describe the contents of images.",
1258
+ }
1259
+ )["id"]
1260
+
1261
+ # Create thread
1262
+ thread_id = client.threads.create["id"]
1263
+
1264
+ # Add image in message
1265
+ client.messages.create(
1266
+ thread_id: thread_id,
1267
+ parameters: {
1268
+ role: "user", # Required for manually created messages
1269
+ content: [
1270
+ {
1271
+ "type": "text",
1272
+ "text": "What's in this image?"
1273
+ },
1274
+ {
1275
+ "type": "image_file",
1276
+ "image_file": { "file_id": file_id }
1277
+ }
1278
+ ]
1279
+ }
1280
+ )
1281
+
1282
+ # Run thread
1283
+ run_id = client.runs.create(
1284
+ thread_id: thread_id,
1285
+ parameters: { assistant_id: assistant_id }
1286
+ )["id"]
1287
+
1288
+ # Wait until run in complete
1289
+ status = nil
1290
+ until status == "completed" do
1291
+ sleep(0.1)
1292
+ status = client.runs.retrieve(id: run_id, thread_id: thread_id)['status']
1293
+ end
1294
+
1295
+ # Get the response
1296
+ messages = client.messages.list(thread_id: thread_id, parameters: { order: 'asc' })
1297
+ messages.dig("data", -1, "content", 0, "text", "value")
1298
+ => "The image contains a placeholder graphic with a tilted, stylized representation of a postage stamp in the top part, which includes an abstract landscape with hills and a sun. Below the stamp, in the middle of the image, there is italicized text in a light golden color that reads, \"This is just an example.\" The background is a light pastel shade, and a yellow border frames the entire image."
1299
+ ```
1300
+
1075
1301
  #### Runs involving function tools
1076
1302
 
1077
1303
  In case you are allowing the assistant to access `function` tools (they are defined in the same way as functions during chat completion), you might get a status code of `requires_action` when the assistant wants you to evaluate one or more function tools:
1078
1304
 
1079
1305
  ```ruby
1080
1306
  def get_current_weather(location:, unit: "celsius")
1081
- # Your function code goes here
1082
- if location =~ /San Francisco/i
1083
- return unit == "celsius" ? "The weather is nice 🌞 at 27°C" : "The weather is nice 🌞 at 80°F"
1084
- else
1085
- return unit == "celsius" ? "The weather is icy 🥶 at -5°C" : "The weather is icy 🥶 at 23°F"
1086
- end
1307
+ # Your function code goes here
1308
+ if location =~ /San Francisco/i
1309
+ return unit == "celsius" ? "The weather is nice 🌞 at 27°C" : "The weather is nice 🌞 at 80°F"
1310
+ else
1311
+ return unit == "celsius" ? "The weather is icy 🥶 at -5°C" : "The weather is icy 🥶 at 23°F"
1312
+ end
1087
1313
  end
1088
1314
 
1089
1315
  if status == 'requires_action'
1316
+ tools_to_call = response.dig('required_action', 'submit_tool_outputs', 'tool_calls')
1090
1317
 
1091
- tools_to_call = response.dig('required_action', 'submit_tool_outputs', 'tool_calls')
1092
-
1093
- my_tool_outputs = tools_to_call.map { |tool|
1094
- # Call the functions based on the tool's name
1095
- function_name = tool.dig('function', 'name')
1096
- arguments = JSON.parse(
1097
- tool.dig("function", "arguments"),
1098
- { symbolize_names: true },
1099
- )
1318
+ my_tool_outputs = tools_to_call.map { |tool|
1319
+ # Call the functions based on the tool's name
1320
+ function_name = tool.dig('function', 'name')
1321
+ arguments = JSON.parse(
1322
+ tool.dig("function", "arguments"),
1323
+ { symbolize_names: true },
1324
+ )
1100
1325
 
1101
- tool_output = case function_name
1102
- when "get_current_weather"
1103
- get_current_weather(**arguments)
1104
- end
1326
+ tool_output = case function_name
1327
+ when "get_current_weather"
1328
+ get_current_weather(**arguments)
1329
+ end
1105
1330
 
1106
- { tool_call_id: tool['id'], output: tool_output }
1331
+ {
1332
+ tool_call_id: tool['id'],
1333
+ output: tool_output,
1107
1334
  }
1335
+ }
1108
1336
 
1109
- client.runs.submit_tool_outputs(thread_id: thread_id, run_id: run_id, parameters: { tool_outputs: my_tool_outputs })
1337
+ client.runs.submit_tool_outputs(
1338
+ thread_id: thread_id,
1339
+ run_id: run_id,
1340
+ parameters: { tool_outputs: my_tool_outputs }
1341
+ )
1110
1342
  end
1111
1343
  ```
1112
1344
 
@@ -1122,13 +1354,13 @@ An example spec can be found [here](https://github.com/alexrudall/ruby-openai/bl
1122
1354
 
1123
1355
  Here's how to get the chunks used in a file search. In this example I'm using [this file](https://css4.pub/2015/textbook/somatosensory.pdf):
1124
1356
 
1125
- ```
1357
+ ```ruby
1126
1358
  require "openai"
1127
1359
 
1128
1360
  # Make a client
1129
1361
  client = OpenAI::Client.new(
1130
1362
  access_token: "access_token_goes_here",
1131
- log_errors: true # Don't do this in production.
1363
+ log_errors: true # Don't log errors in production.
1132
1364
  )
1133
1365
 
1134
1366
  # Upload your file(s)
@@ -1228,7 +1460,12 @@ Generate images using DALL·E 2 or DALL·E 3!
1228
1460
  For DALL·E 2 the size of any generated images must be one of `256x256`, `512x512` or `1024x1024` - if not specified the image will default to `1024x1024`.
1229
1461
 
1230
1462
  ```ruby
1231
- response = client.images.generate(parameters: { prompt: "A baby sea otter cooking pasta wearing a hat of some sort", size: "256x256" })
1463
+ response = client.images.generate(
1464
+ parameters: {
1465
+ prompt: "A baby sea otter cooking pasta wearing a hat of some sort",
1466
+ size: "256x256",
1467
+ }
1468
+ )
1232
1469
  puts response.dig("data", 0, "url")
1233
1470
  # => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
1234
1471
  ```
@@ -1240,7 +1477,14 @@ puts response.dig("data", 0, "url")
1240
1477
  For DALL·E 3 the size of any generated images must be one of `1024x1024`, `1024x1792` or `1792x1024`. Additionally the quality of the image can be specified to either `standard` or `hd`.
1241
1478
 
1242
1479
  ```ruby
1243
- response = client.images.generate(parameters: { prompt: "A springer spaniel cooking pasta wearing a hat of some sort", model: "dall-e-3", size: "1024x1792", quality: "standard" })
1480
+ response = client.images.generate(
1481
+ parameters: {
1482
+ prompt: "A springer spaniel cooking pasta wearing a hat of some sort",
1483
+ model: "dall-e-3",
1484
+ size: "1024x1792",
1485
+ quality: "standard",
1486
+ }
1487
+ )
1244
1488
  puts response.dig("data", 0, "url")
1245
1489
  # => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
1246
1490
  ```
@@ -1252,7 +1496,13 @@ puts response.dig("data", 0, "url")
1252
1496
  Fill in the transparent part of an image, or upload a mask with transparent sections to indicate the parts of an image that can be changed according to your prompt...
1253
1497
 
1254
1498
  ```ruby
1255
- response = client.images.edit(parameters: { prompt: "A solid red Ruby on a blue background", image: "image.png", mask: "mask.png" })
1499
+ response = client.images.edit(
1500
+ parameters: {
1501
+ prompt: "A solid red Ruby on a blue background",
1502
+ image: "image.png",
1503
+ mask: "mask.png",
1504
+ }
1505
+ )
1256
1506
  puts response.dig("data", 0, "url")
1257
1507
  # => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
1258
1508
  ```
@@ -1292,10 +1542,11 @@ The translations API takes as input the audio file in any of the supported langu
1292
1542
 
1293
1543
  ```ruby
1294
1544
  response = client.audio.translate(
1295
- parameters: {
1296
- model: "whisper-1",
1297
- file: File.open("path_to_file", "rb"),
1298
- })
1545
+ parameters: {
1546
+ model: "whisper-1",
1547
+ file: File.open("path_to_file", "rb"),
1548
+ }
1549
+ )
1299
1550
  puts response["text"]
1300
1551
  # => "Translation of the text"
1301
1552
  ```
@@ -1308,11 +1559,12 @@ You can pass the language of the audio file to improve transcription quality. Su
1308
1559
 
1309
1560
  ```ruby
1310
1561
  response = client.audio.transcribe(
1311
- parameters: {
1312
- model: "whisper-1",
1313
- file: File.open("path_to_file", "rb"),
1314
- language: "en" # Optional
1315
- })
1562
+ parameters: {
1563
+ model: "whisper-1",
1564
+ file: File.open("path_to_file", "rb"),
1565
+ language: "en", # Optional
1566
+ }
1567
+ )
1316
1568
  puts response["text"]
1317
1569
  # => "Transcription of the text"
1318
1570
  ```
@@ -1328,23 +1580,81 @@ response = client.audio.speech(
1328
1580
  input: "This is a speech test!",
1329
1581
  voice: "alloy",
1330
1582
  response_format: "mp3", # Optional
1331
- speed: 1.0 # Optional
1583
+ speed: 1.0, # Optional
1332
1584
  }
1333
1585
  )
1334
1586
  File.binwrite('demo.mp3', response)
1335
1587
  # => mp3 file that plays: "This is a speech test!"
1336
1588
  ```
1337
1589
 
1338
- ### Errors
1590
+ ### Usage
1591
+ The Usage API provides information about the cost of various OpenAI services within your organization.
1592
+ To use Admin APIs like Usage, you need to set an OPENAI_ADMIN_TOKEN, which can be generated [here](https://platform.openai.com/settings/organization/admin-keys).
1339
1593
 
1340
- HTTP errors can be caught like this:
1594
+ ```ruby
1595
+ OpenAI.configure do |config|
1596
+ config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN")
1597
+ end
1341
1598
 
1599
+ # or
1600
+
1601
+ client = OpenAI::Client.new(admin_token: "123abc")
1342
1602
  ```
1343
- begin
1344
- OpenAI::Client.new.models.retrieve(id: "gpt-4o")
1345
- rescue Faraday::Error => e
1346
- raise "Got a Faraday error: #{e}"
1603
+
1604
+ You can retrieve usage data for different endpoints and time periods:
1605
+
1606
+ ```ruby
1607
+ one_day_ago = Time.now.to_i - 86_400
1608
+
1609
+ # Retrieve costs data
1610
+ response = client.usage.costs(parameters: { start_time: one_day_ago })
1611
+ response["data"].each do |bucket|
1612
+ bucket["results"].each do |result|
1613
+ puts "#{Time.at(bucket["start_time"]).to_date}: $#{result.dig("amount", "value").round(2)}"
1347
1614
  end
1615
+ end
1616
+ => 2025-02-09: $0.0
1617
+ => 2025-02-10: $0.42
1618
+
1619
+ # Retrieve completions usage data
1620
+ response = client.usage.completions(parameters: { start_time: one_day_ago })
1621
+ puts response["data"]
1622
+
1623
+ # Retrieve embeddings usage data
1624
+ response = client.usage.embeddings(parameters: { start_time: one_day_ago })
1625
+ puts response["data"]
1626
+
1627
+ # Retrieve moderations usage data
1628
+ response = client.usage.moderations(parameters: { start_time: one_day_ago })
1629
+ puts response["data"]
1630
+
1631
+ # Retrieve image generation usage data
1632
+ response = client.usage.images(parameters: { start_time: one_day_ago })
1633
+ puts response["data"]
1634
+
1635
+ # Retrieve audio speech usage data
1636
+ response = client.usage.audio_speeches(parameters: { start_time: one_day_ago })
1637
+ puts response["data"]
1638
+
1639
+ # Retrieve audio transcription usage data
1640
+ response = client.usage.audio_transcriptions(parameters: { start_time: one_day_ago })
1641
+ puts response["data"]
1642
+
1643
+ # Retrieve vector stores usage data
1644
+ response = client.usage.vector_stores(parameters: { start_time: one_day_ago })
1645
+ puts response["data"]
1646
+ ```
1647
+
1648
+ ### Errors
1649
+
1650
+ HTTP errors can be caught like this:
1651
+
1652
+ ```ruby
1653
+ begin
1654
+ OpenAI::Client.new.models.retrieve(id: "gpt-4o")
1655
+ rescue Faraday::Error => e
1656
+ raise "Got a Faraday error: #{e}"
1657
+ end
1348
1658
  ```
1349
1659
 
1350
1660
  ## Development
@@ -1356,16 +1666,18 @@ To install this gem onto your local machine, run `bundle exec rake install`.
1356
1666
  To run all tests, execute the command `bundle exec rake`, which will also run the linter (Rubocop). This repository uses [VCR](https://github.com/vcr/vcr) to log API requests.
1357
1667
 
1358
1668
  > [!WARNING]
1359
- > If you have an `OPENAI_ACCESS_TOKEN` in your `ENV`, running the specs will use this to run the specs against the actual API, which will be slow and cost you money - 2 cents or more! Remove it from your environment with `unset` or similar if you just want to run the specs against the stored VCR responses.
1360
-
1361
- ## Release
1669
+ > If you have an `OPENAI_ACCESS_TOKEN` and `OPENAI_ADMIN_TOKEN` in your `ENV`, running the specs will hit the actual API, which will be slow and cost you money - 2 cents or more! Remove them from your environment with `unset` or similar if you just want to run the specs against the stored VCR responses.
1362
1670
 
1363
- First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN in your environment or pass it in like this:
1671
+ ### To check for deprecations
1364
1672
 
1365
1673
  ```
1366
- OPENAI_ACCESS_TOKEN=123abc bundle exec rspec
1674
+ bundle exec ruby -e "Warning[:deprecated] = true; require 'rspec'; exit RSpec::Core::Runner.run(['spec/openai/client/http_spec.rb:25'])"
1367
1675
  ```
1368
1676
 
1677
+ ## Release
1678
+
1679
+ First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN and OPENAI_ADMIN_TOKEN in your environment.
1680
+
1369
1681
  Then update the version number in `version.rb`, update `CHANGELOG.md`, run `bundle install` to update Gemfile.lock, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
1370
1682
 
1371
1683
  ## Contributing