ruby-openai 7.3.0 → 7.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +3 -0
- data/CHANGELOG.md +13 -0
- data/Gemfile +1 -1
- data/Gemfile.lock +8 -10
- data/README.md +449 -269
- data/lib/openai/client.rb +19 -11
- data/lib/openai/compatibility.rb +1 -0
- data/lib/openai/http.rb +1 -1
- data/lib/openai/usage.rb +70 -0
- data/lib/openai/version.rb +1 -1
- data/lib/openai.rb +4 -0
- metadata +3 -2
data/README.md
CHANGED
@@ -1,14 +1,17 @@
|
|
1
1
|
# Ruby OpenAI
|
2
|
-
|
3
2
|
[](https://rubygems.org/gems/ruby-openai)
|
4
3
|
[](https://github.com/alexrudall/ruby-openai/blob/main/LICENSE.txt)
|
5
4
|
[](https://circleci.com/gh/alexrudall/ruby-openai)
|
6
5
|
|
7
6
|
Use the [OpenAI API](https://openai.com/blog/openai-api/) with Ruby! 🤖❤️
|
8
7
|
|
9
|
-
Stream text with GPT-
|
8
|
+
Stream text with GPT-4, transcribe and translate audio with Whisper, or create images with DALL·E...
|
9
|
+
|
10
|
+
💥 Click [subscribe now](https://mailchi.mp/8c7b574726a9/ruby-openai) to hear first about new releases in the Rails AI newsletter!
|
10
11
|
|
11
|
-
[
|
12
|
+
[](https://mailchi.mp/8c7b574726a9/ruby-openai)
|
13
|
+
|
14
|
+
[🎮 Ruby AI Builders Discord](https://discord.gg/k4Uc224xVD) | [🐦 X](https://x.com/alexrudall) | [🧠 Anthropic Gem](https://github.com/alexrudall/anthropic) | [🚂 Midjourney Gem](https://github.com/alexrudall/midjourney)
|
12
15
|
|
13
16
|
## Contents
|
14
17
|
|
@@ -17,7 +20,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
17
20
|
- [Installation](#installation)
|
18
21
|
- [Bundler](#bundler)
|
19
22
|
- [Gem install](#gem-install)
|
20
|
-
- [
|
23
|
+
- [How to use](#how-to-use)
|
21
24
|
- [Quickstart](#quickstart)
|
22
25
|
- [With Config](#with-config)
|
23
26
|
- [Custom timeout or base URI](#custom-timeout-or-base-uri)
|
@@ -49,7 +52,9 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
49
52
|
- [Threads and Messages](#threads-and-messages)
|
50
53
|
- [Runs](#runs)
|
51
54
|
- [Create and Run](#create-and-run)
|
55
|
+
- [Vision in a thread](#vision-in-a-thread)
|
52
56
|
- [Runs involving function tools](#runs-involving-function-tools)
|
57
|
+
- [Exploring chunks used in File Search](#exploring-chunks-used-in-file-search)
|
53
58
|
- [Image Generation](#image-generation)
|
54
59
|
- [DALL·E 2](#dalle-2)
|
55
60
|
- [DALL·E 3](#dalle-3)
|
@@ -60,6 +65,7 @@ Stream text with GPT-4o, transcribe and translate audio with Whisper, or create
|
|
60
65
|
- [Translate](#translate)
|
61
66
|
- [Transcribe](#transcribe)
|
62
67
|
- [Speech](#speech)
|
68
|
+
- [Usage](#usage)
|
63
69
|
- [Errors](#errors-1)
|
64
70
|
- [Development](#development)
|
65
71
|
- [Release](#release)
|
@@ -97,7 +103,7 @@ and require with:
|
|
97
103
|
require "openai"
|
98
104
|
```
|
99
105
|
|
100
|
-
##
|
106
|
+
## How to use
|
101
107
|
|
102
108
|
- Get your API key from [https://platform.openai.com/account/api-keys](https://platform.openai.com/account/api-keys)
|
103
109
|
- If you belong to multiple organizations, you can get your Organization ID from [https://platform.openai.com/account/org-settings](https://platform.openai.com/account/org-settings)
|
@@ -120,6 +126,7 @@ For a more robust setup, you can configure the gem with your API keys, for examp
|
|
120
126
|
```ruby
|
121
127
|
OpenAI.configure do |config|
|
122
128
|
config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
|
129
|
+
config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN") # Optional, used for admin endpoints, created here: https://platform.openai.com/settings/organization/admin-keys
|
123
130
|
config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
|
124
131
|
config.log_errors = true # Highly recommended in development, so you can see what errors OpenAI is returning. Not recommended in production because it could leak private data to your logs.
|
125
132
|
end
|
@@ -131,10 +138,10 @@ Then you can create a client like this:
|
|
131
138
|
client = OpenAI::Client.new
|
132
139
|
```
|
133
140
|
|
134
|
-
You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token overridden:
|
141
|
+
You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token and admin_token overridden:
|
135
142
|
|
136
143
|
```ruby
|
137
|
-
client = OpenAI::Client.new(access_token: "access_token_goes_here")
|
144
|
+
client = OpenAI::Client.new(access_token: "access_token_goes_here", admin_token: "admin_token_goes_here")
|
138
145
|
```
|
139
146
|
|
140
147
|
#### Custom timeout or base URI
|
@@ -145,15 +152,15 @@ client = OpenAI::Client.new(access_token: "access_token_goes_here")
|
|
145
152
|
|
146
153
|
```ruby
|
147
154
|
client = OpenAI::Client.new(
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
155
|
+
access_token: "access_token_goes_here",
|
156
|
+
uri_base: "https://oai.hconeai.com/",
|
157
|
+
request_timeout: 240,
|
158
|
+
extra_headers: {
|
159
|
+
"X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
|
160
|
+
"X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
|
161
|
+
"Helicone-Auth": "Bearer HELICONE_API_KEY", # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
|
162
|
+
"helicone-stream-force-format" => "true", # Use this with Helicone otherwise streaming drops chunks # https://github.com/alexrudall/ruby-openai/issues/251
|
163
|
+
}
|
157
164
|
)
|
158
165
|
```
|
159
166
|
|
@@ -161,16 +168,17 @@ or when configuring the gem:
|
|
161
168
|
|
162
169
|
```ruby
|
163
170
|
OpenAI.configure do |config|
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
171
|
+
config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
|
172
|
+
config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN") # Optional, used for admin endpoints, created here: https://platform.openai.com/settings/organization/admin-keys
|
173
|
+
config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
|
174
|
+
config.log_errors = true # Optional
|
175
|
+
config.uri_base = "https://oai.hconeai.com/" # Optional
|
176
|
+
config.request_timeout = 240 # Optional
|
177
|
+
config.extra_headers = {
|
178
|
+
"X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl
|
179
|
+
"X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache
|
180
|
+
"Helicone-Auth": "Bearer HELICONE_API_KEY" # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy
|
181
|
+
} # Optional
|
174
182
|
end
|
175
183
|
```
|
176
184
|
|
@@ -192,7 +200,7 @@ By default, `ruby-openai` does not log any `Faraday::Error`s encountered while e
|
|
192
200
|
If you would like to enable this functionality, you can set `log_errors` to `true` when configuring the client:
|
193
201
|
|
194
202
|
```ruby
|
195
|
-
|
203
|
+
client = OpenAI::Client.new(log_errors: true)
|
196
204
|
```
|
197
205
|
|
198
206
|
##### Faraday middleware
|
@@ -200,9 +208,9 @@ If you would like to enable this functionality, you can set `log_errors` to `tru
|
|
200
208
|
You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middleware/index) to the client in a block, eg. to enable verbose logging with Ruby's [Logger](https://ruby-doc.org/3.2.2/stdlibs/logger/Logger.html):
|
201
209
|
|
202
210
|
```ruby
|
203
|
-
|
204
|
-
|
205
|
-
|
211
|
+
client = OpenAI::Client.new do |f|
|
212
|
+
f.response :logger, Logger.new($stdout), bodies: true
|
213
|
+
end
|
206
214
|
```
|
207
215
|
|
208
216
|
#### Azure
|
@@ -210,12 +218,12 @@ You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middlew
|
|
210
218
|
To use the [Azure OpenAI Service](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) API, you can configure the gem like this:
|
211
219
|
|
212
220
|
```ruby
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
221
|
+
OpenAI.configure do |config|
|
222
|
+
config.access_token = ENV.fetch("AZURE_OPENAI_API_KEY")
|
223
|
+
config.uri_base = ENV.fetch("AZURE_OPENAI_URI")
|
224
|
+
config.api_type = :azure
|
225
|
+
config.api_version = "2023-03-15-preview"
|
226
|
+
end
|
219
227
|
```
|
220
228
|
|
221
229
|
where `AZURE_OPENAI_URI` is e.g. `https://custom-domain.openai.azure.com/openai/deployments/gpt-35-turbo`
|
@@ -240,14 +248,15 @@ client = OpenAI::Client.new(
|
|
240
248
|
)
|
241
249
|
|
242
250
|
client.chat(
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
+
parameters: {
|
252
|
+
model: "llama3", # Required.
|
253
|
+
messages: [{ role: "user", content: "Hello!"}], # Required.
|
254
|
+
temperature: 0.7,
|
255
|
+
stream: proc do |chunk, _bytesize|
|
256
|
+
print chunk.dig("choices", 0, "delta", "content")
|
257
|
+
end
|
258
|
+
}
|
259
|
+
)
|
251
260
|
|
252
261
|
# => Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?
|
253
262
|
```
|
@@ -257,20 +266,21 @@ client.chat(
|
|
257
266
|
[Groq API Chat](https://console.groq.com/docs/quickstart) is broadly compatible with the OpenAI API, with a [few minor differences](https://console.groq.com/docs/openai). Get an access token from [here](https://console.groq.com/keys), then:
|
258
267
|
|
259
268
|
```ruby
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
269
|
+
client = OpenAI::Client.new(
|
270
|
+
access_token: "groq_access_token_goes_here",
|
271
|
+
uri_base: "https://api.groq.com/openai"
|
272
|
+
)
|
264
273
|
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
+
client.chat(
|
275
|
+
parameters: {
|
276
|
+
model: "llama3-8b-8192", # Required.
|
277
|
+
messages: [{ role: "user", content: "Hello!"}], # Required.
|
278
|
+
temperature: 0.7,
|
279
|
+
stream: proc do |chunk, _bytesize|
|
280
|
+
print chunk.dig("choices", 0, "delta", "content")
|
281
|
+
end
|
282
|
+
}
|
283
|
+
)
|
274
284
|
```
|
275
285
|
|
276
286
|
### Counting Tokens
|
@@ -300,11 +310,12 @@ GPT is a model that can be used to generate text in a conversational style. You
|
|
300
310
|
|
301
311
|
```ruby
|
302
312
|
response = client.chat(
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
313
|
+
parameters: {
|
314
|
+
model: "gpt-4o", # Required.
|
315
|
+
messages: [{ role: "user", content: "Hello!"}], # Required.
|
316
|
+
temperature: 0.7,
|
317
|
+
}
|
318
|
+
)
|
308
319
|
puts response.dig("choices", 0, "message", "content")
|
309
320
|
# => "Hello! How may I assist you today?"
|
310
321
|
```
|
@@ -317,14 +328,15 @@ You can stream from the API in realtime, which can be much faster and used to cr
|
|
317
328
|
|
318
329
|
```ruby
|
319
330
|
client.chat(
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
331
|
+
parameters: {
|
332
|
+
model: "gpt-4o", # Required.
|
333
|
+
messages: [{ role: "user", content: "Describe a character called Anna!"}], # Required.
|
334
|
+
temperature: 0.7,
|
335
|
+
stream: proc do |chunk, _bytesize|
|
336
|
+
print chunk.dig("choices", 0, "delta", "content")
|
337
|
+
end
|
338
|
+
}
|
339
|
+
)
|
328
340
|
# => "Anna is a young woman in her mid-twenties, with wavy chestnut hair that falls to her shoulders..."
|
329
341
|
```
|
330
342
|
|
@@ -333,12 +345,13 @@ Note: In order to get usage information, you can provide the [`stream_options` p
|
|
333
345
|
```ruby
|
334
346
|
stream_proc = proc { |chunk, _bytesize| puts "--------------"; puts chunk.inspect; }
|
335
347
|
client.chat(
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
348
|
+
parameters: {
|
349
|
+
model: "gpt-4o",
|
350
|
+
stream: stream_proc,
|
351
|
+
stream_options: { include_usage: true },
|
352
|
+
messages: [{ role: "user", content: "Hello!"}],
|
353
|
+
}
|
354
|
+
)
|
342
355
|
# => --------------
|
343
356
|
# => {"id"=>"chatcmpl-7bbq05PiZqlHxjV1j7OHnKKDURKaf", "object"=>"chat.completion.chunk", "created"=>1718750612, "model"=>"gpt-4o-2024-05-13", "system_fingerprint"=>"fp_9cb5d38cf7", "choices"=>[{"index"=>0, "delta"=>{"role"=>"assistant", "content"=>""}, "logprobs"=>nil, "finish_reason"=>nil}], "usage"=>nil}
|
344
357
|
# => --------------
|
@@ -365,10 +378,11 @@ messages = [
|
|
365
378
|
}
|
366
379
|
]
|
367
380
|
response = client.chat(
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
381
|
+
parameters: {
|
382
|
+
model: "gpt-4-vision-preview", # Required.
|
383
|
+
messages: [{ role: "user", content: messages}], # Required.
|
384
|
+
}
|
385
|
+
)
|
372
386
|
puts response.dig("choices", 0, "message", "content")
|
373
387
|
# => "The image depicts a serene natural landscape featuring a long wooden boardwalk extending straight ahead"
|
374
388
|
```
|
@@ -378,21 +392,22 @@ puts response.dig("choices", 0, "message", "content")
|
|
378
392
|
You can set the response_format to ask for responses in JSON:
|
379
393
|
|
380
394
|
```ruby
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
395
|
+
response = client.chat(
|
396
|
+
parameters: {
|
397
|
+
model: "gpt-4o",
|
398
|
+
response_format: { type: "json_object" },
|
399
|
+
messages: [{ role: "user", content: "Hello! Give me some JSON please."}],
|
400
|
+
temperature: 0.7,
|
401
|
+
})
|
402
|
+
puts response.dig("choices", 0, "message", "content")
|
403
|
+
# =>
|
404
|
+
# {
|
405
|
+
# "name": "John",
|
406
|
+
# "age": 30,
|
407
|
+
# "city": "New York",
|
408
|
+
# "hobbies": ["reading", "traveling", "hiking"],
|
409
|
+
# "isStudent": false
|
410
|
+
# }
|
396
411
|
```
|
397
412
|
|
398
413
|
You can stream it as well!
|
@@ -402,26 +417,28 @@ You can stream it as well!
|
|
402
417
|
parameters: {
|
403
418
|
model: "gpt-4o",
|
404
419
|
messages: [{ role: "user", content: "Can I have some JSON please?"}],
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
})
|
410
|
-
{
|
411
|
-
"message": "Sure, please let me know what specific JSON data you are looking for.",
|
412
|
-
"JSON_data": {
|
413
|
-
"example_1": {
|
414
|
-
"key_1": "value_1",
|
415
|
-
"key_2": "value_2",
|
416
|
-
"key_3": "value_3"
|
417
|
-
},
|
418
|
-
"example_2": {
|
419
|
-
"key_4": "value_4",
|
420
|
-
"key_5": "value_5",
|
421
|
-
"key_6": "value_6"
|
422
|
-
}
|
420
|
+
response_format: { type: "json_object" },
|
421
|
+
stream: proc do |chunk, _bytesize|
|
422
|
+
print chunk.dig("choices", 0, "delta", "content")
|
423
|
+
end
|
423
424
|
}
|
424
|
-
|
425
|
+
)
|
426
|
+
# =>
|
427
|
+
# {
|
428
|
+
# "message": "Sure, please let me know what specific JSON data you are looking for.",
|
429
|
+
# "JSON_data": {
|
430
|
+
# "example_1": {
|
431
|
+
# "key_1": "value_1",
|
432
|
+
# "key_2": "value_2",
|
433
|
+
# "key_3": "value_3"
|
434
|
+
# },
|
435
|
+
# "example_2": {
|
436
|
+
# "key_4": "value_4",
|
437
|
+
# "key_5": "value_5",
|
438
|
+
# "key_6": "value_6"
|
439
|
+
# }
|
440
|
+
# }
|
441
|
+
# }
|
425
442
|
```
|
426
443
|
|
427
444
|
### Functions
|
@@ -429,7 +446,6 @@ You can stream it as well!
|
|
429
446
|
You can describe and pass in functions and the model will intelligently choose to output a JSON object containing arguments to call them - eg., to use your method `get_current_weather` to get the weather in a given location. Note that tool_choice is optional, but if you exclude it, the model will choose whether to use the function or not ([see here](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice)).
|
430
447
|
|
431
448
|
```ruby
|
432
|
-
|
433
449
|
def get_current_weather(location:, unit: "fahrenheit")
|
434
450
|
# Here you could use a weather api to fetch the weather.
|
435
451
|
"The weather in #{location} is nice 🌞 #{unit}"
|
@@ -470,8 +486,9 @@ response =
|
|
470
486
|
},
|
471
487
|
}
|
472
488
|
],
|
473
|
-
|
474
|
-
|
489
|
+
# Optional, defaults to "auto"
|
490
|
+
# Can also put "none" or specific functions, see docs
|
491
|
+
tool_choice: "required"
|
475
492
|
},
|
476
493
|
)
|
477
494
|
|
@@ -485,12 +502,13 @@ if message["role"] == "assistant" && message["tool_calls"]
|
|
485
502
|
tool_call.dig("function", "arguments"),
|
486
503
|
{ symbolize_names: true },
|
487
504
|
)
|
488
|
-
function_response =
|
505
|
+
function_response =
|
506
|
+
case function_name
|
489
507
|
when "get_current_weather"
|
490
508
|
get_current_weather(**function_args) # => "The weather is nice 🌞"
|
491
509
|
else
|
492
510
|
# decide how to handle
|
493
|
-
|
511
|
+
end
|
494
512
|
|
495
513
|
# For a subsequent message with the role "tool", OpenAI requires the preceding message to have a tool_calls argument.
|
496
514
|
messages << message
|
@@ -507,7 +525,8 @@ if message["role"] == "assistant" && message["tool_calls"]
|
|
507
525
|
parameters: {
|
508
526
|
model: "gpt-4o",
|
509
527
|
messages: messages
|
510
|
-
|
528
|
+
}
|
529
|
+
)
|
511
530
|
|
512
531
|
puts second_response.dig("choices", 0, "message", "content")
|
513
532
|
|
@@ -523,11 +542,12 @@ Hit the OpenAI API for a completion using other GPT-3 models:
|
|
523
542
|
|
524
543
|
```ruby
|
525
544
|
response = client.completions(
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
545
|
+
parameters: {
|
546
|
+
model: "gpt-4o",
|
547
|
+
prompt: "Once upon a time",
|
548
|
+
max_tokens: 5
|
549
|
+
}
|
550
|
+
)
|
531
551
|
puts response["choices"].map { |c| c["text"] }
|
532
552
|
# => [", there lived a great"]
|
533
553
|
```
|
@@ -538,10 +558,10 @@ You can use the embeddings endpoint to get a vector of numbers representing an i
|
|
538
558
|
|
539
559
|
```ruby
|
540
560
|
response = client.embeddings(
|
541
|
-
|
542
|
-
|
543
|
-
|
544
|
-
|
561
|
+
parameters: {
|
562
|
+
model: "text-embedding-ada-002",
|
563
|
+
input: "The food was delicious and the waiter..."
|
564
|
+
}
|
545
565
|
)
|
546
566
|
|
547
567
|
puts response.dig("data", 0, "embedding")
|
@@ -687,9 +707,9 @@ You can then use this file ID to create a fine tuning job:
|
|
687
707
|
|
688
708
|
```ruby
|
689
709
|
response = client.finetunes.create(
|
690
|
-
|
691
|
-
|
692
|
-
|
710
|
+
parameters: {
|
711
|
+
training_file: file_id,
|
712
|
+
model: "gpt-4o"
|
693
713
|
})
|
694
714
|
fine_tune_id = response["id"]
|
695
715
|
```
|
@@ -712,17 +732,17 @@ This fine-tuned model name can then be used in chat completions:
|
|
712
732
|
|
713
733
|
```ruby
|
714
734
|
response = client.chat(
|
715
|
-
|
716
|
-
|
717
|
-
|
718
|
-
|
735
|
+
parameters: {
|
736
|
+
model: fine_tuned_model,
|
737
|
+
messages: [{ role: "user", content: "I love Mondays!" }]
|
738
|
+
}
|
719
739
|
)
|
720
740
|
response.dig("choices", 0, "message", "content")
|
721
741
|
```
|
722
742
|
|
723
743
|
You can also capture the events for a job:
|
724
744
|
|
725
|
-
```
|
745
|
+
```ruby
|
726
746
|
client.finetunes.list_events(id: fine_tune_id)
|
727
747
|
```
|
728
748
|
|
@@ -867,25 +887,26 @@ To create a new assistant:
|
|
867
887
|
|
868
888
|
```ruby
|
869
889
|
response = client.assistants.create(
|
870
|
-
|
871
|
-
|
872
|
-
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
|
877
|
-
|
878
|
-
|
879
|
-
|
880
|
-
|
881
|
-
|
882
|
-
|
883
|
-
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
890
|
+
parameters: {
|
891
|
+
model: "gpt-4o",
|
892
|
+
name: "OpenAI-Ruby test assistant",
|
893
|
+
description: nil,
|
894
|
+
instructions: "You are a Ruby dev bot. When asked a question, write and run Ruby code to answer the question",
|
895
|
+
tools: [
|
896
|
+
{ type: "code_interpreter" },
|
897
|
+
{ type: "file_search" }
|
898
|
+
],
|
899
|
+
tool_resources: {
|
900
|
+
code_interpreter: {
|
901
|
+
file_ids: [] # See Files section above for how to upload files
|
902
|
+
},
|
903
|
+
file_search: {
|
904
|
+
vector_store_ids: [] # See Vector Stores section above for how to add vector stores
|
905
|
+
}
|
906
|
+
},
|
907
|
+
"metadata": { my_internal_version_id: "1.0.0" }
|
908
|
+
}
|
909
|
+
)
|
889
910
|
assistant_id = response["id"]
|
890
911
|
```
|
891
912
|
|
@@ -905,16 +926,17 @@ You can modify an existing assistant using the assistant's id (see [API document
|
|
905
926
|
|
906
927
|
```ruby
|
907
928
|
response = client.assistants.modify(
|
908
|
-
|
909
|
-
|
910
|
-
|
911
|
-
|
912
|
-
|
929
|
+
id: assistant_id,
|
930
|
+
parameters: {
|
931
|
+
name: "Modified Test Assistant for OpenAI-Ruby",
|
932
|
+
metadata: { my_internal_version_id: '1.0.1' }
|
933
|
+
}
|
934
|
+
)
|
913
935
|
```
|
914
936
|
|
915
937
|
You can delete assistants:
|
916
938
|
|
917
|
-
```
|
939
|
+
```ruby
|
918
940
|
client.assistants.delete(id: assistant_id)
|
919
941
|
```
|
920
942
|
|
@@ -930,11 +952,12 @@ thread_id = response["id"]
|
|
930
952
|
|
931
953
|
# Add initial message from user (see https://platform.openai.com/docs/api-reference/messages/createMessage)
|
932
954
|
message_id = client.messages.create(
|
933
|
-
|
934
|
-
|
935
|
-
|
936
|
-
|
937
|
-
|
955
|
+
thread_id: thread_id,
|
956
|
+
parameters: {
|
957
|
+
role: "user", # Required for manually created messages
|
958
|
+
content: "Can you help me write an API library to interact with the OpenAI API please?"
|
959
|
+
}
|
960
|
+
)["id"]
|
938
961
|
|
939
962
|
# Retrieve individual message
|
940
963
|
message = client.messages.retrieve(thread_id: thread_id, id: message_id)
|
@@ -958,32 +981,38 @@ To submit a thread to be evaluated with the model of an assistant, create a `Run
|
|
958
981
|
|
959
982
|
```ruby
|
960
983
|
# Create run (will use instruction/model/tools from Assistant's definition)
|
961
|
-
response = client.runs.create(
|
962
|
-
|
963
|
-
|
964
|
-
|
965
|
-
|
966
|
-
|
984
|
+
response = client.runs.create(
|
985
|
+
thread_id: thread_id,
|
986
|
+
parameters: {
|
987
|
+
assistant_id: assistant_id,
|
988
|
+
max_prompt_tokens: 256,
|
989
|
+
max_completion_tokens: 16
|
990
|
+
}
|
991
|
+
)
|
967
992
|
run_id = response['id']
|
968
993
|
```
|
969
994
|
|
970
995
|
You can stream the message chunks as they come through:
|
971
996
|
|
972
997
|
```ruby
|
973
|
-
client.runs.create(
|
974
|
-
|
975
|
-
|
976
|
-
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
981
|
-
|
998
|
+
client.runs.create(
|
999
|
+
thread_id: thread_id,
|
1000
|
+
parameters: {
|
1001
|
+
assistant_id: assistant_id,
|
1002
|
+
max_prompt_tokens: 256,
|
1003
|
+
max_completion_tokens: 16,
|
1004
|
+
stream: proc do |chunk, _bytesize|
|
1005
|
+
if chunk["object"] == "thread.message.delta"
|
1006
|
+
print chunk.dig("delta", "content", 0, "text", "value")
|
1007
|
+
end
|
1008
|
+
end
|
1009
|
+
}
|
1010
|
+
)
|
982
1011
|
```
|
983
1012
|
|
984
1013
|
To get the status of a Run:
|
985
1014
|
|
986
|
-
```
|
1015
|
+
```ruby
|
987
1016
|
response = client.runs.retrieve(id: run_id, thread_id: thread_id)
|
988
1017
|
status = response['status']
|
989
1018
|
```
|
@@ -992,23 +1021,23 @@ The `status` response can include the following strings `queued`, `in_progress`,
|
|
992
1021
|
|
993
1022
|
```ruby
|
994
1023
|
while true do
|
995
|
-
|
996
|
-
|
997
|
-
|
998
|
-
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1002
|
-
|
1003
|
-
|
1004
|
-
|
1005
|
-
|
1006
|
-
|
1007
|
-
|
1008
|
-
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
1024
|
+
response = client.runs.retrieve(id: run_id, thread_id: thread_id)
|
1025
|
+
status = response['status']
|
1026
|
+
|
1027
|
+
case status
|
1028
|
+
when 'queued', 'in_progress', 'cancelling'
|
1029
|
+
puts 'Sleeping'
|
1030
|
+
sleep 1 # Wait one second and poll again
|
1031
|
+
when 'completed'
|
1032
|
+
break # Exit loop and report result to user
|
1033
|
+
when 'requires_action'
|
1034
|
+
# Handle tool calls (see below)
|
1035
|
+
when 'cancelled', 'failed', 'expired'
|
1036
|
+
puts response['last_error'].inspect
|
1037
|
+
break # or `exit`
|
1038
|
+
else
|
1039
|
+
puts "Unknown status response: #{status}"
|
1040
|
+
end
|
1012
1041
|
end
|
1013
1042
|
```
|
1014
1043
|
|
@@ -1020,30 +1049,30 @@ messages = client.messages.list(thread_id: thread_id, parameters: { order: 'asc'
|
|
1020
1049
|
|
1021
1050
|
# Alternatively retrieve the `run steps` for the run which link to the messages:
|
1022
1051
|
run_steps = client.run_steps.list(thread_id: thread_id, run_id: run_id, parameters: { order: 'asc' })
|
1023
|
-
new_message_ids = run_steps['data'].filter_map
|
1052
|
+
new_message_ids = run_steps['data'].filter_map do |step|
|
1024
1053
|
if step['type'] == 'message_creation'
|
1025
1054
|
step.dig('step_details', "message_creation", "message_id")
|
1026
1055
|
end # Ignore tool calls, because they don't create new messages.
|
1027
|
-
|
1056
|
+
end
|
1028
1057
|
|
1029
1058
|
# Retrieve the individual messages
|
1030
|
-
new_messages = new_message_ids.map
|
1059
|
+
new_messages = new_message_ids.map do |msg_id|
|
1031
1060
|
client.messages.retrieve(id: msg_id, thread_id: thread_id)
|
1032
|
-
|
1061
|
+
end
|
1033
1062
|
|
1034
1063
|
# Find the actual response text in the content array of the messages
|
1035
|
-
new_messages.each
|
1036
|
-
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1040
|
-
|
1041
|
-
|
1042
|
-
|
1043
|
-
|
1044
|
-
|
1045
|
-
|
1046
|
-
|
1064
|
+
new_messages.each do |msg|
|
1065
|
+
msg['content'].each do |content_item|
|
1066
|
+
case content_item['type']
|
1067
|
+
when 'text'
|
1068
|
+
puts content_item.dig('text', 'value')
|
1069
|
+
# Also handle annotations
|
1070
|
+
when 'image_file'
|
1071
|
+
# Use File endpoint to retrieve file contents via id
|
1072
|
+
id = content_item.dig('image_file', 'file_id')
|
1073
|
+
end
|
1074
|
+
end
|
1075
|
+
end
|
1047
1076
|
```
|
1048
1077
|
|
1049
1078
|
You can also update the metadata on messages, including messages that come from the assistant.
|
@@ -1052,7 +1081,11 @@ You can also update the metadata on messages, including messages that come from
|
|
1052
1081
|
metadata = {
|
1053
1082
|
user_id: "abc123"
|
1054
1083
|
}
|
1055
|
-
message = client.messages.modify(
|
1084
|
+
message = client.messages.modify(
|
1085
|
+
id: message_id,
|
1086
|
+
thread_id: thread_id,
|
1087
|
+
parameters: { metadata: metadata },
|
1088
|
+
)
|
1056
1089
|
```
|
1057
1090
|
|
1058
1091
|
At any time you can list all runs which have been performed on a particular thread or are currently running:
|
@@ -1071,41 +1104,117 @@ run_id = response['id']
|
|
1071
1104
|
thread_id = response['thread_id']
|
1072
1105
|
```
|
1073
1106
|
|
1107
|
+
#### Vision in a thread
|
1108
|
+
|
1109
|
+
You can include images in a thread and they will be described & read by the LLM. In this example I'm using [this file](https://upload.wikimedia.org/wikipedia/commons/7/70/Example.png):
|
1110
|
+
|
1111
|
+
```ruby
|
1112
|
+
require "openai"
|
1113
|
+
|
1114
|
+
# Make a client
|
1115
|
+
client = OpenAI::Client.new(
|
1116
|
+
access_token: "access_token_goes_here",
|
1117
|
+
log_errors: true # Don't log errors in production.
|
1118
|
+
)
|
1119
|
+
|
1120
|
+
# Upload image as a file
|
1121
|
+
file_id = client.files.upload(
|
1122
|
+
parameters: {
|
1123
|
+
file: "path/to/example.png",
|
1124
|
+
purpose: "assistants",
|
1125
|
+
}
|
1126
|
+
)["id"]
|
1127
|
+
|
1128
|
+
# Create assistant (You could also use an existing one here)
|
1129
|
+
assistant_id = client.assistants.create(
|
1130
|
+
parameters: {
|
1131
|
+
model: "gpt-4o",
|
1132
|
+
name: "Image reader",
|
1133
|
+
instructions: "You are an image describer. You describe the contents of images.",
|
1134
|
+
}
|
1135
|
+
)["id"]
|
1136
|
+
|
1137
|
+
# Create thread
|
1138
|
+
thread_id = client.threads.create["id"]
|
1139
|
+
|
1140
|
+
# Add image in message
|
1141
|
+
client.messages.create(
|
1142
|
+
thread_id: thread_id,
|
1143
|
+
parameters: {
|
1144
|
+
role: "user", # Required for manually created messages
|
1145
|
+
content: [
|
1146
|
+
{
|
1147
|
+
"type": "text",
|
1148
|
+
"text": "What's in this image?"
|
1149
|
+
},
|
1150
|
+
{
|
1151
|
+
"type": "image_file",
|
1152
|
+
"image_file": { "file_id": file_id }
|
1153
|
+
}
|
1154
|
+
]
|
1155
|
+
}
|
1156
|
+
)
|
1157
|
+
|
1158
|
+
# Run thread
|
1159
|
+
run_id = client.runs.create(
|
1160
|
+
thread_id: thread_id,
|
1161
|
+
parameters: { assistant_id: assistant_id }
|
1162
|
+
)["id"]
|
1163
|
+
|
1164
|
+
# Wait until run in complete
|
1165
|
+
status = nil
|
1166
|
+
until status == "completed" do
|
1167
|
+
sleep(0.1)
|
1168
|
+
status = client.runs.retrieve(id: run_id, thread_id: thread_id)['status']
|
1169
|
+
end
|
1170
|
+
|
1171
|
+
# Get the response
|
1172
|
+
messages = client.messages.list(thread_id: thread_id, parameters: { order: 'asc' })
|
1173
|
+
messages.dig("data", -1, "content", 0, "text", "value")
|
1174
|
+
=> "The image contains a placeholder graphic with a tilted, stylized representation of a postage stamp in the top part, which includes an abstract landscape with hills and a sun. Below the stamp, in the middle of the image, there is italicized text in a light golden color that reads, \"This is just an example.\" The background is a light pastel shade, and a yellow border frames the entire image."
|
1175
|
+
```
|
1176
|
+
|
1074
1177
|
#### Runs involving function tools
|
1075
1178
|
|
1076
1179
|
In case you are allowing the assistant to access `function` tools (they are defined in the same way as functions during chat completion), you might get a status code of `requires_action` when the assistant wants you to evaluate one or more function tools:
|
1077
1180
|
|
1078
1181
|
```ruby
|
1079
1182
|
def get_current_weather(location:, unit: "celsius")
|
1080
|
-
|
1081
|
-
|
1082
|
-
|
1083
|
-
|
1084
|
-
|
1085
|
-
|
1183
|
+
# Your function code goes here
|
1184
|
+
if location =~ /San Francisco/i
|
1185
|
+
return unit == "celsius" ? "The weather is nice 🌞 at 27°C" : "The weather is nice 🌞 at 80°F"
|
1186
|
+
else
|
1187
|
+
return unit == "celsius" ? "The weather is icy 🥶 at -5°C" : "The weather is icy 🥶 at 23°F"
|
1188
|
+
end
|
1086
1189
|
end
|
1087
1190
|
|
1088
1191
|
if status == 'requires_action'
|
1192
|
+
tools_to_call = response.dig('required_action', 'submit_tool_outputs', 'tool_calls')
|
1089
1193
|
|
1090
|
-
|
1091
|
-
|
1092
|
-
|
1093
|
-
|
1094
|
-
|
1095
|
-
|
1096
|
-
|
1097
|
-
{ symbolize_names: true },
|
1098
|
-
)
|
1194
|
+
my_tool_outputs = tools_to_call.map { |tool|
|
1195
|
+
# Call the functions based on the tool's name
|
1196
|
+
function_name = tool.dig('function', 'name')
|
1197
|
+
arguments = JSON.parse(
|
1198
|
+
tool.dig("function", "arguments"),
|
1199
|
+
{ symbolize_names: true },
|
1200
|
+
)
|
1099
1201
|
|
1100
|
-
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1202
|
+
tool_output = case function_name
|
1203
|
+
when "get_current_weather"
|
1204
|
+
get_current_weather(**arguments)
|
1205
|
+
end
|
1104
1206
|
|
1105
|
-
|
1207
|
+
{
|
1208
|
+
tool_call_id: tool['id'],
|
1209
|
+
output: tool_output,
|
1106
1210
|
}
|
1211
|
+
}
|
1107
1212
|
|
1108
|
-
|
1213
|
+
client.runs.submit_tool_outputs(
|
1214
|
+
thread_id: thread_id,
|
1215
|
+
run_id: run_id,
|
1216
|
+
parameters: { tool_outputs: my_tool_outputs }
|
1217
|
+
)
|
1109
1218
|
end
|
1110
1219
|
```
|
1111
1220
|
|
@@ -1115,19 +1224,19 @@ Note that you have 10 minutes to submit your tool output before the run expires.
|
|
1115
1224
|
|
1116
1225
|
Take a deep breath. You might need a drink for this one.
|
1117
1226
|
|
1118
|
-
It's possible for OpenAI to share what chunks it used in its internal RAG Pipeline to create its filesearch
|
1227
|
+
It's possible for OpenAI to share what chunks it used in its internal RAG Pipeline to create its filesearch results.
|
1119
1228
|
|
1120
1229
|
An example spec can be found [here](https://github.com/alexrudall/ruby-openai/blob/main/spec/openai/client/assistant_file_search_spec.rb) that does this, just so you know it's possible.
|
1121
1230
|
|
1122
1231
|
Here's how to get the chunks used in a file search. In this example I'm using [this file](https://css4.pub/2015/textbook/somatosensory.pdf):
|
1123
1232
|
|
1124
|
-
```
|
1233
|
+
```ruby
|
1125
1234
|
require "openai"
|
1126
1235
|
|
1127
1236
|
# Make a client
|
1128
1237
|
client = OpenAI::Client.new(
|
1129
1238
|
access_token: "access_token_goes_here",
|
1130
|
-
log_errors: true # Don't
|
1239
|
+
log_errors: true # Don't log errors in production.
|
1131
1240
|
)
|
1132
1241
|
|
1133
1242
|
# Upload your file(s)
|
@@ -1191,9 +1300,6 @@ steps = client.run_steps.list(
|
|
1191
1300
|
parameters: { order: "asc" }
|
1192
1301
|
)
|
1193
1302
|
|
1194
|
-
# Get the last step ID (or whichever one you want to look at)
|
1195
|
-
step_id = steps["data"].first["id"]
|
1196
|
-
|
1197
1303
|
# Retrieve all the steps. Include the "GIVE ME THE CHUNKS" incantation again.
|
1198
1304
|
steps = steps["data"].map do |step|
|
1199
1305
|
client.run_steps.retrieve(
|
@@ -1230,7 +1336,12 @@ Generate images using DALL·E 2 or DALL·E 3!
|
|
1230
1336
|
For DALL·E 2 the size of any generated images must be one of `256x256`, `512x512` or `1024x1024` - if not specified the image will default to `1024x1024`.
|
1231
1337
|
|
1232
1338
|
```ruby
|
1233
|
-
response = client.images.generate(
|
1339
|
+
response = client.images.generate(
|
1340
|
+
parameters: {
|
1341
|
+
prompt: "A baby sea otter cooking pasta wearing a hat of some sort",
|
1342
|
+
size: "256x256",
|
1343
|
+
}
|
1344
|
+
)
|
1234
1345
|
puts response.dig("data", 0, "url")
|
1235
1346
|
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
|
1236
1347
|
```
|
@@ -1242,7 +1353,14 @@ puts response.dig("data", 0, "url")
|
|
1242
1353
|
For DALL·E 3 the size of any generated images must be one of `1024x1024`, `1024x1792` or `1792x1024`. Additionally the quality of the image can be specified to either `standard` or `hd`.
|
1243
1354
|
|
1244
1355
|
```ruby
|
1245
|
-
response = client.images.generate(
|
1356
|
+
response = client.images.generate(
|
1357
|
+
parameters: {
|
1358
|
+
prompt: "A springer spaniel cooking pasta wearing a hat of some sort",
|
1359
|
+
model: "dall-e-3",
|
1360
|
+
size: "1024x1792",
|
1361
|
+
quality: "standard",
|
1362
|
+
}
|
1363
|
+
)
|
1246
1364
|
puts response.dig("data", 0, "url")
|
1247
1365
|
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
|
1248
1366
|
```
|
@@ -1254,7 +1372,13 @@ puts response.dig("data", 0, "url")
|
|
1254
1372
|
Fill in the transparent part of an image, or upload a mask with transparent sections to indicate the parts of an image that can be changed according to your prompt...
|
1255
1373
|
|
1256
1374
|
```ruby
|
1257
|
-
response = client.images.edit(
|
1375
|
+
response = client.images.edit(
|
1376
|
+
parameters: {
|
1377
|
+
prompt: "A solid red Ruby on a blue background",
|
1378
|
+
image: "image.png",
|
1379
|
+
mask: "mask.png",
|
1380
|
+
}
|
1381
|
+
)
|
1258
1382
|
puts response.dig("data", 0, "url")
|
1259
1383
|
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."
|
1260
1384
|
```
|
@@ -1294,10 +1418,11 @@ The translations API takes as input the audio file in any of the supported langu
|
|
1294
1418
|
|
1295
1419
|
```ruby
|
1296
1420
|
response = client.audio.translate(
|
1297
|
-
|
1298
|
-
|
1299
|
-
|
1300
|
-
|
1421
|
+
parameters: {
|
1422
|
+
model: "whisper-1",
|
1423
|
+
file: File.open("path_to_file", "rb"),
|
1424
|
+
}
|
1425
|
+
)
|
1301
1426
|
puts response["text"]
|
1302
1427
|
# => "Translation of the text"
|
1303
1428
|
```
|
@@ -1310,11 +1435,12 @@ You can pass the language of the audio file to improve transcription quality. Su
|
|
1310
1435
|
|
1311
1436
|
```ruby
|
1312
1437
|
response = client.audio.transcribe(
|
1313
|
-
|
1314
|
-
|
1315
|
-
|
1316
|
-
|
1317
|
-
|
1438
|
+
parameters: {
|
1439
|
+
model: "whisper-1",
|
1440
|
+
file: File.open("path_to_file", "rb"),
|
1441
|
+
language: "en", # Optional
|
1442
|
+
}
|
1443
|
+
)
|
1318
1444
|
puts response["text"]
|
1319
1445
|
# => "Transcription of the text"
|
1320
1446
|
```
|
@@ -1330,23 +1456,81 @@ response = client.audio.speech(
|
|
1330
1456
|
input: "This is a speech test!",
|
1331
1457
|
voice: "alloy",
|
1332
1458
|
response_format: "mp3", # Optional
|
1333
|
-
speed: 1.0 # Optional
|
1459
|
+
speed: 1.0, # Optional
|
1334
1460
|
}
|
1335
1461
|
)
|
1336
1462
|
File.binwrite('demo.mp3', response)
|
1337
1463
|
# => mp3 file that plays: "This is a speech test!"
|
1338
1464
|
```
|
1339
1465
|
|
1340
|
-
###
|
1466
|
+
### Usage
|
1467
|
+
The Usage API provides information about the cost of various OpenAI services within your organization.
|
1468
|
+
To use Admin APIs like Usage, you need to set an OPENAI_ADMIN_TOKEN, which can be generated [here](https://platform.openai.com/settings/organization/admin-keys).
|
1341
1469
|
|
1342
|
-
|
1470
|
+
```ruby
|
1471
|
+
OpenAI.configure do |config|
|
1472
|
+
config.admin_token = ENV.fetch("OPENAI_ADMIN_TOKEN")
|
1473
|
+
end
|
1474
|
+
|
1475
|
+
# or
|
1343
1476
|
|
1477
|
+
client = OpenAI::Client.new(admin_token: "123abc")
|
1344
1478
|
```
|
1345
|
-
|
1346
|
-
|
1347
|
-
|
1348
|
-
|
1479
|
+
|
1480
|
+
You can retrieve usage data for different endpoints and time periods:
|
1481
|
+
|
1482
|
+
```ruby
|
1483
|
+
one_day_ago = Time.now.to_i - 86_400
|
1484
|
+
|
1485
|
+
# Retrieve costs data
|
1486
|
+
response = client.usage.costs(parameters: { start_time: one_day_ago })
|
1487
|
+
response["data"].each do |bucket|
|
1488
|
+
bucket["results"].each do |result|
|
1489
|
+
puts "#{Time.at(bucket["start_time"]).to_date}: $#{result.dig("amount", "value").round(2)}"
|
1349
1490
|
end
|
1491
|
+
end
|
1492
|
+
=> 2025-02-09: $0.0
|
1493
|
+
=> 2025-02-10: $0.42
|
1494
|
+
|
1495
|
+
# Retrieve completions usage data
|
1496
|
+
response = client.usage.completions(parameters: { start_time: one_day_ago })
|
1497
|
+
puts response["data"]
|
1498
|
+
|
1499
|
+
# Retrieve embeddings usage data
|
1500
|
+
response = client.usage.embeddings(parameters: { start_time: one_day_ago })
|
1501
|
+
puts response["data"]
|
1502
|
+
|
1503
|
+
# Retrieve moderations usage data
|
1504
|
+
response = client.usage.moderations(parameters: { start_time: one_day_ago })
|
1505
|
+
puts response["data"]
|
1506
|
+
|
1507
|
+
# Retrieve image generation usage data
|
1508
|
+
response = client.usage.images(parameters: { start_time: one_day_ago })
|
1509
|
+
puts response["data"]
|
1510
|
+
|
1511
|
+
# Retrieve audio speech usage data
|
1512
|
+
response = client.usage.audio_speeches(parameters: { start_time: one_day_ago })
|
1513
|
+
puts response["data"]
|
1514
|
+
|
1515
|
+
# Retrieve audio transcription usage data
|
1516
|
+
response = client.usage.audio_transcriptions(parameters: { start_time: one_day_ago })
|
1517
|
+
puts response["data"]
|
1518
|
+
|
1519
|
+
# Retrieve vector stores usage data
|
1520
|
+
response = client.usage.vector_stores(parameters: { start_time: one_day_ago })
|
1521
|
+
puts response["data"]
|
1522
|
+
```
|
1523
|
+
|
1524
|
+
### Errors
|
1525
|
+
|
1526
|
+
HTTP errors can be caught like this:
|
1527
|
+
|
1528
|
+
```ruby
|
1529
|
+
begin
|
1530
|
+
OpenAI::Client.new.models.retrieve(id: "gpt-4o")
|
1531
|
+
rescue Faraday::Error => e
|
1532
|
+
raise "Got a Faraday error: #{e}"
|
1533
|
+
end
|
1350
1534
|
```
|
1351
1535
|
|
1352
1536
|
## Development
|
@@ -1358,15 +1542,11 @@ To install this gem onto your local machine, run `bundle exec rake install`.
|
|
1358
1542
|
To run all tests, execute the command `bundle exec rake`, which will also run the linter (Rubocop). This repository uses [VCR](https://github.com/vcr/vcr) to log API requests.
|
1359
1543
|
|
1360
1544
|
> [!WARNING]
|
1361
|
-
> If you have an `OPENAI_ACCESS_TOKEN` in your `ENV`, running the specs will
|
1545
|
+
> If you have an `OPENAI_ACCESS_TOKEN` and `OPENAI_ADMIN_TOKEN` in your `ENV`, running the specs will hit the actual API, which will be slow and cost you money - 2 cents or more! Remove them from your environment with `unset` or similar if you just want to run the specs against the stored VCR responses.
|
1362
1546
|
|
1363
1547
|
## Release
|
1364
1548
|
|
1365
|
-
First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN in your environment
|
1366
|
-
|
1367
|
-
```
|
1368
|
-
OPENAI_ACCESS_TOKEN=123abc bundle exec rspec
|
1369
|
-
```
|
1549
|
+
First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN and OPENAI_ADMIN_TOKEN in your environment.
|
1370
1550
|
|
1371
1551
|
Then update the version number in `version.rb`, update `CHANGELOG.md`, run `bundle install` to update Gemfile.lock, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
1372
1552
|
|