ruby-lapack 1.7.2 → 1.8.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Rakefile +1 -1
- data/dev/defs/cgelsd +2 -2
- data/dev/defs/clarrv +1 -1
- data/dev/defs/clatdf +1 -1
- data/dev/defs/cstegr +1 -1
- data/dev/defs/dgelsd +1 -1
- data/dev/defs/dlamrg +1 -1
- data/dev/defs/dlarre +1 -1
- data/dev/defs/dlarrv +1 -1
- data/dev/defs/dlasdq +1 -1
- data/dev/defs/dlat2s +1 -1
- data/dev/defs/dlatdf +1 -1
- data/dev/defs/dsgesv +1 -1
- data/dev/defs/dsposv +1 -1
- data/dev/defs/dstegr +1 -1
- data/dev/defs/sgelsd +1 -1
- data/dev/defs/slamrg +1 -1
- data/dev/defs/slarre +1 -1
- data/dev/defs/slarrv +1 -1
- data/dev/defs/slasdq +1 -1
- data/dev/defs/slatdf +1 -1
- data/dev/defs/sstegr +1 -1
- data/dev/defs/zcgesv +1 -1
- data/dev/defs/zcposv +1 -1
- data/dev/defs/zgelsd +2 -2
- data/dev/defs/zlarrv +1 -1
- data/dev/defs/zlat2c +1 -1
- data/dev/defs/zlatdf +1 -1
- data/dev/defs/zstegr +1 -1
- data/ext/cgelsd.c +1 -1
- data/ext/clarrv.c +1 -1
- data/ext/clatdf.c +1 -1
- data/ext/cstegr.c +1 -1
- data/ext/dgelsd.c +1 -1
- data/ext/dlamrg.c +1 -1
- data/ext/dlarre.c +1 -1
- data/ext/dlarrv.c +1 -1
- data/ext/dlasdq.c +1 -1
- data/ext/dlat2s.c +1 -1
- data/ext/dlatdf.c +1 -1
- data/ext/dsgesv.c +1 -1
- data/ext/dsposv.c +1 -1
- data/ext/dstegr.c +1 -1
- data/ext/extconf.rb +47 -24
- data/ext/sgelsd.c +1 -1
- data/ext/slamrg.c +1 -1
- data/ext/slarre.c +1 -1
- data/ext/slarrv.c +1 -1
- data/ext/slasdq.c +1 -1
- data/ext/slatdf.c +1 -1
- data/ext/sstegr.c +1 -1
- data/ext/zcgesv.c +1 -1
- data/ext/zcposv.c +1 -1
- data/ext/zgelsd.c +1 -1
- data/ext/zlarrv.c +1 -1
- data/ext/zlat2c.c +1 -1
- data/ext/zlatdf.c +1 -1
- data/ext/zstegr.c +1 -1
- metadata +2 -2
data/ext/extconf.rb
CHANGED
@@ -62,35 +62,58 @@ unless find_library("lapack", nil)
|
|
62
62
|
end
|
63
63
|
end
|
64
64
|
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
65
|
+
na_path = RbConfig::CONFIG["sitearchdir"]
|
66
|
+
begin
|
67
|
+
require "rubygems"
|
68
|
+
gem = true
|
69
|
+
rescue LoadError
|
70
|
+
gem = false
|
71
|
+
end
|
72
|
+
if gem
|
73
|
+
if ( na_type = ENV["NARRAY_TYPE"] )
|
74
|
+
nas = [na_type]
|
70
75
|
else
|
71
|
-
|
76
|
+
nas = %w(narray numru-narray)
|
72
77
|
end
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
78
|
+
if Gem::Specification.respond_to?(:find_by_name)
|
79
|
+
nas.each do |na|
|
80
|
+
begin
|
81
|
+
if ( spec = Gem::Specification.find_by_name(na) )
|
82
|
+
na_type = na
|
83
|
+
na_path = spec.full_gem_path
|
84
|
+
case na_type
|
85
|
+
when "narray"
|
86
|
+
na_path = File.join(na_path, "src")
|
87
|
+
when "numru-narray"
|
88
|
+
na_path = File.join(na_path, "ext", "numru", "narray")
|
89
|
+
end
|
90
|
+
break
|
91
|
+
end
|
92
|
+
rescue LoadError
|
93
|
+
end
|
94
|
+
end
|
83
95
|
else
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
96
|
+
nas.each do |na|
|
97
|
+
if ( spec = Gem.source_index.find_name(na) ).any?
|
98
|
+
na_type = na
|
99
|
+
na_path = spec[0].full_gem_path
|
100
|
+
case na_type
|
101
|
+
when "narray"
|
102
|
+
na_path = File.join(na_path, "src")
|
103
|
+
when "numru-narray"
|
104
|
+
na_path = File.join(na_path, "ext", "numru", "narray")
|
105
|
+
end
|
106
|
+
break
|
107
|
+
end
|
91
108
|
end
|
92
109
|
end
|
93
110
|
end
|
94
|
-
|
111
|
+
|
112
|
+
dir_config("narray", na_path, na_path)
|
113
|
+
unless have_header("narray.h")
|
114
|
+
$stderr.print "narray.h does not found. Specify the path.\n"
|
115
|
+
$stderr.print "e.g., gem install ruby-lapack -- --with-narray-include=path\n"
|
116
|
+
exit(-1)
|
117
|
+
end
|
95
118
|
|
96
119
|
create_makefile("numru/lapack")
|
data/ext/sgelsd.c
CHANGED
@@ -41,7 +41,7 @@ rblapack_sgelsd(int argc, VALUE *argv, VALUE self){
|
|
41
41
|
argc--;
|
42
42
|
rblapack_options = argv[argc];
|
43
43
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
44
|
-
printf("%s\n", "USAGE:\n s, rank, work, info, b = NumRu::Lapack.sgelsd( a, b, rcond, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGELSD computes the minimum-norm solution to a real linear least\n* squares problem:\n* minimize 2-norm(| b - A*x |)\n* using the singular value decomposition (SVD) of A. A is an M-by-N\n* matrix which may be rank-deficient.\n*\n* Several right hand side vectors b and solution vectors x can be\n* handled in a single call; they are stored as the columns of the\n* M-by-NRHS right hand side matrix B and the N-by-NRHS solution\n* matrix X.\n*\n* The problem is solved in three steps:\n* (1) Reduce the coefficient matrix A to bidiagonal form with\n* Householder transformations, reducing the original problem\n* into a \"bidiagonal least squares problem\" (BLS)\n* (2) Solve the BLS using a divide and conquer approach.\n* (3) Apply back all the Householder
|
44
|
+
printf("%s\n", "USAGE:\n s, rank, work, info, b = NumRu::Lapack.sgelsd( a, b, rcond, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGELSD computes the minimum-norm solution to a real linear least\n* squares problem:\n* minimize 2-norm(| b - A*x |)\n* using the singular value decomposition (SVD) of A. A is an M-by-N\n* matrix which may be rank-deficient.\n*\n* Several right hand side vectors b and solution vectors x can be\n* handled in a single call; they are stored as the columns of the\n* M-by-NRHS right hand side matrix B and the N-by-NRHS solution\n* matrix X.\n*\n* The problem is solved in three steps:\n* (1) Reduce the coefficient matrix A to bidiagonal form with\n* Householder transformations, reducing the original problem\n* into a \"bidiagonal least squares problem\" (BLS)\n* (2) Solve the BLS using a divide and conquer approach.\n* (3) Apply back all the Householder transformations to solve\n* the original least squares problem.\n*\n* The effective rank of A is determined by treating as zero those\n* singular values which are less than RCOND times the largest singular\n* value.\n*\n* The divide and conquer algorithm makes very mild assumptions about\n* floating point arithmetic. It will work on machines with a guard\n* digit in add/subtract, or on those binary machines without guard\n* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrices B and X. NRHS >= 0.\n*\n* A (input) REAL array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, A has been destroyed.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* B (input/output) REAL array, dimension (LDB,NRHS)\n* On entry, the M-by-NRHS right hand side matrix B.\n* On exit, B is overwritten by the N-by-NRHS solution\n* matrix X. If m >= n and RANK = n, the residual\n* sum-of-squares for the solution in the i-th column is given\n* by the sum of squares of elements n+1:m in that column.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,max(M,N)).\n*\n* S (output) REAL array, dimension (min(M,N))\n* The singular values of A in decreasing order.\n* The condition number of A in the 2-norm = S(1)/S(min(m,n)).\n*\n* RCOND (input) REAL\n* RCOND is used to determine the effective rank of A.\n* Singular values S(i) <= RCOND*S(1) are treated as zero.\n* If RCOND < 0, machine precision is used instead.\n*\n* RANK (output) INTEGER\n* The effective rank of A, i.e., the number of singular values\n* which are greater than RCOND*S(1).\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK must be at least 1.\n* The exact minimum amount of workspace needed depends on M,\n* N and NRHS. As long as LWORK is at least\n* 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,\n* if M is greater than or equal to N or\n* 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,\n* if M is less than N, the code will execute correctly.\n* SMLSIZ is returned by ILAENV and is equal to the maximum\n* size of the subproblems at the bottom of the computation\n* tree (usually about 25), and\n* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )\n* For good performance, LWORK should generally be larger.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the array WORK and the\n* minimum size of the array IWORK, and returns these values as\n* the first entries of the WORK and IWORK arrays, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))\n* LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),\n* where MINMN = MIN( M,N ).\n* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: the algorithm for computing the SVD failed to converge;\n* if INFO = i, i off-diagonal elements of an intermediate\n* bidiagonal form did not converge to zero.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Ren-Cang Li, Computer Science Division, University of\n* California at Berkeley, USA\n* Osni Marques, LBNL/NERSC, USA\n*\n* =====================================================================\n*\n\n");
|
45
45
|
return Qnil;
|
46
46
|
}
|
47
47
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/slamrg.c
CHANGED
@@ -24,7 +24,7 @@ rblapack_slamrg(int argc, VALUE *argv, VALUE self){
|
|
24
24
|
argc--;
|
25
25
|
rblapack_options = argv[argc];
|
26
26
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
27
|
-
printf("%s\n", "USAGE:\n index = NumRu::Lapack.slamrg( n1, n2, a, strd1, strd2, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAMRG( N1, N2, A, STRD1, STRD2, INDEX )\n\n* Purpose\n* =======\n*\n* SLAMRG will create a permutation list which will merge the elements\n* of A (which is composed of two independently sorted sets) into a\n* single set which is sorted in ascending order.\n*\n\n* Arguments\n* =========\n*\n* N1 (input) INTEGER\n* N2 (input) INTEGER\n* These
|
27
|
+
printf("%s\n", "USAGE:\n index = NumRu::Lapack.slamrg( n1, n2, a, strd1, strd2, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAMRG( N1, N2, A, STRD1, STRD2, INDEX )\n\n* Purpose\n* =======\n*\n* SLAMRG will create a permutation list which will merge the elements\n* of A (which is composed of two independently sorted sets) into a\n* single set which is sorted in ascending order.\n*\n\n* Arguments\n* =========\n*\n* N1 (input) INTEGER\n* N2 (input) INTEGER\n* These arguments contain the respective lengths of the two\n* sorted lists to be merged.\n*\n* A (input) REAL array, dimension (N1+N2)\n* The first N1 elements of A contain a list of numbers which\n* are sorted in either ascending or descending order. Likewise\n* for the final N2 elements.\n*\n* STRD1 (input) INTEGER\n* STRD2 (input) INTEGER\n* These are the strides to be taken through the array A.\n* Allowable strides are 1 and -1. They indicate whether a\n* subset of A is sorted in ascending (STRDx = 1) or descending\n* (STRDx = -1) order.\n*\n* INDEX (output) INTEGER array, dimension (N1+N2)\n* On exit this array will contain a permutation such that\n* if B( I ) = A( INDEX( I ) ) for I=1,N1+N2, then B will be\n* sorted in ascending order.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER I, IND1, IND2, N1SV, N2SV\n* ..\n\n");
|
28
28
|
return Qnil;
|
29
29
|
}
|
30
30
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/slarre.c
CHANGED
@@ -65,7 +65,7 @@ rblapack_slarre(int argc, VALUE *argv, VALUE self){
|
|
65
65
|
argc--;
|
66
66
|
rblapack_options = argv[argc];
|
67
67
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
68
|
-
printf("%s\n", "USAGE:\n nsplit, isplit, m, w, werr, wgap, iblock, indexw, gers, pivmin, info, vl, vu, d, e, e2 = NumRu::Lapack.slarre( range, vl, vu, il, iu, d, e, e2, rtol1, rtol2, spltol, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2, RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* To find the desired eigenvalues of a given real symmetric\n* tridiagonal matrix T, SLARRE sets any \"small\" off-diagonal\n* elements to zero, and for each unreduced block T_i, it finds\n* (a) a suitable shift at one end of the block's spectrum,\n* (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and\n* (c) eigenvalues of each L_i D_i L_i^T.\n* The representations and eigenvalues found are then used by\n* SSTEMR to compute the eigenvectors of T.\n* The accuracy varies depending on whether bisection is used to\n* find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to\n* conpute all and then discard any unwanted one.\n* As an added benefit, SLARRE also outputs the n\n* Gerschgorin intervals for the matrices L_i D_i L_i^T.\n*\n\n* Arguments\n* =========\n*\n* RANGE (input) CHARACTER*1\n* = 'A': (\"All\") all eigenvalues will be found.\n* = 'V': (\"Value\") all eigenvalues in the half-open interval\n* (VL, VU] will be found.\n* = 'I': (\"Index\") the IL-th through IU-th eigenvalues (of the\n* entire matrix) will be found.\n*\n* N (input) INTEGER\n* The order of the matrix. N > 0.\n*\n* VL (input/output) REAL \n* VU (input/output) REAL \n* If RANGE='V', the lower and upper bounds for the eigenvalues.\n* Eigenvalues less than or equal to VL, or greater than VU,\n* will not be returned. VL < VU.\n* If RANGE='I' or ='A', SLARRE computes bounds on the desired\n* part of the spectrum.\n*\n* IL (input) INTEGER\n* IU (input) INTEGER\n* If RANGE='I', the indices (in ascending order) of the\n* smallest and largest eigenvalues to be returned.\n* 1 <= IL <= IU <= N.\n*\n* D (input/output) REAL array, dimension (N)\n* On entry, the N diagonal elements of the tridiagonal\n* matrix T.\n* On exit, the N diagonal elements of the diagonal\n* matrices D_i.\n*\n* E (input/output) REAL array, dimension (N)\n* On entry, the first (N-1) entries contain the subdiagonal\n* elements of the tridiagonal matrix T; E(N) need not be set.\n* On exit, E contains the subdiagonal elements of the unit\n* bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),\n* 1 <= I <= NSPLIT, contain the base points sigma_i on output.\n*\n* E2 (input/output) REAL array, dimension (N)\n* On entry, the first (N-1) entries contain the SQUARES of the\n* subdiagonal elements of the tridiagonal matrix T;\n* E2(N) need not be set.\n* On exit, the entries E2( ISPLIT( I ) ),\n* 1 <= I <= NSPLIT, have been set to zero\n*\n* RTOL1 (input) REAL \n* RTOL2 (input) REAL \n* Parameters for bisection.\n* An interval [LEFT,RIGHT] has converged if\n* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n*\n* SPLTOL (input) REAL \n* The threshold for splitting.\n*\n* NSPLIT (output) INTEGER\n* The number of blocks T splits into. 1 <= NSPLIT <= N.\n*\n* ISPLIT (output) INTEGER array, dimension (N)\n* The splitting points, at which T breaks up into blocks.\n* The first block consists of rows/columns 1 to ISPLIT(1),\n* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),\n* etc., and the NSPLIT-th consists of rows/columns\n* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.\n*\n* M (output) INTEGER\n* The total number of eigenvalues (of all L_i D_i L_i^T)\n* found.\n*\n* W (output) REAL array, dimension (N)\n* The first M elements contain the eigenvalues. The\n* eigenvalues of each of the blocks, L_i D_i L_i^T, are\n* sorted in ascending order ( SLARRE may use the\n* remaining N-M elements as workspace).\n*\n* WERR (output) REAL array, dimension (N)\n* The error bound on the corresponding eigenvalue in W.\n*\n* WGAP (output) REAL array, dimension (N)\n* The separation from the right neighbor eigenvalue in W.\n* The gap is only with respect to the eigenvalues of the same block\n* as each block has its own representation tree.\n* Exception: at the right end of a block we store the left gap\n*\n* IBLOCK (output) INTEGER array, dimension (N)\n* The indices of the blocks (submatrices) associated with the\n* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue\n* W(i) belongs to the first block from the top, =2 if W(i)\n* belongs to the second block, etc.\n*\n* INDEXW (output) INTEGER array, dimension (N)\n* The indices of the eigenvalues within each block (submatrix);\n* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the\n* i-th eigenvalue W(i) is the 10-th eigenvalue in block 2\n*\n* GERS (output) REAL array, dimension (2*N)\n* The N Gerschgorin intervals (the i-th Gerschgorin interval\n* is (GERS(2*i-1), GERS(2*i)).\n*\n* PIVMIN (output) REAL\n* The minimum pivot in the Sturm sequence for T.\n*\n* WORK (workspace) REAL array, dimension (6*N)\n* Workspace.\n*\n* IWORK (workspace) INTEGER array, dimension (5*N)\n* Workspace.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* > 0: A problem
|
68
|
+
printf("%s\n", "USAGE:\n nsplit, isplit, m, w, werr, wgap, iblock, indexw, gers, pivmin, info, vl, vu, d, e, e2 = NumRu::Lapack.slarre( range, vl, vu, il, iu, d, e, e2, rtol1, rtol2, spltol, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2, RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* To find the desired eigenvalues of a given real symmetric\n* tridiagonal matrix T, SLARRE sets any \"small\" off-diagonal\n* elements to zero, and for each unreduced block T_i, it finds\n* (a) a suitable shift at one end of the block's spectrum,\n* (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and\n* (c) eigenvalues of each L_i D_i L_i^T.\n* The representations and eigenvalues found are then used by\n* SSTEMR to compute the eigenvectors of T.\n* The accuracy varies depending on whether bisection is used to\n* find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to\n* conpute all and then discard any unwanted one.\n* As an added benefit, SLARRE also outputs the n\n* Gerschgorin intervals for the matrices L_i D_i L_i^T.\n*\n\n* Arguments\n* =========\n*\n* RANGE (input) CHARACTER*1\n* = 'A': (\"All\") all eigenvalues will be found.\n* = 'V': (\"Value\") all eigenvalues in the half-open interval\n* (VL, VU] will be found.\n* = 'I': (\"Index\") the IL-th through IU-th eigenvalues (of the\n* entire matrix) will be found.\n*\n* N (input) INTEGER\n* The order of the matrix. N > 0.\n*\n* VL (input/output) REAL \n* VU (input/output) REAL \n* If RANGE='V', the lower and upper bounds for the eigenvalues.\n* Eigenvalues less than or equal to VL, or greater than VU,\n* will not be returned. VL < VU.\n* If RANGE='I' or ='A', SLARRE computes bounds on the desired\n* part of the spectrum.\n*\n* IL (input) INTEGER\n* IU (input) INTEGER\n* If RANGE='I', the indices (in ascending order) of the\n* smallest and largest eigenvalues to be returned.\n* 1 <= IL <= IU <= N.\n*\n* D (input/output) REAL array, dimension (N)\n* On entry, the N diagonal elements of the tridiagonal\n* matrix T.\n* On exit, the N diagonal elements of the diagonal\n* matrices D_i.\n*\n* E (input/output) REAL array, dimension (N)\n* On entry, the first (N-1) entries contain the subdiagonal\n* elements of the tridiagonal matrix T; E(N) need not be set.\n* On exit, E contains the subdiagonal elements of the unit\n* bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),\n* 1 <= I <= NSPLIT, contain the base points sigma_i on output.\n*\n* E2 (input/output) REAL array, dimension (N)\n* On entry, the first (N-1) entries contain the SQUARES of the\n* subdiagonal elements of the tridiagonal matrix T;\n* E2(N) need not be set.\n* On exit, the entries E2( ISPLIT( I ) ),\n* 1 <= I <= NSPLIT, have been set to zero\n*\n* RTOL1 (input) REAL \n* RTOL2 (input) REAL \n* Parameters for bisection.\n* An interval [LEFT,RIGHT] has converged if\n* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n*\n* SPLTOL (input) REAL \n* The threshold for splitting.\n*\n* NSPLIT (output) INTEGER\n* The number of blocks T splits into. 1 <= NSPLIT <= N.\n*\n* ISPLIT (output) INTEGER array, dimension (N)\n* The splitting points, at which T breaks up into blocks.\n* The first block consists of rows/columns 1 to ISPLIT(1),\n* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),\n* etc., and the NSPLIT-th consists of rows/columns\n* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.\n*\n* M (output) INTEGER\n* The total number of eigenvalues (of all L_i D_i L_i^T)\n* found.\n*\n* W (output) REAL array, dimension (N)\n* The first M elements contain the eigenvalues. The\n* eigenvalues of each of the blocks, L_i D_i L_i^T, are\n* sorted in ascending order ( SLARRE may use the\n* remaining N-M elements as workspace).\n*\n* WERR (output) REAL array, dimension (N)\n* The error bound on the corresponding eigenvalue in W.\n*\n* WGAP (output) REAL array, dimension (N)\n* The separation from the right neighbor eigenvalue in W.\n* The gap is only with respect to the eigenvalues of the same block\n* as each block has its own representation tree.\n* Exception: at the right end of a block we store the left gap\n*\n* IBLOCK (output) INTEGER array, dimension (N)\n* The indices of the blocks (submatrices) associated with the\n* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue\n* W(i) belongs to the first block from the top, =2 if W(i)\n* belongs to the second block, etc.\n*\n* INDEXW (output) INTEGER array, dimension (N)\n* The indices of the eigenvalues within each block (submatrix);\n* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the\n* i-th eigenvalue W(i) is the 10-th eigenvalue in block 2\n*\n* GERS (output) REAL array, dimension (2*N)\n* The N Gerschgorin intervals (the i-th Gerschgorin interval\n* is (GERS(2*i-1), GERS(2*i)).\n*\n* PIVMIN (output) REAL\n* The minimum pivot in the Sturm sequence for T.\n*\n* WORK (workspace) REAL array, dimension (6*N)\n* Workspace.\n*\n* IWORK (workspace) INTEGER array, dimension (5*N)\n* Workspace.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* > 0: A problem occurred in SLARRE.\n* < 0: One of the called subroutines signaled an internal problem.\n* Needs inspection of the corresponding parameter IINFO\n* for further information.\n*\n* =-1: Problem in SLARRD.\n* = 2: No base representation could be found in MAXTRY iterations.\n* Increasing MAXTRY and recompilation might be a remedy.\n* =-3: Problem in SLARRB when computing the refined root\n* representation for SLASQ2.\n* =-4: Problem in SLARRB when preforming bisection on the\n* desired part of the spectrum.\n* =-5: Problem in SLASQ2.\n* =-6: Problem in SLASQ2.\n*\n\n* Further Details\n* The base representations are required to suffer very little\n* element growth and consequently define all their eigenvalues to\n* high relative accuracy.\n* ===============\n*\n* Based on contributions by\n* Beresford Parlett, University of California, Berkeley, USA\n* Jim Demmel, University of California, Berkeley, USA\n* Inderjit Dhillon, University of Texas, Austin, USA\n* Osni Marques, LBNL/NERSC, USA\n* Christof Voemel, University of California, Berkeley, USA\n*\n* =====================================================================\n*\n\n");
|
69
69
|
return Qnil;
|
70
70
|
}
|
71
71
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/slarrv.c
CHANGED
@@ -68,7 +68,7 @@ rblapack_slarrv(int argc, VALUE *argv, VALUE self){
|
|
68
68
|
argc--;
|
69
69
|
rblapack_options = argv[argc];
|
70
70
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
71
|
-
printf("%s\n", "USAGE:\n z, isuppz, info, d, l, w, werr, wgap = NumRu::Lapack.slarrv( vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1, rtol2, w, werr, wgap, iblock, indexw, gers, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* SLARRV computes the eigenvectors of the tridiagonal matrix\n* T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.\n* The input eigenvalues should have been computed by SLARRE.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* VL (input) REAL \n* VU (input) REAL \n* Lower and upper bounds of the interval that contains the desired\n* eigenvalues. VL < VU. Needed to compute gaps on the left or right\n* end of the extremal eigenvalues in the desired RANGE.\n*\n* D (input/output) REAL array, dimension (N)\n* On entry, the N diagonal elements of the diagonal matrix D.\n* On exit, D may be overwritten.\n*\n* L (input/output) REAL array, dimension (N)\n* On entry, the (N-1) subdiagonal elements of the unit\n* bidiagonal matrix L are in elements 1 to N-1 of L\n* (if the matrix is not split.) At the end of each block\n* is stored the corresponding shift as given by SLARRE.\n* On exit, L is overwritten.\n*\n* PIVMIN (input) REAL\n* The minimum pivot allowed in the Sturm sequence.\n*\n* ISPLIT (input) INTEGER array, dimension (N)\n* The splitting points, at which T breaks up into blocks.\n* The first block consists of rows/columns 1 to\n* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1\n* through ISPLIT( 2 ), etc.\n*\n* M (input) INTEGER\n* The total number of input eigenvalues. 0 <= M <= N.\n*\n* DOL (input) INTEGER\n* DOU (input) INTEGER\n* If the user wants to compute only selected eigenvectors from all\n* the eigenvalues supplied, he can specify an index range DOL:DOU.\n* Or else the setting DOL=1, DOU=M should be applied.\n* Note that DOL and DOU refer to the order in which the eigenvalues\n* are stored in W.\n* If the user wants to compute only selected eigenpairs, then\n* the columns DOL-1 to DOU+1 of the eigenvector space Z contain the\n* computed eigenvectors. All other columns of Z are set to zero.\n*\n* MINRGP (input) REAL \n*\n* RTOL1 (input) REAL \n* RTOL2 (input) REAL \n* Parameters for bisection.\n* An interval [LEFT,RIGHT] has converged if\n* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n*\n* W (input/output) REAL array, dimension (N)\n* The first M elements of W contain the APPROXIMATE eigenvalues for\n* which eigenvectors are to be computed. The eigenvalues\n* should be grouped by split-off block and ordered from\n* smallest to largest within the block ( The output array\n* W from SLARRE is expected here ). Furthermore, they are with\n* respect to the shift of the corresponding root representation\n* for their block. On exit, W holds the eigenvalues of the\n* UNshifted matrix.\n*\n* WERR (input/output) REAL array, dimension (N)\n* The first M elements contain the semiwidth of the uncertainty\n* interval of the corresponding eigenvalue in W\n*\n* WGAP (input/output) REAL array, dimension (N)\n* The separation from the right neighbor eigenvalue in W.\n*\n* IBLOCK (input) INTEGER array, dimension (N)\n* The indices of the blocks (submatrices) associated with the\n* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue\n* W(i) belongs to the first block from the top, =2 if W(i)\n* belongs to the second block, etc.\n*\n* INDEXW (input) INTEGER array, dimension (N)\n* The indices of the eigenvalues within each block (submatrix);\n* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the\n* i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.\n*\n* GERS (input) REAL array, dimension (2*N)\n* The N Gerschgorin intervals (the i-th Gerschgorin interval\n* is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should\n* be computed from the original UNshifted matrix.\n*\n* Z (output) REAL array, dimension (LDZ, max(1,M) )\n* If INFO = 0, the first M columns of Z contain the\n* orthonormal eigenvectors of the matrix T\n* corresponding to the input eigenvalues, with the i-th\n* column of Z holding the eigenvector associated with W(i).\n* Note: the user must ensure that at least max(1,M) columns are\n* supplied in the array Z.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )\n* The support of the eigenvectors in Z, i.e., the indices\n* indicating the nonzero elements in Z. The I-th eigenvector\n* is nonzero only in elements ISUPPZ( 2*I-1 ) through\n* ISUPPZ( 2*I ).\n*\n* WORK (workspace) REAL array, dimension (12*N)\n*\n* IWORK (workspace) INTEGER array, dimension (7*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n*\n* > 0: A problem
|
71
|
+
printf("%s\n", "USAGE:\n z, isuppz, info, d, l, w, werr, wgap = NumRu::Lapack.slarrv( vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1, rtol2, w, werr, wgap, iblock, indexw, gers, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* SLARRV computes the eigenvectors of the tridiagonal matrix\n* T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.\n* The input eigenvalues should have been computed by SLARRE.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* VL (input) REAL \n* VU (input) REAL \n* Lower and upper bounds of the interval that contains the desired\n* eigenvalues. VL < VU. Needed to compute gaps on the left or right\n* end of the extremal eigenvalues in the desired RANGE.\n*\n* D (input/output) REAL array, dimension (N)\n* On entry, the N diagonal elements of the diagonal matrix D.\n* On exit, D may be overwritten.\n*\n* L (input/output) REAL array, dimension (N)\n* On entry, the (N-1) subdiagonal elements of the unit\n* bidiagonal matrix L are in elements 1 to N-1 of L\n* (if the matrix is not split.) At the end of each block\n* is stored the corresponding shift as given by SLARRE.\n* On exit, L is overwritten.\n*\n* PIVMIN (input) REAL\n* The minimum pivot allowed in the Sturm sequence.\n*\n* ISPLIT (input) INTEGER array, dimension (N)\n* The splitting points, at which T breaks up into blocks.\n* The first block consists of rows/columns 1 to\n* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1\n* through ISPLIT( 2 ), etc.\n*\n* M (input) INTEGER\n* The total number of input eigenvalues. 0 <= M <= N.\n*\n* DOL (input) INTEGER\n* DOU (input) INTEGER\n* If the user wants to compute only selected eigenvectors from all\n* the eigenvalues supplied, he can specify an index range DOL:DOU.\n* Or else the setting DOL=1, DOU=M should be applied.\n* Note that DOL and DOU refer to the order in which the eigenvalues\n* are stored in W.\n* If the user wants to compute only selected eigenpairs, then\n* the columns DOL-1 to DOU+1 of the eigenvector space Z contain the\n* computed eigenvectors. All other columns of Z are set to zero.\n*\n* MINRGP (input) REAL \n*\n* RTOL1 (input) REAL \n* RTOL2 (input) REAL \n* Parameters for bisection.\n* An interval [LEFT,RIGHT] has converged if\n* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n*\n* W (input/output) REAL array, dimension (N)\n* The first M elements of W contain the APPROXIMATE eigenvalues for\n* which eigenvectors are to be computed. The eigenvalues\n* should be grouped by split-off block and ordered from\n* smallest to largest within the block ( The output array\n* W from SLARRE is expected here ). Furthermore, they are with\n* respect to the shift of the corresponding root representation\n* for their block. On exit, W holds the eigenvalues of the\n* UNshifted matrix.\n*\n* WERR (input/output) REAL array, dimension (N)\n* The first M elements contain the semiwidth of the uncertainty\n* interval of the corresponding eigenvalue in W\n*\n* WGAP (input/output) REAL array, dimension (N)\n* The separation from the right neighbor eigenvalue in W.\n*\n* IBLOCK (input) INTEGER array, dimension (N)\n* The indices of the blocks (submatrices) associated with the\n* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue\n* W(i) belongs to the first block from the top, =2 if W(i)\n* belongs to the second block, etc.\n*\n* INDEXW (input) INTEGER array, dimension (N)\n* The indices of the eigenvalues within each block (submatrix);\n* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the\n* i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.\n*\n* GERS (input) REAL array, dimension (2*N)\n* The N Gerschgorin intervals (the i-th Gerschgorin interval\n* is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should\n* be computed from the original UNshifted matrix.\n*\n* Z (output) REAL array, dimension (LDZ, max(1,M) )\n* If INFO = 0, the first M columns of Z contain the\n* orthonormal eigenvectors of the matrix T\n* corresponding to the input eigenvalues, with the i-th\n* column of Z holding the eigenvector associated with W(i).\n* Note: the user must ensure that at least max(1,M) columns are\n* supplied in the array Z.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )\n* The support of the eigenvectors in Z, i.e., the indices\n* indicating the nonzero elements in Z. The I-th eigenvector\n* is nonzero only in elements ISUPPZ( 2*I-1 ) through\n* ISUPPZ( 2*I ).\n*\n* WORK (workspace) REAL array, dimension (12*N)\n*\n* IWORK (workspace) INTEGER array, dimension (7*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n*\n* > 0: A problem occurred in SLARRV.\n* < 0: One of the called subroutines signaled an internal problem.\n* Needs inspection of the corresponding parameter IINFO\n* for further information.\n*\n* =-1: Problem in SLARRB when refining a child's eigenvalues.\n* =-2: Problem in SLARRF when computing the RRR of a child.\n* When a child is inside a tight cluster, it can be difficult\n* to find an RRR. A partial remedy from the user's point of\n* view is to make the parameter MINRGP smaller and recompile.\n* However, as the orthogonality of the computed vectors is\n* proportional to 1/MINRGP, the user should be aware that\n* he might be trading in precision when he decreases MINRGP.\n* =-3: Problem in SLARRB when refining a single eigenvalue\n* after the Rayleigh correction was rejected.\n* = 5: The Rayleigh Quotient Iteration failed to converge to\n* full accuracy in MAXITR steps.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Beresford Parlett, University of California, Berkeley, USA\n* Jim Demmel, University of California, Berkeley, USA\n* Inderjit Dhillon, University of Texas, Austin, USA\n* Osni Marques, LBNL/NERSC, USA\n* Christof Voemel, University of California, Berkeley, USA\n*\n* =====================================================================\n*\n\n");
|
72
72
|
return Qnil;
|
73
73
|
}
|
74
74
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/slasdq.c
CHANGED
@@ -47,7 +47,7 @@ rblapack_slasdq(int argc, VALUE *argv, VALUE self){
|
|
47
47
|
argc--;
|
48
48
|
rblapack_options = argv[argc];
|
49
49
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
50
|
-
printf("%s\n", "USAGE:\n info, d, e, vt, u, c = NumRu::Lapack.slasdq( uplo, sqre, nru, d, e, vt, u, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, LDC, WORK, INFO )\n\n* Purpose\n* =======\n*\n* SLASDQ computes the singular value decomposition (SVD) of a real\n* (upper or lower) bidiagonal matrix with diagonal D and offdiagonal\n* E, accumulating the transformations if desired. Letting B denote\n* the input bidiagonal matrix, the algorithm computes orthogonal\n* matrices Q and P such that B = Q * S * P' (P' denotes the transpose\n* of P). The singular values S are overwritten on D.\n*\n* The input matrix U is changed to U * Q if desired.\n* The input matrix VT is changed to P' * VT if desired.\n* The input matrix C is changed to Q' * C if desired.\n*\n* See \"Computing Small Singular Values of Bidiagonal Matrices With\n* Guaranteed High Relative Accuracy,\" by J. Demmel and W. Kahan,\n* LAPACK Working Note #3, for a detailed description of the algorithm.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* On entry, UPLO specifies whether the input bidiagonal matrix\n* is upper or lower bidiagonal, and
|
50
|
+
printf("%s\n", "USAGE:\n info, d, e, vt, u, c = NumRu::Lapack.slasdq( uplo, sqre, nru, d, e, vt, u, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, LDC, WORK, INFO )\n\n* Purpose\n* =======\n*\n* SLASDQ computes the singular value decomposition (SVD) of a real\n* (upper or lower) bidiagonal matrix with diagonal D and offdiagonal\n* E, accumulating the transformations if desired. Letting B denote\n* the input bidiagonal matrix, the algorithm computes orthogonal\n* matrices Q and P such that B = Q * S * P' (P' denotes the transpose\n* of P). The singular values S are overwritten on D.\n*\n* The input matrix U is changed to U * Q if desired.\n* The input matrix VT is changed to P' * VT if desired.\n* The input matrix C is changed to Q' * C if desired.\n*\n* See \"Computing Small Singular Values of Bidiagonal Matrices With\n* Guaranteed High Relative Accuracy,\" by J. Demmel and W. Kahan,\n* LAPACK Working Note #3, for a detailed description of the algorithm.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* On entry, UPLO specifies whether the input bidiagonal matrix\n* is upper or lower bidiagonal, and whether it is square are\n* not.\n* UPLO = 'U' or 'u' B is upper bidiagonal.\n* UPLO = 'L' or 'l' B is lower bidiagonal.\n*\n* SQRE (input) INTEGER\n* = 0: then the input matrix is N-by-N.\n* = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and\n* (N+1)-by-N if UPLU = 'L'.\n*\n* The bidiagonal matrix has\n* N = NL + NR + 1 rows and\n* M = N + SQRE >= N columns.\n*\n* N (input) INTEGER\n* On entry, N specifies the number of rows and columns\n* in the matrix. N must be at least 0.\n*\n* NCVT (input) INTEGER\n* On entry, NCVT specifies the number of columns of\n* the matrix VT. NCVT must be at least 0.\n*\n* NRU (input) INTEGER\n* On entry, NRU specifies the number of rows of\n* the matrix U. NRU must be at least 0.\n*\n* NCC (input) INTEGER\n* On entry, NCC specifies the number of columns of\n* the matrix C. NCC must be at least 0.\n*\n* D (input/output) REAL array, dimension (N)\n* On entry, D contains the diagonal entries of the\n* bidiagonal matrix whose SVD is desired. On normal exit,\n* D contains the singular values in ascending order.\n*\n* E (input/output) REAL array.\n* dimension is (N-1) if SQRE = 0 and N if SQRE = 1.\n* On entry, the entries of E contain the offdiagonal entries\n* of the bidiagonal matrix whose SVD is desired. On normal\n* exit, E will contain 0. If the algorithm does not converge,\n* D and E will contain the diagonal and superdiagonal entries\n* of a bidiagonal matrix orthogonally equivalent to the one\n* given as input.\n*\n* VT (input/output) REAL array, dimension (LDVT, NCVT)\n* On entry, contains a matrix which on exit has been\n* premultiplied by P', dimension N-by-NCVT if SQRE = 0\n* and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).\n*\n* LDVT (input) INTEGER\n* On entry, LDVT specifies the leading dimension of VT as\n* declared in the calling (sub) program. LDVT must be at\n* least 1. If NCVT is nonzero LDVT must also be at least N.\n*\n* U (input/output) REAL array, dimension (LDU, N)\n* On entry, contains a matrix which on exit has been\n* postmultiplied by Q, dimension NRU-by-N if SQRE = 0\n* and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).\n*\n* LDU (input) INTEGER\n* On entry, LDU specifies the leading dimension of U as\n* declared in the calling (sub) program. LDU must be at\n* least max( 1, NRU ) .\n*\n* C (input/output) REAL array, dimension (LDC, NCC)\n* On entry, contains an N-by-NCC matrix which on exit\n* has been premultiplied by Q' dimension N-by-NCC if SQRE = 0\n* and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).\n*\n* LDC (input) INTEGER\n* On entry, LDC specifies the leading dimension of C as\n* declared in the calling (sub) program. LDC must be at\n* least 1. If NCC is nonzero, LDC must also be at least N.\n*\n* WORK (workspace) REAL array, dimension (4*N)\n* Workspace. Only referenced if one of NCVT, NRU, or NCC is\n* nonzero, and if N is at least 2.\n*\n* INFO (output) INTEGER\n* On exit, a value of 0 indicates a successful exit.\n* If INFO < 0, argument number -INFO is illegal.\n* If INFO > 0, the algorithm did not converge, and INFO\n* specifies how many superdiagonals did not converge.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n\n");
|
51
51
|
return Qnil;
|
52
52
|
}
|
53
53
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/slatdf.c
CHANGED
@@ -30,7 +30,7 @@ rblapack_slatdf(int argc, VALUE *argv, VALUE self){
|
|
30
30
|
argc--;
|
31
31
|
rblapack_options = argv[argc];
|
32
32
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
33
|
-
printf("%s\n", "USAGE:\n rhs, rdsum, rdscal = NumRu::Lapack.slatdf( ijob, z, rhs, rdsum, rdscal, ipiv, jpiv, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV )\n\n* Purpose\n* =======\n*\n* SLATDF uses the LU factorization of the n-by-n matrix Z computed by\n* SGETC2 and computes a contribution to the reciprocal Dif-estimate\n* by solving Z * x = b for x, and choosing the r.h.s. b such that\n* the norm of x is as large as possible. On entry RHS = b holds the\n* contribution from earlier solved sub-systems, and on return RHS = x.\n*\n* The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q,\n* where P and Q are permutation matrices. L is lower triangular with\n* unit diagonal elements and U is upper triangular.\n*\n\n* Arguments\n* =========\n*\n* IJOB (input) INTEGER\n* IJOB = 2: First compute an approximative null-vector e\n* of Z using SGECON, e is normalized and solve for\n* Zx = +-e - f with the sign giving the greater value\n* of 2-norm(x). About 5 times as expensive as Default.\n* IJOB .ne. 2: Local look ahead strategy where all entries of\n* the r.h.s. b is
|
33
|
+
printf("%s\n", "USAGE:\n rhs, rdsum, rdscal = NumRu::Lapack.slatdf( ijob, z, rhs, rdsum, rdscal, ipiv, jpiv, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV )\n\n* Purpose\n* =======\n*\n* SLATDF uses the LU factorization of the n-by-n matrix Z computed by\n* SGETC2 and computes a contribution to the reciprocal Dif-estimate\n* by solving Z * x = b for x, and choosing the r.h.s. b such that\n* the norm of x is as large as possible. On entry RHS = b holds the\n* contribution from earlier solved sub-systems, and on return RHS = x.\n*\n* The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q,\n* where P and Q are permutation matrices. L is lower triangular with\n* unit diagonal elements and U is upper triangular.\n*\n\n* Arguments\n* =========\n*\n* IJOB (input) INTEGER\n* IJOB = 2: First compute an approximative null-vector e\n* of Z using SGECON, e is normalized and solve for\n* Zx = +-e - f with the sign giving the greater value\n* of 2-norm(x). About 5 times as expensive as Default.\n* IJOB .ne. 2: Local look ahead strategy where all entries of\n* the r.h.s. b is chosen as either +1 or -1 (Default).\n*\n* N (input) INTEGER\n* The number of columns of the matrix Z.\n*\n* Z (input) REAL array, dimension (LDZ, N)\n* On entry, the LU part of the factorization of the n-by-n\n* matrix Z computed by SGETC2: Z = P * L * U * Q\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDA >= max(1, N).\n*\n* RHS (input/output) REAL array, dimension N.\n* On entry, RHS contains contributions from other subsystems.\n* On exit, RHS contains the solution of the subsystem with\n* entries acoording to the value of IJOB (see above).\n*\n* RDSUM (input/output) REAL\n* On entry, the sum of squares of computed contributions to\n* the Dif-estimate under computation by STGSYL, where the\n* scaling factor RDSCAL (see below) has been factored out.\n* On exit, the corresponding sum of squares updated with the\n* contributions from the current sub-system.\n* If TRANS = 'T' RDSUM is not touched.\n* NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.\n*\n* RDSCAL (input/output) REAL\n* On entry, scaling factor used to prevent overflow in RDSUM.\n* On exit, RDSCAL is updated w.r.t. the current contributions\n* in RDSUM.\n* If TRANS = 'T', RDSCAL is not touched.\n* NOTE: RDSCAL only makes sense when STGSY2 is called by\n* STGSYL.\n*\n* IPIV (input) INTEGER array, dimension (N).\n* The pivot indices; for 1 <= i <= N, row i of the\n* matrix has been interchanged with row IPIV(i).\n*\n* JPIV (input) INTEGER array, dimension (N).\n* The pivot indices; for 1 <= j <= N, column j of the\n* matrix has been interchanged with column JPIV(j).\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n* Umea University, S-901 87 Umea, Sweden.\n*\n* This routine is a further developed implementation of algorithm\n* BSOLVE in [1] using complete pivoting in the LU factorization.\n*\n* [1] Bo Kagstrom and Lars Westin,\n* Generalized Schur Methods with Condition Estimators for\n* Solving the Generalized Sylvester Equation, IEEE Transactions\n* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.\n*\n* [2] Peter Poromaa,\n* On Efficient and Robust Estimators for the Separation\n* between two Regular Matrix Pairs with Applications in\n* Condition Estimation. Report IMINF-95.05, Departement of\n* Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.\n*\n* =====================================================================\n*\n\n");
|
34
34
|
return Qnil;
|
35
35
|
}
|
36
36
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/sstegr.c
CHANGED
@@ -54,7 +54,7 @@ rblapack_sstegr(int argc, VALUE *argv, VALUE self){
|
|
54
54
|
argc--;
|
55
55
|
rblapack_options = argv[argc];
|
56
56
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
57
|
-
printf("%s\n", "USAGE:\n m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.sstegr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* SSTEGR computes selected eigenvalues and, optionally, eigenvectors\n* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has\n* a well defined set of pairwise different real eigenvalues, the corresponding\n* real eigenvectors are pairwise orthogonal.\n*\n* The spectrum may be computed either completely or partially by specifying\n* either an interval (VL,VU] or a range of indices IL:IU for the desired\n* eigenvalues.\n*\n* SSTEGR is a
|
57
|
+
printf("%s\n", "USAGE:\n m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.sstegr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* SSTEGR computes selected eigenvalues and, optionally, eigenvectors\n* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has\n* a well defined set of pairwise different real eigenvalues, the corresponding\n* real eigenvectors are pairwise orthogonal.\n*\n* The spectrum may be computed either completely or partially by specifying\n* either an interval (VL,VU] or a range of indices IL:IU for the desired\n* eigenvalues.\n*\n* SSTEGR is a compatibility wrapper around the improved SSTEMR routine.\n* See SSTEMR for further details.\n*\n* One important change is that the ABSTOL parameter no longer provides any\n* benefit and hence is no longer used.\n*\n* Note : SSTEGR and SSTEMR work only on machines which follow\n* IEEE-754 floating-point standard in their handling of infinities and\n* NaNs. Normal execution may create these exceptiona values and hence\n* may abort due to a floating point exception in environments which\n* do not conform to the IEEE-754 standard.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* RANGE (input) CHARACTER*1\n* = 'A': all eigenvalues will be found.\n* = 'V': all eigenvalues in the half-open interval (VL,VU]\n* will be found.\n* = 'I': the IL-th through IU-th eigenvalues will be found.\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* D (input/output) REAL array, dimension (N)\n* On entry, the N diagonal elements of the tridiagonal matrix\n* T. On exit, D is overwritten.\n*\n* E (input/output) REAL array, dimension (N)\n* On entry, the (N-1) subdiagonal elements of the tridiagonal\n* matrix T in elements 1 to N-1 of E. E(N) need not be set on\n* input, but is used internally as workspace.\n* On exit, E is overwritten.\n*\n* VL (input) REAL\n* VU (input) REAL\n* If RANGE='V', the lower and upper bounds of the interval to\n* be searched for eigenvalues. VL < VU.\n* Not referenced if RANGE = 'A' or 'I'.\n*\n* IL (input) INTEGER\n* IU (input) INTEGER\n* If RANGE='I', the indices (in ascending order) of the\n* smallest and largest eigenvalues to be returned.\n* 1 <= IL <= IU <= N, if N > 0.\n* Not referenced if RANGE = 'A' or 'V'.\n*\n* ABSTOL (input) REAL\n* Unused. Was the absolute error tolerance for the\n* eigenvalues/eigenvectors in previous versions.\n*\n* M (output) INTEGER\n* The total number of eigenvalues found. 0 <= M <= N.\n* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n*\n* W (output) REAL array, dimension (N)\n* The first M elements contain the selected eigenvalues in\n* ascending order.\n*\n* Z (output) REAL array, dimension (LDZ, max(1,M) )\n* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z\n* contain the orthonormal eigenvectors of the matrix T\n* corresponding to the selected eigenvalues, with the i-th\n* column of Z holding the eigenvector associated with W(i).\n* If JOBZ = 'N', then Z is not referenced.\n* Note: the user must ensure that at least max(1,M) columns are\n* supplied in the array Z; if RANGE = 'V', the exact value of M\n* is not known in advance and an upper bound must be used.\n* Supplying N columns is always safe.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', then LDZ >= max(1,N).\n*\n* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )\n* The support of the eigenvectors in Z, i.e., the indices\n* indicating the nonzero elements in Z. The i-th computed eigenvector\n* is nonzero only in elements ISUPPZ( 2*i-1 ) through\n* ISUPPZ( 2*i ). This is relevant in the case when the matrix\n* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.\n*\n* WORK (workspace/output) REAL array, dimension (LWORK)\n* On exit, if INFO = 0, WORK(1) returns the optimal\n* (and minimal) LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,18*N)\n* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (LIWORK)\n* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of the array IWORK. LIWORK >= max(1,10*N)\n* if the eigenvectors are desired, and LIWORK >= max(1,8*N)\n* if only the eigenvalues are to be computed.\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal size of the IWORK array,\n* returns this value as the first entry of the IWORK array, and\n* no error message related to LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* On exit, INFO\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = 1X, internal error in SLARRE,\n* if INFO = 2X, internal error in SLARRV.\n* Here, the digit X = ABS( IINFO ) < 10, where IINFO is\n* the nonzero error code returned by SLARRE or\n* SLARRV, respectively.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Inderjit Dhillon, IBM Almaden, USA\n* Osni Marques, LBNL/NERSC, USA\n* Christof Voemel, LBNL/NERSC, USA\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL TRYRAC\n* ..\n* .. External Subroutines ..\n EXTERNAL SSTEMR\n* ..\n\n");
|
58
58
|
return Qnil;
|
59
59
|
}
|
60
60
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/zcgesv.c
CHANGED
@@ -34,7 +34,7 @@ rblapack_zcgesv(int argc, VALUE *argv, VALUE self){
|
|
34
34
|
argc--;
|
35
35
|
rblapack_options = argv[argc];
|
36
36
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
37
|
-
printf("%s\n", "USAGE:\n ipiv, x, iter, info, a = NumRu::Lapack.zcgesv( a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO )\n\n* Purpose\n* =======\n*\n* ZCGESV computes the solution to a complex system of linear equations\n* A * X = B,\n* where A is an N-by-N matrix and X and B are N-by-NRHS matrices.\n*\n* ZCGESV first attempts to factorize the matrix in COMPLEX and use this\n* factorization within an iterative refinement procedure to produce a\n* solution with COMPLEX*16 normwise backward error quality (see below).\n* If the approach fails the method switches to a COMPLEX*16\n* factorization and solve.\n*\n* The iterative refinement is not going to be a winning strategy if\n* the ratio COMPLEX performance over COMPLEX*16 performance is too\n* small. A reasonable strategy should take the number of right-hand\n* sides and the size of the matrix into account. This might be done\n* with a call to ILAENV in the future. Up to now, we always try\n* iterative refinement.\n*\n* The iterative refinement process is stopped if\n* ITER > ITERMAX\n* or for all the RHS we have:\n* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX\n* where\n* o ITER is the number of the current iteration in the iterative\n* refinement process\n* o RNRM is the infinity-norm of the residual\n* o XNRM is the infinity-norm of the solution\n* o ANRM is the infinity-operator-norm of the matrix A\n* o EPS is the machine epsilon returned by DLAMCH('Epsilon')\n* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00\n* respectively.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* A (input/output) COMPLEX*16 array,\n* dimension (LDA,N)\n* On entry, the N-by-N coefficient matrix A.\n* On exit, if iterative refinement has been successfully used\n* (INFO.EQ.0 and ITER.GE.0, see description below), then A is\n* unchanged, if double precision factorization has been used\n* (INFO.EQ.0 and ITER.LT.0, see description below), then the\n* array A contains the factors L and U from the factorization\n* A = P*L*U; the unit diagonal elements of L are not stored.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* IPIV (output) INTEGER array, dimension (N)\n* The pivot indices that define the permutation matrix P;\n* row i of the matrix was interchanged with row IPIV(i).\n* Corresponds either to the single precision factorization\n* (if INFO.EQ.0 and ITER.GE.0) or the double precision\n* factorization (if INFO.EQ.0 and ITER.LT.0).\n*\n* B (input) COMPLEX*16 array, dimension (LDB,NRHS)\n* The N-by-NRHS right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (output) COMPLEX*16 array, dimension (LDX,NRHS)\n* If INFO = 0, the N-by-NRHS solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N*NRHS)\n* This array is used to hold the residual vectors.\n*\n* SWORK (workspace) COMPLEX array, dimension (N*(N+NRHS))\n* This array is used to use the single precision matrix and the\n* right-hand sides or solutions in single precision.\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* ITER (output) INTEGER\n* < 0: iterative refinement has failed, COMPLEX*16\n* factorization has been performed\n* -1 : the routine fell back to full precision for\n* implementation- or machine-specific reasons\n* -2 : narrowing the precision induced an overflow,\n* the routine fell back to full precision\n* -3 : failure of CGETRF\n* -31: stop the iterative refinement after the 30th\n* iterations\n* > 0: iterative refinement has been
|
37
|
+
printf("%s\n", "USAGE:\n ipiv, x, iter, info, a = NumRu::Lapack.zcgesv( a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO )\n\n* Purpose\n* =======\n*\n* ZCGESV computes the solution to a complex system of linear equations\n* A * X = B,\n* where A is an N-by-N matrix and X and B are N-by-NRHS matrices.\n*\n* ZCGESV first attempts to factorize the matrix in COMPLEX and use this\n* factorization within an iterative refinement procedure to produce a\n* solution with COMPLEX*16 normwise backward error quality (see below).\n* If the approach fails the method switches to a COMPLEX*16\n* factorization and solve.\n*\n* The iterative refinement is not going to be a winning strategy if\n* the ratio COMPLEX performance over COMPLEX*16 performance is too\n* small. A reasonable strategy should take the number of right-hand\n* sides and the size of the matrix into account. This might be done\n* with a call to ILAENV in the future. Up to now, we always try\n* iterative refinement.\n*\n* The iterative refinement process is stopped if\n* ITER > ITERMAX\n* or for all the RHS we have:\n* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX\n* where\n* o ITER is the number of the current iteration in the iterative\n* refinement process\n* o RNRM is the infinity-norm of the residual\n* o XNRM is the infinity-norm of the solution\n* o ANRM is the infinity-operator-norm of the matrix A\n* o EPS is the machine epsilon returned by DLAMCH('Epsilon')\n* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00\n* respectively.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* A (input/output) COMPLEX*16 array,\n* dimension (LDA,N)\n* On entry, the N-by-N coefficient matrix A.\n* On exit, if iterative refinement has been successfully used\n* (INFO.EQ.0 and ITER.GE.0, see description below), then A is\n* unchanged, if double precision factorization has been used\n* (INFO.EQ.0 and ITER.LT.0, see description below), then the\n* array A contains the factors L and U from the factorization\n* A = P*L*U; the unit diagonal elements of L are not stored.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* IPIV (output) INTEGER array, dimension (N)\n* The pivot indices that define the permutation matrix P;\n* row i of the matrix was interchanged with row IPIV(i).\n* Corresponds either to the single precision factorization\n* (if INFO.EQ.0 and ITER.GE.0) or the double precision\n* factorization (if INFO.EQ.0 and ITER.LT.0).\n*\n* B (input) COMPLEX*16 array, dimension (LDB,NRHS)\n* The N-by-NRHS right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (output) COMPLEX*16 array, dimension (LDX,NRHS)\n* If INFO = 0, the N-by-NRHS solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N*NRHS)\n* This array is used to hold the residual vectors.\n*\n* SWORK (workspace) COMPLEX array, dimension (N*(N+NRHS))\n* This array is used to use the single precision matrix and the\n* right-hand sides or solutions in single precision.\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* ITER (output) INTEGER\n* < 0: iterative refinement has failed, COMPLEX*16\n* factorization has been performed\n* -1 : the routine fell back to full precision for\n* implementation- or machine-specific reasons\n* -2 : narrowing the precision induced an overflow,\n* the routine fell back to full precision\n* -3 : failure of CGETRF\n* -31: stop the iterative refinement after the 30th\n* iterations\n* > 0: iterative refinement has been successfully used.\n* Returns the number of iterations\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, U(i,i) computed in COMPLEX*16 is exactly\n* zero. The factorization has been completed, but the\n* factor U is exactly singular, so the solution\n* could not be computed.\n*\n* =========\n*\n\n");
|
38
38
|
return Qnil;
|
39
39
|
}
|
40
40
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/zcposv.c
CHANGED
@@ -34,7 +34,7 @@ rblapack_zcposv(int argc, VALUE *argv, VALUE self){
|
|
34
34
|
argc--;
|
35
35
|
rblapack_options = argv[argc];
|
36
36
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
37
|
-
printf("%s\n", "USAGE:\n x, iter, info, a = NumRu::Lapack.zcposv( uplo, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO )\n\n* Purpose\n* =======\n*\n* ZCPOSV computes the solution to a complex system of linear equations\n* A * X = B,\n* where A is an N-by-N Hermitian positive definite matrix and X and B\n* are N-by-NRHS matrices.\n*\n* ZCPOSV first attempts to factorize the matrix in COMPLEX and use this\n* factorization within an iterative refinement procedure to produce a\n* solution with COMPLEX*16 normwise backward error quality (see below).\n* If the approach fails the method switches to a COMPLEX*16\n* factorization and solve.\n*\n* The iterative refinement is not going to be a winning strategy if\n* the ratio COMPLEX performance over COMPLEX*16 performance is too\n* small. A reasonable strategy should take the number of right-hand\n* sides and the size of the matrix into account. This might be done\n* with a call to ILAENV in the future. Up to now, we always try\n* iterative refinement.\n*\n* The iterative refinement process is stopped if\n* ITER > ITERMAX\n* or for all the RHS we have:\n* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX\n* where\n* o ITER is the number of the current iteration in the iterative\n* refinement process\n* o RNRM is the infinity-norm of the residual\n* o XNRM is the infinity-norm of the solution\n* o ANRM is the infinity-operator-norm of the matrix A\n* o EPS is the machine epsilon returned by DLAMCH('Epsilon')\n* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00\n* respectively.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* A (input/output) COMPLEX*16 array,\n* dimension (LDA,N)\n* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n* N-by-N upper triangular part of A contains the upper\n* triangular part of the matrix A, and the strictly lower\n* triangular part of A is not referenced. If UPLO = 'L', the\n* leading N-by-N lower triangular part of A contains the lower\n* triangular part of the matrix A, and the strictly upper\n* triangular part of A is not referenced.\n*\n* Note that the imaginary parts of the diagonal\n* elements need not be set and are assumed to be zero.\n*\n* On exit, if iterative refinement has been successfully used\n* (INFO.EQ.0 and ITER.GE.0, see description below), then A is\n* unchanged, if double precision factorization has been used\n* (INFO.EQ.0 and ITER.LT.0, see description below), then the\n* array A contains the factor U or L from the Cholesky\n* factorization A = U**H*U or A = L*L**H.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* B (input) COMPLEX*16 array, dimension (LDB,NRHS)\n* The N-by-NRHS right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (output) COMPLEX*16 array, dimension (LDX,NRHS)\n* If INFO = 0, the N-by-NRHS solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N*NRHS)\n* This array is used to hold the residual vectors.\n*\n* SWORK (workspace) COMPLEX array, dimension (N*(N+NRHS))\n* This array is used to use the single precision matrix and the\n* right-hand sides or solutions in single precision.\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* ITER (output) INTEGER\n* < 0: iterative refinement has failed, COMPLEX*16\n* factorization has been performed\n* -1 : the routine fell back to full precision for\n* implementation- or machine-specific reasons\n* -2 : narrowing the precision induced an overflow,\n* the routine fell back to full precision\n* -3 : failure of CPOTRF\n* -31: stop the iterative refinement after the 30th\n* iterations\n* > 0: iterative refinement has been
|
37
|
+
printf("%s\n", "USAGE:\n x, iter, info, a = NumRu::Lapack.zcposv( uplo, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO )\n\n* Purpose\n* =======\n*\n* ZCPOSV computes the solution to a complex system of linear equations\n* A * X = B,\n* where A is an N-by-N Hermitian positive definite matrix and X and B\n* are N-by-NRHS matrices.\n*\n* ZCPOSV first attempts to factorize the matrix in COMPLEX and use this\n* factorization within an iterative refinement procedure to produce a\n* solution with COMPLEX*16 normwise backward error quality (see below).\n* If the approach fails the method switches to a COMPLEX*16\n* factorization and solve.\n*\n* The iterative refinement is not going to be a winning strategy if\n* the ratio COMPLEX performance over COMPLEX*16 performance is too\n* small. A reasonable strategy should take the number of right-hand\n* sides and the size of the matrix into account. This might be done\n* with a call to ILAENV in the future. Up to now, we always try\n* iterative refinement.\n*\n* The iterative refinement process is stopped if\n* ITER > ITERMAX\n* or for all the RHS we have:\n* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX\n* where\n* o ITER is the number of the current iteration in the iterative\n* refinement process\n* o RNRM is the infinity-norm of the residual\n* o XNRM is the infinity-norm of the solution\n* o ANRM is the infinity-operator-norm of the matrix A\n* o EPS is the machine epsilon returned by DLAMCH('Epsilon')\n* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00\n* respectively.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* A (input/output) COMPLEX*16 array,\n* dimension (LDA,N)\n* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n* N-by-N upper triangular part of A contains the upper\n* triangular part of the matrix A, and the strictly lower\n* triangular part of A is not referenced. If UPLO = 'L', the\n* leading N-by-N lower triangular part of A contains the lower\n* triangular part of the matrix A, and the strictly upper\n* triangular part of A is not referenced.\n*\n* Note that the imaginary parts of the diagonal\n* elements need not be set and are assumed to be zero.\n*\n* On exit, if iterative refinement has been successfully used\n* (INFO.EQ.0 and ITER.GE.0, see description below), then A is\n* unchanged, if double precision factorization has been used\n* (INFO.EQ.0 and ITER.LT.0, see description below), then the\n* array A contains the factor U or L from the Cholesky\n* factorization A = U**H*U or A = L*L**H.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* B (input) COMPLEX*16 array, dimension (LDB,NRHS)\n* The N-by-NRHS right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (output) COMPLEX*16 array, dimension (LDX,NRHS)\n* If INFO = 0, the N-by-NRHS solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N*NRHS)\n* This array is used to hold the residual vectors.\n*\n* SWORK (workspace) COMPLEX array, dimension (N*(N+NRHS))\n* This array is used to use the single precision matrix and the\n* right-hand sides or solutions in single precision.\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* ITER (output) INTEGER\n* < 0: iterative refinement has failed, COMPLEX*16\n* factorization has been performed\n* -1 : the routine fell back to full precision for\n* implementation- or machine-specific reasons\n* -2 : narrowing the precision induced an overflow,\n* the routine fell back to full precision\n* -3 : failure of CPOTRF\n* -31: stop the iterative refinement after the 30th\n* iterations\n* > 0: iterative refinement has been successfully used.\n* Returns the number of iterations\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the leading minor of order i of\n* (COMPLEX*16) A is not positive definite, so the\n* factorization could not be completed, and the solution\n* has not been computed.\n*\n* =========\n*\n\n");
|
38
38
|
return Qnil;
|
39
39
|
}
|
40
40
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/zgelsd.c
CHANGED
@@ -43,7 +43,7 @@ rblapack_zgelsd(int argc, VALUE *argv, VALUE self){
|
|
43
43
|
argc--;
|
44
44
|
rblapack_options = argv[argc];
|
45
45
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
46
|
-
printf("%s\n", "USAGE:\n s, rank, work, info, b = NumRu::Lapack.zgelsd( a, b, rcond, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZGELSD computes the minimum-norm solution to a real linear least\n* squares problem:\n* minimize 2-norm(| b - A*x |)\n* using the singular value decomposition (SVD) of A. A is an M-by-N\n* matrix which may be rank-deficient.\n*\n* Several right hand side vectors b and solution vectors x can be\n* handled in a single call; they are stored as the columns of the\n* M-by-NRHS right hand side matrix B and the N-by-NRHS solution\n* matrix X.\n*\n* The problem is solved in three steps:\n* (1) Reduce the coefficient matrix A to bidiagonal form with\n* Householder
|
46
|
+
printf("%s\n", "USAGE:\n s, rank, work, info, b = NumRu::Lapack.zgelsd( a, b, rcond, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZGELSD computes the minimum-norm solution to a real linear least\n* squares problem:\n* minimize 2-norm(| b - A*x |)\n* using the singular value decomposition (SVD) of A. A is an M-by-N\n* matrix which may be rank-deficient.\n*\n* Several right hand side vectors b and solution vectors x can be\n* handled in a single call; they are stored as the columns of the\n* M-by-NRHS right hand side matrix B and the N-by-NRHS solution\n* matrix X.\n*\n* The problem is solved in three steps:\n* (1) Reduce the coefficient matrix A to bidiagonal form with\n* Householder transformations, reducing the original problem\n* into a \"bidiagonal least squares problem\" (BLS)\n* (2) Solve the BLS using a divide and conquer approach.\n* (3) Apply back all the Householder transformations to solve\n* the original least squares problem.\n*\n* The effective rank of A is determined by treating as zero those\n* singular values which are less than RCOND times the largest singular\n* value.\n*\n* The divide and conquer algorithm makes very mild assumptions about\n* floating point arithmetic. It will work on machines with a guard\n* digit in add/subtract, or on those binary machines without guard\n* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrices B and X. NRHS >= 0.\n*\n* A (input) COMPLEX*16 array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, A has been destroyed.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n* On entry, the M-by-NRHS right hand side matrix B.\n* On exit, B is overwritten by the N-by-NRHS solution matrix X.\n* If m >= n and RANK = n, the residual sum-of-squares for\n* the solution in the i-th column is given by the sum of\n* squares of the modulus of elements n+1:m in that column.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,M,N).\n*\n* S (output) DOUBLE PRECISION array, dimension (min(M,N))\n* The singular values of A in decreasing order.\n* The condition number of A in the 2-norm = S(1)/S(min(m,n)).\n*\n* RCOND (input) DOUBLE PRECISION\n* RCOND is used to determine the effective rank of A.\n* Singular values S(i) <= RCOND*S(1) are treated as zero.\n* If RCOND < 0, machine precision is used instead.\n*\n* RANK (output) INTEGER\n* The effective rank of A, i.e., the number of singular values\n* which are greater than RCOND*S(1).\n*\n* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK must be at least 1.\n* The exact minimum amount of workspace needed depends on M,\n* N and NRHS. As long as LWORK is at least\n* 2*N + N*NRHS\n* if M is greater than or equal to N or\n* 2*M + M*NRHS\n* if M is less than N, the code will execute correctly.\n* For good performance, LWORK should generally be larger.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the array WORK and the\n* minimum sizes of the arrays RWORK and IWORK, and returns\n* these values as the first entries of the WORK, RWORK and\n* IWORK arrays, and no error message related to LWORK is issued\n* by XERBLA.\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))\n* LRWORK >=\n* 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +\n* MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )\n* if M is greater than or equal to N or\n* 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +\n* MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )\n* if M is less than N, the code will execute correctly.\n* SMLSIZ is returned by ILAENV and is equal to the maximum\n* size of the subproblems at the bottom of the computation\n* tree (usually about 25), and\n* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )\n* On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.\n*\n* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))\n* LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),\n* where MINMN = MIN( M,N ).\n* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: the algorithm for computing the SVD failed to converge;\n* if INFO = i, i off-diagonal elements of an intermediate\n* bidiagonal form did not converge to zero.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Ren-Cang Li, Computer Science Division, University of\n* California at Berkeley, USA\n* Osni Marques, LBNL/NERSC, USA\n*\n* =====================================================================\n*\n\n");
|
47
47
|
return Qnil;
|
48
48
|
}
|
49
49
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/zlarrv.c
CHANGED
@@ -68,7 +68,7 @@ rblapack_zlarrv(int argc, VALUE *argv, VALUE self){
|
|
68
68
|
argc--;
|
69
69
|
rblapack_options = argv[argc];
|
70
70
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
71
|
-
printf("%s\n", "USAGE:\n z, isuppz, info, d, l, w, werr, wgap = NumRu::Lapack.zlarrv( vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1, rtol2, w, werr, wgap, iblock, indexw, gers, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZLARRV computes the eigenvectors of the tridiagonal matrix\n* T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.\n* The input eigenvalues should have been computed by DLARRE.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* VL (input) DOUBLE PRECISION\n* VU (input) DOUBLE PRECISION\n* Lower and upper bounds of the interval that contains the desired\n* eigenvalues. VL < VU. Needed to compute gaps on the left or right\n* end of the extremal eigenvalues in the desired RANGE.\n*\n* D (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the N diagonal elements of the diagonal matrix D.\n* On exit, D may be overwritten.\n*\n* L (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the (N-1) subdiagonal elements of the unit\n* bidiagonal matrix L are in elements 1 to N-1 of L\n* (if the matrix is not split.) At the end of each block\n* is stored the corresponding shift as given by DLARRE.\n* On exit, L is overwritten.\n*\n* PIVMIN (in) DOUBLE PRECISION\n* The minimum pivot allowed in the Sturm sequence.\n*\n* ISPLIT (input) INTEGER array, dimension (N)\n* The splitting points, at which T breaks up into blocks.\n* The first block consists of rows/columns 1 to\n* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1\n* through ISPLIT( 2 ), etc.\n*\n* M (input) INTEGER\n* The total number of input eigenvalues. 0 <= M <= N.\n*\n* DOL (input) INTEGER\n* DOU (input) INTEGER\n* If the user wants to compute only selected eigenvectors from all\n* the eigenvalues supplied, he can specify an index range DOL:DOU.\n* Or else the setting DOL=1, DOU=M should be applied.\n* Note that DOL and DOU refer to the order in which the eigenvalues\n* are stored in W.\n* If the user wants to compute only selected eigenpairs, then\n* the columns DOL-1 to DOU+1 of the eigenvector space Z contain the\n* computed eigenvectors. All other columns of Z are set to zero.\n*\n* MINRGP (input) DOUBLE PRECISION\n*\n* RTOL1 (input) DOUBLE PRECISION\n* RTOL2 (input) DOUBLE PRECISION\n* Parameters for bisection.\n* An interval [LEFT,RIGHT] has converged if\n* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n*\n* W (input/output) DOUBLE PRECISION array, dimension (N)\n* The first M elements of W contain the APPROXIMATE eigenvalues for\n* which eigenvectors are to be computed. The eigenvalues\n* should be grouped by split-off block and ordered from\n* smallest to largest within the block ( The output array\n* W from DLARRE is expected here ). Furthermore, they are with\n* respect to the shift of the corresponding root representation\n* for their block. On exit, W holds the eigenvalues of the\n* UNshifted matrix.\n*\n* WERR (input/output) DOUBLE PRECISION array, dimension (N)\n* The first M elements contain the semiwidth of the uncertainty\n* interval of the corresponding eigenvalue in W\n*\n* WGAP (input/output) DOUBLE PRECISION array, dimension (N)\n* The separation from the right neighbor eigenvalue in W.\n*\n* IBLOCK (input) INTEGER array, dimension (N)\n* The indices of the blocks (submatrices) associated with the\n* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue\n* W(i) belongs to the first block from the top, =2 if W(i)\n* belongs to the second block, etc.\n*\n* INDEXW (input) INTEGER array, dimension (N)\n* The indices of the eigenvalues within each block (submatrix);\n* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the\n* i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.\n*\n* GERS (input) DOUBLE PRECISION array, dimension (2*N)\n* The N Gerschgorin intervals (the i-th Gerschgorin interval\n* is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should\n* be computed from the original UNshifted matrix.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )\n* If INFO = 0, the first M columns of Z contain the\n* orthonormal eigenvectors of the matrix T\n* corresponding to the input eigenvalues, with the i-th\n* column of Z holding the eigenvector associated with W(i).\n* Note: the user must ensure that at least max(1,M) columns are\n* supplied in the array Z.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )\n* The support of the eigenvectors in Z, i.e., the indices\n* indicating the nonzero elements in Z. The I-th eigenvector\n* is nonzero only in elements ISUPPZ( 2*I-1 ) through\n* ISUPPZ( 2*I ).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (12*N)\n*\n* IWORK (workspace) INTEGER array, dimension (7*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n*\n* > 0: A problem
|
71
|
+
printf("%s\n", "USAGE:\n z, isuppz, info, d, l, w, werr, wgap = NumRu::Lapack.zlarrv( vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1, rtol2, w, werr, wgap, iblock, indexw, gers, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZLARRV computes the eigenvectors of the tridiagonal matrix\n* T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.\n* The input eigenvalues should have been computed by DLARRE.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* VL (input) DOUBLE PRECISION\n* VU (input) DOUBLE PRECISION\n* Lower and upper bounds of the interval that contains the desired\n* eigenvalues. VL < VU. Needed to compute gaps on the left or right\n* end of the extremal eigenvalues in the desired RANGE.\n*\n* D (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the N diagonal elements of the diagonal matrix D.\n* On exit, D may be overwritten.\n*\n* L (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the (N-1) subdiagonal elements of the unit\n* bidiagonal matrix L are in elements 1 to N-1 of L\n* (if the matrix is not split.) At the end of each block\n* is stored the corresponding shift as given by DLARRE.\n* On exit, L is overwritten.\n*\n* PIVMIN (in) DOUBLE PRECISION\n* The minimum pivot allowed in the Sturm sequence.\n*\n* ISPLIT (input) INTEGER array, dimension (N)\n* The splitting points, at which T breaks up into blocks.\n* The first block consists of rows/columns 1 to\n* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1\n* through ISPLIT( 2 ), etc.\n*\n* M (input) INTEGER\n* The total number of input eigenvalues. 0 <= M <= N.\n*\n* DOL (input) INTEGER\n* DOU (input) INTEGER\n* If the user wants to compute only selected eigenvectors from all\n* the eigenvalues supplied, he can specify an index range DOL:DOU.\n* Or else the setting DOL=1, DOU=M should be applied.\n* Note that DOL and DOU refer to the order in which the eigenvalues\n* are stored in W.\n* If the user wants to compute only selected eigenpairs, then\n* the columns DOL-1 to DOU+1 of the eigenvector space Z contain the\n* computed eigenvectors. All other columns of Z are set to zero.\n*\n* MINRGP (input) DOUBLE PRECISION\n*\n* RTOL1 (input) DOUBLE PRECISION\n* RTOL2 (input) DOUBLE PRECISION\n* Parameters for bisection.\n* An interval [LEFT,RIGHT] has converged if\n* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n*\n* W (input/output) DOUBLE PRECISION array, dimension (N)\n* The first M elements of W contain the APPROXIMATE eigenvalues for\n* which eigenvectors are to be computed. The eigenvalues\n* should be grouped by split-off block and ordered from\n* smallest to largest within the block ( The output array\n* W from DLARRE is expected here ). Furthermore, they are with\n* respect to the shift of the corresponding root representation\n* for their block. On exit, W holds the eigenvalues of the\n* UNshifted matrix.\n*\n* WERR (input/output) DOUBLE PRECISION array, dimension (N)\n* The first M elements contain the semiwidth of the uncertainty\n* interval of the corresponding eigenvalue in W\n*\n* WGAP (input/output) DOUBLE PRECISION array, dimension (N)\n* The separation from the right neighbor eigenvalue in W.\n*\n* IBLOCK (input) INTEGER array, dimension (N)\n* The indices of the blocks (submatrices) associated with the\n* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue\n* W(i) belongs to the first block from the top, =2 if W(i)\n* belongs to the second block, etc.\n*\n* INDEXW (input) INTEGER array, dimension (N)\n* The indices of the eigenvalues within each block (submatrix);\n* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the\n* i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.\n*\n* GERS (input) DOUBLE PRECISION array, dimension (2*N)\n* The N Gerschgorin intervals (the i-th Gerschgorin interval\n* is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should\n* be computed from the original UNshifted matrix.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )\n* If INFO = 0, the first M columns of Z contain the\n* orthonormal eigenvectors of the matrix T\n* corresponding to the input eigenvalues, with the i-th\n* column of Z holding the eigenvector associated with W(i).\n* Note: the user must ensure that at least max(1,M) columns are\n* supplied in the array Z.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )\n* The support of the eigenvectors in Z, i.e., the indices\n* indicating the nonzero elements in Z. The I-th eigenvector\n* is nonzero only in elements ISUPPZ( 2*I-1 ) through\n* ISUPPZ( 2*I ).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (12*N)\n*\n* IWORK (workspace) INTEGER array, dimension (7*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n*\n* > 0: A problem occurred in ZLARRV.\n* < 0: One of the called subroutines signaled an internal problem.\n* Needs inspection of the corresponding parameter IINFO\n* for further information.\n*\n* =-1: Problem in DLARRB when refining a child's eigenvalues.\n* =-2: Problem in DLARRF when computing the RRR of a child.\n* When a child is inside a tight cluster, it can be difficult\n* to find an RRR. A partial remedy from the user's point of\n* view is to make the parameter MINRGP smaller and recompile.\n* However, as the orthogonality of the computed vectors is\n* proportional to 1/MINRGP, the user should be aware that\n* he might be trading in precision when he decreases MINRGP.\n* =-3: Problem in DLARRB when refining a single eigenvalue\n* after the Rayleigh correction was rejected.\n* = 5: The Rayleigh Quotient Iteration failed to converge to\n* full accuracy in MAXITR steps.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Beresford Parlett, University of California, Berkeley, USA\n* Jim Demmel, University of California, Berkeley, USA\n* Inderjit Dhillon, University of Texas, Austin, USA\n* Osni Marques, LBNL/NERSC, USA\n* Christof Voemel, University of California, Berkeley, USA\n*\n* =====================================================================\n*\n\n");
|
72
72
|
return Qnil;
|
73
73
|
}
|
74
74
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/zlat2c.c
CHANGED
@@ -23,7 +23,7 @@ rblapack_zlat2c(int argc, VALUE *argv, VALUE self){
|
|
23
23
|
argc--;
|
24
24
|
rblapack_options = argv[argc];
|
25
25
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
26
|
-
printf("%s\n", "USAGE:\n sa, info = NumRu::Lapack.zlat2c( uplo, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLAT2C( UPLO, N, A, LDA, SA, LDSA, INFO )\n\n* Purpose\n* =======\n*\n* ZLAT2C converts a COMPLEX*16 triangular matrix, SA, to a COMPLEX\n* triangular matrix, A.\n*\n* RMAX is the overflow for the SINGLE PRECISION arithmetic\n* ZLAT2C checks that all the entries of A are between -RMAX and\n* RMAX. If not the
|
26
|
+
printf("%s\n", "USAGE:\n sa, info = NumRu::Lapack.zlat2c( uplo, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLAT2C( UPLO, N, A, LDA, SA, LDSA, INFO )\n\n* Purpose\n* =======\n*\n* ZLAT2C converts a COMPLEX*16 triangular matrix, SA, to a COMPLEX\n* triangular matrix, A.\n*\n* RMAX is the overflow for the SINGLE PRECISION arithmetic\n* ZLAT2C checks that all the entries of A are between -RMAX and\n* RMAX. If not the conversion is aborted and a flag is raised.\n*\n* This is an auxiliary routine so there is no argument checking.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': A is upper triangular;\n* = 'L': A is lower triangular.\n*\n* N (input) INTEGER\n* The number of rows and columns of the matrix A. N >= 0.\n*\n* A (input) COMPLEX*16 array, dimension (LDA,N)\n* On entry, the N-by-N triangular coefficient matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* SA (output) COMPLEX array, dimension (LDSA,N)\n* Only the UPLO part of SA is referenced. On exit, if INFO=0,\n* the N-by-N coefficient matrix SA; if INFO>0, the content of\n* the UPLO part of SA is unspecified.\n*\n* LDSA (input) INTEGER\n* The leading dimension of the array SA. LDSA >= max(1,M).\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* = 1: an entry of the matrix A is greater than the SINGLE\n* PRECISION overflow threshold, in this case, the content\n* of the UPLO part of SA in exit is unspecified.\n*\n* =========\n*\n* .. Local Scalars ..\n INTEGER I, J\n DOUBLE PRECISION RMAX\n LOGICAL UPPER\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC DBLE, DIMAG\n* ..\n* .. External Functions ..\n REAL SLAMCH\n LOGICAL LSAME\n EXTERNAL SLAMCH, LSAME\n* ..\n\n");
|
27
27
|
return Qnil;
|
28
28
|
}
|
29
29
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/zlatdf.c
CHANGED
@@ -30,7 +30,7 @@ rblapack_zlatdf(int argc, VALUE *argv, VALUE self){
|
|
30
30
|
argc--;
|
31
31
|
rblapack_options = argv[argc];
|
32
32
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
33
|
-
printf("%s\n", "USAGE:\n rhs, rdsum, rdscal = NumRu::Lapack.zlatdf( ijob, z, rhs, rdsum, rdscal, ipiv, jpiv, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV )\n\n* Purpose\n* =======\n*\n* ZLATDF computes the contribution to the reciprocal Dif-estimate\n* by solving for x in Z * x = b, where b is chosen such that the norm\n* of x is as large as possible. It is assumed that LU decomposition\n* of Z has been computed by ZGETC2. On entry RHS = f holds the\n* contribution from earlier solved sub-systems, and on return RHS = x.\n*\n* The factorization of Z returned by ZGETC2 has the form\n* Z = P * L * U * Q, where P and Q are permutation matrices. L is lower\n* triangular with unit diagonal elements and U is upper triangular.\n*\n\n* Arguments\n* =========\n*\n* IJOB (input) INTEGER\n* IJOB = 2: First compute an approximative null-vector e\n* of Z using ZGECON, e is normalized and solve for\n* Zx = +-e - f with the sign giving the greater value of\n* 2-norm(x). About 5 times as expensive as Default.\n* IJOB .ne. 2: Local look ahead strategy where\n* all entries of the r.h.s. b is
|
33
|
+
printf("%s\n", "USAGE:\n rhs, rdsum, rdscal = NumRu::Lapack.zlatdf( ijob, z, rhs, rdsum, rdscal, ipiv, jpiv, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV )\n\n* Purpose\n* =======\n*\n* ZLATDF computes the contribution to the reciprocal Dif-estimate\n* by solving for x in Z * x = b, where b is chosen such that the norm\n* of x is as large as possible. It is assumed that LU decomposition\n* of Z has been computed by ZGETC2. On entry RHS = f holds the\n* contribution from earlier solved sub-systems, and on return RHS = x.\n*\n* The factorization of Z returned by ZGETC2 has the form\n* Z = P * L * U * Q, where P and Q are permutation matrices. L is lower\n* triangular with unit diagonal elements and U is upper triangular.\n*\n\n* Arguments\n* =========\n*\n* IJOB (input) INTEGER\n* IJOB = 2: First compute an approximative null-vector e\n* of Z using ZGECON, e is normalized and solve for\n* Zx = +-e - f with the sign giving the greater value of\n* 2-norm(x). About 5 times as expensive as Default.\n* IJOB .ne. 2: Local look ahead strategy where\n* all entries of the r.h.s. b is chosen as either +1 or\n* -1. Default.\n*\n* N (input) INTEGER\n* The number of columns of the matrix Z.\n*\n* Z (input) DOUBLE PRECISION array, dimension (LDZ, N)\n* On entry, the LU part of the factorization of the n-by-n\n* matrix Z computed by ZGETC2: Z = P * L * U * Q\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDA >= max(1, N).\n*\n* RHS (input/output) DOUBLE PRECISION array, dimension (N).\n* On entry, RHS contains contributions from other subsystems.\n* On exit, RHS contains the solution of the subsystem with\n* entries according to the value of IJOB (see above).\n*\n* RDSUM (input/output) DOUBLE PRECISION\n* On entry, the sum of squares of computed contributions to\n* the Dif-estimate under computation by ZTGSYL, where the\n* scaling factor RDSCAL (see below) has been factored out.\n* On exit, the corresponding sum of squares updated with the\n* contributions from the current sub-system.\n* If TRANS = 'T' RDSUM is not touched.\n* NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.\n*\n* RDSCAL (input/output) DOUBLE PRECISION\n* On entry, scaling factor used to prevent overflow in RDSUM.\n* On exit, RDSCAL is updated w.r.t. the current contributions\n* in RDSUM.\n* If TRANS = 'T', RDSCAL is not touched.\n* NOTE: RDSCAL only makes sense when ZTGSY2 is called by\n* ZTGSYL.\n*\n* IPIV (input) INTEGER array, dimension (N).\n* The pivot indices; for 1 <= i <= N, row i of the\n* matrix has been interchanged with row IPIV(i).\n*\n* JPIV (input) INTEGER array, dimension (N).\n* The pivot indices; for 1 <= j <= N, column j of the\n* matrix has been interchanged with column JPIV(j).\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n* Umea University, S-901 87 Umea, Sweden.\n*\n* This routine is a further developed implementation of algorithm\n* BSOLVE in [1] using complete pivoting in the LU factorization.\n*\n* [1] Bo Kagstrom and Lars Westin,\n* Generalized Schur Methods with Condition Estimators for\n* Solving the Generalized Sylvester Equation, IEEE Transactions\n* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.\n*\n* [2] Peter Poromaa,\n* On Efficient and Robust Estimators for the Separation\n* between two Regular Matrix Pairs with Applications in\n* Condition Estimation. Report UMINF-95.05, Department of\n* Computing Science, Umea University, S-901 87 Umea, Sweden,\n* 1995.\n*\n* =====================================================================\n*\n\n");
|
34
34
|
return Qnil;
|
35
35
|
}
|
36
36
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
data/ext/zstegr.c
CHANGED
@@ -54,7 +54,7 @@ rblapack_zstegr(int argc, VALUE *argv, VALUE self){
|
|
54
54
|
argc--;
|
55
55
|
rblapack_options = argv[argc];
|
56
56
|
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
|
57
|
-
printf("%s\n", "USAGE:\n m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.zstegr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZSTEGR computes selected eigenvalues and, optionally, eigenvectors\n* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has\n* a well defined set of pairwise different real eigenvalues, the corresponding\n* real eigenvectors are pairwise orthogonal.\n*\n* The spectrum may be computed either completely or partially by specifying\n* either an interval (VL,VU] or a range of indices IL:IU for the desired\n* eigenvalues.\n*\n* ZSTEGR is a
|
57
|
+
printf("%s\n", "USAGE:\n m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.zstegr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZSTEGR computes selected eigenvalues and, optionally, eigenvectors\n* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has\n* a well defined set of pairwise different real eigenvalues, the corresponding\n* real eigenvectors are pairwise orthogonal.\n*\n* The spectrum may be computed either completely or partially by specifying\n* either an interval (VL,VU] or a range of indices IL:IU for the desired\n* eigenvalues.\n*\n* ZSTEGR is a compatibility wrapper around the improved ZSTEMR routine.\n* See DSTEMR for further details.\n*\n* One important change is that the ABSTOL parameter no longer provides any\n* benefit and hence is no longer used.\n*\n* Note : ZSTEGR and ZSTEMR work only on machines which follow\n* IEEE-754 floating-point standard in their handling of infinities and\n* NaNs. Normal execution may create these exceptiona values and hence\n* may abort due to a floating point exception in environments which\n* do not conform to the IEEE-754 standard.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* RANGE (input) CHARACTER*1\n* = 'A': all eigenvalues will be found.\n* = 'V': all eigenvalues in the half-open interval (VL,VU]\n* will be found.\n* = 'I': the IL-th through IU-th eigenvalues will be found.\n*\n* N (input) INTEGER\n* The order of the matrix. N >= 0.\n*\n* D (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the N diagonal elements of the tridiagonal matrix\n* T. On exit, D is overwritten.\n*\n* E (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the (N-1) subdiagonal elements of the tridiagonal\n* matrix T in elements 1 to N-1 of E. E(N) need not be set on\n* input, but is used internally as workspace.\n* On exit, E is overwritten.\n*\n* VL (input) DOUBLE PRECISION\n* VU (input) DOUBLE PRECISION\n* If RANGE='V', the lower and upper bounds of the interval to\n* be searched for eigenvalues. VL < VU.\n* Not referenced if RANGE = 'A' or 'I'.\n*\n* IL (input) INTEGER\n* IU (input) INTEGER\n* If RANGE='I', the indices (in ascending order) of the\n* smallest and largest eigenvalues to be returned.\n* 1 <= IL <= IU <= N, if N > 0.\n* Not referenced if RANGE = 'A' or 'V'.\n*\n* ABSTOL (input) DOUBLE PRECISION\n* Unused. Was the absolute error tolerance for the\n* eigenvalues/eigenvectors in previous versions.\n*\n* M (output) INTEGER\n* The total number of eigenvalues found. 0 <= M <= N.\n* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* The first M elements contain the selected eigenvalues in\n* ascending order.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )\n* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z\n* contain the orthonormal eigenvectors of the matrix T\n* corresponding to the selected eigenvalues, with the i-th\n* column of Z holding the eigenvector associated with W(i).\n* If JOBZ = 'N', then Z is not referenced.\n* Note: the user must ensure that at least max(1,M) columns are\n* supplied in the array Z; if RANGE = 'V', the exact value of M\n* is not known in advance and an upper bound must be used.\n* Supplying N columns is always safe.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', then LDZ >= max(1,N).\n*\n* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )\n* The support of the eigenvectors in Z, i.e., the indices\n* indicating the nonzero elements in Z. The i-th computed eigenvector\n* is nonzero only in elements ISUPPZ( 2*i-1 ) through\n* ISUPPZ( 2*i ). This is relevant in the case when the matrix\n* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)\n* On exit, if INFO = 0, WORK(1) returns the optimal\n* (and minimal) LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,18*N)\n* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (LIWORK)\n* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of the array IWORK. LIWORK >= max(1,10*N)\n* if the eigenvectors are desired, and LIWORK >= max(1,8*N)\n* if only the eigenvalues are to be computed.\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal size of the IWORK array,\n* returns this value as the first entry of the IWORK array, and\n* no error message related to LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* On exit, INFO\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = 1X, internal error in DLARRE,\n* if INFO = 2X, internal error in ZLARRV.\n* Here, the digit X = ABS( IINFO ) < 10, where IINFO is\n* the nonzero error code returned by DLARRE or\n* ZLARRV, respectively.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Inderjit Dhillon, IBM Almaden, USA\n* Osni Marques, LBNL/NERSC, USA\n* Christof Voemel, LBNL/NERSC, USA\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL TRYRAC\n* ..\n* .. External Subroutines ..\n EXTERNAL ZSTEMR\n* ..\n\n");
|
58
58
|
return Qnil;
|
59
59
|
}
|
60
60
|
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-lapack
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.8.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Seiya Nishizawa
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2016-
|
11
|
+
date: 2016-08-30 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: narray
|